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Zusammenfassung

Die Suche nach Resonanzen im Dijet Massenspektrum bietet
einen modellunabhängigen Ansatz zur Suche nach neuer Physik am
Large Hadron Collider. Die Analyse dieses Spektrums geht aufgrund
der großen Datenmengen mit hohen Anforderungen an eine Unter-
grundabschätzung einher. Dies gilt im Besonderen für die Trigger-
Level Analyse (TLA), die eine unreduzierte statistische Präzision im
sub-TeV Bereich des Massenspektrums aufweist. Die weitere Akku-
mulation der Daten macht künftig eine alternative Methode für die
Untergrundabschätzung notwendig. Ein Ansatz dazu wird in die-
ser Arbeit mittels Linearkombinationen von LO- und NLO-Theorie-
variationen des Dijet Massenspektrums untersucht. Es werden die
Methode im Allgemeinen sowie die Ergebnisse mit den TLA Daten
von 2016 präsentiert. Weitere Untersuchungen der Methode wer-
den unter Anwesenheit von injizierten Signalen durchgeführt. Dabei
ermöglicht die Methode eine gute Beschreibung der Daten, jedoch
sind weitere Modifikationen nötig, um eine Anpassung der Unter-
grundabschätzung an potentielle Signale zu vermeiden.

Abstract

The search for resonances in the dijet mass spectrum offers a
model-independent approach to search for new physics at the Large
Hadron Collider. The analysis of this spectrum makes high demands
on a background estimate due to the large amounts of data. This is
particularly the case for the trigger-level analysis (TLA), which utili-
zes unreduced statistical precision in the sub-TeV range of the mass
spectrum. Further accumulation of data will require an alternati-
ve background estimation method. One approach is explored in this
work by using linear combinations of LO and NLO theory variations
of the dijet mass spectrum. The method in general and the results
with the 2016 TLA data are presented. Further investigations of the
method are carried out in the presence of injected signals. The me-
thod allows a good description of the data, but further modifications
are necessary to avoid adaptation of the background estimation to
potential signals.
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1. Einleitung

1.1. Standardmodell der Teilchenphysik

Das Standardmodell der Teilchenphysik beschreibt alle bekannten Elementarteilchen und

deren nicht-gravitative Wechselwirkungen. Abbildung 1.1 fasst diese grafisch zusammen.

Sie können eingeteilt werden in Fermionen und Bosonen, wobei Fermionen Teilchen mit

halbzahligem und Bosonen Teilchen mit ganzzahligem Spin sind.

Zu den Fermionen zählen Quarks und Leptonen, welche in jeweils drei Generationen mit

zwei Teilchen pro Generation unterteilt werden. Sie unterscheiden sich innerhalb einer

Generation unter anderem in ihrer Masse und ihrer Ladung. Zu jedem fermionischen

Teilchen existiert ein Antiteilchen, welches die entgegengesetzte Ladung und Quanten-

zahlen hat, jedoch in allen weiteren Eigenschaften mit dem Teilchen übereinstimmt.

Quarks tragen eine elektrische Ladung von +2/3 oder -1/3. Die Quarks der ersten Gene-

ration sind das Up- und das Down-Quark, die der zweiten Generation sind das Charm-

und das Strange-Quark und die der dritten Generation sind das Top- und das Bottom-

Quark. Alle Quarks treten in gebundenen Zuständen genannt Hadronen auf.1

Leptonen sind Elektronen, Myonen sowie Tauonen, jweils mit einer elektrische Ladung

von -1, sowie deren zugehörigen Neutrinos, mit einer elektrischen Ladung von 0. Neutri-

nos wechselwirken einzig über die schwache Wechselwirkung.

Drei der vier Wechselwirkungen lassen sich durch die Quantenfeldtheorie mit Hilfe von

Eichbosonen beschreiben. Die elektromagnetische Wechselwirkung wird durch masselose

Photonen (γ) vermittelt, welche an elektrische Ladung koppeln. Daher wechselwirken

alle Fermionen bis auf Neutrinos elektromagnetisch. Die schwache Wechselwirkung wird

von W± und Z0 Bosonen getragen, welche an die Hyperladung koppeln, sodass alle Fer-

mionen schwach wechselwirken können. Aufgrund der Masse dieser Austauschteilchen

ist die schwache Wechselwirkung unterdrückt. Die schwache und die elektromagnetische

Wechselwirkung können zu der elektroschwachen Wechselwirkung vereinigt werden. Die

dritte Kraft ist die starke Wechselwirkung. Sie wird durch die Quantenchromodynamik

1Nichtgebundene Quarks treten in einem Quark-Gluonen-Plasma oder kurz nach ihrer Erzeugung auf.
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1.2. Jetproduktion

Abbildung 1.1.: Übersicht der Teilchen des Standardmodells. Die Grafik ist [18] entnom-
men.

(QCD) beschrieben. Die zugehörigen Austauschteilchen sind acht masselose Gluonen

(g), welche an Farbladung koppeln. Farbladung tragen sowohl Quarks als auch Gluo-

nen selbst, wodurch Gluonen zur Selbstwechselwirkung befähigt sind. Das Higgs-Boson

wurde im Jahr 2012 am Large Hadron Collider beobachtet und verleiht den Elementar-

teilchen ihre Masse.

Das Standardmodell beschreibt den Großteil der beobachtbaren Phänomene präzise. Je-

doch ist es unvollständig, da es beispielsweise weder die Gravitation noch die dunkle

Materie oder dunkle Energie erklärt. [17]

1.2. Jetproduktion

Wenn Protonen wechselwirken, können die Partonen, die Konstituenten der Hadronen,

aneinander streuen. Beispiele dieser 1 + 2 → 3 + 4 Partonensubprozsse sind in Abbil-

dung 1.2 und 1.3 gezeigt. Die Prozesse werden anhand ihrer Ordnung unterschieden.

Man spricht bei den Prozessen aus Abbildung 1.2 von Prozessen erster Ordnung oder

auch von der leading order (LO). Abbildung 1.3 zeigt Beispiele für Prozesse der zweiten
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1.2. Jetproduktion

Abbildung 1.2.: Beispiele von Feynman Diagrammen des 1 + 2 → 3 + 4 Partonensub-
prozsse der LO. Die Grafik ist [11] entnommen und modifiziert.

Abbildung 1.3.: Beispiele von Feynman Diagrammen des 1 + 2 → 3 + 4 Partonensub-
prozsse der NLO. Die Grafik ist [11] entnommen und modifiziert.

Ordnung, genannt next-to-leading order (NLO). Die Ordnungen unterscheiden sich in

der Berücksichtigung von Korrekturen zum Beispiel durch Loops oder Abstrahlung von

Gluonen oder Photonen der initialen oder finalen Teilchen.

Im Endzustand führen die kontinuierlichen weichen und kollinearen Abstrahlungen zur

Formation einer kegelförmigen Kaskade an Partonen. Die Quarks darin tragen, so wie al-

le Teilchen des Prozesses, eine Farbladung, an welche die starke Wechselwirkung koppelt.

Das Potential des Feldes zwischen zwei farbgeladenen Teilchen ist ab einem gewissen Ab-

stand proportional zum Abstand der Teilchen. Aufgrund der hohen kinetischen Energie

durch die Streuung driften die Teilchen nach der Wechselwirkung auseinander. Dadurch

wird die potentielle Energie des Farbladungsfeldes größer. Ab einem gewissen Abstand

reicht die Energie für die Erzeugung eines weiteren Quark-Antiquark-Paares zwischen

den auseinander driftenden Quarks. Dieser Prozess wiederholt sich, bis sich die Quarks

zu farbneutralen Hadronen zusammenschließen und wird Hadronisierung genannt. Die

Hadronen bilden einen kollimierten kegelförmigen Strahl, welcher als Jet bezeichnet wird.

Der Jet eines Ereignisses mit dem größten transversalen Impuls pT wird führender Jet

genannt.

Die invariante Masse mjj des Dijet Systems kann durch die quadrierte Summe der Viere-

rimpulse beziehungsweise der transversalen Impulse der finalen Quarks pT,3 und pT,4 und
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1.3. Simulationen des Dijet Spektrums

den Differenzen der Pseudorapiditäten ∆η und der Azimultwinkel ∆φ der Jets bestimmt

werden.

m2

jj = (p3 + p4)
2 = 2pT,3pT,4(cosh(∆η)− cos(∆φ)) (1.1)

Die Observable mjj ist interessant, da sie Hinweise auf Physik jenseits des Standardmo-

dells liefern könnte. Die QCD sagt ein glattes, stetig fallendes Spektrum voraus. Dies

resultiert aus der antiproportionalen Abhängigkeit von q2 der Gluonen- und Quark-

propagatoren. In einigen Modellen jenseits des Standardmodells tauchen hypothetische

intermediäre massive Austauschteilchen auf, die auch an Quarks und Gluonen koppeln.

Deren Propagator würde im Nenner einen Masseterm aufweisen, der zu einer resonanten

Erhöhung des differenziellen Dijet Produktionswirkungsquerschnittes bei der invarianten

Masse des neuen Austauschteilchens führt. Im mjj Spektrum würde sich dies als gepeak-

te Resonanz bemerkbar machen [9]. Ein Beispiel für ein solches hypothetisches Teilchen

ist ein sogenanntes Z’ Boson, welches als Mediatorteilchen zwischen dem Standardmodell

Teilchen und Dunkle Materie Teilchen fungieren könnte [6].

1.3. Simulationen des Dijet Spektrums

Das vom Standardmodell vorhergesagte Dijet Massenspektrum, welches durch die star-

ke Wechselwirkung dominiert wird, kann für große Schwerpunktsenergie störungstheo-

retisch genähert werden. Dadurch lässt sich das Spektrum durch einen Monte Carlo

Generator simulieren. Aufgrund der Unsicherheiten bezüglich der Kopplungskonstante

der starken Wechselwirkung αs, der Renormalisierungs- und Faktorisierungsskala sowie

der Partondichtefunktion (PDF) sind diese Berechnungen nicht exakt. Daher sind Va-

riationen desselben Spektrums gemäß der systematischen Unsicherheiten möglich.

Die Simulationen des Spektrums für diese Arbeit wurden mit dem Framework NLO-

Jet++ erstellt [12, 13]. Dieses Framework berechnet denWechselwirkungsquerschnitt un-

ter anderem für Hadron-Hadron-Kollisionen. Dieser Arbeit lag das PDF-Set CT14NLO

zugrunde [8]. Es wurden 61 Variationen des Spektrums, welches LO Prozesse einschließt,

sowie 65 Variationen des Spektrums, welches zusätzlich NLO Prozesse berücksichtigt,

erstellt. Auf diese Sätze der Variationen des Spektrums wird im nachfolgenden unter LO-

beziehungsweise NLO-Variationen referenziert. Abhängig vom variierten Parameter der

Berechnung werden sie als Scale-Variation (Variation der relativen Faktoren der Renor-

malisierung µR und der Faktorisierung µF ), PDF-Variation (Variation der Störungspara-

meter der Partondichtefunktion) oder αs-Variation (Variation der Kopplungskonstante
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1.3. Simulationen des Dijet Spektrums

der starken Wechselwirkung) bezeichnet. Der Störungsparameter der PDF ergibt sich

durch den Fit einer gemessenen Partondichtefunktion und den Einfluss der Fluktuation

dieser Daten auf den aus dem Fit berechneten Wechselwirkungsquerschnitt. Alle ver-

wendeten Variationen und ihre variierten Parameter sind in Tabelle 1.1 dokumentiert.

Variation Variierter Parameter

Nominell µR = 1 µF = 1 αS(MZ) = 0, 118

1. Scale µR = 0, 5 µF = 1
2. Scale µR = 2 µF = 1
3. Scale* µR = 1 µF = 0, 5
4. Scale* µR = 1 µF = 2
5. Scale* µR = 0, 5 µF = 0, 5
6. Scale* µR = 2 µF = 2

1. PDF Variation der Störungsparameter in
Anlehnung an NNPDF [8]

..
56. PDF

1. αS αS(MZ) = 0, 117
2. αS αS(MZ) = 0, 119

Tabelle 1.1.: Übersicht der verwendeten Variationen und der jeweils variierten Parame-
tern. Die mit * gekennzeichneten Variationen standen für die Analyse der
LO-Variationen nicht zur Verfügung.

Die LO-Variationen haben ein glatteres Spektrum aber weisen größere Differenzen

zur globalen Form gemessener Spektren auf. Dahingegen sind die NLO-Variationen ins-

gesamt prinzipiell präziser aber lokal potentiell weniger glatt. Die Glattheit der NLO-

Variationen skaliert mit der verwendeten statistischen Präzision während der Berech-

nung. Diese ist allerdings verhältnismäßig rechenintensiv. Welche statistische Präzision

und Glattheit hinreichend ist, hängt von der integrierten Luminosität des Datensatzes

ab, auf den die NLO-Variationen angewendet werden soll.
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1.4. ATLAS Experiment

Abbildung 1.4.: Darstellung des ATLAS Detektors aus [14].

1.4. ATLAS Experiment

Der Large-Hadron-Collider (LHC) ist ein Ringbeschleuniger des europäischen Kernfor-

schungsinstituts CERN bei Genf. Er ist aktuell mit einem Umfang von 27 Kilometern der

weltweit größte Beschleuniger mit der höchsten Kollisionsenergie. In ihm werden Proto-

nen2 in Paketen, genannt Bunches, gegenläufig beschleunigt und in den vier Detektoren

(ATLAS, CMS, ALICE und LHCb) zur Kollision gebracht. Diese Arbeit widmet sich den

Daten, die mit dem ATLAS Detektor bei einer Schwerpunktsenergie von
√
s = 13TeV

im Jahr 2016 aufgenommen wurden. Die detaillierte Datenselektion wird in Kapitel 1.6

erläutert.

Der ATLAS Detektor ist ein Vielzweckdetektor mit zylindrischem Aufbau mit einer

Länge von 44 Metern und einem Durchmesser von 25 Metern. Es bietet sich an, die Geo-

metrie des Detektors mit Hilfe eines rechtshändigen Koordinatensystem zu erläutern.

Dabei liegt der Kollisionspunkt im Zentrum des Koordinatensystems, während die z-

Achse entlang des Strahls verläuft. Die x-Achse orientiert sich zum Zentrums des LHCs

und die y-Achse senkrecht zu diesen Achsen deutet in Richtung des Himmels. Innerhalb

dieses Koordinatensystems sind typische Messgrößen die Winkel θ, welcher dem Winkel

zur z-Achse entspricht, sowie der Azimutwinkel φ in der x-y-Ebenen. Der Aufbau von

2Am LHC sind auch Experimente mit schweren Ionen möglich, welche jedoch für diese Arbeit nicht

relevant waren.
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1.4. ATLAS Experiment

ATLAS ist in Abbildung 1.4 skizziert. Die Hauptkomponenten des Detektors sind der

Spurdetektor mit Solenoidmagnet, die Kalorimeter und das Myonensystem mit Toro-

idmagnet. Die einzelnen Subsysteme bestehen aus einem Mantel, genannt Barrel, und

zwei Endkappen.

Der innere Spurdetektor bestehend aus Pixel-Detektoren, Silizium-Streifen-Detektoren

und einem Übergangsstrahlungsdetektor (Transition-Radiation Tracker) umschließt den

Strahlengang. Geladene Teilchen ionisieren das Detektormaterial, wodurch ihre Spur be-

stimmt und diese zu dem entsprechenden Vertex extrapoliert werden kann. Das Magnet-

feld des Solenoidmagnets verursacht eine Krümmung der Bahn von elektrisch geladenen

Teilchen. Die Krümmung gibt Aufschluss über den Impuls sowie das Vorzeichen der La-

dung der Teilchen.

Radial nach außen folgen das elektromagnetische und hadronische Kalorimeter. Das elek-

tromagnetische Kalorimeter, welches sich weiter innen befindet, besteht aus Bleiplatten

als Absorber und füssigem Argon (LAr) als aktives Material. Er weist über die gesamte

Fläche eine Akkordeonstruktur auf. Durch das elektromagnetische Kalorimeter werden

Elektronen und Photonen gestoppt und ihre deponierte Energie gemessen. Diese wech-

selwirken mit dem Detektormaterial, wodurch es zu Bremsstrahlung und Paarbildung

kommt, sodass detektierbare elektromagnetische Schauer entstehen. Zusammen mit den

Beobachtungen des Spurdetektors lassen sich Photonen und Elektronen unterscheiden.

Das hadronische Kalorimeter besteht im Barrel aus absorbierendem Stahl und szin-

tillierenden Kacheln. In den Endkappen wird ebenfalls das strahlungsresistenzere LAr

verwendet. Im hadronischen Kalorimeter entstehen hadronische Schauer, welche die De-

tektion und Identifizierung der Hadronen ermöglichen. Diese resultieren aus der Wech-

selwirkung der Hadronen mit dem Absorbermaterial, wobei Kaskaden an niederenergeti-

schen Sekundärteilchen entstehen. Diese Sekundärteilchen ionisieren teilweise das aktive

Material. Die Multiplizität dieser Signale ist proportional zu der Multiplizität der io-

nisierenden Hadronen, welche proportional zur Energie der einfallenden Jets sind. Das

Absorbermaterial des hadronischen Kalorimeters ist verglichen zum elektromagnetischen

Kalorimeter deutlich dicker, um die geringere Abbremsung der Hadronen zu kompensie-

ren. Die Dicke und die große Winkelabdeckung des Kalorimeters ermöglicht sowohl die

Abbremsung fast aller Hadronen als auch die Bestimmung von fehlender transversaler

Energie bei der späteren Rekonstruktion.

Die äußerste Komponente von ATLAS ist das Myonensystem in Kombination mit einem

Toroidmagneten. Myonen durchdringen als einziges detektierbares Teilchen alle vorheri-

gen Bestandteile des Detektors. Das Myonensystem unterteilt sich in Driftröhren (Moni-

7



1.5. Triggersystem

tored Drift Tubes) und Widerstandsplattenkammern (Resitiv Plate Chambers) im Barrel

sowie Kathoden-Streifenkammern (Cathode Strip Chamcers) und Thin Gap Chambers in

den Endkappen. Die Krümmung ihrer Trajektorie durch den Toroidmagneten ermöglicht

die Bestimmung der Ladung und des Impulses.

In keiner Komponente des Detektors können Neutrinos detektiert werden, da sie nur

schwach wechselwirken. Sie werden indirekt durch fehlende transversale Energie beobach-

tet. Daraus folgt die Notwendigkeit den azimutalen Winkel φ des Detektors vollständig

abzudecken. Ebenfalls muss η möglichst umfassend abgedeckt werden, um den transver-

salen Impuls der Teilchen nahe zum Strahlungsgang berücksichtigen zu können .[1]

1.5. Triggersystem

Da die Dijet Produktionsrate etwa 30 MHz beträgt und jedes vollständig rekonstruier-

te Ereignis eine Größe von etwa 1,6 MB aufweist, ist es nicht möglich, sämtliche Dijet

Ereignisse zu speichern. Somit wird ein Auswahlverfahren notwendig, welches durch das

Triggersystem von ATLAS realisiert wird und höherenergetische Dijetereignisse priori-

siert. Dieses gliedert sich in den Level-1 (L1) Trigger und den High-Level-Trigger (HLT),

gefolgt von der offline Rekonstruktion.

Der L1 Trigger basiert auf spezialisierter Hardware, welche Ereignisse auf Basis redu-

zierter Kalorimetergranularität bezüglich eines Energieschwellwertes und der Ereignisto-

pologie auswählt. Der darauf folgende softwarebasierte HLT betrachtet die Ereignisse,

welche den L1 Trigger passieren, und kann für diese ausgewählten Ereignisse weitere In-

formationen berücksichtigen. Für Dijet Ereignisse werden dabei Jets unter Nutzung der

vollständigen Kalorimetergranularität mit Hilfe des Anti-kt-Algorithmus rekonstruiert

[4]. Dieser Algorithmus vereint Kalorimetercluster, geordnet nach absteigender Energie

und gewichtet mit einem Jetradiusparameter, in einen wohldefinierten Jet. Passiert ein

Ereignis auch die Selektionskriterien des HLTs, wie zum Beispiel einen Schwellwert für

den Impuls des führenden Jets, wird es durch einen offline Algorithmus vollständig re-

konstruiert.
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1.6. Dijet Trigger-Level Analyse

1.6. Dijet Trigger-Level Analyse

Zu den Studien in dieser Arbeit wurden zwei Datensätze verwendet, welche mit Hilfe

der Dijet Trigger-Level Analyse (TLA) im Jahr 2016 aufgezeichnet wurden.

Die TLA sucht bei niedrigen Massen unter 1,5TeV nach Resonanzen im Dijet Spektrum.

Die traditionelle Analyse des Dijet Spektrums ist durch die Speicherrate und die limi-

tierte Bandbreite bei niedrigen Massen beschränkt. Die TLA nutzt nur einen Teil der

Ereignisinformationen, die dem HLT zur Verfügung stehen. Indem nur die Vierervek-

toren der Jets, die Kalorimeterinformationen zur Identifizierung der Teilchen sowie die

Informationen bezüglich der Qualität und Struktur der Jets ausgelesen werden, kann die

Größe einzelner Ereignisse deutlich reduziert werden und dadurch mit der verfügbaren

Bandbreite mehr Ereignisse aufgezeichnet werden. Somit wird die Speicherrate erhöht

und die statistische Sensitivität bei kleinen Massen ausgeweitet. Die Speicherrate wird

von etwa 300 Hz auf 3 kHz erhöht, indem die Speichergröße pro Ereignis von etwa 1,6

MB auf etwa 10 kB reduziert wird. Im Vergleich zu traditionellen Analysen ist somit die

Abhängigkeit von der Triggerselektion nur noch durch den L1 Trigger, und nicht mehr

durch den HLT gegeben. Gleichzeitig erfordert dieser Ansatz eine spezifische Rekalibrie-

rung der Jets wobei beispielsweise Effekte der Sampling-Kalorimeter, Bindungsenergie-

verluste oder Mehrfachstreuungen berücksichtigt werden, ohne dabei auf Informationen

des Spurdetektors zurückzugreifen. Dadurch kann auch in diesem Ansatz die ursprüng-

liche Energie der Partonen ermittelt werden. [2, 3, 11]

Die zwei Datensätze, welche in dieser Arbeit verwendet wurden, unterscheiden sich in

der Trigger- und Ereignisselektion. Für den ersten Datensatz, genannt J75, war im L1

Trigger eine transversale Energie des führenden Jets von ET > 75GeV notwendig. Man

spricht daher auch vom L1 J75 Trigger. Des Weiteren wurden nur Ereignisse ausgewählt,

für die |y∗| < 0, 3 sowie pT > 185GeV des führenden Jets und |η| < 2, 8 gilt. Die Rapi-

dität der finalen Teilchen im Schwerpunktssystem y∗ ist gegeben durch die Rapiditäten

der finalen Teilchen y3 und y4.

y∗ =
y3 − y4

2
(1.2)

y =
1

2
ln

(

E + pz

E − pz

)

(1.3)

Für den zweiten Datensatz, genannt J100, sah die Ereignisselektion einen L1 J100 Trig-

ger3 sowie |y∗| < 0, 6 sowie pT > 220GeV des führenden Jets und |η| < 2, 8 vor. Zwi-

schen den J100 und J75 Daten gibt es einen Überlapp, jedoch war der L1 J100 Trigger

3Dies entspricht einer transversalen Energie des führenden Jets im L1 Trigger von ET > 100GeV.
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1.6. Dijet Trigger-Level Analyse

Abbildung 1.5.: Beobachtetemjj Spektren der TLA mit J75 beziehungsweise J100 Daten
aus [3]. Das rote Histogramm zeigt die J75 Analyse, während das blaue
Histogramm die J100 Analyse darstellt. Neben der Untergrundabschät-
zung zu den jeweiligen Datensätzen sind auch die Abweichungssignifi-
kanzen zwischen Daten und Untergrundabschätzung gezeigt. Zusätzlich
geben die p-Werte die qualitative Güte der Untergrundabschätzung an.
Bei der Analyse wird durch den Bumphunter Algorithmus die Region des
Exzess identifiziert, welche durch den gestrichelten Bereich gekennzeich-
net ist. Die Methode der Untergrundabschätzung und der Qualifizierung
ihrer Güte werden im Kapitel 2 erläutert. Zusätzlich ist die Form einer
Resonanz durch ein hypothetisches Z’ Teilchen illustriert.

für einen längeren Zeitraum nicht vorskaliert4, sodass für J100 eine größere Statistik zur

Verfügung steht. Der Berechnung der theoretischen Variationen, wie sie in Kapitel 1.3

erläutert wurde, lag dieselbe Ereignisselektion zugrunde.

Diese Datensätze wurden bereits 2018 in [3] analysiert. Ein Ergebnis dieser Analyse ist

in Abbildung 1.5 dargestellt, wobei sich das rote Histogramm auf die J75 Daten und das

blaue Histogramm auf die J100 Daten bezieht.

4Einige Trigger werden mit einem Faktor vorskaliert um die Kapazität der Datenerfassungssysteme

nicht zu überlasten.
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2. Untergrundabschätzung des Dijet

Spektrums

Um potentielle Signale von dem Standardmodelluntergrund diskriminieren zu können,

gibt es verschiedene Methoden, eine Untergrundgrundabschätzung des Dijet Spektrums

durchzuführen. In diesem Kapitel soll einerseits die etablierte Methode der vergangenen

TLA sowie ihre Schwächen erläutert werden. Daraus resultiert die Notwendigkeit einer

neuen Methode, welche diese Schwächen kompensiert. Diese Arbeit befasst sich mit einer

möglichen neuen Methode. Neben der Grundidee dieser Untergrundabschätzung werden

auch konkret der Ablauf und die Quantifizierung der Güte der Untergrundabschätzung

beleuchtet.

2.1. Etablierter Sliding Window Fit

Das Dijet Spektrum setzt sich aus einer komplexen Kombination aus Streuprozessen,

Detektoreigenschaften sowie der Rekonstruktion und Kalibration der Jets zusammen.

In der Vergangenheit wurden empirische Funktionen verwendet, um dieses Spektrum zu

fitten und dadurch den Untergrund datengetrieben abzuschätzen [2]. Jedoch war diese

Methode aufgrund der höheren statistischen Präzision der nachfolgenden Iteration der

TLA nicht geeignet, sodass eine alternative Methode notwendig war.

Die Untergrundabschätzung der Analyse in [3] wurde mit der Sliding Window Fit (SWiFt)

Methode erstellt, welche in Abbildung 2.1 visualisiert ist. SWiFt nutzt eine empirische

Funktion mit vier Parametern und fittet mit dieser einen begrenzten Teil des Spektrums.

Der Teil des Spektrums wird durch ein Fenster bestimmt, dessen Breite variable ist, doch

für jede einzelne Untergrundabschätzung festgehalten wird. Zu Beginn wird das Fenster

an die energetisch niedrigste Position im Spektrum gesetzt und das Spektrum innerhalb

des Fensters gefittet (siehe Abbildung 2.1 (a)). Durch diesen Fit wird die Untergrundab-

schätzung der ersten Datenpunkte im Fenster bestimmt. Wird der mittlere Datenpunkt

des Fensters erreicht, wird von nun an das Fenster Bin für Bin durch das Spektrum be-
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2.1. Etablierter Sliding Window Fit

Abbildung 2.1.: Skizze der Untergrundabschätzung mit dem Sliding Window Fit. Abbil-
dung aus [11] entnommen.

wegt und für jede Position wird das Spektrum innerhalb des Fensters neu gefittet (siehe

Abbildung 2.1 (b)). Durch den Fit des entsprechenden Bereiches wird für den jeweils

mittleren Datenpunkt des Fensters der Untergrund bestimmt (siehe Abbildung 2.1 (c)).

Dieser Vorgang wird wiederholt, bis das obere Ende des Spektrums erreicht wird (siehe

Abbildung 2.1 (d)).

Ein problematischer Aspekt von SWiFt ist, dass bei Datensätzen mit hoher Statistik

die Fensterbreite sehr klein gewählt werden muss. Durch die kleine Fensterbreite ist die

Methode so flexibel, dass sich die Untergrundabschätzung an potentielle Signale an-

passen kann, wodurch die Signale vom Untergrund ununterscheidbar würden. Da für die

künftigen Analysen die Statistik weiter ansteigt, würde damit eine weitere unerwünschte

Reduktion der Fensterbreite und der Sensitivität der Untergrundabschätzung einherge-

hen. Somit wird eine neue Methode für die Untergrundabschätzung notwendig. In [11]

wird erläutert, dass die Untergrundabschätzung verbessert werden kann, indem man die

Abhängigkeit von analytischen Funktionen umgeht.
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2.2. Linearkombinationen von Theorievariationen

Abbildung 2.2.: Schematische Darstellung einer Untergrundabschätzung des Dijet Spek-
trums durch die Linearkombiation von Variationen der theoretischen
Berechnung dieses Spektrums.

2.2. Linearkombinationen von Theorievariationen

Eine alternative Methode, welche in dieser Arbeit ausgeführt und getestet wurde, nutzt

Linearkombinationen von Variationen der theoretischen Berechnungen des Dijet Spek-

trums auf Partonniveau, wie in Kapitel 1.3 erläutert. Eine Auswahl dieser Variationen

ist in Anhang A.1 visualisiert.

Die Grundidee der Methode ist in Abbildung 2.2 skizziert. Die Daten lassen sich nicht

ausreichend durch einzelne Variationen beschreiben. Doch eine Linearkombination der

Variationen führt zu einer Untergrundabschätzung, die die Daten besser abbildet. Das

Ziel der Methode ist es, die einzelnen Variationen mit freien Koeffizienten zu multipli-

zieren, sodass die Summer der Spektren den Daten möglichst nahe kommt.

Dies lässt sich durch Gleichung 2.1 ausdrücken. Die Zahl der Variation entspricht vj, die

Zahl des Bins im Spektrum entspricht i, cj sind die freien Koeffizienten und di die Da-

ten. Die linke Seite entspricht der Gleichung der Untergrundabschätzung. Dieses lineare

Gleichungssystem lässt sich mit der in ROOT implementierten Methode NormalEqn

approximativ lösen [15].









v1,1 · · · v1,j
...

. . .
...

vi,1 · · · vi,j

















c1
...

cj









=









d1
...

di









(2.1)
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2.3. Auswahlverfahren der Variationen

2.3. Auswahlverfahren der Variationen

Um eine Untergrundabschätzung zu berechnen, welche den Untergrund im Gesamten

abbilden und sich gleichzeitig nicht an potentielle Signale anpassen soll, muss die Me-

thode so robust wie möglich und dabei so flexibel wie nötig sein. Daraus folgt, dass

die Anzahl der Freiheitsgrade und somit die Anzahl der verwendeten Variationen mini-

miert werden soll.1 Es eröffnet sich die Notwendigkeit eines Auswahlverfahrens, um zu

bestimmen, wie viele und welche Variationen für die Untergrundabschätzung verwendet

werden. Um zwischen mehreren Kombinationen die bestmögliche Kombination der Va-

riationen zu identifizieren, wird das χ2 für die Daten di und die Untergrundabschätzung

bi berechnet.

χ2 =
∑

Bin i

(di − bi)
2

bi
(2.2)

Dadurch lässt sich die Untergrundabschätzung einer Kombination von Variationen ge-

genüber einer anderen Kombination vergleichen. Die Kombination mit dem kleinsten χ2

wird favorisiert.

Das Verfahren setzt sich aus mehreren Iterationen zusammen, wobei in jeder Iteration

eine weitere Variation addiert wird. Der Ausgangspunkt für die erste Iteration ist das

nominelle Spektrum. Für diese einzelne Spektrum wird der Koeffizient und der Unter-

grund berechnet. Zusätzlich wird das χ2 bestimmt.

Grafisch ist das Verfahren am Beispiel der zweiten Iteration in Abbildung 2.3 darge-

stellt. In der zweiten Iteration des Algorithmus wird eine weitere Variation hinzuaddiert.

Dafür wird der Untergrund des nominellen Spektrums in Kombination mit jeweils einer

weiteren Variation sowie dem zugehörigen χ2-Wert berechnet. Alle χ2 der möglichen

Kombinationen werden verglichen und der minimale Wert identifiziert, sodass die beste

Kombination aus zwei Variationen ermittelt werden kann, wobei eine dieser Variationen

die Nominelle ist. Der Koeffizient des nominellen Spektrums ist frei und daher nicht

zwingend der Wert, welcher in der ersten Iteration des Algorithmus berechnet wurde.

Bei der folgenden Wiederholung des Verfahrens wird die beste Variationskombination

der zweiten Iteration vorgegeben und eine dritte Variation hinzugenommen. Es kann

keine Variation mehrfach gewählt werden. Dieses Verfahren wird solange wiederholt und

Variationen addiert, bis eine Abbruchbedingung erfüllt ist. Die Abbruchbedingung für

diese Arbeit wird im folgenden Abschnitt erläutert.

1Außerdem ist aufgrund der Invertierbarkeit der Matrix die Verwendung aller Variationen numerisch

problematisch.
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2.4. Quantifizierung der Güte der Untergrundabschätzung

Abbildung 2.3.: Skizze des Auswahlverfahrens am Beispiel der 2. Iteration. Es wird über-
prüft, welche Variation zu dem nominellen Spektrum hinzuaddiert wer-
den kann, um das χ2 zu minimieren. Diese Variation entspricht zusam-
men mit dem nominellen Spektrum der besten Kombination an Varia-
tionen bestehend aus zwei Variationen. In der folgenden Iteration wird
als dritte Variation diejenige ausgewählt, die das χ2 minimiert. Das Ver-
fahren wird wiederholt, bis ein Abbruchkriterium erfüllt ist.

2.4. Quantifizierung der Güte der

Untergrundabschätzung

Um eine Abbruchbedingung zu definieren, bietet es sich an, diese mit Hilfe der Güte der

Untergrundabschätzung zu motivieren. Die Güte wird für diese Arbeit über zwei Wege

bestimmt.

Die Signifikanz wird für das Bin i zwischen Daten di und Untergrund bi berechnet und

qualitativ untersucht. Sie ist gegeben durch:

Signifikanzi =
di − bi√

di
(2.3)

Dieser Wert wird für jeden Datenpunkt im Spektrum berechnet und in einem Signifi-

kanzdiagramm dargestellt. Je größer die Signifikanz, desto mehr weicht die Untergrund-

abschätzung relativ zum statistischen Fehler von den Daten ab.

Zusätzlich wird eine statistische Analyse mit Hilfe des BumpHunter (BH) Algorith-

mus’ durchgeführt [5, 7]. Der Algorithmus liefert unter anderem den BH-Wert. Dieser
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2.4. Quantifizierung der Güte der Untergrundabschätzung

wird bestimmt, indem benachbarte Bins im Signifikanzdiagramm zu einem Bin zusam-

mengefasst werden. Der Vorgang wird wiederholt, wobei die Anzahl der zu einem Bin

zusammengefassten Bins vergrößert wird. Es wird dasjenige Bin mit dem größten Exzess

in der Signifikanz identifiziert.

Für diese Arbeit sind der BH p-Wert sowie der χ2 p-Wert relevant. P-Werte liegen zwi-

schen 0 und 1 und geben an, wie wahrscheinlich das BH- beziehungsweise χ2-Ergebnis

auf statistische Fluktuationen des Untergrundes zurückzuführen ist. Dafür wird in einem

Pseudoexperiment die Untergrundabschätzung gemäß einer Poisson-Verteilung fluktu-

iert und für diese erneut der BH- und χ2-Test durchgeführt. Der p-Wert entspricht der

auf die Anzahl der Pseudoexperimente normierten Zahl an Fällen, in denen die BH- be-

ziehungsweise χ2-Werte der Pseudoexperimente größer sind als die Ergebnisse der Daten.

Über die χ2 p-Werte wurde in Anlehnung an die Analyse aus [3, 11] ein Abbruchkriterium

für den im vorherigen Kapitel vorgestellten Algorithmus definiert.

• χ2 p-Wert > 0, 05 ist die untere Grenze für eine hinreichend gute Untergrundab-

schätzung.

• χ2 p-Wert < 0, 5 ist die obere Grenze für eine hinreichend gute Untergrundab-

schätzung.

Diese Abbruchkriterien werden herangezogen, um zu entscheiden, nach welcher Iterati-

on die Untergrundabschätzung hinreichend gut ist. Zusätzlich werden die BH p-Werte

genutzt, um zu quantifizieren, ob ein Signal detektiert wird.

• BH p-Wert < 0, 01 ist der Schwellwert für eine Entdeckung.

Der BumpHunter identifiziert zudem die Region des größten Exzesses in der Abwei-

chungssignifikanz zwischen Daten und Untergrundabschätzung. Auf eine erneute Be-

rechnung der Untergrundabschätzung unter Ausschluss dieser Region wurde in dieser

Arbeit zunächst verzichtet.
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3. Ergebnisse

Für die Untersuchung der im vorangegangenen Kapitel erläuterten Methode standen die

zwei bereits erwähnten Datensätze, J75 und J100, zur Verfügung, zu denen der Unter-

grund mit Linearkombinationen der LO- beziehungsweise NLO-Variationen abgeschätzt

wurde. Für die Prüfung der Untergrundabschätzung wurde der Energiebereich für alle

folgenden Ergebnisse auf 531 bis 2079GeV gesetzt. Dies entspricht dem untersuchten

Bereich im Massenspektrum der J100 Analyse in [3]. Zur Bestimmung der p-Werte wur-

den 1000 Pseudoexperimente verwendet.

Ziel ist es herauszufinden, ob sich mit der Methode das Massenspektrum hinreichend gut

beschreiben lässt und sich zur Untergrundabschätzung prinzipiell eignet. Außerdem ist

zu untersuchen, wie die Güte des Fits von der Variationenzahl abhängt. Zusätzlich wer-

den die Ergebnissen mit denen der SWiFt Methode verglichen. Der Fokus des Kapitels

liegt auf den Ergebnissen mit NLO-Variationen, jedoch wird im Abschnitt 3.3 der Un-

terschied zwischen NLO-Variationen und LO-Variationen anhand der zwei Datensätze

diskutiert. Des Weiteren soll überprüft werden, ob die Methode gegenüber injizierten

Signalen robust ist oder ob sich der Untergrund an die Signale anpasst. Dies wird hin-

sichtlich der Ordnung der Variationen und der Anzahl der Variationen überprüft.

3.1. J75 Daten

Zu Beginn wird der Untergrund mit dem nominellen NLO-Spektrum für die J75 Daten

bestimmt. Das Ergebnis ist zusammen mit den Daten und den entsprechenden Abwei-

chungssignifikanz in Abbildung 3.1 dargestellt. Der berechnete Koeffizient ist der Tabelle

3.1 zu entnehmen. Die deutlich sichtbaren Differenzen zwischen Daten und Untergrund-

abschätzung sowie die hohen Signifikanzen deuten darauf hin, dass für eine Untergrund-

abschätzung eine einzelne Variation unzureichend ist. Damit bestätigt sich die Erwartung

aus Kapitel 2.2. Neben dem berechneten Koeffizienten sind in der Tabelle 3.1 auch die

p-Werte der statistischen Analyse aufgeführt. Die Ergebnisse von 0 für beide p-Werte

bestätigen, dass für die Berechnung mehr als eine einzelne Variation notwendig ist.
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3.1. J75 Daten

Beim Hinzufügen einer weiteren Variation ist, wie in Abbildung 3.2 erkennbar, die Ab-

weichung zwischen Datenpunkten und Untergrundabschätzung geringer. Dies äußert sich

sowohl im Verteilungshistogramm als auch in der Grafik der Signifikanzen. Der Einfluss

der zweiten Variation wird besonders in Abbildung 3.3 deutlich, in welcher die Abwei-

chungssignifikanzen der Daten zu den Untergrundabschätzungen mit einer und mit zwei

Variationen verglichen werden. Daraus lässt sich schließen, dass die zweite Variation die

Untergrundabschätzung maßgeblich verbessert. Zusätzlich wird in Tabelle 3.1 offenkun-

dig, dass die Koeffizienten größer werden. Die Summe der Koeffizienten ist dabei ähnlich

groß wie der einzelne Koeffizient in der ersten Iteration des Algorithmus. Zeitgleich wer-

den die p-Werte der statistischen Analyse größer. Der χ2 p-Wert hat die untere Grenze

für eine hinreichende Untergrundabschätzung von 0,05 überschritten.

Wird eine weitere Variation hinzugenommen, erhöhen sich erneut die Koeffizienten wie

auch die Ergebnisse der statistischen Analyse. Das Signifikanzdiagramm dieser Iteration

ist in Anhang A.2 dargestellt. Da der χ2 p-Wert bei der dritten Variation die zuvor

gesetzte Obergrenze für eine hinreichende gute Untergrundabschätzung von 0,5 über-

schreitet, wäre die Untergrundabschätzung mit nur zwei Variationen (in Abbildung 3.2)

der zu wählende Untergrund nach den Kriterien aus Kapitel 2.4. Dieses Ergebnis ist ein

Indikator dafür, dass die Anzahl der Variationen die Güte der Untergrundabschätzung

beeinflusst.

Ferner wird der Vergleich mit der Untergrundabschätzung der SWiFt Methode zu den

J75 Daten in Abbildung 3.4 gezeigt. Als Ergebnis der neuen Methode wurde der Un-

tergrund nach der zweiten Iteration, aus Abbildung 3.2, gewählt. Die Abschätzungen

beider Methoden weisen eine ähnliche Form in den Signifikanzen auf. Daraus lässt sich

schlussfolgern, dass die neue Methode den Untergrund vergleichbar gut abschätzt. Die

p-Werte der statistischen Analyse liefern ebenfalls für beide Methoden ähnliche Werte.

Variation 1. Iteration 2. Iteration 3. Iteration

Nominell 0,142 -6,02 -7,11
2. αs - 6,23 7,14
2. Scale - - 0,20

χ2 p-Wert 0 0,474 ± 0, 016 0,64 ± 0, 02
BH p-Wert 0 0,374 ± 0, 015 0,69 ± 0, 02

Tabelle 3.1.: Koeffizienten der Linearkombination und Ergebnisse der statistischen Ana-
lyse nach einer, zwei und drei Iterationen des Verfahrens mit NLO-
Variationen zu den J75 Daten.
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3.1. J75 Daten

Abbildung 3.1.: (a) Untergrundabschätzung zu den J75 Daten mit Hilfe des nominellen
NLO-Spektrums im Vergleich mit den Datenpunkten. (b) Signifikanz
zwischen Daten und Untergrundabschätzung.

Abbildung 3.2.: (a) Untergrundabschätzung zu den J75 Daten mit Hilfe der nominellen
und einer weiteren NLO-Variation im Vergleich mit den Datenpunkten.
(b) Signifikanz zwischen Daten und Untergrundabschätzung.
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3.1. J75 Daten

Abbildung 3.3.: Vergleich der Abweichungssignifikanzen zwischen Daten und der Un-
tergrundabschätzung mit Hilfe des nominellen NLO-Spektrums bezie-
hungsweise der nominellen und einer weiteren NLO-Variation.

Abbildung 3.4.: Vergleich der Abwichungssignifikanzen zwischen Daten und Untergrund-
abschätzung bestimmt mit Hilfe der SWiFt Methode und der Linear-
kombination von zwei NLO-Variation für die J75 Daten.
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3.2. J100 Daten

3.2. J100 Daten

Im Folgenden wird der Untergrund für die J100 Daten bestimmt. Da die J100 Daten

eine größere Statistik vorweisen, werden im Vergleich zu der J75 Untergrundabschätzung

höhere Koeffizienten erwartet.

In der ersten Iteration mit ausschließlich dem nominellen Spektrum ist der Untergrund

der Form nach ähnlich wie der der Untergrundabschätzung, welche in Abbildung 3.1

dargestellt ist, und weist erhebliche Differenzen zwischen Daten und Untergrundabschät-

zung auf. Der Tabelle 3.2 ist der Koeffizient zu entnehmen. Dieser ist, wie erwartet, größer

als der Koeffizient der J75 Daten in der ersten Iteration.

Eine weitere Variation wurde hinzugenommen, deren Ergebnis in Abbildung 3.5 grafisch

dargestellt ist. Die Abbildung deutet eine Wellenform in der Abweichungssignifikanz an.

Gerade im niederen Massenbereich sind hohe Signifikanzen zu erkennen. Man stellt im

Vergleich von Tabelle 3.1 und Tabelle 3.2 fest, dass die p-Werte der J100 Daten kleiner

sind verglichen zu denen der zweiten Iteration der J75 Daten. Für die J100 Daten ist

eine höhere Anzahl an Variationen notwendig, um einen ähnlich hohen χ2 p-Wert zu

erhalten.

Eine hinreichende Untergrundabschätzung, nach der in Kapitel 2.4 gesetzten Bedingung,

ist mit sieben Variationen erreicht. Die Größe der Absolutwerte der Koeffizienten ist

auffällig. Durch die Hinzunahme weiterer Variationen werden die Koeffizienten größer,

ihre Summe beläuft sich jedoch immer auf Werte zwischen 1 und 2,5. Das Ergebnis

mit sieben Variationen ist in Abbildung 3.6 dargestellt. Alle weiteren Iterationsschritte

sind im Anhang A.3 dargestellt. Der Vergleich zwischen dem Untergrund mit zwei und

mit sieben Variationen ist in Abbildung 3.7 visualisiert. Die hohen Signifikanzen bei

niedrigen Energien werden deutlich reduziert. Gleichzeitig wird die wellenartige Struktur

ausgeglichen. Die Ergebnisse der statistischen Analyse lassen darauf schließen, dass durch

die Hinzunahme weiterer Variationen das Datenspektrum besser beschrieben werden

kann. Wird eine achte Variation in die Berechnung einbezogen, so überschreitet der χ2

p-Wert die gewählte obere Grenze, wie der Tabelle 3.2 zu entnehmen ist.

Der Vergleich der SWiFt Methode zur Untergrundabschätzung mit sieben Variationen

ist in Abbildung 3.8 einzusehen. Zu erkennen ist erneut eine ähnliche Form der Unter-

grundabschätzung für beiden Methoden. Der χ2 p-Wert der SWiFt Methode beträgt

0,13, während er mit der neuen Methode auf 0,27 ansteigt.
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3.2. J100 Daten

Variation 1. Iteration 2. Iteration 7. Iteration 8. Iteration

Nominell 1,02 56,41 170,37 159,86
1. αs - -54,73 -115,49 -102,52
17. PDF - - -10,59 -11,23
21. PDF - - -26,06 -3,48
2. Scale - - -2,72 -11,06
49. PDF - - -9,84 -12,65
1. Scale - - -3,42 -8,84
19. PDF - - - -8,27

χ2 p-Wert 0 0 0,274 ± 0, 014 0,665 ± 0, 015
BH p-Wert 0 0 0,081 ± 0, 009 0,384 ± 0, 015

Tabelle 3.2.: Koeffizienten der Linearkombination und Ergebnisse der statistischen Ana-
lyse nach einer, zwei, sieben und acht Iterationen des Verfahrens mit NLO-
Variationen zu den J100 Daten. Die Variationen sind von oben nach unten
in der Reihenfolge der Auswahl geordnet.

Abbildung 3.5.: (a) Untergrundabschätzung zu den J100 Daten mit Hilfe der nominel-
len und einer weiteren NLO-Variation im Vergleich mit den Datenpunk-
ten. (b) Signifikanz der Abweichung zwischen Daten und Untergrund-
abschätzung.
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3.2. J100 Daten

Abbildung 3.6.: (a) Untergrundabschätzung zu den J100 Daten mit Hilfe der nominel-
len und sechs weiteren NLO-Variation im Vergleich mit den Datenpunk-
ten. (b) Signifikanz der Abweichung zwischen Daten und Untergrund-
abschätzung.

Abbildung 3.7.: Vergleich der Abweichungssignifikanz zwischen Daten und der Unter-
grundabschätzung mit Hilfe der nominellen und einer weiteren NLO-
Variation beziehungsweise der nominellen und sechs weiteren NLO-
Variation.
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Abbildung 3.8.: Vergleich der Abweichungssignifikanz zwischen Daten und Untergrund-
abschätzung mit Hilfe der SWiFt Methode und der Linearkombination
von sieben NLO-Variation für die J100 Daten.

3.3. Vergleich der LO- und NLO-Variationen

Der Algorithmus lässt sich prinzipiell mit Berechnungen des Dijet Spektrums zu jeder

Ordnung ausführen. Neben den NLO-Variationen, welche in den vorangegangenen Kapi-

teln genutzt wurden, wurden zu den selben Datensätzen auch Untergrundabschätzungen

mit LO-Variationen erstellt. Sie wurden mit Hilfe des selben Frameworks und der identi-

schen Ereignisselektion erstellt (siehe Kapitel 1.3 und 1.6). Die ausführlichen Ergebnisse

der Untergrundabschätzungen mit Hilfe der LO-Variationen sind in Anhang A.4 und

A.5 dokumentiert.

Für die J75 Daten findet sich die den Abbruchkriterien entsprechende Untergrundab-

schätzungen mit den LO-Variationen wie bei den NLO-Variationen mit zwei Variationen.

Der Vergleich beider ist in Abbildung 3.9 dargestellt. Die allgemeine Form beider Be-

rechnungen ist in den Signifikanzen ähnlich. Doch es zeigen sich klare Unterschiede in

den p-Werten. Die Berechnung mit den NLO-Variationen zeigt einen deutlich größeren

χ2 p-Wert. Das Ergebnis demonstriert, dass sich bei ausreichender statistischer Präzision

die NLO-Variationen besser für die Untergrundabschätzung eignen.

In Abbildung 3.10 wird die Untergrundabschätzung mit NLO-Variationen und LO-

Variationen zu den J100 Daten dargestellt, die nach den jeweiligen Abbruchbedingungen
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3.3. Vergleich der LO- und NLO-Variationen

Abbildung 3.9.: Vergleich der besten Untergrundabschätzung nach gegebenen Abbruch-
kriterien für J75 Daten mit zwei LO-Variationen und zwei NLO-
Variationen.

ausgewählt werden. Diese sind nicht nach der selben Anzahl an Iterationen erreicht. Für

LO-Variationen ist sie erst mit zehn Variationen, für NLO-Variationen bereits mit sieben

Variationen erreicht. Es zeigen sich besonders bei niedrigen Energien bis etwa 700GeV

hohe Signifikanzen bei dem LO-Untergrund, die bei dem NLO-Untergrund nicht beob-

achtet werden können. Gleichzeitig zeigt der NLO-Untergrund eine höhere Signifikanz

bei etwa 1000GeV. Der χ2 p-Wert ist für die Abschätzung mit LO- und mit NLO-

Variationen ähnlich. Doch die BH p-Werte haben eine hohe Differenz. Diese resultiert

daraus, dass die höhere Anzahl der LO-Variationen zu einer größeren Anpassung an lo-

kale statistische Fluktuationen der Daten, wie bei 1000GeV, führt.

In Abbildung 3.11 sind die Abweichungssignifikanzen für die J75 Daten zu einer Un-

tergrundabschätzung mit dem nominellen LO-Spektrum (siehe Abbildung 3.11 (a)) be-

ziehungsweise dem nominellen NLO-Spektrum (siehe Abbildung 3.11 (b)) dargestellt.

Es wird beobachtet, dass die NLO-Variationen zu einer niedrigeren Signifikanz führen.

Gleichzeitig zeigen die LO-Variationen bei höheren Signifikanzen ein glatteres Spektrum.

Dies bestätigt die Erwartung aus Kapitel 1.3, dass die NLO-Variationen das Datenspek-

trum besser beschreiben, während die LO-Variationen ein glatteres Spektrum aufweisen.
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3.3. Vergleich der LO- und NLO-Variationen

Abbildung 3.10.: Vergleich der Untergrundabschätzung nach gegebenen Abbruchkri-
terien für J100 Daten mit zehn LO-Variationen und sieben NLO-
Variationen.

Abbildung 3.11.: Vergleich der Untergrundabschätzung zu den J75 Daten mit dem no-
minellen LO-Spektrum (a) und dem nominellen NLO-Spektrum (b).
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3.4. Injizierte Signale

Der vorangegangene Abschnitt befasste sich damit, inwieweit mit dem Algorithmus der

Untergrund im Ganzen abgeschätzt werden kann. Für eine verlässliche Untergrundab-

schätzung muss jedoch auch sichergestellt werden, dass sich diese tatsächlich nur auf

den Untergrund bezieht. Es soll zu keiner ungewollten Anpassung an potentielle Signa-

le kommen, indem die Variationen so kombiniert werden, dass sie dem Signal in Form

und Position nahe kommen. Dadurch würde das Signal in einem Signifikanzdiagramm

nicht deutlich werden. In diesem Abschnitt der Arbeit wird betrachtet, wie sich der

Algorithmus in Bezug auf injizierte Signale verhält, wobei sowohl die Ergebnisse mit

NLO-Variationen als auch mit LO-Variationen herangezogen werden.

Um dies zu untersuchen, wurden gaußförmige Signale in das Massenspektrum der J75

Daten injiziert. Die Parameter der Gaußfunktion sind die Amplitude, der Erwartungs-

wert µ und die Standardabweichung σ. Die letzten zwei Parameter entsprechen der

Masse einer potentiellen Resonanz und ihrer relativen Breite. Die Standardabweichung

wird prozentual zum Erwartungswert angegeben. Zusätzlich wird festgelegt, wie viele

Ereignisse in diesem gaußförmigen Signal erzeugt werden. Das gesamte Signal wird mit

einem Skalierungsfaktor multipliziert und so auf eine gewünschte Größe skaliert.

Es war notwendig sicherzustellen, dass das Signal selbst gerade so groß ist, um prinzi-

piell detektiert zu werden. Grundlage für die Festlegung eines geeigneten Skalierungs-

faktors war ein zu fluktuierten J75 Daten injiziertes Signal, das unter Verwendung des

unveränderten J75 Massenspektrums als Untergrundabschätzung zu einem Signal am

Entdeckungsschwellwert führt. Dies entspräche einer perfekten Untergrundabschätzung.

Für die tatsächliche Untersuchung der Methode wurde dieser Skalierungsfaktor der Si-

gnale verdoppelt. Durch die Verdopplung wird berücksichtigt, dass die zu untersuchen-

de Methode keine perfekte Untergrundabschätzung gewährleistest. Die Entwicklung der

Signifikanz der Signale wird abhängig von der Anzahl der Variationen im folgenden

Abschnitt für zwei konkrete Beispiele mit den Erwartungswerten von 1000GeV und

1500GeV vorgestellt.

3.4.1. Signal bei 1000GeV

Das isolierte Signal und die zugehörigen Parameter sind in Abbildung 3.12 dargestellt.

Wird dieses Signal zu den unveränderten J75 Daten addiert, so werden in dem Algo-

rithmus andere Variationen gewählt, wie im Vergleich zu der Untergrundabschätzung

ohne injiziertes Signal. Die Koeffizienten bewegen sich für NLO-Variationen und LO-
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3.4. Injizierte Signale

Variationen in der gleichen Größenordnung und werden wie auch zuvor mit der Anzahl

der Iterationen größer. Wie erwartet sind mehr Iterationen im Vergleich zu den J75 Da-

ten ohne injiziertes Signal notwendig, um einen der Abbruchbedingung entsprechenden

χ2 p-Wert zu erhalten. Die Ergebnisse sind für die LO-Variationen in Tabelle 3.3 be-

ziehungsweise Abbildung 3.13 und für NLO-Variationen in Tabelle 3.4 beziehungsweise

Abbildung 3.14 für jeweils zwei, vier, sechs und acht Variationen zusammengefasst.

Für die LO-Variationen wird deutlich, dass es bei steigender Anzahl der Iterationen zu ei-

ner vermehrten Anpassung an das Signal kommt. Auch die hohen Signifikanzen zwischen

1800 und 2000GeV werden mit jeder Iteration stärker reduziert. Gleichzeitig wachsen

sie in dem Bereich von 1200 bis 1500GeV an. Es sind mindestens sechs Iterationen not-

wendig, um die untere Grenze des Abbruchkriteriums zu überschreiten. Zeitgleich liegt

ab der sechsten Iteration das Signal nicht mehr unterhalb des Entdeckungsschwellwertes

des BH p-Wertes. Dadurch ist eine Entdeckung des Signals davon abhängig, mit wie

vielen Variationen die Untergrundabschätzung berechnet wurde.

Während für die LO-Variationen die lokale Signifikanz des Signals gleichmäßig mit der

Anzahl der Variationen zurückgeht, kann für NLO-Variationen die Signifikanz des Signals

über mehrere Iterationen relativ konstant gehalten werden. Der Vergleich von Tabelle

3.3 und Tabelle 3.4 zeigt einen langsameren Anstieg der p-Werte der NLO-Variationen

im Vergleich zu den LO-Variationen. Erst ab der achten Iteration weist der Untergrund

mit den NLO-Variationen nach den gegebenen Abbruchkriterien ein χ2 p-Wert auf, der

die untere Grenze überschreitet. Der BH p-Wert ist dann bei etwa 0,09.

In keinem der Fälle kann unter dem gewählten Abbruchkriterium die Signalsignifikanz er-

halten bleiben und gleichzeitig die Daten hinreichend gut beschrieben werden. Zusätzlich

fällt im Vergleich von NLO-Variationen und LO-Variationen auf, dass die Koeffizienten

für die LO-Variationen bei der gleichen Zahl an Variationen deutlich größer sind. Dies ist

darauf zurückzuführen, dass die NLO-Variationen dem Spektrum der Daten ähnlicher

sind.
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Abbildung 3.12.: Isoliertes gaußförmiges Signal, welches zu den J75 Daten injiziert wur-
de. Es liegt bei 1000GeV bei einer relativen Breite von 5%. Alle zu-
gehörigen Parameter sind aufgeführt.

Variation 2. Iteration 4. Iteration 6. Iteration 8. Iteration

Nominell -6,15 -120,07 -483,28 -785,46
40. PDF 6,29 71,46 295,17 585,00
45. PDF - -12,26 -15,51 -82,90
1. αs - 60,23 135,70 -198,42
11. PDF - - 69,19 31,99
1. Scale - - -2,93 -7,31
46. PDF - - - 133,81
2. PDF - - - 326,23

χ2 p-Wert 0 0,014 ± 0, 003 0,213 ± 0, 013 0,325 ± 0, 015
BH p-Wert 0 0,006 ± 0, 002 0,124 ± 0, 010 0,292 ± 0, 014

Tabelle 3.3.: Koeffizienten und Ergebnisse der statistischen Analyse zu J75 Daten mit
injiziertem Signal bei 1000GeV unter der Verwendung von LO-Variationen
nach zwei, vier, sechs und acht Iterationen.
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Abbildung 3.13.: Entwicklung des zu den J75 Daten injizierten Signals bei 1000GeV
nach zwei, vier, sechs und acht LO-Variationen.

Variation 2. Iteration 4. Iteration 6. Iteration 8. Iteration

Nominell -2,76 -4,94 -8,59 -50,43
12. PDF 2,92 1,86 5,44 31,05
2. αs - 3,12 -6,59 -82,90
2. Scale - 0,16 0,18 -3,42
39. PDF - - 9,94 26,08
1. Scale - - -0,27 -4,38
4. Scale - - - -7,54
11. PDF - - - -10,10

χ2 p-Wert 0 0 0,001 ± 0, 001 0,06 ± 0, 01
BH p-Wert 0 0 0 0,087 ± 0, 009

Tabelle 3.4.: Koeffizienten und Ergebnisse der statistischen Analyse zu J75 Daten
mit injiziertem Signal bei 1000GeV unter der Verwendung von NLO-
Variationen nach zwei, vier, sechs und acht Iterationen.
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3.4. Injizierte Signale

Abbildung 3.14.: Entwicklung des zu den J75 Daten injizierten Signals bei 1000GeV
nach zwei, vier, sechs und acht NLO-Variationen.

3.4.2. Signal bei 1500GeV

Um zu überprüfen, ob das Problem des Rückgangs des Signals reproduzierbar ist, wurden

mehrere Positionen, Breiten und Höhen untersucht. Hier soll nun ein weiteres Beispiel

vorgestellt werden.

In Abbildung 3.15 ist das isolierte Signal zu sehen, welches in das Massenspektrum der

J75 Daten injiziert wurde. Die Ergebnisse mit den LO-Variationen sind in Abbildung

3.16 beziehungsweise Tabelle 3.5 und für die NLO-Variationen in Abbildung 3.17 bezie-

hungsweise Tabelle 3.6 dokumentiert.

Die Besonderheit der LO-Variationen ist, dass nach der neunten Iteration keine weitere

Variation nach dem Auswahlverfahren aus Kapitel 2.3 hinzugefügt wurde, da dies ein

höheres χ2 mit sich bringen würde. Daher stoppte der Algorithmus nach dieser Iteration.

Die Entwicklung der Signifikanz nach zwei, vier, sechs und neun Iterationen in Abbil-

dung 3.16 zeigt ein ähnliches Verhalten wie das Signal bei 1000GeV mit LO-Variationen.

Auch hier wird beobachtet, dass die Wiederholung des Algorithmus zu einem Rückgang

der Signifikanz des injizierten Signals führt.

Auch das Verhalten des Signals mit NLO-Variationen bestätigt die Beobachtung des
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vorangegangen Abschnitts. Die Signifikanz des Signals kann über mehrere Iterationen

weitgehend erhalten werden, jedoch passt sich die Untergrundabschätzung an das Signal

an, bevor der χ2 p-Wert eine ausreichend gute Untergrundabschätzung indiziert.

Wie zuvor wird beobachtet, dass die Koeffizienten der LO-Berechnung deutlich größer

sind als die der NLO-Berechnung. Erneut kann bei keinem der Fälle unter der gewähl-

ten Abbruchbedingung das Signal entdeckt werden. Dies unterstreicht die Notwendigkeit

einer alternativen Abbruchbedingung, bei der sowohl der Untergrund im Ganzen gut ab-

geschätzt wird als auch die lokale Signifikanz des Signals erhalten bleibt.

Abbildung 3.15.: Isoliertes gaußförmiges Signal, welches zu den J75 Daten injiziert wur-
de. Es liegt bei 1500GeV bei einer relativen Breite von 5%. Alle zu-
gehörigen Parameter sind aufgeführt.
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Variation 2. Iteration 4. Iteration 6. Iteration 9. Iteration

Nominell 6,33 -23,00 -4901,37 -6737,12
2. PDF -6,18 14,71 133,80 748,09
1. αs - 28,06 2334,63 2411,66
2. αs - -19,07 2350,81 2740,73
3. PDF - - 35,25 81,03
28. PDF - - 46,63 208,07
2. Scale - - - -16,08
52. PDF - - - 470,85
20. PDF - - - 86,29

χ2 p-Wert 0 0,0004 ± 0, 0003 0,013 ± 0, 002 0,122 ± 0, 004
BH p-Wert 0 0 0,019 ± 0, 002 0,047 ± 0, 003

Tabelle 3.5.: Koeffizienten und Ergebnisse der statistischen Analyse zu J75 Daten mit
injiziertem Signal bei 1500GeV unter der Verwendung von LO-Variationen
nach zwei, vier, sechs und neun Iterationen.

Abbildung 3.16.: Entwicklung des zu den J75 Daten injizierten Signals bei 1500GeV
nach zwei, vier, sechs und neun LO-Variationen.
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Variation 2. Iteration 4. Iteration 6. Iteration 9. Iteration 10. Iteration

Nominell 10,62 14,46 22,02 122,63 409,29
1. αs -10,35 -12,39 -12,73 -56,01 -148,81
17. PDF - -1,30 2,22 37,73 85,25
53. PDF - -0,50 -3,94 0,12 -20,91
55. PDF - - -7,20 -41,46 -79,41
43. PDF - - -0,20 -11,25 -29,26
39. PDF - - - -48,53 -116,38
3. Scale - - - 3,79 -23,18
45. PDF - - - -6,21 -36,70
4. Scale - - - - -38,24

χ2 p-Wert 0 0,0004
± 0, 0003

0,0006
± 0, 0003

0,013
± 0, 002

0,1896
± 0, 0055

BH p-Wert 0 0 0 0,004
± 0, 001

0,0282
± 0, 0023

Tabelle 3.6.: Koeffizienten und Ergebnisse der statistischen Analyse zu J75 Daten
mit injiziertem Signal bei 1500GeV unter der Verwendung von NLO-
Variationen nach zwei, vier, sechs, neun und zehn Iterationen.

Abbildung 3.17.: Entwicklung des zu den J75 Daten injizierten Signals bei 1500GeV
nach zwei, vier, sechs und neun NLO-Variationen.
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3.5. Diskussion der Ergebnisse

In Kapitel 3.1 bis 3.3 wurde die Untergrundabschätzung für die zwei Datensätze J75

und J100 jeweils von 531 - 2079GeV mit NLO und LO Variationen präsentiert. Dabei

hat die Methode vielversprechende Ergebnisse gezeigt, welche in Tabelle 3.7 zusammen-

gefasst sind. Es lässt sich daraus schließen, dass sich mit der untersuchten Methode die

Daten gut beschreiben lassen und sie damit prinzipiell für eine Untergrundabschätzung

geeignet ist.

Im Vergleich mit der SWiFt Methode wurde gezeigt, dass für die J75 Daten die Linear-

kombinationen der NLO-Variationen ähnliche Ergebnisse liefern wie die SWiFt Methode.

Für die J100 Daten ergibt sich ein besserer χ2 p-Wert im Vergleich zu SWiFt, wenn der

Untergrund entweder mit NLO- oder LO-Variationen abgeschätzt wird.

Weiterführend wurde der Einfluss der Anzahl der Variationen untersucht. Dabei konnte

beobachtet werden, dass mindestens zwei Variationen notwendig sind, um einen hinrei-

chend gute Untergrundabschätzung zu berechnen. Die genaue Anzahl der Variationen

hängt sowohl von der Statistik der Daten als auch von den Kriterien an die Untergrund-

abschätzung ab, welche sich im Abbruchkriterium widerspiegeln.

Zudem wurde der Unterschied zwischen NLO-Variationen und LO-Variationen in Bezug

auf diese Methode untersucht. Die NLO-Variationen sind bei ausreichender statistischer

Präzision zu favorisieren, da sie das Spektrum der Daten genauer beschreiben, was in

niedrigeren Signifikanzen und einem höheren χ2 p-Wert bei einer gleichen Anzahl an

Variationen resultiert.

Des Weiteren wurde untersucht, wie sich injizierte Signale mit dieser Methode der Unter-

grundabschätzung verhalten. Anhand von zwei Beispielen wurde veranschaulicht, dass

die lokale Signifikanz des Signals durch mehr Variationen reduziert wird. Dies geschieht

für LO-Variationen gleichmäßig mit der Anzahl der Variationen. Für NLO-Variationen

wird die lokale Signifikanz über mehr Iterationen erhalten. Jedoch passt sich nach einer

gewissen Zahl an Variationen die Untergrundabschätzung mit NLO-Variationen an die

Form des Signals an. Es war nicht möglich, nach dem gegebenen Abbruchkriterien eine

ausreichend gute Untergrundabschätzung und zeitgleich die Detektion des Signals zu

erreichen.
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NLO LO SWiFt

J75 χ2 p-Wert 0,47 ± 0, 02 0,38 ± 0, 02 0,45 ± 0, 02
BH p-Wert 0,37 ± 0, 02 0,23 ± 0, 01 0,61 ± 0, 02

J100 χ2 p-Wert 0,27 ± 0, 01 0,29 ± 0, 01 0,13 ± 0, 01
BH p-Wert 0,08 ± 0, 01 0,71 ± 0, 01 0,44 ± 0, 02

Tabelle 3.7.: Zusammenfassung der p-Werte für die J75 und J100 Daten bei verschie-
denen Untergrundabschätzungen. Neben den Untergrundabschätzungen
durch die Linearkombinationen mit NLO- und LO-Variationen werden auch
die Ergebnisse mit der SWiFt Methode aufgeführt. Bei den Linearkombina-
tionen wurde jeweils die Anzahl der Variationen gewählt, welche nach dem
gegebenen Abbruchkriterium die beste Untergrundabschätzung ermöglicht.

3.6. Problematik und Lösungsansätze

Neben den Signalen bei 1000GeV und 1500GeV wurden noch weitere, hier nicht weiter

gezeigte, Massenpunkte untersucht, bei denen sich die gleichen Beobachtungen machen

ließen. Bei den LO-Variationen wird die Signifikanz des Signals gleichmäßig über die An-

zahl der Iterationen reduziert, während bei den NLO-Variationen die lokale Signifikanz

des Signals über mehr Wiederholungen erhalten bleibt, doch insgesamt auch reduziert

wird. Kein Untergrund bei diesen oder anderen Beispielen konnte bei dem gegebenen

Abbruchkriterium ausreichend gut abgeschätzt werden, ohne sich an das Signal anzu-

passen, sodass es detektiert werden konnte. Das angestrebte Optimum liegt bei so vielen

Iterationen wie nötig, um die Daten ausreichend zu beschreiben, und gleichzeitig so we-

nigen Iterationen wie möglich, damit das Signal detektiert werden kann.

Um dieses Problem weiter zu untersuchen, wurde als erstes sichergestellt, dass es auch

bei anderen Größen, Positionen, Energiebereichen und Breiten besteht. Jedes untersuch-

te Signal zeigte dasselbe Verhalten wie die zwei aufgeführten Beispiele.

Um das Problem zu lösen, wurden als erster Ansatz bestimmte Variationen erzwungen

oder verboten, sodass ausgeschlossen werden kann, dass sich die Untergrundabschätzung

nur mit Hilfe bestimmter Variationen an das Signal anpassen kann. Jedoch zeigt dieser

Ansatz keinen Erfolg in Bezug auf die Erhaltung der lokalen Signifikanz der Signale.

Zusätzlich wurde der Massenbereich der Untergrundabschätzung erweitert. Somit sollte

der Fokus mehr auf den gesamten Untergrund gelegt werden und dadurch die Flexibi-

lität in Bezug auf das Signal gemindert werden. Auch dadurch ließ sich keine signifikante

Verbesserung feststellen.

Ein weiterer Lösungsansatz war, den Algorithmus als solchen robuster zu machen. Hierfür
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sollten die Koeffizienten eingeschränkt werden, da die hohen Absolutwerte der Koeffi-

zienten nach mehreren Iterationen auffällig waren. Diese bergen die Gefahr, dass die

Variationen so kombiniert werden können, dass sie sich auch an lokale Fluktuationen

anpassen können. Es bietet sich beispielsweise an, die Koeffizienten auf Werte zwischen

0 und 1 zu beschränken. Die ROOT Methode NormalEqn bietet keine Einschränkung der

Koeffizienten an. Als alternative Methode zur Lösung der linearen Gleichung wurde die

ROOT Klasse TFractionFitter genutzt, da in dieser die Einschränkung der Koeffizienten

implementiert ist [16]. Dies führte innerhalb der Implementierung des TFractionFitters

bereits ohne injiziertes Signal sowohl mit als auch ohne Einschränkung der Koeffizienten

zu einer Verschlechterung der Untergrundabschätzung, weshalb der Ansatz nicht weiter

verfolgt wurde.

Des Weiteren wurde versucht, mit dem Verhältnis der Variationen anstelle der Varia-

tionen selbst und statt der Daten mit der normierten Differenz aus Daten und dem

nominellen Spektrum zu arbeiten. Dies führte zu den gleichen Ergebnissen wie die Aus-

gangsmethode. Somit zeigte keiner dieser Lösungsansätze eine signifikante Verbesserung.

3.7. Ausblick

Um das Problem der Anpassung an die Signale zu umgehen, bieten sich zwei Lösungs-

strategien an. Einerseits kann der Algorithmus selbst robuster gemacht werden. Neben

den bereits verfolgten und zuvor erläuterten Lösungsansätzen, wäre es möglich, die Me-

thode um einen Sliding-Window-Side-Band-Fit zu erweitern. In Abbildung 3.18 ist die

Idee visualisiert. Aus den Daten und den theoretischen Berechnungen wird ein Fenster

geschnitten, woraufhin die Koeffizienten für das restliche Spektrum bestimmt werden.

Dadurch kann die Untergrundabschätzung in das Fenster extrapoliert werden. Liegt in

diesem Fenster nun ein Signal, so wird es bei der Berechnung nicht berücksichtigt und

wird in den Signifikanzen ersichtlich. Dieses Fenster läuft Bin für Bin über das gesamte

Spektrum. Damit kann jeder Punkt des Spektrums extrapoliert und damit der Unter-

grund ohne Berücksichtigung eines Signals abgeschätzt werden.

Ein weiterer Ansatz, um den Algorithmus robuster zu machen, ist die weitere Untersu-

chung, wie sich eine Beschränkung des Wertebereichs der Koeffizienten von 0 bis 1 auf

die Untergrundabschätzung auswirkt. Eine Umsetzung innerhalb eines anderen Lösungs-

algorithmus neben TFractionFitter sollte angestrebt werden.

Andererseits lässt sich untersuchen, ob ein neues Abbruchkriterium festgelegt werden

kann, wodurch weniger Iterationen notwendig werden. Beispielhaft kann über die rela-
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Abbildung 3.18.: Visuelle Darstellung der Idee für den Sliding Window Side Band Fit,
welche sich als Erweiterung der Methode anbietet. Die Abbildung wur-
de aus [10] entnommen.

tive Verbesserung von Iteration zu Iteration über das χ2 argumentiert werden. Ist die

relative Änderung nicht groß genug, wird der Algorithmus nicht mehr wiederholt.

Ein weiterer Ansatz für ein alternatives Abbruchkriterium ist die Betrachtung der er-

sten und zweiten Ableitung des Spektrums. Die erste Ableitung sollte immer negativ

und die zweite Ableitung immer positiv sein. Außerdem ließe sich eine Stoppbedingung

formulieren, die nicht alleine von den p-Werten sondern auch von der Form der Signi-

fikanz zwischen Daten und Untergrundabschätzung abhängt. Beispielhaft kann in dem

Fall der J100 Daten ohne injiziertes Signal ein wellenartiger Verlauf in der Abweichungs-

signifikanz beobachtet werden, welcher nach weiteren Iterationen weniger ausgeprägt ist

(siehe Abbildung 3.7). Dieses Verhalten kann möglicherweise genutzt werden, um eine

Abbruchbedingung zu erweitern.

Des Weiteren bietet es sich an den Einfluss der Glattheit der Variationen weiter zu

untersuchen. Das Verhältnis zwischen den LO- und NLO-Variationen kann berechnet

werden, was einem von mjj abhängigen sogenannten k-Faktor entspricht. Werden diese

k-Faktoren gefittet und somit geglättet, kann der entsprechende Faktor mit den LO-

Variationen multipliziert werden. Dadurch kann die Form der NLO-Variationen jedoch

mit glattem Spektrum erhalten werden.

Alle Ansätze, die zusätzlich auch untereinander kombiniert werden können, bieten sich

für zukünftige Untersuchungen an.
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4. Zusammenfassung

Das Dijet mjj Spektrum ist eine interessante Observable, da Abweichungen von dessen

Glattheit, insbesondere Resonanzen, ein Indikator für Physik jenseits des Standardmo-

dells darstellen. Die Analyse dieses Spektrums erfolgt maßgeblich über eine datengetrie-

bene Untergrundabschätzung, an die mit zunehmender statistischer Präzision der Daten

immer höhere Anforderungen gestellt werden. Die Dijet TLA nutzt nur die Ereignisin-

formationen, die dem HLT zur Verfügung stehen, wodurch die Ereignisrate erhöht und

die statistische Präzision bei kleinen Massen ausgeweitet wird. Für den bevorstehenden

statistischen Anstieg der Daten wird eine neue Methode der Untergrundabschätzung

notwendig, da die bisher benutzte SWiFt Methode eine erhebliche Reduktion der Sensi-

tivität auf potentielle Signale mit sich bringen würde.

Ziel dieser Arbeit war die Untersuchung einer neuen Methode, welche Linearkombina-

tionen von LO- beziehungsweise NLO-Theorievariationen des Dijet Massenspektrums

nutzt. Es ist gelungen den Untergrund für die J75 und J100 TLA Daten von 2016 nach

den gewählten Kriterien gut abzuschätzen. Im Vergleich zu der SWiFt Methode zeigt

die neue Methode vergleichbare oder höhere χ2 p-Werte. Die NLO-Variationen sind bei

ausreichender statistischer Präzision zu bevorzugen, da sie das Spektrum global besser

abbilden.

Um sicherzustellen, dass sich die Abschätzung nur auf den Untergrund bezieht und es

nicht zu einer ungewollten Anpassung an potentielle Signale kommt, wurden zu den J75

Daten gaußförmige Signale injiziert. Es konnte gezeigt werden, dass für LO-Variationen

die Sensitivität für potentielle Signale gleichmäßig mit der Anzahl der verwendeten Va-

riationen abnimmt. Bei NLO-Variationen ist die lokale Signifikanz des Signals über meh-

rere Iterationsschritte im Vergleich besser erhalten. Es ist wünschenswert, die Anpassung

an Signale zu reduzieren. Dafür wurden verschiedene Lösungsansätze verfolgt, welche zu

keiner signifikante Verbesserung führten. Weitere Strategien zur Behebung des Problems

wurden erläutert, die sich für eine weiterführende Untersuchung anbieten.
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A. Anhang

A.1. Auswahl an NLO-Variationen

Auswahl an NLO-Variationen mit |y∗| < 0, 3 im Verhältnis zu dem nominellen Spektrum.

Diese Auswahl steht beispielhaft für die Vielfältigkeit der Formen der Variationen.

Abbildung A.1.: 1. Scale NLO-Var. Abbildung A.2.: 2. Scale NLO-Var.

Abbildung A.3.: 44. PDF NLO-Var. Abbildung A.4.: 49. PDF NLO-Var.
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Abbildung A.5.: 1. αS NLO-Var. Abbildung A.6.: 2. αS NLO-Var.

A.2. J75 Daten mit NLO-Variationen

Abbildung A.7.: J75 Daten mit drei Variationen. Abweichungssignifikanz zwischen Da-
ten und Untergrundabschätzung. Detaillierte Informationen zu der
Wahl der Variationen und den Koeffizienten sind in Tabelle 3.1 doku-
mentiert. Ergebnisse der statistischen Analyse: χ2 p-Wert = 0,64 und
BH p-Wert = 0,69.
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A.3. J100 Daten mit NLO-Variationen

Abbildung A.8.: J100 mit 3 NLO-V. χ2

p-Wert = 0, BH p-
Wert = 0.

Abbildung A.9.: J100 mit 4 NLO-V. χ2

p-Wert = 0, BH p-
Wert = 0.

Abbildung A.10.: J100 mit 5 NLO-V.
χ2 p-Wert = 0, BH p-
Wert = 0,017.

Abbildung A.11.: J100 mit 6 NLO-V.
χ2 p-Wert = 0,085,
BH p-Wert = 0,014.

Abbildung A.12.: J100 mit 8 NLO-V.
χ2 p-Wert = 0,665,
BH p-Wert = 0,384.
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A.4. J75 Daten mit LO-Variationen

Variation 1. Iteration 2. Iteration 3. Iteration

Nominell 0,158 -4,403 -5,537
52. PDF - 4,554 6,393
45. PDF - - -0,705

χ2 p-Wert 0 0,38 ± 0, 02 0,52 ± 0, 02
BH p-Wert 0 0,23 ± 0, 01 0,80 ± 0, 01

Tabelle A.1.: Koeffizienten und Ergebnisse der statistischen Analyse der Untergrundab-
schätzung der LO-Variation zu den J75 Daten.

Abbildung A.13.: Untergrundabschätzung zu J75 mit Hilfe der nominellen und einer
weiteren LO-Variation.

Abbildung A.14.: Untergrundabschätzung zu J75 mit Hilfe der nominellen und zwei wei-
teren LO-Variationen.
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A.5. J100 Daten mit LO-Variationen

Variation 1. Iteration 2. Iteration 10. Iteration 11. Iteration

Nominell 1,14 12,59 3266,64 3309,02
19. PDF - -11,47 -2712,13 -2496,78
1. PDF - - 659,41 311,83
2. αS - - 2193,56 1901,31
50. PDF - - 368,79 487,03
44. PDF - - -178,71 -105,30
51. PDF - - -743,00 -642,02
2. Scale - - -64,40 -97,47
20. PDF - - -2781,49 -2493,37
1. Scale - - 7,10 22,45
13. PDF - - - -192,67

χ2 p-Wert 0 0,001 ± 0, 001 0,287 ± 0, 014 0,525 ± 0, 016
BH p-Wert 0 0,012 ± 0, 003 0,707 ± 0, 014 0,874 ± 0, 010

Tabelle A.2.: Koeffizienten und Ergebnisse der statistischen Analyse der Untergrundab-
schätzung zu J100 mit LO-Variationen.

Abbildung A.15.: Vergleich der Untergrundabschätzungen zu J100 mittels der zwei LO-
Variation beziehungsweise zehn LO-Variationen.
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