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Unterscheidung von Quark- und Gluon-Jets unter der Verwendung
von Trigger Jets in Dijet-Systemen mit dem ATLAS Experiment

Die Analyse von Dijet-Ereignissen offenbart neue Einblicke in neue mögliche
Phänomene, die jenseits des Standardmodells (SM) liegen, wie zum Beispiel über
dunkle Materie. Massereiche Wechselwirkungsteilchen können als Resonanz im
invarianten Massenspektrum des Zerfallsprodukts beobachtet werden. Jedoch
sind Dijet-Systeme mit Massen unter 1 TeV aufgrund eines großen Wirkungsquer-
schnitts der SM Dijet-Erzeugung durch Bandbreiten- und Speicherkapazitäten
des Detektors statistisch begrenzt. Die Trigger-Objekt-Level-Analyse (TLA)
macht die Suche nach niederenergetischen Resonanzen ab 450 GeV möglich, in-
dem sie nur einen Teil der vollen Detektorinformation der Ereignisse aufzeich-
net und rekonstruiert. TLA verwendet den Viererimpuls des online rekonstru-
ierten hadronischen Jets und weitere Jet-Eigenschaften, die auf Informationen
des Kalorimetersystems basieren. Informationen des Spurdetektorsystems sind
nicht erhalten. Das Signalmodell, welches in dieser Masterarbeit untersucht wird,
besteht aus einem massereichen Wechselwirkungsteilchen, welches in zwei Quark-
Jets zerfällt, während der QCD Untergrund von Gluon-Gluon- und Quark-Gluon-
Endzuständen dominiert wird. Daher führt das Identifizieren des Jet-Flavours der
beiden Jets im Endzustand dazu, dass der Untergrund im Vergleich zum Signal
unterdrückt wird. Diese Arbeit präsentiert Studien verschiedener multivariater
Verfahren, die auf Methoden des maschinellen Lernens basieren, und erzielt eine
gute Quark- und Gluon-Jet-Unterscheidung.

Quark and Gluon Jet Discrimination using Trigger Jets in Dijet
Searches with the ATLAS Experiment

The analysis of dijet events could reveal new insights on possible phenomena be-
yond the Standard Model (SM) such as dark matter. Massive particles can be
observed as an excess in the invariant mass spectrum of the decay product. How-
ever, due to a large SM dijet production cross-section, dijet searches are statisti-
cally limited by the detector’s bandwidth and storage limitations at masses below
1 TeV. The Trigger-Object Level Analysis (TLA) allows the search for low-mass
resonances down to an invariant mass of 450 GeV by recording and reconstructing
only a part of the full event. TLA uses the four-momentum of the online recon-
structed jet and some jet properties based on calorimeter information. Tracking
information is not included. The signal model used in this thesis consists of a
massive mediator particle decaying into two quarks, while the QCD background
is dominated by gluon-gluon and quark-gluon final states. Therefore, tagging the
flavour of the two final state jets suppresses the background compared to the sig-
nal. This thesis presents studies of different multivariate analysis methods based
on machine learning techniques and achieves a good quark-gluon separation.
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1 Introduction and Motivation

It is nevertheless probable that there may be as many as 1000 million
stars [within a sphere of radius of 3.09·1016 kilometres]; but many of them
may be extinct and dark, and nine-tenths of them though not all dark
may be not bright enough to be seen by us at their actual distances. [· · · ]
Many of our supposed thousand million stars, perhaps a great majority
of them, may be dark bodies.

This is a quote from the “Baltimore lectures on molecular dynamics and the wave
theory” written by Lord Kelvin in 1904 [1]. It is referring to one of the first attempts
to dynamically estimate the amount of dark matter in the Milky Way. Lord Kelvin
describes the correlation between the size of a system and the velocity dispersion
of the stars inside it. It took almost another 30 years until the Swiss-American
astronomer Zwicky studied the redshifts of various galaxy clusters including the
Coma Cluster. Through these studies, he realised that luminous matter is not able
to account for the observed average velocity dispersion along the line-of-sight. In his
later work, he stated that “if this would be confirmed, we would get the surprising
result that dark matter is present in much greater amount than luminous matter” [2].

Down to the present day, scientists wonder about the composition of this unknown
component of the universe which is called dark matter. Measurements indicate that
dark matter amounts to approximately 23% of the total energy-matter content in
the universe, but its nature is still unknown [3]. The search for dark matter links
particle physics with cosmology because only elementary particles are potential dark
matter candidates. Although it is not possible to embed dark matter into the current
model of particle physics, the Standard Model (SM), theories beyond the SM offer
many different dark matter candidates.

The challenge of finding dark matter particles (if existent) is the very weak in-
teraction with visible matter. In order to detect a dark matter signal, multiple
experiments around the world exploit different detection techniques [4–6]. One such
experiment is the Large Hadron Collider (LHC) where dark matter might be pro-
duced through interaction with the partons inside the colliding protons via a dark
matter mediator. This mediator could then decay back into SM partons, leaving a
dijet signature consisting of two quark jets in the detector. The invariant mass of
the decay product would form a resonance at the mediator mass above the smoothly
falling QCD background. The search for signals in the dijet invariant mass spectrum
is not limited to dark matter but also applicable to many other models for physics
beyond the SM.
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At the ATLAS experiment, dijet searches were able to probe large values for the
mediator masses, but there was no excess found so far [7, 8]. Therefore, the aim is
to broaden the search towards low mediator masses above approximately 100 GeV.
Due to bandwidth and storage limitations, it is only possible to record and later
analyse a tiny fraction of all collisions at ATLAS. The trigger system of the ATLAS
detector decides which of the collisions are permanently stored. Especially at low
masses, the SM dijet production rate exceeds the recording rate of the detector
which induces an unwanted loss in statistics of several magnitudes in the invariant
mass range below 1 TeV.

A novel approach, called Trigger-Object Level Analysis (TLA), is able to access
dijet events in the low-mass region by recording only physics objects that were recon-
structed within the trigger system. Therefore, the event information only includes
the reconstructed objects with variables that were available at the respective trigger
level and other calorimeter-based variables. This reduces the size of each event so
that the bandwidth limitations are bypassed and the sensitivity loss can be restored
down to invariant masses of approximately 500 GeV. Hence, event recordings at a
high rate are possible, while less than 1% of the total trigger bandwidth is used.

Searches for dijet resonances containing two quark jets in the final state are pol-
luted by a large QCD background that is dominated by dijet events in which at
least one of the two leading jets is gluon-initiated. Quark and gluon jets possess
different properties induced by the fact that a quark carries one colour index, while
a gluon carries two colour indices. This leads to gluon jets tending to have more
constituents and a broader radiation pattern compared to quark jets. Therefore,
tagging the flavour of the jets may enhance the significance of the signal of interest.

This thesis studies multivariate analysis methods based on machine learning tech-
niques in order to achieve a quark-gluon separation. In earlier studies [9–11], most
discriminants for the identification of quark- and gluon-initiated jets were based on
tracking variables, which are not available in the TLA approach. Thus, these inac-
cessible variables are replaced by calorimeter-based discrimination variables for this
study. Investigating a possible quark-gluon separation, this thesis provides studies
for the improvement of the sensitivity for dark matter signals as well as for addi-
tional searches for physics beyond the SM.

This thesis is structured as follows. In Chapter 2, an overview of the Standard
Model of particle physics is given and it addresses the question, why physics be-
yond the SM is expected to exist. A special focus lies on dark matter and its
detection methods. In Chapter 3, different multivariate analysis methods based
on machine learning techniques are introduced. It also presents their implementa-
tion in the Toolkit for Multivariate Analysis. The Large Hadron Collider and the
ATLAS detector are described in Chapter 4. Chapter 5 explains the reconstruction
and calibration procedure of dijet events in the ATLAS detector and provides an
introduction into Monte Carlo simulations. Furthermore, the Trigger-Object Level
Analysis approach is motivated including a presentation of its calibration scheme.
In Chapter 6, quark and gluon jet discrimination is introduced and its application
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in TLA is explained. In addition, discrepancies between Monte Carlo simulations
and data are illustrated and their correction is presented. The quark-gluon tagging
is outlined and its performance is analysed in Chapter 7. In Chapter 8, a statis-
tical analysis of the quark and gluon jet discrimination using the Bumphunter
algorithm is performed. The conclusion and outlook of the thesis are presented in
Chapter 9.
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2 Theoretical Background
The Standard Model [12–14] is the current model of particle physics which success-
fully describes the known fundamental particles and their interactions: the electro-
magnetic interaction, the weak interaction and the strong interaction. It does not
include the gravitational force. The SM is described in Section 2.1. Despite its huge
success, there are some phenomena which cannot be described by this model. This
is further explained in Section 2.2.

2.1 The Standard Model of Particle Physics
The SM is a relativistic quantum field theory which unites the fundamental theories
of electromagnetism namely quantum electrodynamics (QED), the strong interaction
called quantum chromodynamics (QCD) and the weak force. The underlying gauge
symmetry is

U(1)Y × SU(2)L × SU(3)C . (2.1)

Y is the weak hypercharge including the electromagnetic and weak neural-current
couplings and L stands for the left-handed chiral particle states to which the weak
charged-current interaction couples. The QCD invariance under transformations in
colour space is denoted by C.

Fundamental fermions and their antiparticles are described by interacting fields,
which are also responsible for their interactions among each other. These force
carriers correspond to so called gauge bosons. The fundamental particles including
their relevant properties are shown in Figure 2.1.

The 12 fundamental matter particles of the Standard Model are divided into two
categories: quarks and leptons. They are spin-1/2 fermions and can be grouped into
three generations, which differ by their increasing masses.

There are six different flavours of quarks: up (u), down (d), charm (c), strange (s),
top (t) and bottom (b). Up-type quarks (u,c,t) have an electric charge of +2/3 e,
while down-type quarks (d,s,b) carry a charge of q = −1/3 e. In addition, each
quark has one out of three colour indices: red, blue and green (r,b,g). Systems of
quarks in which the quarks are bound by the strong QCD force are called hadrons.
Combinations of three quarks are labelled as baryons and quark-antiquark systems
as mesons. Whereas all mesons are unstable, there is one stable baryon, the proton
(uud). Quarks interact via all three interactions of the SM.

Leptons can be divided into charged and neutral particles. The three different
types of charged leptons, electron e−, muon µ− and tau τ−, form lepton doublets with
the corresponding neutral particles, the massless neutrinos. The charged leptons are
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Figure 2.1: The Standard Model of elementary particles including 12 fundamental
fermions and 5 fundamental bosons. Taken from [15].

charged negatively (q = −1e) and interact through the electromagnetic and the weak
force. Of the charged leptons only the electron is stable.

The gauge bosons, also called vector bosons, are the interaction particles of the
three fundamental forces. All bosons are spin-1 particles. The gluon is the interac-
tion particle of the strong force and it is massless. Since the gluon is colour-charged,
it is able to interact with itself. The massless photon is the force-carrying particle
of QED. The interaction particles of the weak interaction are the W± and the Z
boson.

The final element of the Standard Model is the Higgs boson, which has a mass of
mH ≈ 125 GeV. It was discovered by the ATLAS and CMS experiments at the Large
Hadron Collider (LHC) at CERN in 2012 [16, 17]. Unlike the other fundamental
particles, it is a scalar particle with a spin of 0. The Higgs boson is responsible for
the mechanism in which all other particles obtain their mass.

Electroweak Unification
The electroweak theory developed by Glashow, Salam and Weinberg (GSW) [18–20]
in the 1960s unites the electromagnetic and weak interaction and is associated with
the symmetry group

U(1)Y × SU(2)L, (2.2)

where the electromagnetic U(1) gauge symmetry of the electromagnetic interaction
is replaced by a new U(1)Y local gauge symmetry. Since the charged-current weak
interaction only couples to left-handed chiral particles, the symmetry group SU(2)L
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often carries the label L. Right-handed chiral particle states do not change under a
local SU(2)L gauge transformation.

The Lagrange density stays invariant under the above mentioned gauge transfor-
mation with the covariant derivative

∂µ → Dµ = ∂µ + ig′Bµ
Y

2
+ igWWµ ·

τ

2
(2.3)

including the gauge fields Bµ and Wµ =
(
W 1

µ ,W
2
µ ,W

3
µ

)
and the coupling constants

g′ and gW . The generators of SU(2) are the three Pauli matrices τ .
Of the four interaction bosons, the photon and the Z boson are neutral. Their cor-

responding fields Aµ and Zµ can be written as a linear combination of the generator
of the hypercharge and the neutral (third) generator of the weak interaction

Aµ = Bµ cos θW +W 3
µ sin θW (2.4)

Zµ = −Bµ sin θW +W 3
µ cos θW , (2.5)

where θW is the weak mixing angle. This splitting originates from the Higgs mech-
anism. The physical W± bosons are identified as a linear combination of the gauge
fields W 1

µ and W 2
µ

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
. (2.6)

The GSW model shows a relation between the couplings of the electromagnetic and
weak interaction

e = gW sin θW = g′ cos θW = gZ sin θW cos θW . (2.7)

Higgs Mechanism
The local U(1)Y ×SU(2)L gauge symmetry of the electroweak interaction is broken
if mass terms for the massive gauge bosons W± and Z are introduced. The Higgs
mechanism is able to preserve the required local gauge invariance and generates
masses of the gauge bosons by introducing the Higgs field φ. The Lagrangian for
the Higgs field is

L = (Dµφ)
†(Dµφ)− V (φ) (2.8)

with the covariant derivative defined in Equation 2.3 and the Higgs potential

V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.9)

The potential shows for µ2 < 0 a Mexican hat form. The vacuum expectation value
v =

√
−µ2/λ of this potential is non-zero (v = 246 GeV), which yields a global

symmetry breaking of the Lagrangian. This effect is called spontaneous symmetry
breaking.
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Fermion masses

The Higgs mechanism is able to generate masses for the fundamental fermions of the
Standard Model. A fermion mass term like −mf ψ̄ψ breaks the U(1)Y ×SU(2)L local
gauge symmetry and therefore, can not be included in the Lagrangian. However, a
term like

−gf
(
Ψ̄LφΨR + Ψ̄Rφ

†ΨL

)
, (2.10)

where φ is the Higgs field and ΨL/ΨR indicate the left-/right-handed chiral particle
states, is invariant under the required local gauge transformation. This term corre-
sponds to a coupling between the fermion field and the Higgs field with the coupling
strength gf . The coupling is called Yukawa coupling and it is given by

gf =
√
2
mf

v
. (2.11)

Quantum Chromodynamics
QCD is the quantum field theory of the strong interaction. It is associated with a
SU(3) local gauge invariance. The covariant derivative

∂µ → Dµ = ∂µ + igSG
a
µ ·

λa

2
(2.12)

assures the required invariance. The eight generators of the SU(3) symmetry group
are the 3 × 3 Gell-Mann matrices λa (a ∈ {1, · · · , 8}). Ga

µ are eight new real fields
which correspond to the gluons of QCD and gS is the strong coupling constant.
Since the SU(3) symmetry group is a non-Abelian gauge group, the gluon fields do
not only couple to quarks fields but they also self-interact as depicted in Figure 2.2.

qq

g

g

g

g

g

g

g

g

Figure 2.2: QCD interactions predicted from the SU(3) local gauge invariance. The
Feynman diagrams show from left to right the coupling of gluons to
quarks, the triple gluon vertex and the quartic gluon vertex.
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Colour Confinement

Quarks and gluons, which are called partons, have never been observed unbound due
to a property called colour confinement. Coloured objects always form colour singlet
states because particles require a zero colour charge to propagate freely. Therefore,
quarks are bound in colourless hadrons. The possible combinations to form hadrons
out of quarks and antiquarks are strongly limited by the requirement of forming
colour singlet states. Colour confinement is not a proven property but it is believed
that its origin lies in the gluon self-interactions.

In processes like qq̄ → qq̄ (Figure 2.3), two highly energetic quarks are produced
in the final state. They propagate back-to-back in the center-of-mass frame of
the interaction. Due to colour confinement, the quarks form collimated streams
of colourless particles via a process which is called hadronisation. These particle
streams are called jets. The two jets of the process in Figure 2.3 follow the direction
of the initial quarks.

g

q

q̄

q

q̄

Figure 2.3: Tree-level Feynman diagram of a qq̄ → qq̄ interaction.

Running Coupling

The coupling constant of QCD, αS, is not constant. For low-energy scales, the
constant is of O(1) and it decreases for higher energies. Hence, calculations using
perturbation theory are not possible in the low-energy regime. Non-perturbed cal-
culations using lattice QCD are able to probe the predictions of QCD for example
the mass of the proton. In the high-energy range or at very small distances, αS

becomes small enough to motivate the use of perturbation theory. This property of
QCD is called asymptotic freedom. The running of the coupling strength originates
from the contribution of higher order Feynman diagrams.

2.2 Physics Beyond the Standard Model
Although the Standard Model is successful in describing the known fundamental
particles and their interactions, there are several theoretical and experimental indi-
cations that this model is incomplete.
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Dark Matter
In the 1930s, Zwicky [21] and Smith [22] observed that luminous matter is not able
to account for the masses of the Coma and Virgo clusters. The experimental rota-
tion curves of galaxies orbiting the center of a cluster show significant discrepancies
compared to the predictions of the Newtonian/Keplerian gravitation law. The ma-
jority of the luminous mass of a cluster is located in its central part. Hence, the
velocity distribution is expected to decrease as a function of the distance to the cen-
ter at radii larger than the luminous part of the cluster. The observations, however,
show a uniformly distributed curve. Therefore, Zwicky and Smith postulated the
existence of a large amount of non-luminous matter which we now call dark matter.

The Standard Model of cosmology predicts that baryonic matter amounts to only
5% of the total energy-matter density in the universe. Dark matter makes up 23%,
while the majority is accounted for by dark energy (72%). The existence of dark
energy results in a non-vanishing cosmological constant Λ in general relativity, which
is responsible for the acceleration of the universe [23–25].

Dark matter is one important contribution for the structure formation of the
universe [26]. Depending on its typical velocity in the early universe, three families
of dark matter are defined: hot, warm and cold dark matter. Candidates for the
hot dark matter (HDM) are the light relativistic neutrinos. The sterile neutrino [27]
is a warm dark matter (WDM) candidate. Light particles, like in HDM, remain
relativistic until late times of the universe. This induces a typical length scale of
matter objects of the size of a large galaxy cluster. Therefore, the model of hot
dark matter was ruled out because it could not explain the structures we observe
today. Non-relativistic dark matter, such as in the cold dark matter (CDM) model,
is today the leading dark matter model because it is able to explain sizes of objects
down to the mass of the Earth.

There are several possible candidates of CDM including supersymmetric parti-
cles [28], axions [29] and the weakly interacting massive particle (WIMP) [30]. The
natural mass of the latter is expected to be in the GeV-TeV range. These non-
baryonic particles are expected to interact gravitationally and via the weak force.
There is no known particle in the Standard Model which satisfies the required prop-
erties of a WIMP.

Dark Matter in Collider Experiments
To understand and detect dark matter is one of the important goals of many exper-
iments, e.g. the Large Hadron Collider. If dark matter (χ) interacts weakly with
visible matter, e.g. quarks, these particles could be produced at the LHC. However,
pair-produced dark matter particles as in Figure 2.4a do not interact with the detec-
tors. ATLAS searches, therefore, focus on two main strategies. The first one implies
the requirement of initial state radiation of, e.g. a gluon, which balances the miss-
ing transverse energy Emiss

T from dark matter. This signature is called "Mono-X"
search, where X stands for the Standard Model particle, which interacts with the

9



detector [31].
A second option to search for dark matter is to look for the mediator particle

itself. If there is a mediator which connects the Standard Model sector with the
dark matter sector then, this mediator R can also decay back into a final state with
two Standard Model particles (Figure 2.4b). This motivates the search for dijet final
states. Since this diagram is a s-channel production, the invariant mass of the decay
product will form a resonance at the mediator mass above the smoothly falling QCD
background. The coupling for this new force is the same in both vertices. This dark
matter model has two important parameter: the mass of the mediator mR and its
coupling strength to quarks gq.

One example of such a model introduces the massive Z ′ gauge boson, whose
couplings to leptons are neglected. Therefore, this mediator is called leptophobic
Z’ [32].

R

q

q

χ

χ

(a) qq → χχ

R

q

q

q

q

(b) qq → qq

Figure 2.4: Feynman diagrams with an unknown mediator particle which couples to
the Standard Model sector as well as to the dark matter sector.
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3 Multivariate Data Analysis and Machine
Learning

The field of pattern recognition is growing in importance, especially in the last
20 years. Pattern recognition addresses the discovery of underlying structure of a
data sample with the help of computer algorithms. With these characteristics, it is
possible to classify the data into different categories. Nowadays, we have to handle
and analyse a huge amount of complex data which makes the characterisation more
difficult. The development of machine learning enabled the possibility to recognise
patterns in data with the help of multivariate data analysis. This chapter gives a
small overview of different techniques of multivariate analyses [33] and explains how
these are embedded in the Toolkit for Multivariate Analysis (TMVA) [34].

3.1 Introduction
The goal of machine learning is to build a model which learns from and predicts data.
It takes an arbitrary data set including multiple variables as input and returns the
desired characterisation as output. To qualify the output of the model, the whole
data set is split into three disjoint parts: a training set, a validation set and a test
set.

The training set consists of observations and their target characterisation. These
are used to train a chosen model and to determine the best parameters by learning
the underlying structure of the given input data set.

After the model has been trained, its performance is evaluated by the validation
set. This data set is used to fine-tune the model parameters but it is never used
for the learning process itself. Since the parameters are chosen according to the
performance on the validation set, the model is indirectly affected by the validation
process.

The test set is used to evaluate the final model setup once the training process
is complete. The division of the full data set into training, evaluation and test set
assures the generalisation of the data analysis. A large training set assures a good
model estimate, while a small validation set induces a noisy estimate of the model
performance. If the size of the data set is limited, cross-validation is used. This
technique splits the whole data into k partitions, trains the model with all but one
fraction and performs evaluation on the held-out part. This procedure is repeated
such that every partition is used once in the evaluation step. Mean and variance of
all runs are averaged and at the end, the full data set is retrained.

The training of data that includes the input variables as well as their target
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characterisation is called supervised learning. If the desired output consists of one or
more continuous variable(s), the process is referred to as regression. A classification
problem, however, returns one finite output out of a discrete number of output
possibilities. In Section 3.2, the classification process is further explained.

Contrary to supervised learning, unsupervised learning comprises the input data
without any knowledge of the desired output. One possible application of this
machine learning paradigm is to find groups of similar properties within the data
sample (clustering). Furthermore, it is possible to reconstruct the probability density
function for a given data set by a process, which is called density estimation. In
addition, the dimensionality reduction from a multi-dimensional input variable space
to a two- or three-dimensional space can be used to visualize the data.

The paradigm of reinforcement learning is not based on an output known a pri-
ori, but instead it discovers the optimal output throughout the learning process
itself. The goal is that an agent learns the best possible action by maximising the
reward which is provided by the environment for each action selected by the agent.
This optimisation process founds on the balance between exploration (of all possible
actions) and exploitation (of the already gained knowledge).

In order to optimise a model for a characterisation problem, an error function is
minimised. This function determines the deviation of the prediction of the model
from the training data set for a chosen set of model parameters w. The training set
consists of a data set {xn, tn} including input vectors xn and corresponding target
values tn for n = 1, ..., N , whereby N is the number of observations. In two-class
classification problems, it is convenient to use a binary representation such that
tn = 1 represents class 1 and tn = 0 represents class 2. A common choice for an
error function for such a problem is the binary cross-entropy

E(w) = −1

2

N∑
n=1

{tn ln(yn) + (1− tn) ln(1− yn)} , (3.1)

which measures the performance of a two-class classification model. This quantity
would be zero in case of no deviation between the model prediction yn(xn,w) and
the target value of the data set in any data point. The factor of 1/2 is a convention.

The number of free parameters, also known as hyperparameters, in a chosen model
has a direct influence on the model’s flexibility and capability to capture the under-
lying complex structure of the data. This model selection induces a possible range
of performances from under-fitting over the best selection until over-fitting. The
former refers to a model which is neither able to model the training data set nor to
generalise new data because it does not capture the underlying structure. The lat-
ter describes a model with too much flexibility which induces an adjustment of the
model to statistical fluctuations of the target values in the input data set. Since the
random noise of the validation set varies from the one in the training set, over-fitting
can be identified if the model performs well on the training set but shows a poor
performance if applied to the validation set. Over-fitting decreases with an increase
of the size of the data set because the number of free parameters in the model is
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then significantly smaller than the number of data points. Another approach to
reduce over-fitting is regularisation. The error function in Equation 3.1 is modified
by including a penalty term, which yields

Ẽ(w) = −1

2

N∑
n=1

{tn ln(yn) + (1− tn) ln(1− yn)}+
λ

2
||w||2, (3.2)

where λ determines the regularisation strength. For λ = 0, the error function simpli-
fies to Equation 3.1. The type of regularisation including the L2 norm of the model
parameter ||w||2 = wTw is called Ridge regression. λ controls the relative impor-
tance of the penalty term and therefore, has a direct influence on the magnitude of
the regularisation.

Besides finding the appropriate number of free parameters, the choice of type of
model is indispensable in order to achieve a good performance. In many practical
applications, it is beneficial to apply some preprocessing techniques to the data; a
topic which is further covered in Section 3.3.

3.2 Event Classification
In machine learning, classification aims to divide the training data set into different
categories (out of a finite number of options) and thus is able to predict the mem-
bership of an unseen data point to a category based on the training. The categories,
also referred to as classes, are mostly chosen to be disjoint such that each obser-
vation is assigned to only one discrete class. Therefore, the input data set can be
split in decision regions, whose borders are called decision boundaries. In Figure 3.1,
a two-class classification problem with different choices of decision boundaries can
be seen. Depending on the underlying nature of the training set, the selection of a
rectangular (Figure 3.1a), a linear (Figure 3.1b) or a quadratic decision boundary
(Figure 3.1c) yields the best separation. If the two classes within a data set can be
completely separated by a linear decision boundary, it is called linearly separable. In
Figure 3.1c, the green line represents a higher-order decision boundary which clearly
shows the effect of over-fitting. This decision boundary will perform significantly
worse on a newly created training set with the same underlying distribution but a
different random noise.

Linear Models
There are many different classes of models which are used to solve classification
problems. Linear models are linear in the input vector x and can be written as

y(x) = wTx + w0, (3.3)

where w is called weight vector, w0 is the bias and y is the real target value. Given
that classification problems require discrete class labels, Equation 3.3 is transformed

13



(a) Rectangular cut. (b) Linear cut. (c) Quadractic (blue) and
non-linear (green) cut.

Figure 3.1: Comparison of different types of decision boundaries in a two-class clas-
sification problem. The classes are denoted by red (H0) and blue points
(H1). The decision boundaries are marked by a blue line. The green
line shows a higher-order decision boundary, whose large number of free
parameters induces over-fitting. Taken from [35].

by a non-linear function f called activation function. Three examples for activation
functions can be seen in Figure 3.2, whereas only the logistic sigmoid can be used
for (binary) classification.

Figure 3.2: Comparison of different activation functions in the range [−3, 3]. The
logistic sigmoid is shown in green, the hyperbolic tangent in blue and
the rectified linear unit (ReLU) in red. Taken from [36].

The perceptron algorithm is another example of a linear model. It further trans-
forms the input vector x of input variables into non-linear basis functions φ(x).
This strategy leaves the model linear in its coefficients w but provides a non-linear
relationship to the input variables. The generalised linear model for an input vector
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can then be expressed by the formula

y(x) = f
(

w̃Tφ(x)
)
, (3.4)

whereby the bias w0 has been absorbed into the definition of the weight vector
w̃ = (w0,w). Hence, the first component of φ(x) is set to 1. In further calculations,
the tilde is omitted. The perceptron algorithm uses the sign function1 as activation
function f .

Neural Networks
Feed-forward neural networks that use parametrised basis functions φ(x), whose
parameters are optimised during the training process, are called multilayer percep-
trons. This model consists of multiple layers of logistic regression models. The basis
functions are chosen to be non-linear functions of linear combinations of the input.
All neural networks consist of an input and an output layer. In between, there can
be several hidden layers. A network with one hidden layer, for instance, is called
two-layer network. Its network function can be written as

yk(x,w) = σ

(
M∑
j=0

w
(2)
kj σ

(
D∑
i=0

w
(1)
ji xi

))
, (3.5)

whereby xi and yk represent the input and output variables of the network. The
terms zj = σ

(∑D
i=0w

(1)
ji xi

)
are called hidden units. The superscript of the weight

parameters w indicates the corresponding layer. The logistic sigmoid function

σ(a) =
1

1 + exp(a)
(3.6)

is used as non-linear activation function. The layout of a two-layer feed-forward
neural network can be seen in Figure 3.3. These neural networks are called multilayer
networks due to their concatenation of several perceptron models.

The network shown in Figure 3.3 is a fully-connected neural network. To generalise
the model, skip-layer connections [37], which skip one hidden layer, can be embedded
into the network.

3.3 Data Preprocessing
In machine learning, data preprocessing is a step in which the data set gets trans-
formed such that the features of the data can be easily extracted by the training
algorithm. The data set, which the machine analyses, often contains correlated
variables of different orders of magnitude. To simplify and to speed up the training
process, it is often beneficial to preprocess the data. This preprocessing transforms

1 The sign function has a value of −1 for negative and +1 for positive numbers.
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Figure 3.3: Diagram of a two-layer feed-forward neural network. The variables xi,
zj and yk are shown as nodes; the weight coefficients are illustrated as
links between the nodes; bias parameters are represented as filled nodes.
The arrow indicates the direction of information flow inside the network.
Taken from [33, p. 228].

the input variables into a new space of variables. The goal is to extract the most
important features of the data and feed them into the machine. It is important to
keep all the useful information otherwise discriminating power and accuracy of the
classification model are reduced. The new feature space is then used as new input
to train the machine. The testing data set is preprocessed in the same way as the
training set.

Normalisation

The process which determines the minimum and maximum value of all input vari-
ables and linearly transforms them into the range of [−1, 1] is called variable nor-
malisation. With this scaling, a comparison between the weights of the model is
possible. Compared to smaller weights, larger ones represent a stronger separation
power.

Decorrelation

If the features of the data set are strongly dependent on each other, the model will
not be able to extract the underlying structure of the data which may lead to a poor
performance. Linear correlations are taken into account through the calculation of
the square-root of the covariance matrix (

√
C). The new input variables are then
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computed via

x’ =
(√

C
)−1

x. (3.7)

This transformation has to be applied separately for subsets of different distributions
in the data set because their correlations may differ. For most real-world applica-
tions, the correlation of the input variables is not linear and the decorrelation process
may even worsen the performance of the model.

Principle Component Analysis
Principle Component Analysis (PCA) is used to approximate and/or visualise a data
set. It reduces the dimensionality of the input space by finding the linear subspace
with minimal information loss. PCA is a linear transformation which maximises the
variance of the projected data. The maximal variance is reached with the trans-
formation featuring the largest eigenvalue. The largest variance of this transforma-
tion defines the first new coordinate (first principle component). The second-largest
variance defines the second coordinate and so on. Lower-order principle components
with insignificant variance are usually omitted.

3.4 Toolkit for Multivariate Analysis
The Toolkit for Multivariate Analysis (TMVA) is a framework for multivariate clas-
sification and regression techniques available in ROOT [38]. This section focuses
on the configuration possibilities for classification. TMVA was designed to perform
training, testing and performance evaluation for high energy physics applications es-
pecially to find small signals in large data samples. The training methods available
are based on supervised learning algorithms; hence, the target sample characterisa-
tion has to be known (for classification).

The TMVA analysis is split into a training phase (including training, testing
and evaluation) and an application phase. In the latter, the chosen method of the
training phase is used to solve the classification or regression problem of an unknown
data set.

The Factory class (ROOT::TMVA::Factory) is responsible for the organisation
of the training phase. It performs preanalysis and preprocessing of input variables
as well as calculates their linear correlations. Variable transformations are defined
with the booking option VarTransform, which offers among others the choices nor-
malisation (Norm), decorrelation (Deco) and principle component analysis (PCA).
Furthermore, it reveals a preliminary ranking of the variables based on their dis-
crimination power. In the Factory, training and testing data sets are specified and
in addition, the separation into signal and background events is performed for each
set, e.g. by applying selection cuts. Afterwards, the multivariate analysis techniques
including their chosen configuration are booked and the Factory runs the training,
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testing and evaluation process. Each executed multivariate analysis stores the train-
ing results in so-called weight files. During evaluation, control and performance plots
for the training and test data set are created. This includes the ranking of the in-
put variables according to their separation for classification. The separation of a
classifier y is defined as

〈S2〉 = 1

2

∫
(ps(y)− pb(y))

2

ps(y) + pb(y)
dy, (3.8)

where ps and pb are the distributions for signal and background of y. The separation
is zero for identical and one for disjoint distributions. For each classifier, the output
distribution of signal and background is used to determine the optimal TMVA cut.
The Receiver Operating Characteristic (ROC) curve shows the background rejection
as a function of the signal efficiency for different thresholds of the respective cut of
the test sample. The Area Under the ROC Curve (AUC) gives a performance
measure for each method.

In the application phase, the weight files of the best performing training method
are chosen and imported by the Reader class (ROOT::TMVA::Reader). The weight
files of each method contain the full information of the configuration and the results
of the training process. The Reader applies the results of the training phase including
the optimal cut to increase the signal purity to an unspecified data set.

TMVA provides several multivariate analysis methods used to solve classification
or regression problems. Below a selection is introduced and their booking options
are specified.

Rectangular Cuts
One of the simplest classification methods is the application of a rectangular cut
on a set of discrimination variables. In a strict sense, this classifier is not part of a
multivariate analysis but rather the combination of several univariate ones because
the variable cuts are independent of each other. The cut-based classifier has –
compared to other discrimination methods – only two possible outputs: signal or
background. The optimal cuts for each variable are determined by maximising the
background rejection for a fixed signal efficiency. This procedure is repeated for a
number of signal efficiencies.

TMVA offers several FitMethods including Monte Carlo Sampling [39], Genetic
Algorithm [40] and Simulated Annealing [41]. In case that the distributions of
the discrimination variables are known beforehand, minimum (FMin) or maximum
(FMax) cut requirements can be applied using the option VarProp in order to re-
move obsolete requirements. An automatic detection of obsolete requirements is
enabled with FSmart. The performance and discrimination power of the cut-based
optimisation analysis depends strongly on the signal and background distributions
because this method is based on the assumption that the signal is clustered in the
variable space. If this is not the case, this classifier underperforms.
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Linear Discriminant Analysis
A linear discriminant provides the classification of data based on the linear model
according to Equation 3.3. Bias and weights are determined by the method of
least squares [42]. For gaussian distributed variables with linear correlation, linear
classifiers provide a reasonable good performance that is comparable with results
obtained with non-linear discriminants. In case of discrimination variables with
equal sample mean but different variance, the discrimination power vanishes. The
Fisher discriminant [43] is one well-known example of a linear classifier available in
TMVA.

Boosted Decision Trees
A decision tree is an ordered tree-like model which splits the training data set at each
node into two subnodes by the application of a learned decision rule. Each decision
rule is only based on one discrimination variable and the splitting is repeated until a
stopping criterion is fulfilled. The end nodes (leaves) of the decision tree are labelled
as signal or background, based on the majority of training events in the particular
node. TMVA fixes the maximal depth of a decision tree with the hyperparameter
MaxDepth, while requiring a minimum size of MinNodeSize for each leaf (in per cent
of the training data).

In order to weaken the dependency of the tree on statistical fluctuations in the
training sample and to approve the performance of the classifier, a boosting algorithm
is introduced. It fits many small or large trees to reweighted versions of the training
set, whereas the total number of trees is given by NTrees. In the end, an event is
classified by the majority vote. The boosting type for the decision trees is set by
BoostType and TMVA offers, e.g., AdaBoost [44] and Bagging [45] as choices. A
decision tree that includes a boosting algorithm is called boosted decision tree.

Multilayer Perceptron
The feed-forward multilayer perceptron (MLP) is one possible implementation of an
artificial neural network [46] and therefore, belongs to the class of non-linear dis-
criminant analyses. The configuration options for the MLP implemented in TMVA
are given in [34, p. 97 f.].

For classification, the number of input nodes of the network is given by the num-
ber of discriminating variables. The number of HiddenLayers determines the hidden
layer architecture of the network, whereas the output layer consists of only one neu-
ron: the estimator. The architecture of the network is often given as a function of
the number of input variables N . For example, a network specified by the expres-
sion (N + 1, N) contains two hidden layers with N + 1 and N nodes respectively.
The neuron’s response function is given by a concatenation of a synapse function
NeuronInputType and an activation function NeuronType. The training algorithm of
the feed-forward neural network is set by TrainingMethod, which offers Backpropa-
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gation [47], the Broyden-Fletcher-Goldfarb-Shannon (BFGS) Algorithm [48–51] and
the Genetic Algorithm as choices. Given that it may not be possible to know the
necessary number of training epochs NCycles in advance, the convergence of the
network is monitored in epoch steps. ConvergenceTests sets the number of training
cycles in which the improvement has to be smaller than the number ConvergenceIm-
prove. The convergence test along with tests for overtraining are performed after
each epoch that is set by the TestRate argument.

Due to its highly flexible and complex network architecture, a MLP has a good
performance but also tends to overtrain the data set. To avoid the latter, a Bayesian
extension can be selected by the UseRegulator parameter. This option allows a com-
plex network layout, while regularising the model at the same time. The regulariser
is equivalent to a Gaussian prior over the network weights [33, p. 24 ff.].
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4 The ATLAS Experiment at the Large
Hadron Collider

The ATLAS1 experiment [52] is one of four large experiments at the Large Hadron
Collider [53] at CERN2 close to Geneva. It studies proton-proton collision up to a
center of mass energy of 14 TeV to test the predictions of the Standard Model and
to search for effects of new physics beyond this model. From 2009 until 2013 during
Run-1, the LHC successfully took data at different center of mass energies ranging
from 900 GeV to 8 TeV. In Run-2, which started in 2015 and lasted until 2018, the
center of mass energy increased to 13 TeV.

4.1 The Large Hadron Collider
The LHC consists of a circular tunnel with circumference of 27 km which was built for
the Large Electron-Positron Collider (LEP). The tunnel has eight straight sections
and eight arcs. At four interaction points detectors are placed with different research
purposes. The ATLAS and CMS3 detector were build for general physics research.
The ALICE4 detector is mainly used for heavy-ion physics, whereas the LHCb5

detector investigates B-physics.
Pre-accelerated protons are injected into the LHC tunnel every 25 ns in bunches

of up to 1011 protons. These bunches are further accelerated until they reach their
final interaction energy and then collide 40 million times per second.

The number of events for a given process for a given period of data taking is given
by the product of cross-section and integrated luminosity:

N = σ

∫
L(t)dt. (4.1)

The cross-section σ measures the quantum mechanical probability for the interaction
to occur and is dependent on the fundamental physics, whereas the luminosity L
is determined by the rate of the collisions in the collider. The LHC reaches peak
luminosities of the order of 1034 cm−2s−1.

Proton-proton collisions at the LHC occur up to 10 hours until the proton beam
becomes unstable or the luminosity decreased too much. Then, the beam gets
dumped into a lead block and the LHC is filled again with new proton bunches.

1 A Toroidal LHC ApparatuS
2 Conseil Européen pour la Recherche Nucléaire
3 Compact Muon Solenoid
4 A Large Ion Collider Experiment
5 Large Hadron Collider beauty
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The dense packing of colliding protons increases the number of simultaneously
occurring events in each bunch crossing. The additional collisions, which are called
pileup events, contribute to the background of the main high-energy collision, which
is referred to as hard scatter event. Two different sources of pileup are distinguished:
in-time pileup occurring in the same bunch crossing and out-of-time pileup, which
accounts for signals from previous and subsequent bunch crossings. The online and
offline event reconstruction is affected by pileup events such that effective algorithms
are necessary to distinguish hard-scatter from soft-QCD pileup events. Especially
the reconstruction of hadronic jets including their energy and structure is biased
by pileup because these interactions can generate additional jets, so-called pileup
jets [54, 55]. The expected amount of pileup µ is directly correlated to the luminosity
L by

µ =
Lσinelastic
ncfrev

, (4.2)

where σinelastic is the inelastic cross-section in proton-proton collision, nc is the
number of colliding pairs of bunches and frev is the revolution frequency of the LHC.
The average pileup amounts to approximately 13.4 for an integrated luminosity of
3.2 fb−1 at the beginning of Run-2 in 2015 and it increased to around 25.1 for∫
Ldt = 32.9 fb−1 in 2016. As the luminosity increases during Run-2, the average

pileup increases as well [56, 57].
One of the main goals of the LHC was the discovery of the Higgs boson which

was postulated by Peter Higgs [58] in 1964 and discovered by the ATLAS [16] and
CMS [17] experiments in 2012.

4.2 The ATLAS Detector
The ATLAS detector is a 44 m long and 25 m in diameter expanded cylinder with
a mass of 7000 tonnes, which is located approximately 100 m under ground. It uses
a right-handed coordinate system in which the collision point determines the center
of the coordinate system and the z-axis coincides with the beam axis. The x-axis
points towards the center of the LHC, whereas the y-axis is perpendicular to the
before mentioned axis and points into the sky. Typical measured variables are the
angle θ, which determines the angle to the z-axis, and the azimuth angle φ. The
transverse momentum pT and the transverse energy ET = E sin θ of a particle with
momentum p and energy E are defined in the x-y plane. pz is the z-component of
the momentum. The pseudorapidity η is a spacial coordinate used to describe angles
to the beam axis:

η = − ln tan

(
θ

2

)
. (4.3)
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The angular separation between two particles is measured by the Lorentz invariant
quantity for massless particles ∆R =

√
(∆η)2 + (∆φ)2. The rapidity is defined as

y =
1

2
ln

(
E + pz
E − pz

)
. (4.4)

The ATLAS detector is consisting of several different subdetectors which are con-
centrically arranged around the interaction point. The three major components of
the detector are the inner detector, the calorimeters and the muon spectrometer (see
Figure 4.1).

Figure 4.1: The onion-like structure of the ATLAS detector with concentrically ar-
ranged subdetectors. Taken from [52].

Inner detector
The inner detector is composed of a silicon pixel detector, a silicon micro-strip
detector and a transition-radiation straw-tube tracker. The silicon sensors have a
fine granularity with which direction, momentum and electric charge of particles can
be measured. With this information, vertex finding and particle identification are
performed. Charged particles traversing the tracking material ionise it and loose
energy according to the Bethe-Bloch formula [12, p. 13]. This energy loss is strongly
dependent on the type and thickness of the material. The inner detector is embedded
into a 2 T superconducting solenoid magnet, which induces a measurable bending
of the tracks of charged particles due to the Lorentz force. The inner detector is
able to track particles up to a pseudorapidity of |η| = 2.5.
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Calorimeters
The calorimeter system uses different sampling techniques with varying granularities
to measure the energy and position of incident particles. The combination of passive
and active layers induces the total absorption of these particles that results in particle
showers, which can be measured by the active material. Furthermore, the passive
material assures a short length between interactions of these showers.

A characteristic quantity for electromagnetic showers is the radiation length. It
is defined as the average distance in which an electron looses a factor of 1/e of its
energy via bremsstrahlung. The development of hadronic showers is characterised
by the interaction length, which is defined as the mean distance between hadronic
interactions of relativistic hadrons. The interaction length is significantly larger
than the radiation length for the same material.

The whole calorimeter system of the ATLAS detector covers a range up to |η| =
4.9. In the central region, the interaction length of the calorimeters amounts to 9.7.
The calorimeter system is divided into several subcomponents which exploit the
different properties of particle interactions via the electromagnetic and the strong
force. It is split into the Liquid Argon calorimeter and the Tile calorimeter. The
layout of the calorimeter system can be seen in Figure 4.2.

Figure 4.2: The ATLAS calorimeter system including its subcomponents. Liquid ar-
gon calorimeters are indicated in yellow, tile calorimeters in grey. Taken
from [52].

The Liquid Argon calorimeter [59] is a sampling calorimeter which uses lead as
passive and Liquid Argon (LAr) as active material at a temperature of 8 K. LAr has
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a linear energy response and it is very fault-tolerant in respect to radiation. Particles
passing through the lead absorber induce a particle shower. The resulting particles
ionise the LAr and charged particles are created, which drift inside an electric field
to the electrodes. There, the electric current is measured and read out. The LAr
calorimeter is used to detect both electromagnetic and hadronic showers. It consists
of four subdetectors: the electromagnetic barrel, the electromagnetic end-caps, the
hadronic end-caps and the forward calorimeter.

The electromagnetic barrel covers a pseudorapidity range of |η| < 1.475. The
end-caps consist of two coaxial wheels covering a range of 1.375 < |η| < 3.2. The
combination of electromagnetic barrel and end-caps, which detect electromagnetic
showers, is called electromagnetic calorimeter (ECal). The thickness of the LAr
region in the ECal amounts to 2.1 mm. Both, barrel and end-caps, are sectioned
into one presampler and three sampling layers. The presampler detector is a single
thin layer of LAr which is responsible for the correction in energy loss by electrons
and photons in the inner detector. The sampling layers are made of alternating
samples of lead and LAr. The granularity varies throughout the layers. Table 4.1
shows the granularities of the electromagnetic barrel. The slicing of the end-caps
is slightly larger. The energy deposit in the first layer with its fine granularity is
used for particle reconstruction and identification. Most of the energy of incident
particles is deposited in the second layer. The third layer contains the tail of the
electromagnetic shower. Due to the fine granularity, the ECal is mostly used for
precision measurements for electrons, photons, jets and missing ET [60].

ECal barrel
Presampler 0.025 × 0.1

1st layer 0.025/8 × 0.1
2nd layer 0.025 × 0.025
3rd layer 0.05 × 0.025

Table 4.1: Granularity for the barrel of the ECal in ∆η ×∆φ slices.

The hadronic end-cap calorimeter (HEC) is a hadronic calorimeter and covers a
pseudorapidity range of 1.5 < |η| < 3.2. It is directly located behind the end-caps
of the ECal and consists of four lead-LAr layers.

The LAr forward calorimeter (FCal) is approximately 10 interaction lengths deep
and it covers a range of 3.1 < |η| < 4.9. It consists of three modules which are
designed to measure hadronic interactions.

The Tile calorimeter (TileCal) [61] is a large hadronic sampling calorimeter, which
is located outside the ECal. Its coarse granularity is mainly used for jet reconstruc-
tion and Emiss

T measurements. It consists of a barrel (|η| < 1.0) and two extended
barrels (0.8 < |η| < 1.7), which are made out of steel as the absorber and scintillat-
ing tiles as the active material. There are three layers of material with interaction
lengths of 1.5, 4.1 and 1.8 for the barrel and 1.5, 2.6 and 3.3 for the extended barrel.
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The scintillation light produced in the tiles is transmitted by wavelength shifting
fibres to photomultiplier tubes [62].
The combination of TileCal, HEC and FCal forms the hadronic calorimeter (HCal).

Muon system
The muon spectrometer identifies and measures the momenta of muons. It consists of
large superconducting toroid magnets which bend the muon tracks in high-precision
tracking chambers. The provided magnetic field is mostly perpendicular to the
muon trajectories. In a barrel region (|η| < 1.4), the muon tracks are measured by
chambers of cylindrical layers around the beam axis. For 1.4 < |η| < 2.7, the muon
chambers are orientated perpendicular to the beam axis. The precision tracking
chambers consist of Monitored Drift Tubes and Cathode Strip Chambers. Fast
detectors provide information for the L1 trigger system.

Trigger system
The collision rate in Run-2 at the LHC is approximately 40 MHz. The rate at which
the ATLAS detector can record data is only a few kHz. Disc space and bandwidth
limit the number of events which can be processed. Therefore, the trigger and
data acquisition system is an essential component of the ATLAS detector. It is
responsible to reduce the enormous event rates online by deciding whether an event
is interesting and hence, is stored offline for later analysis.

The trigger system in Run-2 [63] is a two-level trigger with a hardware-based
first level (L1) trigger and a software-based High Level Trigger (HLT). Both trigger
together build a so-called trigger chain.

The L1 trigger reduces the initial collision rate of the LHC down to 100 kHz.
The decision time for L1 is 2.5 µs. It uses coarse calorimeter and muon detector
information to reconstruct high energetic objects (photons, jets, electrons, muons,
taus and Emiss

T ). The decision thresholds whether to keep an event are mostly based
on the energies of the objects in this event. For example, the J100 trigger lets an
event pass if it contains a jet with an energy over 100 GeV, otherwise it gets rejected.
The energy of the object used for the trigger decision is the calibrated energy at
detector level. The performance of the L1 trigger is often studied in turn-on curves,
where e.g. the differences in online and offline calibration are compared. In addition,
most triggers have a prescale. A prescale of, e.g. 10 means that only every 10th
events passing this L1 trigger is kept. The L1 trigger further identifies regions
of interest (RoI), which are sent to the HLT. The RoI contain the geographical
coordinates (in η and φ) of regions with interesting features.

The HLT analyses events that passed the L1 trigger and reduces the rate to 1 kHz
with a decision time of 200 ms. It reconstructs events in full granularity in the RoI.
The online event reconstruction of the HLT is very similar to the one which is
applied to the stored offline data. Similar to L1, different HLT trigger thresholds
apply energy cuts to decide if an event is recorded or not.
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Events passing the trigger requirements are stored offline in different data streams
according to how they need to be processed and what they are used for. Each
stream is based on a set of trigger selections and prescales and contains all events
that satisfy those selections. Most data used for physics analyses is saved in the so-
called physics Main stream, which is the largest recording stream. It records data
that includes the event information from the full detector read-out. There are many
other types of streams which are used for calibration purposes or special analyses.
One example of the latter is the Data Scouting stream, which is further discussed
in Section 5.4.
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5 Data Sample, Event Selection and
Trigger-Object Level Analysis

5.1 Monte Carlo Simulation

Monte Carlo (MC) simulations are a tool used in high-energy physics to emulate
the reconstruction of jets from individual particles being generated in proton-proton
collisions. The predictions of the MC simulations are then compared to the measured
data of a detector. The simulation chain used in the ATLAS experiment consists
of different stages from the event generation over the detector simulation to the
digitisation of energy deposits in the detector and it is integrated into the ATLAS
software framework Athena [64].

The first step of the simulation chain is the physics event generation in which final
state particles of proton-proton collisions at the LHC are randomly generated. The
properties of the particles are based upon theoretical models such as the SM or super-
symmetric models depending on the physics analysis of interest. In this thesis, the
event generator employed to generate the QCD 2 → 2 process is Pythia8 [65] using
the A14 tune [66] and the NNPDF23LO particle distribution function (PDF) [67].
It simulates incoming and outgoing particles of the hard scatter event, initial- and
final-state radiations as well as the hadronisation process. The generated final state
particles are the input of the subsequent step, the detector simulation.

The detector simulation is responsible to simulate the interactions between the
final state particles and the ATLAS detector. It computes trajectories of particles,
their interaction with the matter of the detector and their decays. In ATLAS, the
Geant4 [68] simulation toolkit is used to simulate the full detector. Combination
methods such as AltfastII, which combines a fast parametrised calorimeter simu-
lation (FastCaloSim [69]) with Geant4, are ten times faster than the full detector
simulation. In this thesis, signal events of the leptophobic Z ′ model simulated by
AltfastII are used. The model consists of two partons in the final state. The sig-
nal samples were generated for mediator masses of mZ′ = 600 GeV and mZ′ = 1 TeV
with a coupling of gq = 0.02.

After the detector simulation, the simulated detector hits are transformed into
measurable quantities of the ATLAS detector. In addition, pileup events can be
added during this digitisation step.
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5.2 Jet Reconstruction
The collimated streams of particles, which result from quarks and gluons under-
going the hadronisation process, deposit energy in the calorimeters of the ATLAS
experiment. These energy deposits are reconstructed as jets. Different definitions
of jets exist and depending on the underlying physical process of interest, the most
suitable version is used. The jet reconstruction procedure has a crucial impact on
the identification of known resonances decaying into jets as well as in a search for
new physics [70].

Jet reconstruction at the ATLAS experiment is primarily based on three-dimensional
topological clustering of calorimeter cell signals [71]. These topo-clusters are seeded
from cells whose energy deposit is larger than 4σ, where σ is the total cell noise,
which consists of the electronics and the pileup noise. In Run-2, the cell noise is
dominated by noise from pileup. Neighbouring cells are added to a topo-cluster
when the cell energy passes 2σ. This process is repeated until all seed clusters are
constructed. In addition, all cells neighbouring a seed cell with energies larger than
zero are taken into account. Cells with negligible energy deposits far from crucial
cell entries are removed to suppress the topological noise. In general, the calibration
of topo-clusters is performed at the electromagnetic (EM) scale to correct the jet
energy scale to that of particles produced in electromagnetic showers. In addition,
topo-clusters can be calibrated using the local cell weighting (LCW) method which
adjusts the energy response for hadronic showers with the help of MC simulations
of charged and neutral pions at different energies and in all regions of the ATLAS
calorimeter system.

ATLAS typically reconstructs jets with the anti-kt [72] algorithm which uses
topo-clusters as input. The reconstruction algorithm employs EM topo-clusters
for small-R jets and LCW topo-clusters for large-R jets. R is the parameter for the
radius in η × φ of the reconstructed jet cone. Small-R jets are used for QCD jets
induced by a quark or a gluon. These jets are reconstructed with R = 0.4. R = 1 is
used for the reconstruction of jets from hadronical decays of massive particles such
as W±, Z and Higgs bosons and the top quark. These jets are called large-R jets.
The parameter of the latter type of jets is chosen such that the decay products are
collected into the same cone.

Jets which are reconstructed with the anti-kt algorithm for R = 0.4 using simu-
lated stable particles after the hadronisation as input are called truth jets. Muons,
neutrinos and non-interacting particles are not included in this definition. Therefore,
the energy scale of truth jets is at particle-level.

5.3 Jet Calibration
After the jet reconstruction, jets have to be calibrated to correct for several effects.
The calibration steps for jets at EM scale are shown in Figure 5.1. The goal of
the calibration is to correct the four-momentum of the jets such that the jet energy
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agrees with the one of truth jets.

Figure 5.1: Flow diagram representing the calibration steps for EM scale jets which
are applied to the four-momentum of each jet. Taken from [73].

The first step in the calibration procedure is the origin correction. Initially, jets are
reconstructed at the origin of the coordinate system of the ATLAS detector. Now,
the four-momentum of each jet is recalculated with respect to the associated hard-
scatter vertex. This correction keeps the jet energy constant. The contributions from
pileup are corrected in two ways: the jet-area-based correction [74] and the residual
pileup correction. The former removes the contribution from pileup using the average
energy density ρ in the event and the jet area Ajet. The latter parametrises the
influence of the number of reconstructed primary vertices NPV and the average
number of interactions per bunch crossing µ on the pT of a jet. The total pileup
correction can be written as

pcorr
T = pT − ρAjet − α (NPV − 1)− βµ (5.1)

with the correction coefficients α and β. Linear fits of the jet pT as a function of NPV
and µ determine the parameters α and β. Next, the simulation-based calibration
corrects the absolute jet energy scale (JES) and jet direction by comparing recon-
structed jets and truth jets. This substantial discrepancy results from absorbed or
undetected particles in the hadronic showers. The average energy response, defined
as the ratio Ereco/Etruth, sets the inverse jet energy calibration factor which corrects
the four-momentum of a reconstructed jet to the truth scale on average. In addition,
the correction using the signed difference sgn(ηreco)

(
ηreco − ηtruth) accounts for bi-

ases in the jet η reconstruction. Then, the JES is further corrected using the Global
Sequential Calibration (GSC) which accounts for the dependence of the jet responses
using five track, calorimeter and muon-segment variables [75]. The last step of the
calibration procedure includes a residual in situ calibration which corrects for the
differences in the jet response between data and MC simulations. The calibration
factors are obtained by exploiting the pT balance of different physics objects in the
transverse plane depending on their pT spectra. Jets at low pT are calibrated using
Z bosons decaying into electrons or muons. Photons are used for higher pT jets,
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whereas multijets are employed for the calibration of high-pT jets. For each method,
the difference in the data-to-MC ratio between reconstructed jets and well-calibrated
objects, against which the reconstructed jets recoil, is modelled using second-order
polynomial splines. The in situ calibration curve is then defined as a combination of
the above mentioned curves favouring the method with the greatest precision in the
overlapping regions. This calibration step is applied to data and corrects influences
of the detector which are not modelled in simulations.

5.4 Trigger-Object Level Analysis
One possibility to search for physics beyond the Standard Model at the LHC is to
study the decay of a new boson into two quark jets. This new mediator particle
would interact with the quarks inside the colliding protons and decay back into
two SM quarks, leaving a dijet signature in the detector. The jet with the highest
pT in the event is called leading jet, while the second-highest pT jet is referred to
as subleading jet. The invariant mass of the decay product (mjj) would form a
resonance at the mediator mass above the predictions of the Standard Model. The
energy of the LHC beam defines a kinematic limit to producing very high mediator
masses [76, 77]. This thesis focuses on searches for mediator masses in the low mass
regime, which are limited because the event rate at the LHC exceeds the recording
capability of the ATLAS detector.

The ATLAS trigger system selects only a small fraction of all events for later
offline analysis. This selection process is based on high-pT objects such as muons,
electrons, photons, jets, τ leptons and missing transverse momentum. Events which
do not pass the selection cut are not recorded. Hence, the trigger system plays an
important role concerning which events are available for later analysis. The trigger
thresholds are the harshest for physics events containing jets because events from
QCD processes are the most frequent. These high-rate processes require high trigger
thresholds and limit the statistics of the search for signal events in the low-mass
regime.

Triggers with a low energy threshold have to be prescaled in order to record the
full event information. Prescaling means that out of all events passing the trigger
only the inverse fraction of the prescale is kept and stored. The prescales of the
single-jet trigger limit the statistics for searches below this mass threshold, which
is shown in Figure 5.2. Only a fraction of the events with a leading jet pT below
380 GeV is being kept, which results in a drastic decrease in statistics of several
magnitudes in the low-mass regime.

The Trigger-Object Level Analysis approach was developed to circumvent these
statistical limitations of searches for dijet resonances in the low-mass regime. TLA
stores only physics objects which are reconstructed online within the HLT system
instead of using the event information from the total detector read-out. Therefore,
the size of an event reduces to around 5% of the total detector event size, which
amounts to approximately 1.6 MB. This allows a recording of events at a high HLT
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Figure 5.2: Invariant mass distribution for dijet events which pass the single-jet
trigger (blue), which pass the single-jet trigger and are corrected for
their prescale (red) and for dijet events using trigger-level jets (black).
Prescales induce a loss of sensitivity of several magnitudes. Taken
from [78].

rate, while only using a small fraction of its total bandwidth. The data for the TLA
analysis approach is stored in a dedicated recording stream.

The Data Scouting Stream
Data recording for TLA at the ATLAS Data Scouting (DS) stream started in 2015.
Compared to the Main stream, it saves a reduced amount of all the event infor-
mation including the four-momenta of online reconstructed objects and additional
calorimeter-based variables used for the jet calibration. However, the access to the
direct output of the detector including tracking information is no longer possible.

The main limitations at the ATLAS detector originate from the transfer band-
width, processing time and storage space of offline data. The bandwidth

bandwidth = event size × trigger rate (5.2)

depends strongly on the trigger threshold, which determines the trigger rates, and
the size of each event.

The reduction of the event size and partial event building (EB) result in a small
impact of only 1% of TLA on the total bandwidth (see Figure 5.3a) despite the
performance at high trigger rates. The trigger rates of the HLT for different physics
streams are shown in Figure 5.3b. While the Main physics HLT rate amounts to
approximately 1 kHz, TLA is able to record events at a much higher rate. In conclu-
sion, TLA is able to restore the loss of sensitivity down to masses of approximately
500 GeV, while only occupying a small fraction of the total bandwidth.
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Figure 5.3: (a) Contribution to the total available bandwidth of different physics
streams at the HLT for a fill taken in July 2016 with a peak luminosity
of L = 1.02 ·1034 cm−2 s−1 and a peak pileup of µ = 35. (b) Stream rates
at the HLT as a function of the number of luminosity blocks for different
physics streams for a fill taken in July 2016 with a peak luminosity of
L = 1.02 · 1034 cm−2 s−1 and an average pileup of µ = 24.2. Taken
from [79].

Jet Calibration in TLA

The jets saved in the DS stream are called trigger jets, while jets that were recon-
structed with the full event information are referred to as offline jets. The recon-
struction of jets in the trigger system is performed as close as possible to the offline
jet reconstruction explained in Section 5.2.

The calibration procedure for trigger jets [78] is similar to the one applied in offline
analysis described in Section 5.3. In the HLT jet reconstruction, no tracking infor-
mation is available such that calibrations requiring this input like origin correction
and residual pileup correction are not applied. The track-based variables used in the
offline calibration during the GSC are replaced by the trigger jet energy fractions
in the calorimeters and the minimum number of topo-clusters, which contain 90%
of the trigger jet energy. Before in situ calibrations are carried out, the energy of
trigger jets is scaled to the one of offline jets by calculating the pT response, which
is defined as the pT ratio of a trigger jet to its corresponding1 offline jet. This
calibration step is only applied to data. The in situ calibration curve of the final
step is, compared to the offline calibration, not derived by the combination of spline
functions but rather by a polynomial fit of the jet pT response on a logarithmic pT
axis.

1 Trigger jets and offline jets are matched within a distance of ∆R = 0.4 if the corresponding
offline jet exists.

33



Event Selection
The dijet event selection for TLA is based on the one used in [8]. Pileup jets
are usually suppressed by track-based jet features which are not available in TLA.
Therefore, the two leading jets are required to have pT > 85 GeV because the
influence of pileup cannot be neglected for low-pT jets. They are further required
to lie within the pseudorapidity range of |η| < 2.8 in order to avoid the forward
detector region, where the jet energy resolution increases. Additional requirements
for the leading and subleading jets depend on the employed L1 trigger. In this
thesis, the jets are selected by the L1 J100 trigger. In Figure 5.4, the efficiency
curves of four different L1 trigger are shown. The leading jet pT is required to have
an efficiency of more than 99.5% of the L1 J100 trigger2, which sets its transverse
momentum requirement to pT > 220 GeV. In addition, the L1 J100 trigger applies
a cut of ET > 100 GeV for each jet.
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Figure 5.4: Efficiency curves of different L1 trigger as a function of the leading jet
pT.

Furthermore, the two leading jets are required to have an angular separation of
|y∗| < 0.6, where y∗ = (y1−y2)/2 is the mean of the rapidities of the two trigger jets
with the highest pT. In addition, MC simulations are usually generated in slices of
the leading truth jet pT and each slice is assigned an individual scaling factor. After
the addition of pileup events corresponding to measurements in data, one of the two
leading jets might be a pileup jet with a higher transverse momentum and thus, a
wrong scaling factor might be assigned to this event. Therefore, a MC quality cut of
0.6 < p̄T/p

truth
T < 1.4, where p̄T is the mean of the two leading trigger jet transverse

momenta, is applied.
This thesis uses 819.2 pb−1 of proton-proton collisions at

√
s = 13 TeV which

were recorded in 2016 by the DS stream of the ATLAS detector.

2 The efficiency of a trigger is determined by a comparison of the number of events that were
triggered to the total amount of events which is given by a reference.
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6 Quark-Gluon Tagging

Quark and gluon jet discrimination is a powerful tool in searches for physics beyond
the SM, which motivates the desire to label the flavour of a jet. For this thesis,
quark-gluon tagging with the help of machine learning techniques on an event-by-
event basis by using different discrimination variables of trigger jets in dijet events
is performed.

6.1 Introduction
For many different physics models, it is important to understand the properties of
jets which are either initiated by a quark or a gluon. Whether it is to test QCD
predictions or to extract a signal of interest from a background dominated sample,
the separation of quark and gluon jets has many applications. With the help of
suitable jet properties, it is possible to apply cuts on data which enhance, e.g.
the quark content of a given sample. This approach is especially useful in hadron
colliders where a large fraction of the jets produced in hard-scatter processes is
initiated by gluons. The signals of interest in, e.g. dijet searches are often dominated
by quarks, while the background is gluon-dominated.

Given that there is no hadron-level definition of quark and gluon jets [80], any jet
flavour tagging has to involve a connection between the initial parton and the jet
itself [81]. In this thesis, the definition of quark and gluon jets is based on the event
record of the applied parton shower event generator.

Most quark-gluon tagging techniques are predicated on QCD features based upon
the fact that quarks and gluons carry different colour charges. The quark has a single
colour index, while the gluon carries two colour indices. This property is expressed
in different colour factors for quarks and gluons of CF = 4/3 and CA = 3. The
coupling strengths of quarks and gluons to an additional emitted gluon, therefore,
differ because the bremsstrahlung process is directly proportional to the coupling
strengths. Consequentially, the hadronisation process of quarks and gluons differs
such that the resulting jets possess different properties, which can be identified and
exploited in order to achieve a good quark-gluon separation. The quark and gluon
jet discrimination of previous studies often made use of jet properties such as particle
multiplicities, energies and angular distributions [81–88] and in addition, there are
several discriminating variables investigated at the LHC [10, 89–93]. A selection of
these variables is discussed below.

QCD predicts that the mean multiplicities of quark and gluon jets differ by a
factor of CA/CF = 2.25. Thus, gluon jets are expected to have a more than twice
as high particle multiplicity of any type of particle (charged or neutral) compared
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to quark jets. However, the theoretical prediction and the experimental results are
expected to differ due to varying definitions of the investigated objects. While the
measurements in detectors are based on hadrons, QCD relates its calculations on
partons and does not account for energy-momentum conservation and higher order
perturbative terms. Indeed, this difference was determined by measuring the mean
charged particle multiplicity ratio of gluon over quarks jets, which increases with
increasing jet energy [94, 95]. Furthermore, it can be shown that there is almost
a factor of two difference between the mean charged multiplicities of gluons and
light (u,d,s) quark jets at small rapidities and with energies around 40 GeV [96].
Thus, the measurement of particle multiplicities establishes a good foundation for a
quark-gluon discrimination process.

Additionally, quark and gluon jets tend to have differing energy distributions. For
example, the scaled energy distribution of a charged particle in a jet, which is also
called fragmentation function, is sensitive to quark-gluon separation. This property
founds on the fact that gluon jets are suppressed in the high momentum region
with respect to quark jets [94, 96]. The reason for this behaviour is that jets which
have a higher momentum fraction are more likely initiated by a valence quarks [12,
p. 196 ff.]. Quark jets retain most of their initial momenta after a gluon radiation
and therefore, possess more fast particles on average than gluon jets. A quark in a
gluon-initiated jet has to be created during the showering process and tends thus to
have a lower momentum fraction.

Studies for flavour tagging also often rely on angular distributions of jets such as
jet width, the family of radial moments [97], angularities [98] and the pseudorapid-
ity. In general, gluon jets are wider than quark jets and therefore, are observed in
larger angular cones in the detector. With increasing energy, both jet types become
narrower [94]. The linear radial moment also called girth, which is based on the
sum of transverse momenta of the jet constituents weighted by its distance from the
jet axis, combined with the charged particle multiplicity induces a gluon rejection
of 90%, while 60% of the quark jets are kept [81]. Jet properties based on the loca-
tion of the jet inside the detector such as the pseudorapidity also differ for quark-
and gluon-initated jets. The pseudorapidity of quark jets extends to higher values
compared to gluon jets of equivalent energy and thus, quark jets are suppressed in
the central region [94]. This feature is caused since more forwards jets tend to have
a higher total jet energy and hence a higher momentum fraction where the PDF of
valence quarks dominates.

Compared to electron-positron1 colliders, quark-gluon tagging in proton-proton
colliders is hindered due to initial-state radiation, multi-parton interactions and
pileup. However, the radiation pattern of quark and gluon jets depends on the colour
connection between the initial partons and the jets and thus, the measured samples
of many event topologies of collider experiments possess the property of being either
quark or gluon enriched [99]. The label "enriched" refers to the dominating jet
flavour in the Born-level process [100]. For example, the production of a Z boson

1 The antiparticle of the electron is called positron.
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in combination with a jet is quark enriched, while dijet final states contain a larger
fraction of gluon jets compared to quark jets [9]. These enriched data samples can
be used to extract differences in the jet properties of quarks and gluons.

In conclusion, the colour-dependent behaviour of quark and gluon jets can be
exploited in order to achieve a good quark-gluon separation using different track-
and calorimeter-based variables. The separation power between quark and gluon
jets according to Equation 3.8 is shown in Figure 6.1 as a function of the jet pT for
selection of these variables. The number reconstructed tracks (ntrk) as well as the
track-based energy-energy-correlation (EEC) angularity [101] with β = 0.2 show the
best separation. The EEC angularity is a 2-point energy correlation function and
measures the kinematic properties of an additional radiated jet. Thus, quark jets
tend to have smaller values compared to gluon jets according to the colour fraction
CA/CF .

Figure 6.1: Separation power of different track- and calorimeter-based discrimina-
tion variables as a function of the jet pT. Taken from [90].

6.2 Quark Gluon Tagging in TLA
The quark and gluon jet discrimination in TLA is limited by the available discrim-
ination variables because the events of trigger jets only contain information about
the reconstructed objects of the HLT and additional calorimeter-based variables.
Thus, no tracking information is available. This makes a number discrimination
variables such as the charged track multiplicity ntrk and the track width unusable.
Therefore, the tracking variables have to be replaced by calorimeter-based discrimi-
nation variables in order to perform quark-gluon tagging in TLA. Below, a number
of possible variables is presented.
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The multiplicity of jets can be described by theN90 variable, for which the ET of all
jet constituents are added in descending order and all constituents are counted until
90% of the total trigger jet energy is reached. The leading jet N90 distributions of
signal and background events using a dijet MC simulation can be seen in Figure 6.2a.
The mean number of jet constituents in signal events is smaller compared to the ones
in background events because in general, gluon jets tend to have more jet elements.
Thus, N90 seems to have a good discrimination power. With increasing jet energy,
the average N90 value for both signal and background events decreases.

In Figure 6.2b, the η distribution of the leading jet is depicted. A different be-
haviour for signal compared to background events can be observed. There tend to
be more gluon jets in the central region compared to in the forward region. This
means that the more forward a jet in a dijet event, the more quark-like it is. This
feature is induced by the fact that more forwards jets tend to have a higher total jet
energy and hence a higher momentum fraction which makes it more likely for them
to be initiated by a quark.

The energy spectra of quarks and gluon jets are dominated by soft gluons and
differ because these gluons tend to have a smaller momentum-fraction. Thus, dijet
signal events tend to have more high-pT jets in comparison to background samples,
which can be seen in Figure 6.2c. This increases also the possibility for quark jets to
penetrate further into the calorimeter system until the HCal. Therefore, the parton
from which the jets originate can be identified using the shower depth of the jets,
which deposit energy in the calorimeter layers of the ATLAS detector.

The depth of a jet can be measured by comparing the energy deposits in the
layers of the calorimeter system of the detector. Since quark jets have on average
a higher pT, these jets tend to hit layers which are located further away from the
interaction vertex. This behaviour can be seen in Figure 6.2d, where the normalised
distributions for signal and background events of the leading jet energy deposit
in the first hadronic calorimeter layers are depict. Here, the energy deposits of the
first layers of TileCal and HEC are added in order to generate an artificially induced
energy layer which covers the whole TLA pseudorapidity range of |η| < 2.8. The long
tail of the signal distribution towards higher energies indicates that a quark dijet
event deposits in general more energy in this layer compared to the dijet background
composed of gluons.

In summary, despite the constraint of the available event information, there are a
several possible discrimination variables on hand, of which N90 appears to have the
highest separation power.

6.3 Reweighting of Monte Carlo
Different MC event generators for high energy proton-proton collisions follow varying
models to describe the resulting particles and how they interact with the detector.
This induces a potential bias of the applied generator on the quark-gluon tagging
result. To assure that the generator in this work (Pythia8) induces no unwanted
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Figure 6.2: Comparison of the different normalised distributions of quark dijet events
(signal) and dijet events containing at least one gluon jet (background)
using Pythia8 dijet MC simulations for jets with |η| < 2.8.

MC dependent behaviour, the distributions of certain variables of trigger jets in data
and MC are compared. Variables such as N90, pseudorapidity η, transverse momen-
tum pT for the leading jet and the invariant mass mjj are depicted in Figure 6.3 and
show a mis-modelling between data and MC simulations. Subleading jet variables
show a similar behaviour.

The concrete reason for this mis-modelling is unknown and the distributions might
look different using other MC generators. A possibility to correct this mis-modelling
is to reweight the MC simulation in such a way that the distribution of interest
matches the data sample. This ensures that the choice of MC generator does not
affect our training process.

The reweighting procedure is based on a correction of the ratio of data over MC of
different variables, from which the reweighting factors are determined. Afterwards
these factors are assigned to each event separately. Then, this factor is applied to the
respective event by a multiplication with the event weight. There are two possible
reweighting procedures: bin-by-bin and fit reweighting. The former determines the
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Figure 6.3: Normalised distributions of trigger jets for data (black) and MC simu-
lation (red) after applying TLA cuts. The lower plot presents the data-
to-MC ratio.

reweighting factor through a bin-wise evaluation of the data-over-MC ratio, while
the latter fits a polynomial function of varying order to the ratio and its behaviour is
then used to identify the corresponding reweighting factor. The choice of reweighting
procedure along with the number of free fit parameters has a non-negligible impact
on the correction factors of the MC simulation. This can be illustrated as follows.

For the fit reweighting, a function f is sought, whose fit values agree well with
the values of the N data points in the histogram. The form of the fit function is
selected to be a polynomial, whose order is chosen on the basis of the χ2 fit-value2.
This value is based on difference between the input distribution yi(xi) and the fit
prediction f(xi;p) for a set of fit parameters p weighted by the error for each bin
σi and is given by

χ2(p) =
N∑
i=1

(
yi − f(xi;p)

σi

)2

. (6.1)

2 The χ2 fit is evaluated using the function ROOT:TF1::GetChisquare().

40



The χ2 value is then minimised in order to find the optimal set of fit parameters p,
whose error sizes strongly depend on the second derivative of χ2(p).

In the first step, a constant function is fitted to the data-over-MC ratio of a
selected distribution. The order of the polynomial is then increased step by step in
such a way that a new free fit parameter accompanied by a higher order term is added
in each step, while previous orders of the polynomial including their parameters are
preserved. The reduced χ2 values, which are defined by the ratio between χ2 and
the number of degrees of freedom nf , of two subsequent steps are compared to the
one of the current fit. This procedure is able to determine the optimal fit function
for the data-over-MC ratio even for ratios with completely even or odd functional
behaviour. Orders in which the χ2/nf value decreases less than 5% are omitted if
the subsequent order results in a χ2 drop of more than this threshold. If χ2/nf

decreases less than 5% in two subsequent fitting steps, the fit reweighting procedure
is stopped and the fit function, whose χ2/nf value improvement satisfied the chosen
threshold, is chosen.

The reweighting procedure for the N90 variable is carried out first due to the fact
that it seems to be a good discriminant for quark-gluon tagging. The fit result of the
leading jet N90 distribution is shown in Figure 6.4a using the polynomial function
a0 + a1 · x + a2 · x2 + a3 · x3 + a4 · x4 in the range [0, 25]. The χ2/nf value of this
fit amounts to approximately 1.84. The reweighting procedure for the leading jet
N90 variable is chosen to be a fit reweighting instead of a bin-by-bin reweighting
because the former reflects the functional behaviour of the data-over-MC ratio well.
Bin-by-bin reweightings should in general be avoided because statistical fluctuations
of the distributions might then be taken into account.

The polynomial fit of the leading jet η distribution using the fit function a0 +
a1 · x2 + a2 · x4 + a3 · x6 in the range [−2.8, 2.8] is shown in Figure 6.4b. Here,
the data-over-MC seems to follow a even functional behaviour and fit parameters
of odd orders did not satisfy the required χ2/nf improvement. The final fit of the
leading jet η distribution results in a χ2/nf value of ≈ 58.97. This value is more
than 32-times larger than the one of the leading jet N90 distribution and therefore,
a bin-by-bin reweighting procedure is applied for this variable.

In addition, the impact of the reweighting procedure of a certain variable on
other kinematic variables has to be checked to account for possible correlations.
This check controls as well whether the mis-modelling of the different variables
arises from the same origin. The effect of the fit reweighting process of the leading
jet N90 distribution on different variables can be seen in Figure 6.5. The upper
left plot shows the leading jet N90 distribution for which the reweighting factors
were determined. The reweighted MC simulation corrects the mis-modelling in this
variable. In the other three plot of this figure, the induced change of the distributions
for a selection of leading and subleading jet variables is shown. It can be seen that
the fit reweighting process of the leading jet N90 variable has no significant effect on
the other kinematic variables.

To assure that the discrepancies of leading and subleading jet N90 are not cor-
related, a two dimensional (2D) reweighting procedure is compared to two one di-
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Figure 6.4: Fit reweighting of the data-to-MC ratio of two leading jet distributions
with different polynomial functions. The fit functions are shown in blue.

mensional (1D) reweightings applied after each other. For this purpose, a 2D fit of
the leading and subleading jet N90 with a 2D polynomial is performed. This fit is
compared to a 1D fit in which the leading and subleading N90 data-over-MC ratios
are fitted separately and both reweighting factors are applied after each other for
each event. The resulting reweighting factor is calculated as

Factorres = Factor1 · Factor2 (6.2)

In Figure 6.6 the impact of both reweighting techniques on the leading and sublead-
ing jet N90 variable can be observed. Not sufficient statistics of a two dimensional
technique compared to one dimensional one result in inaccuracies in the 2D fit in
the high N90 range because there are only a few events produced. Comparing both
subfigures, it becomes clear that the 1D reweighting performs in a comparable way
compared to the 2D reweighting without a low statistics impact. In addition, this
comparison shows that the mis-modelling in N90 for leading and subleading jet are
not or only slightly correlated. Finally, the one dimensional reweighting for N90 was
chosen.

The discrepancies in the data-over-MC ratio for the N90, η and pT distributions
of leading and subleading jets are corrected in five steps in the following order:

1. Fit reweighting of leading jet N90

2. Fit reweighting of subleading jet N90

3. 2D bin-by-bin reweighting of leading jet and subleading jet η

4. Fit reweighting of leading jet pT

5. Fit reweighting of subleading jet pT

42



90
Leading jet N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
N

or
m

al
iz

ed
 u

ni
ts

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

0 5 10 15 20 25

90
Leading jet N

0.4
0.6
0.8

1
1.2

D
at

a 
/ M

C

(a) Leading jet N90.

90
Subleading jet N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
or

m
al

iz
ed

 u
ni

ts

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

0 5 10 15 20 25

90
Subleading jet N

0.4
0.6
0.8

1
1.2

D
at

a 
/ M

C

(b) Subleading jet N90.

ηLeading jet 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
or

m
al

iz
ed

 u
ni

ts

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

5− 4− 3− 2− 1− 0 1 2 3 4 5

ηLeading jet 

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

D
at

a 
/ M

C

(c) Leading jet η.

 [GeV]jjm

3−10

2−10

1−10

N
or

m
al

iz
ed

 u
ni

ts

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

Unreweighted MC

Data Scouting 2016

Fit reweighted MC

600 800 1000 1200 1400
 [GeV]jjm

0.95

1

1.05

1.1

1.15

D
at

a 
/ M

C

(d) Invariant mass mjj .

Figure 6.5: Unreweighted (red) and fit reweighted (blue) normalised distributions
of trigger jets for MC simulation compared to data (black) after apply-
ing TLA cuts. The lower plot presents the data-to-MC ratio for the
unreweighted and reweighted MC simulations.

The correction for η is performing using a 2D bin-by-bin reweighting because these
two leading and subleading jet variables are highly correlated and no clear functional
behaviour was visible. The final result of the reweighting procedure can be seen
in Figure 6.7. The mis-modellings of the MC simulation compared to data are
diminished such that the reweighted variables now follow the distributions of the
data sample.

Further, it was tested whether the total reweighting procedure resulted in any
change in other trigger jet variables. The invariant mass mjj of a dijet event depends
on the pT, η and φ variables of the two leading jets and is given by

m2
jj = 2pT,1pT,2 [cosh(η1 − η2)− cos(φ1 − φ2)] , (6.3)

where the labels 1 and 2 represent leading and subleading jet variables respec-
tively. This feature induces a correction of the mjj distribution when pT and η
are reweighted. In other variables such as the leading jet φ and the pseudorapidity
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Figure 6.6: Data-to-MC ratio for the unreweighted (red) and fit reweighted leading
and subleading jet N90 distribution. The fit reweighting in 1D is shown
in blue; the one in 2D is shown in green.

difference of leading and subleading jet ∆η, no significant effect was observed (see
Figure 6.7). Thus, the resulting distributions can now be used as discrimination
variables for a quark and gluon jet discrimination.
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Figure 6.7: Final result of the reweighting procedure of different kinematic variables.
The unreweighted and final reweighted distributions are shown in red
and blue respectively. The data is shown in black. The lower plot
presents the data-over-MC ratio for the unreweighted and reweighted
MC simulations.
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7 Performance of Quark-Gluon Tagging in
TLA

This thesis engages in multivariate classification methods based on machine learning
techniques in order to achieve a good quark-gluon separation on an event-by-event
basis. The two leading jets of the investigated dijet signal model are quark jets,
while the reducible QCD background is chosen such that at least one of the two
leading jets is gluon-initiated. The choice of the training model combined with well-
selected discriminating variables is crucial for a good model performance. In order to
study the quark-gluon separation, the whole data set is split in training, testing and
application data sets following a 60% - 30% - 10% division. The learning process is
executed on MC simulations because these samples include the parton identifications
of each jet.

7.1 Discrimination Variables
As previously discussed in Section 6.2, only the event information of trigger jet is
available as possible discrimination variables in TLA. In this section, the separation
power of a number of available variables is discussed.

Transverse momentum pT and pseudorapidity η of a jet allow the differentiation
of the dijet events in energy ranges as well as regions of the detector. This enables
the possibility for the model to learn the nature of quark and gluon jets with dif-
ferent kinetic properties. Here, the azimuth angle φ is excluded as a discrimination
variable because the number of jets in dijet events is uniformly distributed over this
distribution.

Since the number of calorimeter cells forming a gluon jet is on average larger
than the ones forming a quark jet, N90 is used as a discrimination variable. The
N90 distribution is shifted towards higher values as pT increases and thus, choosing
a combination of pT and N90 as input variables for a model may account for this
correlation.

The separation, as defined in Equation 3.8, for the above mentioned input vari-
ables of the leading and subleading jets is shown in Table 7.1. The ranking is
determined by their discrimination power. The N90 variables have the highest dis-
crimination power of this selection of discriminating variables. A comparison with
the separations in Figure 6.1 yields that N90 does not perform as good as the discrim-
ination variables depicted in the previous chapter. However, a combination of the
variables in Table 7.1 might enhance the discrimination power because this work
focuses on the separation of signal and background events, not on differentiating
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between quark and gluon jets for each jet separately.

Separation
Subleading jet N90 0.09136

Leading jet N90 0.07188
Subleading jet pT 0.01927

Leading jet pT 0.00265
Subleading jet η 0.00130

Leading jet η 0.00078

Table 7.1: Input variable separation. The top variable is ranked best.

In addition, the energy deposits of different calorimeter layers of ECal, TileCal
and HEC can be used to investigate the depth of jets in the ATLAS calorimeters.
This is possible, since quark jets tend to have less constituents and a more narrow
radiation pattern. As a consequence, more quark jets tend to be detected in parts
of the calorimeter system with a higher cumulative interaction length compared to
gluon jets with equal jet pT and η. This feature can be exploited by using energy
layer information as discrimination variables in the quark-gluon tagging.

The interaction lengths of the material in the different calorimeter layers as a
function of the absolute pseudorapidity is shown in Figure 7.1. It does not contain
the different layers of the ECal. Additionally, the layers of the FCal are not consid-
ered in this analysis because their location exceeds the TLA pseudorapidity range
of |η| < 2.8.

Since the total number of available layers is too large to be fed into a model, seven
artificial layers are defined to compensate the original information by combining
layers with similar cumulative interaction lengths:

1. ECal0 := Presampler ECal

2. ECal1 := ECal layer 1

3. ECal2 := ECal layer 2

4. ECal3 := ECal layer 3

5. HCal1 := TileCal Layer 1 + HEC Layer 0

6. HCal2 := TileCal Layer 2 + HEC Layer 1-2

7. HCal3 := TileCal Layer 3 + HEC Layer 3

This choice of new layers allows to investigate the depth of a jet almost independently
from its η value. To further improve the quark-gluon tagging, the information of
the seven energy layers could be combined with the kinematic variables pT and η
for both leading jets. The calorimeter width of the jets is not available in the HLT
data of 2016.
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Figure 7.1: Cumulative interaction length of the material as a function of the ab-
solute pseudorapidity in front of the ECal, across the ECal, in each
hadronic layer and the total amount at the end of the calorimeter sys-
tem. Presampler layers (up to |η| < 1.8) and additional material in front
of the calorimeter system are shown in beige; the light blue layer indi-
cates the additional amount of material in front of the first layer of the
muon spectrometer (up to |η| < 3.0). Taken from [52, p. 112].

7.2 Comparison of Multivariate Classification
Methods

Depending on the structure of the training data set and the set of discrimination
variables, different multivariate analysis techniques might result in a better quark
and gluon jet discrimination performance. To investigate the best set-up for the
quark-gluon tagging, the performance of different models using the same set of
training data is compared. For the comparison, a rectangular cut method, a linear
discriminant analysis (Fisher), a BDT and a MLP are chosen. For the models where
the optimised settings differ from the TMVA default values [34] the chosen settings
and variable transformations are displayed in Table 7.2. The Fisher discriminant
was booked with default values and no variable transformation was employed.

A good performance is always a tradeoff between a flexible model, which is able
to describe complex underlying properties of the data, and a model which shows
indications of overtraining. In order to avoid overtraining and to reduce the model
complexity, the maximal depth for the BDT is chosen to be 3 and the Bayesian
extension for the MLP is turned-on. First, a selection of four variables including
the pT and N90 distributions for the leading and subleading jet is chosen as input
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Cuts BDT MLP
VarTransform = None VarTransform = None VarTransform = Norm

FitMethod = MC NTrees = 1000 NCycles = 600
VarProp = FSmart MinNodeSize = 3% HiddenLayers = N+5,N

MaxDepth = 3 NeuronType = tanh
nCuts = 10 TrainingMethod = BFGS

TestRate = 5
ConvergenceTests = 10
UseRegulator = True

Table 7.2: Configuration setting for the MLP method. Default settings are chosen
for all not mentioned options.

of the different models. Afterwards, the η distributions for both leading jets are
added as input variables in order to compare the model performance as a function
of the number of input variables. The result of the training processes in form of
ROC curves is shown in Figure 7.2.

(a) N90 and pT. (b) N90, pT and η.

Figure 7.2: ROC curves of a selection of trained models using different input vari-
ables.

Figure 7.2a depicts the ROC curves of the trained models using the four input
variables mentioned above. The rectangular cut classifier performs worst compared
to the other three models because it simply applies cuts on every variable individu-
ally. The signal and background distributions are not clustered so that the cut-based
classifier is not able to separate them. The Fisher discriminant performs compara-
ble (AUC = 0.723) to the non-linear classifiers BDT and MLP (both AUC = 0.725)
because the information input is focused in only four variables from which most are
either not or only linearly correlated. A selection of 2D distributions out of which
correlations can be read is depicted in the Figure B.1.
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In Figure 7.2b, the performance of the different classifiers using the mentioned six
variables can be observed. While the Fisher discriminant performs similar (AUC =
0.725), the BDT and the MLP are able to combine the additional information of the
pseudorapidity with the transverse momentum and N90 to improve the quark-gluon
tagging performance. As a result, the AUC value increases for the BDT to 0.735 and
for the MLP to 0.743. In this thesis, the MLP, therefore, is chosen as the optimal
model used for the quark and jet gluon discrimination. The MLP classifier and its
performance is further elaborated in the following sections.

7.3 Tagging using pT and N90

(a) Network architecture.
(b) Overtraining check.

Figure 7.3: Control and performance figures of the MLP provided by the graphi-
cal user interface (GUI) of TMVA. (a) Three-layer network architecture
with four input variables. (b) MLP output distributions for signal and
background events from the training and test samples.

The architecture of the multilayer perceptron introduced in Section 7.2 is shown in
Figure 7.3a. It consists of an input layer, two hidden layer and an output layer.
The number of nodes in the input layer is composed of pT and N90 of the leading
and subleading jet as input variables and one bias. The hidden layers consist of
nine and four nodes respectively and additionally, one bias node for each inner
layer. The number of output layers is directly connected to the number of classes
in a classification problem. Thus, there is one output node which determines the
class of a dijet event either to be signal or background. The links between the nodes
illustrate the weight coefficients of the trained network. The weights were normalised
to the range [−1, 1] prior to this visualisation. The thickness of a connecting arrow
depends on the absolute value of the weights assigned to it: the larger the absolute
value of the weight, the thicker the arrow connecting the two nodes. The colour of
each connecting line is determined by the weight itself such that normalised weights
with a value of -1 are depict in blue, while red is assigned to a weight of 1. Zero
weights are shown in green. The colours for intermediate values follow accordingly.
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In Figure 7.3a, there are some more important connections with larger absolute
weights visible but no input variable or specific weight stands out. This allows the
conclusion that the MLP combines all input variables as well as the bias more or
less equally in order to achieve the optimal quark and gluon jet discrimination.

Figure 7.3b shows the response of the multilayer perceptron to signal and back-
ground events compared for the training and test sample. It allows a comparison of
the network performance of the training and test sample and therefore, provides a
possibility to identify overtraining. The response distributions of the training and
test sample agree very well for signal and background, respectively, such that it is
unlikely that this network is heavily overtrained. In addition, the numerical data of
this figure can be used to retrieve the optimal neural network cut (NNCut), which
separates signal and background events with a maximal significance gain.

In order to determine the significance gain, the impact of the quark-gluon tagging
on signal and background events has to be compared. Therefore, a selection of
different NNCuts is applied to two Z ′ dijet samples as well as to the QCD background
separately. Then, the significance

significance =
S√

S+B
(7.1)

is calculated using the number of signal (S) and backgrounds (B) events in the full
width at half maximum (FWHM) range of the Z ′-signal respectively. The gain
in significance after the quark-gluon tagging for different NNCuts can be seen in
Figure 7.4.
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Figure 7.4: Significance gain in % of the signal FWHM for two Z ′ signal samples
with mZ′ = 600 GeV and mZ′ = 1 TeV over a range of NNCuts of the
MLP network with N90 and pT as discriminating variables.

The optimal NNCut for the 600 GeV dijet sample is identified to be 0.18 and it
yields a significance gain of approximately 11.2%. The significance gain resulting
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from this cut amounts to approximately 9.1% for the signal sample with mZ′ =
1 TeV. As soon as new signal samples with the invariant masses between 600 GeV
and 1 TeV are produced, it is possible to determine the optimal NNCut as a function
of mjj. Due to the fact that the goal is to enhance dijet signal samples in the low-
mass regime, the NNCut at this moment is chosen to be 0.18.

A comparison of the mjj distribution of the DS data sample of 2016 and the MC
simulation before and after the quark-gluon tagging is shown in Figure 7.5a. The
MC simulation is illustrated as a solid line, while circular markers represent the
data sample. The distributions before the tagging are shown in black; the tagged
events can be seen in red. In the upper panel, the normalised distributions for data
and MC before and after the tagging process are compared and their ratios for the
distributions before and after the tagging can be seen in the middle part of the
figure. The uncertainties are computed via binomial error calculation [102, p. 26 ff.]
because the numerator is a subset of the denominator in each case. Depending on the
invariant mass of the dijet event, the quark-gluon tagging rejects 22% to 50% of the
QCD background with a trend of decreasing rejection for higher invariant masses.
At an invariant mass of 600 GeV, approximately 45% of the events get rejected,
while the background rejection amounts to 66% around mjj = 1 TeV. The increase
of the tagged-over-untagged ratio in the middle panel agrees with the observations in
Figure 6.2c because quark jets tend to have higher transverse momenta and thus, a
higher invariant mass. The lower part of the figure depicts the data-over-MC ratios
with and without tagging, which show a discrepancy in the depicted mjj range. The
quark-gluon tagging seems to have a different impact on data and MC such that
in the course of the tagging, more events from data are rejected compared to the
ones from MC simulations. Thus, the data-over-MC ratio after the flavour tagging
seems to be smaller than the original one. The reason for this behaviour might lie
in the small but still existent mis-modelling of the data from MC simulation even
before the tagging. Although the concrete origin of the discrepancy is unknown, the
deviation is in most cases smaller than 2% and agrees essentially with the size of
the uncertainties.

In Figure 7.5b, the comparison of the tagged and untagged leading jet N90 dis-
tributions demonstrates the fact that the N90 distribution for quark jets tends to
peak at lower values. The quark-gluon tagging removes only approximately 10% to
20% of the events in the three lowest N90 bins and towards higher N90 values, the
background rejection increases further. This demonstrates that signal events with
two quark jets are less likely to be rejected compared to gluon jet.

The quark-gluon tagging is also applied on the Z ′ dijet sample with mZ′ =
600 GeV and the resulting invariant mass distributions can be seen in Figure 7.6a.
The upper part shows the number of events before and after the tagging process,
while the tagged-over-untagged ratio is depicted in the lower part of the figure. The
error for this ratio is as well computed using the binomial error calculation. The
invariant mass distribution peaks, as expected, at the mass of the Z ′ particle of
600 GeV. After the quark-gluon tagging, approximately 70% to 90% of the signal
in the FWHM region are sustained. In Figure 7.6b, the tagging application of the
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invariant mass distribution for the Z ′ signal with mZ′ = 1 TeV is shown. With
about 80% to 95% in the FWHM region, more signal events remain compared to
the lower mass signal sample. However, only around 34% of the QCD background
are rejected in this mass range. A summary of the quark-gluon tagging performance
of the three-layer multilayer perceptron using N90 and pT of the two leading jets as
input variables is shown in Table 7.3.
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Figure 7.5: Comparison of different distributions of data (circles) and MC simulation
(solid line) before (black) and after (red) the quark-gluon tagging using
N90 and pT as input variables. Upper part: normalised distributions.
Middle Part: ratio of distributions before and after the tagging for data
and MC. Lower part: data-over-MC ratio before and after the tagging.
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Figure 7.6: Invariant mass distribution of different Z ′ dijet signals before (black)
and after (red) tagging including the tagged-over-untagged ratio.
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600 GeV 1 Tev
QCD rejection ≈ 45% ≈ 34%
Z ′ efficiency ≈ 80% ≈ 90%

Table 7.3: QCD rejection and Z ′ signal efficiency after the quark-gluon tagging in
two different FWHM mass regions using N90 and pT as discriminating
variables.

7.4 Tagging using pT, η and N90

In this section, the training of the MLP is based on the same discrimination variables
as in the previous section, but as additional information, the pseudorapidity η of the
two leading jets is added. This results in six input variables of the neural network
and thus, the number of input nodes adds up to seven including the bias. The
configuration settings for the network were chosen just as in Section 7.3 and can be
seen in Table 7.2. The network architecture is again specified as (N + 5, N), thus,
the number of hidden layers stays constant, while the number of nodes in each layer
is adjusted according to the number of input variables. A selection of evaluation
figures of the trained network can be seen in the Appendix B. The AUC value
becomes 0.743 such that a higher significance gain of the signal is expected.

After the training, the optimal NNCut for this network was identified as 0.21 by
comparing the significance gains of the two tagged Z ′ dijet signal samples compared
to the MC simulation for a variety of selection cuts. Here, the significance gain
amounts to 15.2% for the 600 GeV and to 12.5% for the 1 TeV sample (see Fig-
ure B.3). Compared to the neural network in the previous section, the significance
gain increases by taking the η distributions into account, which by themselves do
not possess a high separation power (see Table 7.1). One can thus conclude that
the neural network links the discrimination variables so that the total separation
excels the individual ones by taking correlation among these variables into account.
The corresponding figure of the leading jet N90 distribution is shown in Figure B.4a.
The characteristic tagged-over-untagged ratio with a peak toward small N90 values
can be seen there as well. However, a higher optimal value of NNCut increases the
total amount of rejected signal events yielding a lower efficiency especially in the
first bins of the N90 distribution because the quark jets in a signal event tend to
have a lower average N90 value.

Figure 7.7a depicts the result of the quark-gluon tagging for the mjj distributions
of data and MC. The tagged-over-untagged ratio of the distributions of data and MC
shows the expected rising shape towards higher invariant masses. At an invariant
mass of 600 GeV, approximately 57% of the events are rejected after the tagging
process, while the QCD background rejection amounts to around 55% at mjj ≈
1 TeV. Compared to the tagging performed in the previous section, the background
efficiency decreases by a factor of approximately 1.24 and 1.20 in the FWHM regions
of the Z ′ dijet samples with mZ′ = 600 GeV and mZ′ = 1 TeV.
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The signal efficiency of the Z ′ dijet sample with mZ′ = 600 GeV after the quark-
gluon tagging with the six discriminating variables is depicted in Figure 7.7b. In the
range of the FWHM, it decreases to values between 65% and 85 %. Thus, the signal
peak in this mass range is further reduced than in the study before by 6%. Table 7.4
displays the background rejections and signal efficiency for this set-up also including
the results of the Z ′ sample with mZ′ = 1 TeV, which can be seen in Figure B.4b.
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Figure 7.7: (a) Comparison of the invariant mass distribution of data (points) and
MC simulation (histogram) before (black) and after (red) the quark-
gluon-tagging using N90, pT and η as input variables. Upper part: nor-
malised distributions. Middle Part: ratio of distributions before and
after the tagging. Lower part: data over MC ratio before and after
the tagging. (b) Invariant mass distribution of the Z ′ dijet signal with
mZ′ = 600 GeV and gq = 0.02 before and after tagging including the
tagged-over-untagged ratio.

600 GeV 1 Tev
QCD rejection ≈ 57% ≈ 45%
Z ′ efficiency ≈ 75% ≈ 80%

Table 7.4: QCD rejection and Z ′ signal efficiency after the quark-gluon tagging in
two different FWHM mass regions using N90, pT and η as discriminating
variables.
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7.5 Tagging using Energy Layer Information
In order to further improve the quark and gluon jet separation, the energy deposits
in the energy layers defined in Section 7.1 for the two leading jets are included as
additional discrimination variables into the training process. This results in N = 20
input variables for the MLP. The configuration settings for the neural network are
chosen as depicted in Table 7.2 but instead of a (N+5, N) network architecture, the
size of the network was reduced to (N − 9, N − 14). Since the network architecture
includes two hidden layers with 11 and 6 nodes just as in the previous section, a
comparison of the separation power of two networks with the same architecture but
a different number of input nodes is possible. The goal is to investigate how a neural
network handles additional information using a fixed network complexity.

The network architecture of the MLP is shown in Figure 7.8. There are some more
important connections with larger absolute network weights visible but no input
variable or specific weight stands out. This implies that the MLP considers all input
variables for the training process although e.g. the subleading jet N90 variable has
a larger separation than the leading jet pT. The separation for all 20 discrimination
variables is given in Table B.1. Although the separation for most energy layer
variables exceeds the one for the η variables, the AUC value of the quark-gluon
tagging amounts to 0.738, which is a smaller value compared to the one obtained in
the previous section. This demonstrates that the performance of a MLP depends not
only on the selection of input variables but also on the architecture of the network
and other network parameters. Furthermore, a larger number of discrimination
variables drastically increases the training time. Hence, a preselection of variables is
required in order to balance the gain in separation power and the increase in training
time. Here, a decrease in significance gain of the signal is expected compared to the
previous section.

Figure 7.8: Three-layer network architecture with 20 input variables.
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The significance gain of the two investigated signal samples as a function of the
applied NNCut is shown in Figure 7.9. The optimal cut value for the mZ′ = 600 GeV
signal sample is identified as 0.24 and it yields a significance gain of 15.1%. Com-
pared to the tagging without the energy layer information, the significance gain
degrades. This shows that the network is not able to increase the quark and gluon
jet discrimination with the additional information of the energy deposits in the dif-
ferent layers of the calorimeter. However, Figure 7.8 suggests that all input variables
are considered with similar importance. This implies that the network using energy
layer information learns a different underlying property for quark and gluon jets
compared to the network without the additional information.

The significance gain of the dijet signal sample with mZ′ = 1 TeV amounts to
13.0% using the optimal NNCut value for the lower mass signal sample. In compari-
son to the network using six discriminating variables, the significance gain increases
for a signal in this mass regime. However, since the focus of this thesis is the mass
regime of the invariant mass distribution below 1 TeV, the subsequent analyses omit
the information of the energy deposits in different layers in the calorimeter system.
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Figure 7.9: Significance gain in % of the signal FWHM for two Z ′ signal samples with
mZ′ = 600 GeV and mZ′ = 1 TeV over a range of NNCuts of the MLP
network with N90, pT, η and energy layer information as discriminating
variables.
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8 Statistical Evaluation of Quark-Gluon
Tagging Performance

There are several statistical data analysis methods which can be used in order to
determine the statistical significance of a result. In this thesis, the Bumphunter
algorithm is used to statistically analyse the performance of the quark-gluon tagging
conducted in the previous chapter. The goal is to determine the impact of the
tagging process on the required cross-section of a signal to be identified as one. The
following analysis is based on a qualitative evaluation of the quark and gluon jet
discrimination using the MC simulation as a background estimate.

8.1 Hypothesis Tests and P-Values
The goal of a statistical test can be to determine whether a deviation between a data
set and a theoretical model is explainable by statistical fluctuations. If the deviation
is not attributed to random chance, the result of such a test is called statistically
significant. In order to verify or exclude a statistical significance, the data sample
is compared to a so-called null hypothesis (H0), which is the assumption of the
background model fully describing the system. Therefore, these tests are called
hypothesis tests [102]. Each hypothesis test includes a test statistic t, which assigns
the deviation between data and H0 a number. A famous hypothesis test is Pearson’s
χ2 test, whose test statistic was already introduced in Equation 6.1, where f(p)
was the background hypothesis for a fixed set of parameters. The Bumphunter
algorithm [103, 104], which is described in detail in Section 8.2, is a hypothesis test
using a different test statistic. Although different hypothesis tests use varying test
statistics, all follow the principle that the larger the difference between data and the
background distribution, the larger the test statistic.

After the choice of a test statistic, pseudo-data is generated which features H0 as
underlying background hypothesis. Then, the test statistic is calculated for each set
of pseudo-data by comparing the new generated data sets with H0. The results are
combined to form the distribution of test statistics.

The next step involves the calculation of the p-value. The p-value, defined in the
interval [0, 1], is given by the probability of having a test statistic that is at least as
big as the observed one assuming that H0 is true:

p-value ≡ P (t ≥ t0|H0), (8.1)
where t is a random variable following the distribution of test statistics and t0 is
the test statistic comparing the observed data set and the background distribution
based on H0.
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The p-value can be interpreted as a false-positive probability, which is the prob-
ability of rejecting H0 although it is true. This type of probability is also called
Type-I error and it is given by

α =

∫ ∞

tcut

ρt(t)dt, (8.2)

where ρt is the probability distribution function of t given H0 and tcut is a cut value
that determines the threshold above which H0 is rejected. The goal is to minimise
α so that the false-positive probability becomes small. If the test statistic of a
hypothesis test returns a p-value of x, then the discovery algorithm, which has the
smallest α still declaring a discovery, would reject H0 with a probability of x that
H0 is actually true. Thus, the p-value is not the probability of H0 being wrong, but
it is smallest α value of an algorithm that would reject H0 [103].

Due to the different test statistics of different hypothesis tests, the resulting p-
values of these tests might vary strongly. However, the resulting p-values do not
contradict each other, but rather focus on different discrepancies. For a significant
fluctuation of the data from H0 in a certain bin of a histogram, there is a hypothesis
test which would declare a discovery with a low p-value even if H0 is true. This
behaviour is called “look elsewhere effect” because each bin has its own possibility
to be declared as discovery. Hence, in order to evaluate a deviation between data
and H0 in a proper way, many hypothesis test have to be considered simultaneously.
A hypothesis test that considers all bins of the histogram in an equal way is called
hypertest. The test statistic t of a hypertest is based on the smallest p-value of all
considered hypothesis tests in such a way that t increases monotonically when the
smallest p-value decreases.

8.2 Bumphunter Algorithm
The Bumphunter (BH) algorithm is a hypertest combining different hypothesis
tests which focus on the discovery of deviations of different widths in different regions
of a spectrum. In TLA, it is used to find localised excesses in the invariant mass
spectrum that are caused by the resonant production of massive particles. The
algorithm determines the most significant bump, which results from a deviation
between the measured data and H0, by scanning over the whole spectrum using
windows of varying widths. The window size first includes two bins of the spectrum
and it increases until the window extends to half the range of spectrum.

For every choice of window size and every location of the window in the spectrum,
all bins in the current window [n,m] are combined to define a new bin, whose
numbers of expected (B) and observed (D) events are calculated via

B =
m∑
i=n

bi, D =
m∑
i=n

di, (8.3)
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where bi and di are the expected and observed events in the original bins. Afterwards,
the p-value for the new bin is calculated using the localised hypothesis test, that
focuses on this width and location. Since the BH algorithm assumes that the number
of entries in each bin are following a Poisson distribution, the p-value is given by

p-value =



∞∑
n=D

Bn

n!
e−B D ≥ B

∞∑
n=0

Bn

n!
e−B D < B

, (8.4)

where B and D are the number of expected and observed events in the new bin as
defined above. The calculation of the p-value is repeated for every window size at
each position of the spectrum.

Next, the BH test statistic is calculated according to

t = − log
(
min

i
{p-valuei}

)
, (8.5)

where mini{p-valuei} is the smallest p-value found in the step above. The functional
behaviour of the negative logarithm function assures that t increases with increasing
discrepancy.

The test statistic of Equation 8.5 is then used to determine t0 by comparing the
observed data to H0. With the help of pseudo-data generated according to H0, the
BH p-value is calculated according to Equation 8.1. The uncertainty of the BH
p-value

σp-value =

√
p(1− p)

N
(8.6)

is given by the standard error of a Bernoulli experiment, in which the p-value is
identified as the probability p and, where N is given by the number of pseudo-
experiments. Thus, increasing the number of pseudo-experiments decreases the
uncertainty of the BH p-value. A BH p-value smaller or equal to 0.01 is setting the
limit for a potential discovery.

8.3 Study of Significance Improvement by
Quark-Gluon Tagging

In order to detect potential signals, recorded data is compared to the predictions
of a theoretical model, like the SM. In TLA, the SM background distribution is
usually determined using a sliding-window fit [8]. Since a qualitative evaluation
of the quark-gluon tagging should be studied, the background estimation is not
required in this work. Instead, the MC simulation itself is used as the background
estimate. Z ′ signal samples are artificially integrated into the MC simulation in
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order to imitate signal excesses at different invariant mass values mZ′ . These newly
created MC samples are used as input data samples for the BH algorithm.

The goal of this analysis is to determine the cross-section of a signal, that is
required in order to be identified as statistically significant by the BH algorithm
using a perfect background estimate H0 at a luminosity of 29.3 fb−1. The focus is
especially on the impact of the background rejection induced by the quark-gluon
tagging on the required signal cross-section. For that, the cross-sections of the
Z ′ signal samples are increased until the BH algorithms identifies the signal as a
potential discovery. 50,000 pseudo-data sets are generated for each investigated
signal cross-section and are then used to calculate the respective BH p-value and its
uncertainty. The number of pseudo-experiments was chosen such that the relative
uncertainty of the BH p-value amounts to less than 5%.

The results of the BH algorithm applied to the untagged invariant mass distribu-
tions for two different Z ′ signal injections are given in Figure 8.1. The figures show
respectively the minimal signal cross-section required in order to be considered a
potential discovery. In the upper panel, the background estimate is depicted in red,
while the simulated data sample is shown in black. The latter includes the Z ′ signal
samples, whose signal cross-section is listed in the figure. The sample with a media-
tor mass of 600 GeV requires a higher cross-section (σSignal ≈ 1.64 pb) compared to
the one with mZ′ = 1 TeV (σSignal ≈ 525.6 fb) because the number of background
events in the invariant mass distribution increases with decreasing mjj. The lower
part of the figure shows the significance distribution as defined in Equation 7.1 for
each bin. It clearly illustrates the injected bump of the signal samples, which is
not visible by eye in the upper distribution. The low and high edge of the most
significant deviation window is displayed in blue.
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Figure 8.1: Bumphunter results for the untagged mjj distribution for signal samples
with mZ′ = 600 GeV and mZ′ = 1 TeV. The background (red) and
simulated data (black) distribution as well as the significance distribution
(lower part) can be seen. The BH p-values including their uncertainties
and the required signal cross-sections to trigger BH are given as well.
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The BH results after the quark-gluon tagging using the leading and subleading jet
N90 and pT variables of the two leading jets are shown in Figure 8.2. On the left, the
Z ′ signal sample with a mass of 600 GeV was injected. A comparison of the required
cross-sections for this signal sample before and after the tagging demonstrates that
with tagging a reduction of σSignal of 12.1% can be achieved. Thus, the quark
and gluon jet discrimination reduces the QCD background in such a way that the
significance of the signal is enhanced. This shows that, although the tagging process
reduces the signal efficiency (Figure 7.6a), the reduction of the QCD background
prevails and the classification of signal and background events successfully improves
the significance.

Figure 8.2b shows that the signal significance found by the BH algorithm for the
mZ′ = 1 TeV signal sample is improved by 8.4% compared to the untagged scenario.
Thus, the improvement is smaller compared to the lower mass signal sample, which
might be induced by the fact that the NNcut of the MLP training output was chosen
such that the significance gain shown in Figure 7.4 was maximised for the 600 GeV
sample. However, since the quark jet fraction in dijet events is enhanced at larger
invariant masses, it is in general more difficult to improve the resonance significance
of a more massive Z ′ particle.
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(a) mZ′ = 600 GeV and gq = 0.02.
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Figure 8.2: Bumphunter results for the tagged mjj distribution using N90 and pT
in the quark-gluon tagging for signal samples with mZ′ = 600 GeV and
mZ′ = 1 TeV. The background (red) and simulated data (black) distri-
bution as well as the significance distribution (lower part) can be seen.
The BH p-values including their uncertainties and the required signal
cross-sections to trigger BH are given as well.

The statistical analysis results of BH algorithm evaluating the quark und gluon
jet discrimination using in addition to N90 and pT also the η variables of the two
leading jets are given in Figure 8.3. The BH p-value assigns a statistical significance
to the 600 GeV Z ′ sample with a cross-section of 1.39 pb, which corresponds to a
significance enhancement of 15.1% compared to the untagged distribution. In rela-
tion to the quark-gluon tagging evaluation using four variables in the discrimination
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process, the signal significance gain improves by additional 3% with respect to the
untagged reference with the additional usage of the η variables. For the mZ′ = 1 TeV
signal sample, the required cross-section can be reduced to 465 fb, while still trig-
gering the BH algorithm. This is related to an increase in significance of the signal
sample of 11.5% compared to the untagged case.

310

410

510

610

N
um

be
r 

of
 e

ve
nt

s

Background

Signal + Background

Bumphunter Interval

Background

Signal + Background

Bumphunter Interval

Background

Signal + Background

Bumphunter Interval
-1 = 13 TeV, 29.3 fbs

 0.0004±BH p-value = 0.0097

 = 1.40 pbSignalσ

1
 [TeV]jjm

3−
2−
1−
0
1
2
3

S
ig

ni
fic

an
ce

(a) mZ′ = 600 GeV and gq = 0.02.
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Figure 8.3: Bumphunter results for the tagged mjj distribution using N90, pT and
η in the quark-gluon tagging for signal samples with mZ′ = 600 GeV
and mZ′ = 1 TeV. The background (red) and simulated data (black)
distribution as well as the significance distribution (lower part) can be
seen. The BH p-values including their uncertainties and the required
signal cross-sections to trigger BH are given as well.

In summary, this statistical evaluation shows that quark-gluon tagging is success-
ful in distinguishing quark induced dijet signals from QCD background events using
a variety of discrimination variables. In general, a combination of these variables
outmatches the independent separation power because the neural network is able
to account for their correlations. The best found signal significance gain can be
achieved by using the N90, pT and η variables of the two leading jets as discrimina-
tion variables, which exploit the differences in kinematics and multiplicities of quark
and gluon jets. The significance gain of the two investigated signal samples induced
by the quark and gluon jet discrimination using different discrimination variables is
summarised in Table 8.1.

600 GeV 1 Tev
N90, pT ≈ 12.1% ≈ 8.4%
N90, pT, η ≈ 15.1% ≈ 11.5%

Table 8.1: Significance gain of the respective signal samples using different discrim-
ination variables for the quark-gluon tagging.
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9 Conclusion

Searches for dijet resonances at the Large Hadron Collider provide the opportunity
to study multiple models describing physics beyond the Standard Model. At the AT-
LAS experiment, bandwidth and storage capacities result in statistical limitations
for the low-mass regime of the dijet invariant mass spectrum. The Trigger-Object
Level Analysis approach circumvents these limitation by recording only physics ob-
jects that are reconstructed online within the ATLAS trigger system instead of using
the event information from the total detector read-out. This reduces the size of an
event such that event recordings at a high trigger rate are possible, while only a
small fraction of the total bandwidth is used. However, down to the present day no
significant excess has been found within the TLA regions.

In order to enhance the significance of a potential signal, this work engages in
studies of quark and gluon jet discrimination using multivariate analysis methods
based on machine learning techniques. The goal of the quark-gluon tagging is to
reduce the gluon-dominated QCD background such that dijet data samples, which
contain two quark jets in the final state, might show a significant local excess espe-
cially in the low-mass regime below 1 TeV.

In order to separate quark from gluon jets, features based upon the different colour
factors of the initial partons are exploited. Since TLA does not have access to the full
event information, this thesis investigates a possible quark-gluon separation based
on trigger jet variables. This motivates the use of the N90 variable, which is the
number of jet constituents whose energy adds up to 90% of the total jet energy,
as well as the transverse momentum and the pseudorapidity of the two leading
jets as discriminating variables. However, these variables show a significant mis-
modelling by comparing data and MC simulation, which may induce a potential
bias in the training towards the chosen MC generator. Therefore, these variables
are corrected by a reweighting procedure applied on the MC simulation on a event-
by-event basis. The corresponding reweighting factors are determined via either a
bin-by-bin reweighting or a polynomial fit reweighting, in which the order of the
polynomial fit function is chosen on the basis of the χ2 fit-value.

The choice of discriminating variables as well as the selection of the training model
including its hyperparameters are crucial for a good model performance. In this the-
sis, it is shown that the multilayer perceptron is a good choice for a quark-gluon
tagging model because it is able to take non-linear correlations between the discrim-
ination variables into account. The highly flexible and complex network architecture
of this model has a good performance but also tends to overtrain the data set. There-
fore, the model is regularised using a Gaussian prior for the network weights. The
optimal quark and gluon jet discrimination is accomplished by combining the N90,
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pT and η variables of the two leading jets. Additional energy layer information does
not improve the network performance. The tagging process is statistically evaluated
using the Bumphunter algorithm, which determines the statistical significance of
a Gaussian-like signal at 600 GeV and 1 TeV using a certain background estimate.
This evaluation is based on a qualitative approach in which the MC simulation is
used as the background estimate. For the former signal sample, the significance gain
amounts to approximately 15.1%, while increase in significance for the latter sample
adds up to 11.5%. Thus, the required cross-section for signals in the lower mass
region is reduced to about 84.9%.

In conclusion, the result of this thesis shows that it is possible to enhance the
significance of a dijet signal with two quark jets in the final state by rejecting the
QCD background, which is dominated by dijet events in which at least one of the
two leading jets is gluon-initiated. A qualitative analysis using a sliding-window
fit as background estimate in combination with the quark-gluon tagging performed
in this thesis might reveal features in the invariant mass spectrum of dijet events
recorded by the Data Scouting stream in Run-2 that without the tagging are not
identified as statistically significant.
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Figure B.1: Correlation plots of a selection of leading and subleading jet variables
after the application of TLA cuts using MC simulations.
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(a) Network architecture. (b) Overtraining check.

Figure B.2: Control and performance plots of the MLP provided by the graphical
user interface (GUI) of TMVA. (a) Three-layer network architecture
with six input variables. (b) MLP output distributions for signal and
background events from the training and test samples.
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Figure B.3: Significance gain in % of the signal FWHM for two Z ′ signal samples
with mZ′ = 600 GeV and mZ′ = 1 TeV over a range of NNCuts of the
MLP network with N90, pT and η as discriminating variables.
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Figure B.4: (a) Comparison of leading jet N90 distribution of data (points) and MC
simulation(histogram) before (black) and after (red) the quark-gluon-
tagging using N90, pT and η as input variables. Upper part: nor-
malised distributions. Middle Part: ratio of distributions before and
after the tagging. Lower part: data over MC ratio before and after
the tagging. (b) Invariant mass distribution of the Z ′ dijet signal with
mZ′ = 1 TeV and gq = 0.02 before and after tagging including the
tagged-over-untagged ratio.
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Separation
Subleading jet N90 0.09136

Leading jet N90 0.07188
Subleading jet pT 0.01927

Subleading jet ECal2 0.01324
Subleading jet HCal2 0.01147
Subleading jet HCal1 0.01034

Leading jet ECal1 0.00779
Leading jet ECal0 0.00763
Leading jet ECal2 0.00724

Subleading jet ECal1 0.00615
Subleading jet ECal0 0.00600
Subleading jet HCal3 0.00554

Leading jet HCal1 0.00531
Leading jet HCal2 0.00395

Subleading jet ECal3 0.00331
Leading jet pT 0.00265

Leading jet HCal3 0.00134
Subleading jet η 0.00130

Leading jet ECal3 0.00099
Leading jet η 0.00078

Table B.1: Input variable separation. The top variable is ranked best.
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