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Abstract

Due to the planned Phase-II upgrade of the Large Hadron Collider, the
number of occurring proton-proton collisions will increase to 140-200. The
resulting stronger background processes are challenging the ATLAS Level-1
Calorimeter Trigger. Its tasks include the detection and energy reconstruction
of measured particles in the calorimeters of the ATLAS detector.

In this thesis, it was investigated whether machine learning algorithms can
improve the performance of the trigger. For this purpose, artificial neural
networks were trained with simulated data from the hadronic calorimeter.
For a first feasibility study, data with an average number of proton-proton
collisions of 40 were used.

The investigation of the performance of the networks compared to the current
system has shown that for particles a more accurate reconstruction of their
transversal energy is possible using a neural network, especially in the low
energy range. In addition, the networks achieve better efficiency and purity

when detecting events.

Zusammenfassung

Durch das geplante Phase-1I Upgrade des Large Hadron Colliders wird die
Anzahl der auftretenden Proton-Proton-Kollisionen auf 140-200 steigen. Die
dadurch stéarkeren Untergrundprozesse stellen eine Herausforderung fiir den
ATLAS Level-1 Calorimeter Trigger dar. Zu seinen Aufgaben z#hlt die De-
tektion und Energierekonstruktion gemessener Teilchen in den Kalorimetern
des ATLAS-Detektors.

In dieser Arbeit wurde untersucht, ob Machine Learning Algorithmen die
Leistungsfahigkeit des Triggers verbessern kénnen. Dafiir wurden kiinstliche
neuronale Netze mit simulierten Daten aus dem hadronischen Kalorimeter
trainiert. Fiir eine erste Machbarkeitsstudie kamen Daten mit einer mittleren
Anzahl Proton-Proton-Kollisionen von 40 zum Einsatz.

Die Untersuchung der Leistungsfahigkeit der Netzwerke im Vergleich zu dem
aktuellen System hat gezeigt, dass insbesondere fiir niedrigenergetische Pulse
eine genauere Rekonstruktion der transversalen Energie durch ein neuronales
Netz moglich ist. AuBlerdem erreichen die Netzwerke bei der Detektion von

Ereignissen eine bessere Effizienz und Reinheit.
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Kapitel 1: Einleitung

Das A Toroidal LHC ApparatuS (ATLAS)-Experiment ist ein Teilchendetektor am
Large Hadron Collider (LHC), dem weltweit groiten Teilchenbeschleuniger. In die-
sem werden Protonen auf eine Geschwindigkeit von bis zu 99.9999991 % der Lichtge-
schwindigkeit beschleunigt und zur Kollision gebracht. Durch die Energie der Kol-
lision entstehen Teilchen, deren Eigenschaften von ATLAS gemessen werden. So
konnte im Jahre 2012 das Higgs Boson durch die Experimente ATLAS[1] und Com-
pact Muon Solenoid (CMS)[2] nachgewiesen werden.

Eine wichtige Aufgabe im ATLAS-Experiment ist die Detektion und Energierekon-
struktion von Teilchen in den verschiedenen Detektorbereichen. Durch geplante Up-
grades des LHCs zu héheren Luminositéiten steht der ATLAS-Detektor vor der Her-
ausforderung mit hoheren Produktionsraten umgehen zu kénnen. In [3] konnte fiir
das elektromagnetische Kalorimeter gezeigt werden, dass bei diesen Bedingungen die
Energierekonstruktion von Ereignissen durch neuronale Netze dem bisherigen Algo-
rithmus tiberlegen ist. Diese Arbeit stellt den ersten Schritt dar, um zu iiberpriifen,
ob dies auch fiir das hadronische Kalorimeter der Fall ist.

Im ersten Kapitel dieser Arbeit wird auf das aktuelle Triggersystem im ATLAS
eingegangen, gefolgt von einem Kapitel iiber die Grundlagen von kiinstlichen neuro-
nalen Netzen. Kapitel 3 geht genauer auf die Datenstruktur ein und behandelt die
verschiedenen Rauschquellen. Die Beschreibung der verwendeten Netzwerke und die
Anpassung an die verwendeten Daten erfolgt in Kapitel 4. Danach folgt die Unter-
suchung der Leistungsfahigkeit der Netzwerke und der Vergleich mit dem aktuellen

Trigger. Abschlielend werden in Kapitel 6 die Ergebnisse zusammengefasst.

1.1 Der Large Hadron Collider

Der LHC ist ein Proton-Proton-Teilchenbeschleuniger der Européischen Organisati-
on fiir Kernforschung (CERN). Er besteht aus einem Hauptring, der einen Umfang
von 26.7 km aufweist und bis zu 170 m unter der Oberflache liegt. In einem System
aus Vorbeschleunigern werden Protonen auf 450 GeV vorbeschleunigt und in den
Hauptring injiziert. Dort werden sie auf eine Energie von 6.5 TeV beschleunigt. Dies

entspricht einer Schwerpunktsenergie von 13 TeV. An den insgesamt vier Kreuzungs-
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KAPITEL 1. EINLEITUNG

punkten der beiden Strahlen befinden sich die Experimente: ATLAS, A Large Ion
Collider Experiment (ALICE), CMS und Large Hadron Collider beauty (LHCD).[4]

Die Protonen sind im LHC in Protonen-Pakete, sogenannten Bunches, mit je

Abbildung 1.1: Ubersicht des Large Hadron Collider mit dem Beschleunigungsring
und den 4 verschiedenen Experimenten(3)]

1.2 x 10* Protonen aufgeteilt. Das Fiillschema legt dabei die Anordnung der Bun-
ches wihrend eines Umlauf im Hauptring fest. Die Bunches der entgegenlaufenden
Protonenstrahlen kollidieren in sogenannten Bunch Crossings (BCs) zu festgelegten
Zeiten mit einer Frequenz von 40 MHz. Zwei wichtige Gréflen bei Kollisionen ist
der Pile-Up (i) und die Luminositéit £. Die Luminositét ist ein Maf fiir die Strahl-
intensitdt. Der Zusammenhang zwischen Luminositiat, Wirkungsquerschnitt o und

der Ereignisrate % ist durch folgende Gleichung gegeben:

dN

=0 L. (1.1.1)

Die Ereignisrate von Prozessen hingt vom Wirkungsquerschnitt des Prozesses und
der Luminositét ab. Seltene Prozesse werden somit bei einer hoheren Luminositét
ofters beobachtet. Der Pile-Up (u) ist direkt von der Luminositdt abhingig und
beschreibt die Anzahl der inelastischen Streuungen pro BC. Wihrend des letzten
Runs im Jahr 2018 wurde ein (u) von 36 erreicht bei einer peak Luminositit von
19 - 10¥ em~2s7! [6]. Nach dem geplanten Phase-1I Upgrade soll die peak Lumi-
nositéit auf 7.5 - 103*ecm ™2 s mit einer geschiitzten Erhéhung von (u) auf 140-200
ansteigen [7]. Daraus resultieren deutlich mehr produzierte Teilchen, deren Signal

vom Detektor verarbeiten werden muss.



1.2. DAS ATLAS-EXPERIMENT

25m

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

Pixel detector

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker

Abbildung 1.2: Das ATLAS Experiment mit den verschiedenen Teilbereichen

1.2 Das ATLAS-Experiment

Der ATLAS-Detektor ist mit einem Durchmesser von 25 m, einer Lénge von 46
m und einem Gewicht von 7000 t der weltweit gréfite Teilchendetektor an einem
Beschleuniger. ATLAS und CMS sind Allzweckdetektoren am LHC, deren unter-
schiedlicher Aufbau unabhéngige Messungen erlaubt. Der ATLAS-Detektor ist sym-
metrisch um die Strahlachse gebaut und hat eine vorwérts-riickwérts Symmetrie
beziiglich des Kollisionspunktes der aufeinandertreffenden Strahlen. Der Aufbau be-
steht aus mehreren Teilsystemen (sieche Abbildung , um die Position, Energie
und den Impuls der entstandenen Teilchen zu bestimmen. Ganz im Inneren um den
Interaktionspunkt befindet sich das Tracking System. Ein Magnetfeld lenkt geladene
Teilchen auf eine gekriimmte Bahn, aus deren Form die Ladung und der Impuls be-
stimmt wird. Aufgebaut ist das Tracking System aus einem sehr hochauflésenden Pi-
xeldetekor, der von einem Silizium-Streifen-Detektor umschlossen wird. Die duflerste
Schicht des Tracking Systems bildet der Ubergangsstrahlungsdetektor.

Zur Energiebestimmung besitzt der ATLAS-Detektor zwei Kalorimeterschichten au-
Berhalb des Tracking Systems. In den Kalorimetern wird die Energie von Elektro-
nen, Photonen und Hadronen in Form von Schauern deponiert. Die verwendeten
Kalorimeter haben eine Sandwichstruktur aus abwechselnden Schichten aus einem
Absorber und einem aktiven Detektormaterial. Im Absorber bilden sich Schauer, die
im aktiven Material nachgewiesen werden. Aus dem Signal des aktiven Detektorma-
terials wird die deponierte Energie rekonstruiert. Das erste Kalorimeter bildet das

elektromagnetische Kalorimeter, welches Blei als Absorber und fliissiges Argon als
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KAPITEL 1. EINLEITUNG

aktives Material verwendet. In ihm wird die Energie von Elektronen und Photonen
préazise gemessen. Die Hadronen deponieren nur einen Teil ihrer Energie im elektro-
magnetischen Kalorimeter. Deshalb wird dieses von dem hadronischen Kalorimeter
umschlossen.

In dieser Arbeit ist das Tile Long Barrel (TileLLB) von besonderer Bedeutung. Es
ist ein Teil des hadronischen Kalorimeters und deckt den Bereich |rfT] < 1.0 ab. Das
TileLLB ist aufgebaut aus vielen abwechselnden Schichten aus dem passiven Absorber
Stahl (3mm) und dem aktiven Detektormaterial in Form von Plastikszintillatoren
(14mm). Hadronen deponieren ihre Energie in Form eines hadronischen Schauers,
welcher iiber von ihm angeregte Photonen in den Plastikszintillatoren gemessen wird.
Das Myon-System bildet die &uflerste Schicht des ATLAS-Detektors. Da Myonen ei-
ne ca. 200-fach gréflere Masse besitzen als Elektronen, sorgt die Bremsstrahlung erst
bei hohen Energien fiir einen signifikanten Energieverlust. Die zuvor beschriebenen
Detektorsysteme werden von den Myonen mit geringem Energieverlust durchdrun-
gen. Erst im Myon-System wird der Impuls gemessen und die Bahn vermessen [4]

[9]-

1.3 Der ATLAS Level-1 Calorimeter Trigger

Ein abgespeichertes Ereignis des ATLAS-Detektors hat eine Grole von 1.5 MB. Bei
einer Kollisionsfrequenz der Bunches von 40 MHz wiirden innerhalb einer Sekun-
de mehrere TB an Daten anfallen. Die Aufgabe eines Triggers ist es, lediglich die
interessanten Ereignisse zu selektieren, damit diese fiir eine spétere Analyse abge-
speichert werden kénnen. ATLAS verwendet fiir die Reduktion der Datenrate einen
zweistufigen Trigger aus einem hardwarebasierten Level-1 (L1) Trigger und einem
softwarebasierten High-Level Trigger (HLT). Der L1-Trigger selektiert aus dem De-
tektorsignal, mit einer Frequenz von 40 MHz, potentiell interessante Ereignisse mit
einer maximalen Design Rate von 100 kHz. Die fiir die Speicherung vorgesehenen
Ereignisse reduziert der HLT auf 1kHz.

Der L1-Trigger muss mit einer Latenz von 2.5 us nach einer Kollision eine Entschei-
dung treffen, da die Signale wihrend der Prozessierung zwischengespeichert werden
miissen und die Zwischenspeicher volllaufen. Um dies zu bewerkstelligen, werden
vom L1-System viele Detektorbereiche parallel verarbeitet. Deshalb ist er aufge-
teilt in den Level-1 Calorimeter Trigger (L1Calo) und L1 Muon Trigger (L1Muon),
deren Ergebisse vom Central Trigger Processor (CTP) fiir eine finale L1 Entschei-
dung verwendet werden. Der Input von L1Calo besteht 7168 Trigger Tower (TT),

welche aus den 190 - 103 Zellen in dem elektromagnetischen und hadronischen Kalo-

Pseudo-Rapiditit n = — log (tan ()), mit Winkel 6 relative zur Strahlachse,
Azimuthwinkel ¢ : Winkel um die Strahlachse



1.3. DER ATLAS LEVEL-1 CALORIMETER TRIGGER

rimeter kombiniert werden. Fiir einen TT wird das Signal mehrerer Zellen aus den
beiden Kalorimetern analog aufsummiert. Die dadurch héhere Granularitét liegt im
TileLLB bei An x A¢ = 0.1 x 0.1. Das Signal der TT gelangt {iber 30-70 m lange
Twisted-Pair-Kabel zu den Receivern des L.1Calo, welcher sich nicht direkt am De-
tektor befindet. Mithilfe von Gain-Faktoren wird das analoge Signal skaliert und die
gemessene Energie E in die transversale Energie E umgerechnet?] Das kalibrierte
Signal erreicht anschlieBend den PreProcessor (PPr) des L1Calo. Im PPr wird zuerst
ein Offset auf das Signal addiert, damit das Signal fiir den folgenden Analogue-to-
Digital Converter (ADC) das korrekte Pedestal’| von 32 Counts erhilt. Im ADC
wird das analoge Signal mit einer Frequenz von 80 MHz digitalisiert, sodass mit den
gewahlten Gain-Faktoren im Reciver 1 ADC Count 250 MeV entsprechen. Die 80
Mhz Digitalisierung wird fiir den Fall eines saturierten Pulse benétigt. Ist dies nicht
der Fall wird auf 40 MHz reduziert. Aus dem digitalisierten Signal werden anschlie-
Bend die Pulse, welche signifikanten Energiedepositionen entsprechen, ausgewéhlt.
Fiir diese Pulse findet eine Bestimmung des korrekten BC{Y| sowie der transversalen
Energie statt. Diese beiden Aufgaben des PPrs sind fiir diese Arbeit von besonderer
Bedeutung.

Die Informationen {iber Position und Energie von detektierten Signalen werden von
dem JetEnergy Processor (JEP) und Cluster Processor (CP) weiterverarbeitet. Der
CP sucht nach Elektronen, Photonen und 7-Lepton-Kandidaten in Form von schma-
len Clustern in den Kalorimetern. Er unterscheidet elektromagnetische und hadro-
nische Schauer, wihrend im JEP nach Jet-Kandidaten gesucht, deren Eigenschaften
bestimmt und die globale Energiesumme berechnet wird. Der CTP bestimmt mit
den Informationen aus dem L1Calo und dem L1Muon, ob das Ereignis verworfen
oder behalten wird. Bei letzterem wird ein Level-1 Accept (L1A) erteilt und die In-
formationen iiber die Kandidaten, wie z. B. ihre Koordinaten, an den HLT in Form
von Regions of Interest (ROIs) weitergegeben. Der HLT benutzt anders als der L1
eine feinere Granularitdt der Kalorimeter, Prizisionsmessungen des Muon-Systems
und Spurinformationen aus dem Tracking System, um die Auswahl der Kandidaten

von L1 weiter einzuschréanken [10] [11].

Finite-Impulse-Response-Filter

Der Finite-Impulse-Response (FIR)-Filter befindet sich im PPr des L1Calo. In den

Kalorimetern gemessene Teilchen werden durch einen charakteristischen Puls im

2Die Umrechnung von E zu Ep findet fiir das hadronische Kalorimeter in den Recivern satt,
wéhrend dies fiir das elektromagnetische Kalorimeter schon in der Elektronik am Detektor ge-
schieht.

3Das Pedestal ist die Grundlinie des ADC-Outputs und hat einen nominellen Wert von 32 ADC
Einheiten.

4Das korrekte BC ist definiert durch die Position an der der Pulse die maximale Amplitude hat.



KAPITEL 1. EINLEITUNG

digitalen Signal sichtbar. Der FIR-Filter bestimmt das korrektes BC und die trans-
versale Energie (Er) dieser Pulse in dem digitalen Signal mit einem Optimal Filter,
der von Cleland und Stern in beschrieben wird. Der FIR-Filter stellt die erste
Stufe dar, um interessante Ereignisse zu filtern. In der folgenden Arbeit werden neu-
ronale Netze traininert, um die Aufgaben des FIR-Filters zu iibernehmen. Da dieser
dabei als Vergleich dient, wird im Folgenden etwas genauer auf seine Funktionsweise

eingegangen:

~190k Calorimeter cells 10-bit Data Pipeline

Twisted pair cables, 30-70m 7168 Trigger Towers In
In electronics room
L1Calo ””””

.

PreProcessor

- Digitisation & Synchronisation DA u
- Pile-Up Subtraction to Q In

- BCID & Energy Calibration

s
to DAQ \ to DAQ
|_> Iaie_n:y

Jet/E Pi —
et/Energy Processor Peak Finder

- Cluster Finder (jets) Out T -
- Ems g o fz<fy>fy

Counts) CMX  [ToBs ToBs] CMX [Counts

D
FIR inhibit

(from large

pulse BCID)

Out

al Tri L1A large pulse BCID result

(a) Architektur des L1Calo (b) Aufbau des FIR-Filters
Abbildung 1.3: Ubersicht iiber den L1Calo des ATLAS Experiments (a) und des im

PreProcessor eingesetzten FIR-Filters (b). Bei der Darstellung des FIR-Filter fehlt
die erwdhnte Pedestal Korrektur.

Alle 25 ns (Abstand zwischen zwei BCs) wird, gemif}

F@O) = ai-d(t+i—2) = foeacorr(t), (1.3.1)

der FIR-Output mit fiinf aufeinander folgenden Werten des ADC-Signals d(i) be-
rechnet. Eine gewichtete Summe aus den ADC-Outputs skaliert mit festgelegten
Konstanten a;. Dadurch wird das Signal-to-Noise Verhéltnis fiir die erwartete Puls-
form (fiir TileLB siehe Abbildung erhoht. Die Subtraktion von fyeqcor(t) von
der gewichteten Summe stellt die Pedestal Korrektur dar. Da es aufgrund des Fiillschemas
(siehe[3.2) im LHC zu Verschiebungen des Pedestals wiihrend eines kompletten Um-
laufs kommen kann, miissen diese mit fpeqcorr(t) korrigiert werden. Dabei wird der
FIR-Output iiber 2!% Umliufe gemittelt und anschliefend die Differenz zum mitt-

leren Pedestal berechnet. Energiedepositionen in Form von Pulsen im FIR-Output
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1.3. DER ATLAS LEVEL-1 CALORIMETER TRIGGER

werden vom Peak-Finder-Algorithmus detektiert und parallel ihre Energie iiber eine
Look-Up Table (LUT) berechnet. Der Peak-Finder vergleicht 3 aufeinander folgende
FIR-Outputs. Befindet sich an der mittleren Position das Maximum der drei Signa-
le, gibt der Peak-Finder eine 1 aus. Ist dies nicht der Fall, wird eine 0 ausgegeben.
In diesem Fall wird der Output der LUT auf Null gesetzt. Auf diese Weise kénnen
nur detektierten Pulsen Energien ungleich null zugeordnet werden. Das Blockdia-
gramm des FIR-Filters in Abbildung veranschaulicht die Funktionsweise. Die
LUT, charakterisiert durch eine Slope, ein Offset und einen Noisecut, berechnet die

Energie Er eines detektierten Pulses:

(LutIn - Slope — Offset + 2048) > 12 falls LutIn - Slope — Offset > Noisecut
LutOut = .

0 sonst

(1.3.2)

Lutin

Abbildung 1.4: Die LUT mit LutOut als Funktion von Lutln. Sie ist Teil des FIR-
Filters und bestimmt die transversale Energie E7 von detektierten Pulsen. Der Pa-
rameter Slope und Offset sind so gewéhlt, dass 1 LutOut 1 GeV entspricht.

Aufgrund der Hardwareimplementierung hat LutIn eine GroBle von 10 Bit und
fiir LutOut stehen 8 Bit zur Verfiigung. Dies wird beriicksichtig, indem f(¢) fiir Lu-
tIn auf 10 Bits reduziert wird und fiir LutOut 12 Bits abgeschnitten werden. Der
Noisecut verhindert fake Hits durch Rauschen im Signal und setzt LutOut auf Null
falls die Energie unterhalb einer Schwelle liegen sollte [4][14].

Bei den Untersuchungen in dieser Arbeit wurden die Daten aus einem T'T im TileL.LB
mit einer Pseudo-Rapiditidt n = —0.25 verwendete. Fiir die Implementierung des
FIR-Filters werden Parameter verwendet, die fiir diesen Detektorbereich in [4] bei

einem (p) von 40 optimiert wurden.

Der Noisecut fiir die in Tabelle angegebenen Parameter wurde fiir die ver-
wendeten Daten iiber die Methode der Integrated Occupancy bestimmt [14]. Die

7



KAPITEL 1. EINLEITUNG

Parameter | verwendeter Werte

aq 1
(05} 9
as 15
ay 10
as 4
db 5

Slope 1128

Offset 43428

Tabelle 1.1: Parameter aus |4] fiir die Implementierung des FIR-Filters

Integrated Occupancy einer beliebigen Energie beschreibt den Anteil aller detektier-
ten Ereignisse mit mindestens dieser Energie. Der Noisecut entspricht der Energie,
bei der ein Anteil von 0.5 % erreicht wird. Die Abbildung zeigt die Integrated
Occupancy fiir den implementierten FIR-Filter und den verwendeten Daten. Der
somit bestimmte Noisecut betrdgt 5928. Dies entspricht etwa einer transversalen
Energie von Fp = 1.4 GeV.

1009 -

101 4

integrated occupancy
T

0 10000 20000 30000 40000 50000 60000
Lutln * Slope - Offset

Abbildung 1.5: Die Integrated Occupancy ist in Abhéingigkeit von (LutIn*Slope-
Offset) dargestellt, da dies fir den Fir-Filter die relevante Grofle darstellt. Fiir den
Schnittpunkt mit 0.5 % wurde zwischen den Bins linear interpoliert.



Kapitel 2: Kiinstliche Neuronale
Netze

Kiinstliche Neuronale Netze (engl. : Artifical Neural Networks (ANN)) bilden eine
Kategorie von Machine Learning (ML) Algorithmen. Was ML eigentlich bedeutet,
beantwortet T. Mitchell 1997 : ”Man sagt, dass ein Computerprogramm dann aus
Erfahrungen E in Bezug auf eine Aufgabe T und ein Ma$ fiir die Leistung P lernt,
wenn seine durch P gemessene Leistung bei T mit der Erfahrung E anwéchst” [15].
In den letzten Jahren haben ANN stetig mehr Aufmerksamkeit bekommen und es
geschafft, immer komplexere Probleme 16sen zu konnen, wie z.B. in der Bild- und
Spracherkennung. Im November 2020 ist dem Netzwerk AlphaFold von Deep-Mind
ein Durchbruch in der Biologie gelungen, indem genaue Vorhersagen iiber die 3D-
Struktur von Proteinen anhand ihrer Aminosduresequenz moglich wurden [16]. Die
Idee von ANN ist jedoch schon &lter. Im Jahr 1943 stellten McCulloch und Pitts
das erste Mal die Idee von einem neuronalen Netz vor [17]. Sie lielen sich von Neu-
ronen lebender Organismen und deren Signalverarbeitung inspirieren und es gelang
ihnen, jede logische Operation mit kiinstlichen Neuronen durchzufiihren. Die Verbin-
dung zu biologischen Neuronen stellt lediglich die Grundidee dar. Es ist keineswegs
das Ziel von ANN, die Funktionsweise des Gehirns nachzubilden [18]. Der Baustein
von neuronalen Netzen wurde 15 Jahre spéter von Rosenblatt mit dem Percep-
tron verdffentlicht und auch die Verkniipfung mehrerer Perceptrons in einer Schicht
und Trainingsalgorithmen wurden entwickelt. Die Forschung kam zum Stillstand als
Minsky und Pepert 1969 Nachteile des Perceptron hervorhoben, wie z.B. die nicht-
Losbarbeit des XOR-Problems] In den Folgejahren konzentrierte sich die Forschung
auf andere ML-Verfahren. Erst mit der gestiegenen Rechenkapazitit zum Trainieren
grofler Netze, den verbesserten Trainingsalgorithmen und der Verfiigharkeit riesiger
Datenmengen sind ANN in den letzten Jahren wieder populér geworden. Im ATLAS-
Detektor finden ANN an vielen Stellen Anwendung:

e Bei der besseren Energierekonstruktion von Signalen im Liquid Argon Kalori-

!'Das XOR-Problem ist eine Klassifikationsaufgabe, bei der die XOR-Operation implementiert
werden muss. Dabei handelt es sich um nicht linear trennbare Daten, weshalb ein einzelnes Per-
ceptron die Aufgabe nicht 16sen kann, mehrere in Reihe dagegen schon.
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meter fiir die high-luminosity Phase des LHC [3]

e Um mit einer lokalen Pile-Up Korrektur durch ANN die Auswirkungen des
Pile-Up auf die Energie von detektieren Jets oder anderen Objekten zu redu-
zieren und damit die fehlende transversale Energie E#*$ genauer bestimmen

zu konnen [19]

e Die b-Jet Identifikation wird durch einen neuen Algorithmus mit ANN verbes-
sert. [20]

Dies sind nur wenige Beispiele von vielen Anwendungen. Im folgenden Abschnitt wer-
den die Grundlagen, das Training und die in dieser Arbeit benutzten Netzwerkarten
genauer beschrieben. Die Informationen dafiir wurden, wenn nicht anders gekenn-

zeichnet, von [21] bezogen.

2.1 Grundlagen neuronaler Netze

Ziel eines neuronalen Netzes ist es, eine Funktion f*(Z) zu lernen. Diese ist abhéngig
von den Input Daten Z, auch Feature genannt, und kann z. B. im Falle einer Klassifi-
kation ein Bild Z einer Klasse y = f*(Z) zuordnen. Das neuronale Netz bestimmt die
Kategorie y mit der gelernten Funktion f(&;6). Die Parameter § werden wahrend
des Trainings mit einem Trainingsdatensatz optimiert, sodass die wahre Funktion f*
moglichst genau durch f approximiert wird. f(&;6) ist eine Verschachtelung vieler
mathematischer Funktionen, die auch als einzelne Neuronen bezeichnet werden. Ein
einzelnes Neuron kann als mathematische Funktion gesehen werden. Es gibt einen
Input Z, welcher vektoriell sein kann, und einen von & abhéngigen Output y(Z). Der
Output entsteht aus einer gewichteten Summe aus dem Input, Gewichten 5, Bias b

und einer Aktivierungsfunktion f:
y(Z) = f(0-7+b). (2.1.1)

Die Aktivierungsfunktion bestimmt dabei, welcher Net-Input (5 - @+ b) zu grofien
Ausgaben des Neurons fiithrt und steuert so die Reaktion des Neurons auf die Einga-
be. Neuronen, welche parallel aufgebaut sind, also den gleichen Input erhalten, aber
unterschiedliche Gewichte haben, bilden eine Schicht (engl. : Layer). Damit hat das
Netz die Moglichkeit, verschiedene Eigenschaften des Inputs getrennt hervorzuhe-
ben. Bei neuronalen Netzen kommt es héufg vor, dass Schichten iibereinander plat-
ziert werden und der Output einer Schicht den Input der nédchsten Schicht darstellt.
Die erste Schicht, in der sich die Features befinden, wird Eingabeschicht genannt.
Die letzte Schicht mit dem Ausgabeneuron heifit Ausgabeschicht. Alle Schichten
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2.1. GRUNDLAGEN NEURONALER NETZE

dazwischen sind verborgene Schichten (Hidden Layer). Die Anzahl der verwende-
ten Schichten wird als Tiefe bezeichnet wahrend die Breite die maximale Anzahl
von Neuronen in einer Schicht beschreibt. Die Gewichte und der Bias sind die ein-
zigen Parameter, die das Netzwerk wéhrend des Trainings verdndern kann. Alle
anderen, wie z.B. die Tiefe oder die Breite, sind Hyperparameter und miissen bei
der Initialisierung des Netzwerkes festgelegt werden. In dieser Arbeit wurden aus-
schliefllich Feedforward Netze eingesetzt. Das heifit, es kommt an keiner Stelle zu

einer Riickfithrung des Signals.

Abbildung 2.1: Darstellung eines neuronalen Netzes mit 3 Hidden Layer (blau) und
einer Breite von 4. Die Eingabeschicht (griin) besitzt 3 Neuronen, wihrend es ein
Neuron in der Ausgabeschicht (rot) gibt. Ein Kreis entspricht dabei einem Neuron,
welches eine mathematische Operation (Gleichung reprasentiert.

Abbildung zeigt die Struktur eines ANN. Die Ausgabe [; ; eines Neurons in
der i-ten Schicht und an j-ter Stelle setzt sich zusammen aus: den Gewichten @;,j,
dem Bias b; ; und der Aktivierungsfunktion f;. Der Output des gesamten Netzwerks

ergibt sich aus:
y(@) = L(ls(la(1 () (2.1.2)

oder in ausgeschriebener Form
y(&) = fa(0s- f5(05 - Fo(05 - Fi(0] - T+ br) + o) + bg) + ba). (2.1.3)

Die Gewichte der verborgenen Schichten [;_3 sind als Gewichtsmatrix 6,_3 darge-
stellt, deren j-te Spalte durch 51_37j besetzt wird. Da die Ausgabeschicht aus lediglich

einem Neuron besteht, reduziert sich die Gewichtsmatrix auf einen Vektor 54.

Aktivierungsfunktion

Die Aktivierungsfunktion jeder Schicht (f;_4 in dem Netz von Abbildung ist

von zentraler Bedeutung fiir die Fahigkeit von ANNs, komplexe Aufgaben zu l6sen.
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KAPITEL 2. KUNSTLICHE NEURONALE
NETZE

Es ist wichtig, dass die Aktivierungsfunktion nicht linear ist, da sonst alle Schichten

und Neuronen zu einem linearen Modell zusammengefasst werden koénnen:

y(f) = el—irnearf + g]inear- (214)

T

linear und blinear

Hierdurch wiren komplexe Aufgaben nicht l6sbar. Die Parameter 6
setzen sich in diesem Fall aus den Gewichtsmatrixen und Biasvektoren des Netz-
werks zusammen. Die verwendeten Aktivierungsfunktionen sind in Abbildung
dargestellt.

Die Rectified Linear Unit (ReLU)(Abbildung [2.2a)) ist definiert durch:
ReLU(z) = max{0, z}. (2.1.5)

Sie ist ein verbreiteter, gut funktionierender Standard. Durch ihre stiickweise Linea-
ritdt ist die Ableitung im Vergleich zu anderen Aktivierungsfunktionen wie die der
spiter vorgestellten Sigmoid nicht nur grof}, sondern auch konstant fiir den aktiven
Bereich der Funktion. Dies hat Vorteile bei dem Training der Netzwerke. Bei z = 0
existiert allerdings ein Punkt, an dem sie nicht differenzierbar ist, wodurch es zu
Spriingen wihrend des Trainings kommen kann. Neben der ReLU wurde mit der

Exponential Linear Unit (ELU) noch eine weitere Aktivierungsfunktion verwendet:

T wenn z > 0

ELU(z) = { . (2.1.6)

alexp(z) —1) wennz < 0
Sie ist fiir z > 0 identisch mit der ReLLU, geht aber fiir negative x asymptotisch
gegen — « und ist an der Stelle x = 0 differenzierbar. Diese Eigenschaften fithren zu
einer hoheren Generalisierung des Netzwerkes und zu schnellerem Lernen [22]. Durch
die im Vergleich zur ReLU komplizierteren Form dauern die Berechnungen hingegen
langer. Neben der ReLU und ELU fand auch noch bei den Ausgabeschichten die
Sigmoid Aktivierungsfunktion, definiert als

sigmoid(x) DL

= — 2.1.7
l+expx ( )

Verwendung.
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Abbildung 2.2: Verwendete Aktivierungsfunktionen

2.2 Training von ANN

Der grofite Unterschied zwischen ANN und klassischen Filtern ist die Berechnung
der Gewichte jedes Neurons [23]. Diese werden wéihrend des Trainings von dem Netz-
werk ohne Eingreifen des Entwicklers selbstédndig optimiert. Das Training von ANN
unterteilt sich in zwei Gebiete: das Supervised und Unsupervised Learning. In die-
ser Arbeit wurde das Supervised Learning verwendet. Dabei stehen dem Netz neben
dem Datensatz der Input Feature X auch die gewiinschten Ausgaben Y, welche das
Netz mit X berechnen soll, zur Verfiigung. Wéahrend des Trainings wird der vom
Netzwerk berechnete Output ¢ mit dem wahren Wert y verglichen und basierend
darauf werden die Gewichte und der Bias der einzelnen Neuronen verédndert. Beim
Unsupervised Learning versucht das Netzwerk die der Daten X zugrundeliegende
Verteilung zu erlernen.

Die zur Verfiigung stehenden Daten X mit dem gewiinschten Output Y miissen
in ein Trainingsdatensatz (Xirain, Yirain) und ein Testdatensatz (Xiess, Yiest) aufge-
teilt werden. Das Training findet ausschliellich mit X .i, statt und X dient zur

Evaluierung. Das Training des Netzes hat zwei Ziele:
1. Reduktion des Trainingfehlers
2. Reduktion des Unterschieds zwischen Trainings- und Testfehler

Trainingsfehler und Testfehler sind dabei folgendermafien definiert:

(yi — 9:)> mit y; € Yirain (2.2.1)
i=1

Trainingsfehler =
Mytrain

und
Mtest

> (i —3)® mit y; € View (2.2.2)
=1

Testfehler =

Miest

13
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Die Grofien miest und miyqin stellen die Anzahl der verfiigbaren Trainings- /Testdaten
(x;,y;) dar. Der Trainingsfehler wird auch Loss genannt und mittels einer Loss Funk-
tion J (in der mittlere quadratische Fehler) berechnet. Andere mathematische
Funktionen, wie z. B. die mittlere absolute Differenz oder der mittlere prozentuale
Fehler, konnen fiir J ebenso verwendet werden.

Das erste Ziel beschreibt die Optimierung der Gewichte an die gesehenen Daten in
Xtrain, wahrend das zweite Ziel fiir die Generalisierung (Performance fiir nicht trai-
nierte Daten) des Netzes steht. Das Netzwerk darf sich, um beide Ziele zu erfiillen,
nicht zu stark an Xj;,,;, anpassen, da sonst der Fehler fiir X, steigt. Dies entspricht
einem Overfit. Beim Underfit hingegen ist der Trainingsfehler hoch, da das Netz-
werk nicht die Moglichkeiten hat, sich Xi..;, anzupassen. Die Netzwerkarchitekur
und Linge des Trainings bestimmen mafigeblich die Tendenz fiir den Over- oder

Underfit und miissen deshalb an die Aufgabe angepasst werden.

Der grundlegende Algorithmus hinter dem Training ist der Backpropagation Al-
gorithmus. In einem Vorwértsdurchlauf wird fiir einen Teil der Trainingsdaten die
Ausgabe aller Neuronen, sowie der Output des gesamten Netzes Q(g) in Abhéngigkeit
aller Gewichte § berechnet. Der Trainingsfehler .J(y, §(6)) setzt sich dann aus dem
gewiinschten Output y, der Loss Funktion J und dem berechneten Output 3)(5)
zusammen. Der folgende Riickwértsdurchlauf dient zur Anpassung der Parameter.
Zuerst berechnet der Algorithmus die Beitrdge der Gewichte an der Loss Funktion
mittels der Gradienten V;J (5) Dabei beginnt er bei der Ausgabeschicht und arbei-
tet sich, durch Anwenden der Kettenregel, stiickweise zur Eingabeschicht durch das
gesamte Netzwerk. Der letzte Schritt dient zur Aktualisierung der Gewichte mit den
berechneten Gradienten mit dem Ziel, das globale Minimum der Loss Funktion zu
finden. Die einfachste Art, die Gewichte anzupassen, stellt das Gradientenverfahren

dar:
04— 0—n-VzJ(0). (2.2.3)

Der Hyperparameter n ist die Lernrate und bestimmt die Schrittlange, mit wel-
cher der Algorithmus die Gewichte in entgegengesetzter Richtung der Gradienten
verdndert. Der Riickwéartsdurchlauf ist somit abschlossen und neue Datenpunkte
beginnen mit dem Forwértsdurchlauf. Nach der Verwendung aller Daten im Trai-
ningsdatensatz ist eine Epoche abschlossen. Fiir eine gute Anpassung der Parameter

sind immer mehrere Epochen pro Training notwendig.

Das Gradientenverfahren hat den Nachteil, dass bei kleinen Gradienten die Op-
timierung der Gewichte sehr langsam stattfindet. Deshalb fand der Adam Optimizer
[24] in dieser Arbeit Anwendung. Dieser benutzt nicht nur die Gradienten des ak-

tuellen Schrittes, sondern beriicksichtigt auch die vorangegangenen Schritte, um so
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schneller und direkter das Minimum zu finden [1§].

2.3 Netzwerkarten

Es gibt viele verschiedene Arten von neuronalen Netzen. Sie unterscheiden sich da-
bei nicht nur in ihrer unterschiedlichen Anzahl an Schichten oder benutzen Aktivie-
rungsfunktionen, sondern auch in der Struktur, wie die einzelnen Neuronen ihr Signal
weitergeben. Die in dieser Bachelorarbeit genutzten Netzwerkarten sind Multilayer
Perceptron (MLP)-Netze, Convolutional Neural Networks (CNNs) oder Kombina-
tionen aus Beiden. Fiir die Realisierung der Netze sowie dem Training wurden die

Bibliotheken von Tensorflow [25] und Keras [26] in Python verwendet.

Multi-Layer Perceptron Netzwerk

Ein MLP ist von der Struktur aufgebaut wie das Netzwerk in Abbildung mit
lediglich mehr und breiteren Schichten. Es stellt die einfachste Struktur dar, in der
die Neuronen verbunden werden. Die Ausgabe eines Neurons wird an alle Neuronen
der nachfolgenden Schicht weitergegeben, sodass man von einem vollstdndig verbun-
denen Netzwerk spricht. Die entscheidenden Parameter fiir MLP sind die Anzahl der
Schichten, die Neuronen pro Schicht und die Aktivierungsfunktionen jeder Schicht.

Convolutional Neural Networks

CNNs sind besonders erfolgreich bei der Erkennung von Strukturen, wie z.B. der
Objekterkennung in Bildern oder von Pulsen in einer Zeitserie, weshalb sie fiir diese
Arbeit ausgewéhlt wurden. Sie besitzen mindestens eine Convolutional Layer, des-
sen Funktion an der mathematischen Operation der Faltung angelehnt ist.

Eine Serie von Inputdaten, deren Lénge dem Receptive Field entspricht, wird von
einem Kernel mit einem Fenster, realisiert durch ein Neuron, abgefahren. Die Anzahl
an Inputs, die das Neuron verarbeitet, bestimmt das Fenster des Kernels, welches
kleiner als das Receptive Field sein muss. Wéahrend des stiickweisen Abfahrens der
Inputdaten verarbeitet das Neuron geméf Gleichung[2.1.1] mit gelernten Gewichten
und einem Bias, die im Fenster liegenden Daten zu einem eindimensionalen Output.
Abbildung visualisiert diese Verfahren. Neben der Fenstergrofle des Kernels ist
ein weiterer wichtiger Parameter die Anzahl der Feature Maps in dem Convolutio-
nal Layer. Die Feature Maps geben an, wie viele Kernel die Input Serie parallel
durchgehen. Diese besitzen dabei unterschiedliche Gewichte und kénnen sich so auf
unterschiedliche Muster spezialisieren. Die nachfolgende Schicht erhélt den Output
der verschiedenen Kernels aus den Feature Maps.

Nach oder zwischen den Convolutional Layern folgen meistens noch Schichten zur
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Reduktion der Datenmenge, den Pooling Layern, gefolgt von Schichten mit vollstandig
verbunden Neuronen, die den Output der Convolutional Layer verarbeiten und die
Ausgabe des gesamten Netzwerks berechnen. Der Vorteil von CNNs liegt darin, ins-
gesamt weniger Parameter zu bendtigen und viele Parameter mehrmals verwenden
zu konnen. Der Kernel fahrt das komplette Receptive Field mit den gleichen Pa-
rametern ab, wihrend im Vergleich dazu ein MLP-Netz fiir jeden Zeitschritt im
Receptive Field ein Neuron mit eigenen Gewichten zugeteilt hat.

Entscheidende Hyperparameter bei der Initialisierung sind dabei die Kernelgrofe,
die Anzahl an Feature Maps, die Aktivierungsfunktionen, die Anzahl der Convo-
lutional Layer, die Art und Héufigkeit von Pooling Layern sowie die Anzahl der

vollstéandig verbundenen Neuronen.

Conv 2
kernel =6
Conv1
kernel =3
Input
ty ta ... t1 1t Bias

Receptive Field = 13

Abbildung 2.3: Die Abbildung illustriert die Funktionsweise zweier hintereinander
platzierten Convolutional Layer. Der Kernel von Conv 1 wird dargestellt als eine
Reihe von identischen Neuronen (weifle Wiirfel), bei denen jedes Neuron nur ein
kleines Fenster (Fenstergrofie des Kernels) des Receptive Fields sieht. Drei Feature
Maps in Conv 1 sind durch die parallelen Reihen der Neuronen dargestellt, deren un-
terschiedliche Gewichte mit 3 Farben gekennzeichnet sind. Durch die Feature Maps
in Conv 1 erhélt Conv 2 einen zweidimensionalen Input und der Kernel wird zu
einem 6 X 3 Fenster, welches, die Inputsequenz abfihrt. Bildausschnitt aus [3]
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Kapitel 3: Simulation und

Datenstruktur

Fiir das Supervised Learning wird ein umfangreicher Datensatz zu dem ADC-Output
des Tile-Kalorimeters mit der wirklichen Energie der detektieren Teilchen benotigt.
Echte Daten aus élteren Laufen des LHC haben das Problem, dass die den Hits zu-
gewiesene Energie aus der Berechnung mit dem FIR-Filter stammt. Das trainierte
Netz wére somit von der Zuverléssigkeit des FIR-Filters abhéngig. Auch werden bei
detektierten Hits nur 5 oder 7 BC abgespeichert, wodurch die Netzwerkarchitek-
tur eingeschréinkt wére. Eine Alternative stellen Zero Bias Daten mit hinzugefiigten
Pulsen bekannter Energie dar.

Die Daten wurden mithilfe der Simulation ToyMC generiert. Diese entwickelte A.
C. Daniels im Rahmen seiner Doktorarbeit|4], um die Parameter des FIR-Filters zu
optimieren. ToyMC simuliert den vollstindigen ADC-Output der TT in den Ka-
lorimetern iiber einen kompletten Umlauf im LHC fiir beliebige |n|. Beriicksichtigt
wird dabei das Fiillschema des LHCs, damit Effekte wie in-time und out-of-time
Pile-Up sowie verschiedene Rauschquellen genau rekonstruiert werden. Der Vorteil
einer Simulation des vollstdandigen ADC-Outputs besteht darin, durch langere Ein-
gangssequenzen flexibler in der Architektur der Netzwerke zu sein. Neben dem di-
gitalisierten Signal eines T'T kann auf die Energie der im Output platzierten Pulse
zuriickgegriffen werden, womit sich das Supervised Learning fiir die neuronalen Net-
ze realisieren ldsst. Dieses Kapitel behandelt die Struktur der verwendeten Daten

und geht auf die Implementierung in der Simulation ein.

3.1 Rauschquellen

Die groBiten Rauschquellen im Tile-Kalorimeter sind das thermische Rauschen und
der Pile-Up. Die Auswirkung auf die Leistungsfahigkeit des Triggers liegen in der
schlechteren Effizienz bei der Detektion von niedrigenergetischen Hits und der re-
duzierten Auflosung fiir die Energiebestimmung bei getriggerten Hits. Dies ist der

Grund fiir die Einfithrung eines Noisecuts im FIR-Filter und den trainierten Netz-
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werken. Ohne Noisecut steigt die Rate von falsch detektierten Ereignissen mit nied-
riger Energie. Das thermische Rauschen hat ein weifles Spektrum. Es hédngt von
der Detektor Charakteristik und der elektronischen Verarbeitung des Signals, wie
z. B. den Verstiarkern oder Kabeln, ab. Fiir den untersuchten TT in dieser Arbeit
bei n = —0.25 wird in den ToyMC Tool ein gaussférmiges thermisches Rauschen
mit einer Standardabweichung von orpema = 0.357 GeV verwendet. Im Vergleich
zu TT bei hoheren |n| ist das thermische Rauschen, fiir den betrachteten TT, deut-
lich hoher. Das Rauschen ist abhéngig von der deponierten Energie. Da jedoch im
Trigger die transversale Energie bestimmt wird, skaliert das thermische Rauschen
mit sin(f) [4]. Die Simulation beriicksichtigt das thermische Rauschen, indem fiir
jedes BC ein zufilliger Wert geméfl der Normalverteilung fiir den simulierten TT

zum Pedestal addiert wird.

Eine weitere Rauschquelle entsteht durch das Digitalisieren des analogen Signals
auf 10 Bit. Fiir den ADC-Output mit einem least significant Bit (LSB) von 0.25 GeV
betragt der mittlere Fehler geméfl der Regel L\/Sll;’ [27] ungefahr 72 MeV.

Der Pile-Up entsteht dadurch, dass es in jedem BC zu Ereignissen mit hohem
Wirkungsquerschnitt kommt. Die Grofie (u) beschreibt, wie viele Proton-Proton-
Interaktionen es im Mittel pro BC gibt und stellt somit ein Maf fiir die Hohe des Pile-
Ups dar. Da die meisten dieser Interaktionen uninteressant sind, es aber trotzdem
zu einer Energiedeposition in den Kalorimentern kommt, tragen sie zum Rauschen

bei. Es wird unterschieden zwischen dem in-time Pile-Up und out-of-time Pile-Up.

o
©

— Analogue Pulse
—— ADC-Output

Normalized Amplitude
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Abbildung 3.1: Puls in analoger und digitalisierter Form in dem Kalorimeterbereich
TileLB aus Oszilloskop-Messungen|[14]. Nach dem positiven Ausschlag folgt der Un-
dershoot mit leicht negativer Amplitude. Bei Pulsen im Tile-Kalorimeter ist der
Undershoot deutlich geringer im Vergleich zum elektromagnetischen Kalorimeter.
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Out-Of-Time Pile-Up

Die Untergrundprozesse erzeugen genauso wie hochenergetische Hits einen Puls im
analogen Output des Kalorimeters, wie er in Abbildung zu sehen ist. Da die
gesamte Pulsldnge inklusive Undershoot sich insgesamt {iber mehrere BCs erstreckt,
beeinflusst ein Pile-Up Event bis zu 26 nachfolgende BCs. Der Zeitnullpunkt wird als
das Maximum des Pulses definiert. Aufgrund der Pulsbreite kann sich der Einfluss
eines Pile-Up Events auch auf bis zu 3 vorherige BCs erstrecken. Die Pile-Up Events
erzeugen eine stindige Uberlagerung von Untergrund-Pulsen und hochenergetischen
Hits. Der out-of-time Pile-Up kann interessante Ereignisse auf verschiedene Weise
beeinflussen: Es entsteht eine konstruktive Interferenz zwischen Pile-Up Event und
hochenergetischem Hit, wenn der Pile-Up nahe der Pulsamplitude auftritt. Die Ener-
gie des Hits wird iiberschétzt. Durch den Undershoot der Pulse kann aber auch eine
destruktive Interferenz entstehen, wodurch es zu einer Unterschétzung der Energie
des Hits kommt.

In-Time Pile-Up

Der in-time Pile-Up entsteht, anders als der out-of-time Pile-Up nicht durch Pile-
Up Events aus vorherigen BCs, sondern von Ereignissen im selben BC. Die Pul-
samplituden des interessanten hochenergetischen Hits und dem in-time Pile-Up
iiberlagern sich und sind nicht zu unterscheiden. Die konstruktive Interferenz fiithrt
zu einer Uberschiitzung der Energie des Hits. Der Pile-Up wird in der Simulation
beriicksichtigt, indem in jedes BC ein Pulse mit zufélliger Amplitude eingefiigt wird.
Die Abbildung zeigt die auftretenden Pile-Up Ereignisse als Funktion ihrer Am-
plitude in ADC Counts. Die maximale Pile-Up Amplitude betréigt 1.8 ADC und da-
mit 0.45 GeV. Verglichen mit dem thermischen Rauschen mit orpema = 0.357 GeV
ist der Pile-Up mit einer mittleren Amplitude von 0.025 GeV klein. Somit ist die
dominierende Rauschquelle fiir die betrachteten Daten rein gauss’sches Rauschen.

Diese Werte gelten fiir ein simuliertes (u) von 40.
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Abbildung 3.2: Amplituden der Pile-Up Ereignisse bei einer Simulation von 1.4 - 108
BCs bei (u) = 40

3.2 Fillschema

Die Bunches im LHC sind nicht gleichméfig mit Teilchen gefiillt, sondern geméaf3
eines Fiillschemas. Fiir die Simulation wurde ein 4-4-2 Schema verwendet, wie es
in Abbildung zu sehen ist. Es werde jeweils zwei oder vier Gruppen aus 72
gefiillten Bunches in sogenannte Batches zusammengefasst. Zwischen den Gruppen
liegt die Short Gap mit einer Lénge von 8 nicht gefiillten Bunches. Nach einem
Batch folgt die Long Gap von 36 nicht gefiillten Bunches bis zum néchsten Batch.
Dies wird in dem Muster 4-4-2 wiederholt, bis die Abort Gap am Ende eines LHC-
Umlaufs das Fiillschema abschliefit. Dieses Schema resultiert aus den Eigenschaften
des Vorbeschleunigersystems.

Die Liicken im Fiillschema, in denen keine Proton-Proton-Interaktionen auftreten,
haben Auswirkungen auf den ADC-Output aufgrund des out-of-time Pile-Ups. Es
entsteht eine BC-abhéingige Verschiebung des Pedestals. Abbildung zeigt den
gemittelten ADC-Output iiber 6.5-10* LHC-Umliufe. Das Pedestal ist iiberall dort
grofler als das mittlere Pedestal von 31.68, wo die Bunches gefiillt sind. Ursache dafiir
ist der Puls (Abbildung , welcher nicht auf Null normiert ist, wie es in anderen
Detektorbereichen der Fall ist. Jeweils zu Beginn einer Gruppe ist ein deutlicher
Anstieg, relativ zum Rest der Gruppe, sichtbar. Der ADC-Output setzt sich aus
ciner Uberlagerung von Hits, Undershoot von vorherigen Hits, in-time Pile-Up, out-
of-time Pile-Up und thermischem Rauschen zusammen. Aufgrund der nicht gefiillten
BCs in der Short Gap fehlen am Anfang einer Gruppe der Undershoot von Pile-Up
Events und Hits aus vorherigen BCs. Daher steigt das Pedestal dort stark an. Je
linger die Gap vor einer Gruppe ist, desto hoher fillt der Anstieg aus. Innerhalb

einer Gruppe fithren die Uberlagerungen von Hits und Pile-Up Events aus vorherigen
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BCs zunéchst zu einer Verringerung des Pedestals bis dieser schlussendlich konstant

wird.
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Abbildung 3.3: Verwendetes 4-4-2 Fiillschema des LHC
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Abbildung 3.4: Auswirkungen des Fiillschemas und Pile-Ups auf das mittlere Pede-
stals
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3.3 Implementierung von Hits

Der Pile-Up und die Hits, welche durch den Filter erkannt werden sollen, sind in der
ToyMC Simulation getrennt voneinander. Somit werden neben den Pile-Up Pulsen
auch Pulse implementiert, deren Amplitude aus einer Verteilung fiir die Hits gezo-
gen wird. Die Verteilung der Amplituden stammt aus experimentellen Messungen
und wurde fiir die Arbeit mit den Netzen modifiziert, sodass hoherenergetische Hits
ofters auftreten. Fiir das Training mit den Netzwerken ist eine hohe Anzahl von Hits
mit hoheren Energien notwendig. Die Modifikation verkiirzt dabei die Rechenzeit.
Beide Verteilungen sind im Anhang zu finden (Abbildung [A.1]).

In Abbildung [3.5]ist der ToyMC Output fiir einen Ausschnitt von 100 aufeinan-
der folgenden BCs dargestellt. Die blaue Linie zeigt den ADC-Output, welcher als
Input fiir die Modelle dient. Weiter zu sehen sind die verschiedenen, zuvor beschrie-
benen, Beitriage, aus welchen sich der ADC-Output zusammensetzt. Die orangene
Linie beschreibt die implementierten Hits, die rote Linie ist der Pile-Up und das
thermische Rauschen wird durch die griinen Balken dargestellt. Der Puls bei dem
BC 2403 besteht aus einer Uberlagerung von zwei direkt hintereinander auftreten-
den Pulsen mit Energien von 0.96 GeV und 2.32 GeV. Alle anderen implementierten
Ereignisse in dem Ausschnitt liegen in einem Bereich von ca. 0.1 — 0.5 GeV. Auf-
grund des starken thermischen Rauschens sind diese Ereignisse im ADC-Output
nicht erkennbar. Der Pile-Up hat im Vergleich zum thermischen Rauschen einen

vernachléssigbaren Einfluss auf den ADC-Output.

Beispiel Output der TOYMC Simulation

—— total adc output
analoge Signal von implementierten Hits
—— analoges Signal von implementiertem Pile-up
thermal Noise

45.0

42.54

w
3
n

35.04

adc value

32.51

30.0

2360 2380 2400 2420 2440

BC

Abbildung 3.5: Output der ToyMC Simulation mit den verschiedenen Rauschquellen
und implementierten Hits
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Kapitel 4: Initialisierung und Trai-

ning der Netzwerke

In diesem Kapitel wird die Implementierung der in Kapitel 2 beschriebenen Netz-
werkarten mit den in Kapitel 3 eingegangenen Daten diskutiert. Die grundlegende
Aufgabe, die durch ein trainiertes Modell gelost werden soll lautet: Hits im ADC-
Output identifizieren und ihre Energie genau berechnen. Ein gutes Netz zeichnet
sich dadurch aus, dass Hits auch bei niedrigen Energien dem richtigen BC zuge-
ordnet werden und die Auflésung der Energiebestimmung hoch ist. Das Netz erhélt
als Input eine Sequenz des ADC-Outputs, den Featuren, und wird darauf trainiert,
auf einen bestimmten Eintrag in der Sequenz sensitiv zu sein. Die Ausgabe des
Netzwerks entspricht der Energie des Pulses, dessen Amplitude sich an dem sen-
sitiven BC befindet. Gibt das Netzwerk eine Energie von Null aus, bedeutet dies,
dass es keinen Puls an der entsprechenden Stelle identifiziert hat. Es ist dadurch
moglich, eine ausgegebene Energie eindeutig einem BC zuzuordnen. Abbildung

veranschaulicht das Vorgehen.

' Input Output
|3z l31 I33 I37 lss las |3A Isz l31 |3z Isz | E—— Trainiertes Netzwerk E——

| 30 | 31 | 33 l 2 l 31 I 33 | 37 I 36 | 35 | 34 | 32 | - Trainiertes Netzwerk e

Abbildung 4.1: Es sind zwei Beispiele dargestellt, wie die grundlegende Struktur
der Netzwerke aufgebaut ist. Die dargestellte Sequenz aus dem ADC-Output hat
eine Lange von 11 BC und stellt die Feature dar. Der dariiber aufgezeichnete Puls
befindet sich an dieser Stelle im ADC-Output. Die sensitive Position in der Sequenz
ist gelb markiert und entspricht dem 5. Eintrag. Befindet sich dort die maximale
Amplitude eines Pulses, soll das Modell die Energie berechnen und ausgeben (oberes
Beispiel). Ist dies nicht der Falle, gibt das Netzwerk idealerweise eine Energie von 0
aus (unteres Beispiel).
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KAPITEL 4. INITIALISIERUNG UND TRAINING DER NETZWERKE

Die implementierten Hits kénnen Energien zwischen 0 und 10 GeV haben. Das
Training zielt darauf ab, alle Hits unabhéngig ihrer Energie zu finden. Da dies bei
niedrigen Energien, wegen des thermal Noise, aber unmoglich ist, wird auf die Aus-
gabe der Netze ein Noisecut angewendet. Die Bestimmung des Noisecuts wird in

thematisiert. Zu diesem Zeitpunkt wird vorerst kein Noisecut verwendet.

4.1 Verwendete Netzwerke

Fiir die spezielle Architektur der Netze wurden mehrere Ansétze realisiert und deren
Performance spater verglichen. Im folgenden Teil werden die unterschiedlichen Netze

vorgestellt.

Trigger Netzwerk

Die Architektur des Trigger Netzwerks ist inspiriert durch [3]. Das Modell setzt sich
aus zwei Teilen zusammen: dem Trigger und dem E_cal Netzwerk. Der Trigger ist
dafiir zusténdig, in der Inputsequenz Hits zu erkennen. Seine Ausgabe liegt zwischen
Null und Eins. Eine Eins bedeutet, dass die Wahrscheinlichkeit fiir einen Hit an der
sensitiven Position hoch ist. Bei einer geringen Wahrscheinlichkeit liegt der Out-
put nahe Null. Das E_cal Netzwerk verarbeitet die Ausgabe des Triggers zusammen
mit der Sequenz, um daraus die Energie eines moglichen Pulses zu bestimmen. Die
Verwendung der Informationen des Triggers unterliegen keinen Vorgaben und wird
wéhrend des Trainings vom Netz selbststindig festgelegt. Der Trigger und auch das
E_cal Netzwerk bestehen aus CNNs mit zwei Convolutional Layern. Das Training
findet zuerst getrennt statt, indem der Trigger vortrainiert wird. Erst danach opti-
miert sich das gesamte Modell aus Trigger und E_cal Netzwerk. Durch diesen Ansatz
erhofft man sich eine bessere Leistungsfiahigkeit, da die Detektion und Energiebe-
rechnung von Hits durch zwei separate Netze durchgefiihrt wird. In Abbildung
ist die Struktur des Trigger Netzwerks dargestellt. Die Performance des vortrainier-
ten Triggers ist im Anhang unter zu finden.

Combinational Netzwerk

Wie das Trigger Netzwerk, so besteht auch das Combinational Netzwerk aus vortrai-
nierten Modellen. Aber anstatt eines Triggers verwendet das Combinational Netz-
werk drei Subnetzwerke, welche verschiedene Aufgaben erfiillen. Das Erste heifit
E_low und ist darauf spezialisiert, die Energie von niedrigenergetischen Hits (<
1.5GeV) zu berechnen und vom Hintergrund zu unterscheiden. Beim zweiten Sub-

netzwerk, dem E_high, findet die Energiebestimmung fiir hoherenergetische Hits
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4.1. VERWENDETE NETZWERKE

(> 1.5 GeV) statt. Die Entscheidung welches Subnetzwerk fiir die Ausgabe verant-
wortlich ist, trifft das Decision Netzwerk. Dessen Output w liegt zwischen 0 und
1, wobei 0 fiir B < 1.5GeV bzw. 1 fiir Er > 1.5GeV steht. Der finale Output
entsteht aus einer gewichteten Summe aus dem Output von E_low, E_high und den

Gewichten w:
Output(w, E_high, E_low) = E_high * w + E_low (1 — w). (4.1.1)

In Abbildung ist diese Struktur graphisch dargestellt. E_high und E_low wer-
den durch MLP-Netze realisiert, wahrend das Decision Netz aus einem CNN mit
zwei Convolutional Layern aufgebaut ist. Durch die Aufteilung des Energiebereichs
wéihrend des Trainings auf zwei separate Netze, wird sich eine bessere Detektion der
niedrigenergetischen Hits erhofft, ohne die hochenergetischen zu vernachléssigen. Die

Performance der drei Subnetzwerke befindet sich im Anhang unter

Output
T Output(w, E_high, E_low)
WF
E_cal Netzwerk Decision
Netzwerk
I F'y
E_high E_low
Trigger Netzwerk Netzwerk
HENEEEEEEEEE EEEEEEEEEEE
(a) Trigger Netzwerk (b) Combinational Netzwerk

Abbildung 4.2: Datenfluss des verwendeten Trigger und Combinational Netzwerks.
(a) : Der vortrainierte Trigger verarbeite zuerst die Sequenz und das E_cal Netzwerk
berechnet die Energie mit der Sequenz und dem Output des Triggers. Der leer Array
symbolisiert eine beliebige Sequenz des ADC-Outputs analog zu Abbildung

(b) : Das E_low und E_high Netzwerk berechnen ihren Output basierend auf der
Input Sequenz. Das Decision Netzwerk bestimmt mit seinem Output w die Gewich-
tung der beiden Netzwerke. Der finale Output wird iiber Gleichung berechnet.
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KAPITEL 4. INITIALISIERUNG UND TRAINING DER NETZWERKE

CNN _single und CNN _multiple

CNN_single und CNN_multiple sind Netzwerke mit einer CNN-Architektur. Der ein-
zige Unterschied zwischen beiden ist die Art und Weise, wie die Trainingsdaten ver-
wendet werden. Die Abbildung zeigt die Unterschiede zwischen CNN_single und
CNN_multiple.

XTrain Yrrain
1. |d1|d2|d3la'4|dsldn|d7|dsld9|dmldul

Trainiert mit

CNN_single 2.

T 3

L[ 2] ds | di] ds ] ds | dy | ds] do ] did] dui]

(a) CNN_single

7]
w

[di| o] ds] d] as] as] ar| do| do | de] i)

t

| £] Ba| B [ | B B B [ | Bo [Bro]Eus]

I X Train YTTain
1 |dlld2|d3|d4|dS[db|d7[dB|d‘)|dW|dH‘ |EL|EZ|E3|EA|ES|E6|E7IEB|EQIE10|EU|
CNN ltiol Trainiert mit
_multiple
2 [(da] @[] de]ds ] de] dr] da | do] o ] | [E| B8] Ba] B[ | &5 | 8] B | B £
I 3.

[a]@]a]a]a]a]a]a]a]afa]

(b) CNN_multiple

Abbildung 4.3: Unterschied zwischen den Netzwerkstrukturen CNN_single und
CNN_multiple.

(a) : Das Netzwerk bestimmt die Energie E5 des 5. Eintrags in der Inputsequenz
bestehend aus den ADC-Werten d;. Trainiert wird es mit Sequenzen und der wahren
Energie der 5. Stelle Fs.

(b) : Das CNN_multiple ist darauf designt, die Energie von jeder Stelle der Inputse-
quenz zu bestimmen. Die finale Ausgabe des Netzwerks bildet jedoch nur die Energie
des 5. Eintrags analog wie beim CNN _single. Der entscheidende Unterschied ist je-
doch, dass das Training nicht nur mit F5 sondern, wie dargestellt, mit allen wahren
Energien durchgefiihrt wird. Auf diese Weise erhélt das Netzwerk wiahrend des Trai-
nings deutlich mehr Informationen.

Wie schon vorher beschrieben und in Abbildung dargestellt, wird fiir eine
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Sequenz aus ADC-Werten nur die Energie der 5. Stelle vorhergesagt. Die Trainings-
daten enthalten dementsprechend Paare aus den Sequenzen und deren wahren Ener-
gien an der 5. Stelle. Dieses Vorgehen wird von allen zuvor beschriebenen erstellten
Netzwerken sowie den CNN_single umgesetzt. Ein Aspekt, der dabei nicht beachtet
wird ist, dass alle Informationen iiber Energiedepositionen an anderen Positionen
in der Sequenz unberiicksichtigt bleiben. Die Idee des CNN_multiple ist es, diese
zusétzlichen Informationen iiber die Sequenz mit zu benutzen. Die Eigenschaft, der
Equivarianz gegeniiber Translation [21], von CNNs wird dabei ausgenutzt. Sie be-
sagt, dass ein in der Input Sequenz verschobener Puls ein um den selben Betrag
verschobenen Output erzeugt. Das CNN_multiple hat somit die Md6glichkeit, auch

von Pulsen zu lernen, deren Amplitude nicht an der 5. Stelle der Input Sequenz liegt.

4.2 Trainingsdaten

Die Trainingsdaten sind neben der Architekur der Netze ein zentraler Bestandteil
fiir die Arbeit mit ANNs. Fiir die Simulation der Umléufe des LHC wurde das
ToyMC verwendet. Aufgrund des seltenen Auftretens von hochenergetischen Hits
in der Zeitserie ist ein Training mit den kompletten Daten aus mehreren Umléufen
nicht moglich. Andererseits entsteht ein Modell, indem nur niedrigenergetische Hits
aufgrund ihres hdufigen Auftretens (mittlere Energie der implementierten Hits liegt
bei 0.29 GeV siehe Abbildung erkannt werden und die Anpassung an hoch-
energetische Hits nicht gelingt. Um dem entgegenzuwirken, wurde die Energievertei-
lung der Hits verdndert und die Sequenzen mit Hits aus den Umléufen aussortiert.
Zusitzlich fand noch eine Auswahl von Sequenzen ohne Hit (7= des Trainingsets)
und mit verschobenen Hit(% des Trainingsets) statt. Um die Auswirkungen der Ener-
gieverteilung der Trainingsdaten zu studieren, wurden 4 verschiedene Trainingssets
erstellt. Abbildung zeigt die Energieverteilung der verwendeten Trainingsdaten.
Die Anzahl der verwendeten Sequenzen pro Trainingssets ist im Anhang zZu
finden.
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Abbildung 4.4: Die Abbildung zeigt die verschiedenen benutzten Energieverteilun-
gen der Trainingsets aus ausgewéhlten Sequenzen.

(a) : Bei der ratio Verteilung sind die Hits aus vielen Umldufe zufillig aus-
gewdhlt. Dadurch bildet sich die grofle Anzahl niedrigenergetischer Sequenzen
(Er < 1.5GeV). Die unifrom verteilten hochenergetischen Hits entstehen aus der
Modifizierung der zugrundeliegenden Energievertielung in der Simulation. Die Trai-
ningsdaten bilden dadurch die tatséchliche Verteilung der Daten am genauesten ab,
werden aber dominiert von Energien kleiner 1.5 GeV.

(b) : Die zweite Verteilung verwendet uniform verteilte Hitenergien mit zusatzlichen
Daten ohne Hit, wodurch alle Energien gréfler Null eine gleiche Gewichtung besit-
zen.

(c) & (d) : Verteilung 3 und 4 stellen den Mittelweg zu den Extremen in Verteilung
1 und 2 dar. Die Energien der Trainingsdaten wurden dafiir méglichst genau an die
Funktion f(z) =€ **+bmit a = 1 und a = 0.1 fiir Verteilung 3 bzw. 4 angepasst.
Die ausgewahlte Form soll kleine Energien starker beriicksichtigen, da diese auch
ofters auftreten, aber gleichzeitig hohe Energien nicht vernachléssigen.



4.3. TRAINING UND HYPERTUNING

4.3 Training und Hypertuning

Vor dem Training der Netzwerke mit einem Trainingsset miissen die Hyperpara-
meter der verschiedenen Modelle festgelegt werden. Die dafiir verwendete Methode
heifit Hypertuning. Der benutzte Algorithmus [28] initialisiert dabei das Netzwerk
mit vielen unterschiedlichen Sets von Hyperparametern, trainiert und evaluiert es.
Die Evaluation findet mit 30 % der Trainingsdaten statt, dem Validation Set. Es
wird nicht fiir das Training verwendet, sondern nur zum Testen der unterschied-
lich initialisierten Modelle. Das finale Netzwerk erhélt schliefilich das Set an Hy-
perparametern, welches den geringsten Validierungsfehlei| hatte. Der Vorteil des
Hypertunings ist, dass die Hyperparameter, wie z. B. die Anzahl an Neuronen, auf
eine optimale Generalisierung optimiert werden. Das in Abschnitt beschriebene
Over-/Underfitting wird somit verhindert. Nach dem Hypertuning fand das finale
Training mit einem der vier erzeugten Trainingsdatensitze statt. Um dabei einen
Overfit durch zu langes Training zu verhindern, wurde ein Early Stopping verwendet.
Der minimale Validierungsfehler pro Epoche bestimmt dabei die Anzahl der verwen-
deten Epochen. Folgende Kombinationen aus den erstellten Netzen (Abschnitt
und Trainingsdaten (Abschnitt kamen zum Einsatz:

Netzwerk Trainingsdaten Abkiirzung Parameter
Trigger Netzwerk ratio/uniform Trigger_Netzwerk 13247

Combinational Netzwerk | ratio/uniform | Combinational Netzwerk 5173
CNN_single ratio CNN_single_ratio 5496
CNN_single uniform CNN_single_uniform 3996
CNN_single expl CNN _single_expl 3851
CNN_single exp2 CNN single_exp2 3726
CNN _multiple ratio CNN_multiple_ratio 3418
CNN_multiple uniform CNN_multiple_uniform 4743
CNN _multiple expl CNN _multiple_expl 7618
CNN _multiple exp2 CNN _multiple_exp2 7618

Tabelle 4.1: Benutzte Kombinationen aus den verschiedenen Trainingssets und Netz-
werken und der finalen Anzahl an Parametern nach dem Hypertuning

Die insgesamt moglichen Kombinationen an Hyperparametern betrugen bis zu
ca. 8200 fiir ein einzelnes Netz. Da es unmoglich war, alle moglichen Sets zu initiali-
sieren, wihlte der Algorithmus pro Netzwerk 200 zufillige aus. Die Validierungsfeh-
ler der 200 verschiedenen Sets geben einen Anhaltspunkt, welche Hyperparameter
einen groflen Einfluss auf die Performance haben und welche nicht. Diese Informa-

tion ist besonders bei einer moglichen Implementierung auf Field Programmable

!Dieser wird analog zum Testfehler, aber mit dem Validationset, berechnet (sieche Gleichung
2.2.2)
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Gate Arrays (FPGAs) interessant. Die Grofie der Netzwerke oder z. B. die Anzahl

an Inputfeatures konnen so beziiglich vorhandener Ressourcen optimiert werden.

In Abbildung sind die Ergebnisse des Hypertunings von 4 ausgewéahlten Hy-
perparametern dargestellt. Aufgetragen ist die Verteilung des Validierungsfehlers
fiir die moglichen Werte des gezeigten Hyperparameters. Die in Abbildung dar-
gestellten Hyperparameter crop lower limit und crop upper limit beschreiben die
Kiirzung am Anfang beziehungsweise am Ende des benutzten Receptive Fields von
11 BCs. Bei einem crop lower limit von 3 wird von den selektierten Sequenzen die
ersten 3 BCs abgeschnitten. Teile des Pulses gehen dabei moglicherweise verloren,
aber eine Reduktion des Receptive Fields fithrt andererseits zu einer Reduktion der
Parameter. Das Hypertuning hat gezeigt, dass fiir die Netzwerke ein Abschneiden
am Anfang der Sequenz zu einer sichtbaren Erhohung des Validierungsfehlers fiihrt
(siche Abbildung . Das Kiirzen am Ende der Sequenz, beschrieben durch crop
upper limit, hat nur negative Auswirkungen fiir CNN _multiple (siehe Abbildung
4.5bf), nicht aber fiir CNN_single. Abbildung zeigt das Ergebnis fiir die Akti-
vierungsfunktion in der Ausgabeschicht von CNN_multiple_exp3 mit einer starken
Tendenz fiir die ELU. In vielen Schichten wurden die in Abschnitt beschriebe-
nen Aktivierungsfunktionen ELU und RELU getestet, aber ohne eine allgemeine
Préferenz fiir eine Funktion zu erhalten. Das Histogramm zeigt beispielhaft,
dass die Erhchung der Parameter wie hier durch eine gréflere Anzahl an Feature
Maps nicht immer eindeutig zu einem geringeren Validierungsfehler fithrte und da-

mit die Grole der erstellten Netze der Aufgabe angemessen war.
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Abbildung 4.5: Die Abbildung zeigt 4 Ergebnisse des Hypertunings. Es sind einige
Beispiele von Hyperparametern dargestellt, bei denen es zu grofien Unterschieden des
Validierungsfehlers zwischen den eingestellten Moglichkeiten kam. Die Diagramme
zeigen jeweils fiir jeden moglichen Wert eines Hyperparameters das normierte Hi-
stogramm der erzielten Validierungsfehler. Das Histogramm héngt jedoch stark von
den anderen Hyperparamtern ab, da diese nicht konstant sind, sondern stattdessen
bei jeder Initialisierung zufillig ausgew#hlt wurden. Auch ist, aufgrund der Sichtbar-
keit, nur der relevante Bereich des Histogramms bei minimalem Validierungsfehler
dargestellt.
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Kapitel 5: Ergebnisse

5.1 Energierekonstruktion

Fiir die Untersuchung der Leistungsfihigkeit der Netzwerke und dem Vergleich mit
dem FIR-Filter kommt der Trainingsdatensatz zum Einsatz. Dieser enthélt aus-
schlieBlich Daten, die in keiner Weise fiir das Training oder Hypertuning zum Einsatz
kamen, um Aussagen iiber die Generalisierung treffen zu kénnen. Im Gegensatz zu
den Trainingsdaten enthélt der Testdatensatz keine selektierten Sequenzen, sondern
benutzt die vollstéindigen Daten aus 4378 oder 5837 Umlaufen. Die der Simulation
zugrundeliegende Energieverteilung der Hits wurde, wie zuvor beschrieben, modi-
fiziert. Die Tests sind somit keine exakte Nachbildung der ATLAS-Daten wihrend
mehrerer Umlédufe. Fiir die Leistung der in dieser Arbeit betrachteten Modelle ist
das jedoch ausreichend. Die verwendeten Daten bilden durch die Anzahl der nied-
rigenergetischen Hits sowie durch die Verschiebung des Pedestals den ADC-Output
realistisch nach, wéhrend zusétzlich die Performance fiir hochenergetische Hits ver-
glichen werden kann.

Abbildung[5.1]zeigt die Genauigkeit der Energierekonstruktion in Form der relativen
Abweichung zur wahren Energie E¥"*", Die Ergebnisse von Hits in einem Energieab-
schnitt, mit der Breite von 1 GeV, wurden gemittelt. Punkte mit der gleichen Farbe
deuten auf die gleiche Netzwerkstruktur (CNN _single/CNN_multiple) hin und glei-
che Marker auf die gleichen Trainingsdaten. Bei niedrigen Energien (E¥"" < 4 GeV)
besitzen die Modelle den grofiten relativen Fehler von 0.1 beim CNN_multiple_exp?2
bis hin zu 0.6 beim FIR-Filter. Die wahre Energie E¥"! wird im Mittel modellu-
nabhéngig unterschétzt. Die grofiten Unterschiede zwischen den Modellen befinden
sich ebenfalls in diesem Energiebereich. Es lassen sich dabei zwei Gruppen erkennen:
Netzwerke mit den Trainingsdaten ratio, wie CNN _single_ratio, CNN_multiple_ratio
und Trigger Netzwerk, erzielen einen hoheren relativen Fehler als die Netzwerke
mit den anderen Trainingsdatenséitzen. Das Combinational Netzwerk wechselt zwi-
schen beiden Gruppen aufgrund seines Aufbaus. Fiir kleine Energien befindet es sich
in der Gruppe der ratio trainierten Daten. Ab ca. 1.5 GeV, der Grenze zwischen

den Subnetzwerken verbessert sich die relative Abweichung und das Combinational
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Vergleich der Netzwerke und des Fir-Filters
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Abbildung 5.1: Der mittlere relative Fehler in Abhéngigkeit der wahren Energie fiir
alle trainierten Modelle und den FIR-Filter. Die Testdaten stellen die vollstdndigen
Daten mehrere LHC-Umléufe dar.

Netzwerk gelangt in die Gruppe der Netzwerke, die nicht mit ratio trainiert wur-
den. Die Genauigkeit der Energiebestimmung dieser Gruppe ist insbesondere bei
kleinen Energien deutlich besser als beim eingesetzten FIR-Filter. Dieser hat auf-
grund der verfiigbaren 8 Bits fiir die Energiebestimmung einen deutlichen Nachteil
gegeniiber den Netzwerken. Bei Hits mit Energien iiber 4 GeV liegen die Mittel-
werte aller getesteten Modelle grofitenteils bei 0, wobei manche einen leichten aber
konstanten Offset beibehalten. Das CNN_multiple_exp2 hat, z. B. fiir Energien {iber
4 GeV, eine mittlere relative Abweichung von -0.3. Abhéngigkeiten des Offsets von
der Netzwerkstruktur oder den Trainingsdaten sind dabei nicht erkennbar. Auch ist
zwischen den Netzwerkstrukturen CNN_single und CNN_multiple kein grofler Un-
terschied feststellbar.

Die Abhéngigkeit von dem Trainingsdatensatz ratio wird auch in der Abbildung
deutlich. Fiir jede Sequenz in den Testdaten ist die vorhergesagte Energie EP*!
gegen die wahre Energie EY"h aufgetragen. Die Winkelhalbierende zeigt die Posi-
tion einer perfekten Vorhersage an. Die Abbildung bestétigt die Erkenntnisse
aus der Abbildung [5.1} Die groiten Unterschiede der Netzwerke liegen bei Energien
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5.1. ENERGIEREKONSTRUKTION
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Abbildung 5.2: Die E%"™( EP**Y) Diagramme zeigen die allgemeine Struktur der Vor-
hersage fiir den trainierten Energiebereich. Die Ergebnisse fiir die anderen Netzwerke
sind im Anhang unter zu finden
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Abbildung 5.3: Die Abbildung zeigt die Verteilung der Energie der fake Hits (Se-
quenzen, die keinen Hit beinhalten oder bei denen die Pulsamplitude nicht an der

5. Stelle in der Sequenz liegt, sie aber trotzdem vom Netzwerk als Hit detektiert
werden). Die dargestellten Modelle entsprechen den aus Abbildung .

unterhalb von 4 GeV. Bei hoheren Energien ist die Vorhersage grofitenteils um die
wahre Energie zentriert mit eine mittleren Standardabweichung von 0.35 GeV fiir das
gezeigte CNN _multiple_ratio. Die Auflésung in diesem Energiebereich ist durch das
thermische Rauschen limitiert. Die Abbildung zeigt, dass die in Abbildung
beobachteten gréfleren relativen Fehler der Netzwerke mit dem ratio Trainingsdaten-
satz aus einer Anpassung an eine charakteristische Form resultieren. Fiir Energien
kleiner 2 GeV sind Vorhersagen weniger zentriert, wie es bei CNN_single uniform
der Fall ist, aber auch deutlich weniger gestreut. Dies zeigt auch die Be-
trachtung der Sequenzen ohne implementierte Pulse (Abbildung , welche die
Testdaten dominieren. Diese Anpassung fithrt allerdings zu schlechteren Vorhersa-
gen bei Sequenzen mit der Enegie von ca. 2GeV, sodass Vorhersagen erst wieder
ab 4 GeV um den wahren Wert zentriert sind. Diese Form entsteht aufgrund der
Zusammensetzung der Trainingsdaten ratio, welche hauptsichlich aus Sequenzen
mit Energien kleiner als 1 GeV bestehen. Das Combinational Netzwerk er-
reicht fiir kleine Energien eine geringe Streuung, ohne die charakteristische Form

von CNN_single_ratio anzunehmen.

Das Trigger Netzwerk (Abbildung [5.2b|) erzielt die beste Performance fiir die
Sequenzen ohne Hit. Da es aber auch mit dem ratio Trainingsdatensatz trainiert

wurde, ist die gleiche charakteristische Form wie bei CNN_m ratio erkennbar. In
Abbildung sind bei allen Netzwerken auffilligen Sequenzen mit E¥"*" = 0, welche
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5.2. NOISECUT UND TRIGGEREIGENSCHAFTEN

aber mit Energien von bis zu 9 GeV vorhergesagt wurden, sichtbar. Diese Fehler
entstehen durch Situationen, bei denen hochenergetische Hits einen Abstand von nur
wenigen BCs besitzen. Aufgrund der Uberlagerung der Pulse erkennt das Netzwerk
in dem BC zwischen den Pulsen einen hochenergetischen Hit. Diese Ergebnisse sind

selten und Resultat der verédnderten Energieverteilung fiir die Hits.

5.2 Noisecut und Triggereigenschaften

Neben der Energieberechung der Hits ist die zweite wichtige Aufgabe die Bestim-
mung des richtigen BCs, in dem ein Hit auftrat. Abbildung zeigt, dass die Netz-
werke bei Sequenzen ohne einen Hit an der sensitiven Stelle haufig triggern und
einen sogenannten fake Hit detektieren. Das Netzwerk CNN_multiple ratio hat z. B.
eine mittlere Ausgabe von 0.13 GeV bei Sequenzen ohne Hit. Die Ursache fiir die
hohe fake Hit-Rate liegt in den Trainingsdaten. Diese beinhalten selbst Pulse mit
einer Energie kleiner als 0;,ermaq- Fiir das Netzwerk war es nicht moglich, Hits dieser
geringen Energie von Sequenzen mit reinem Noise zu unterscheiden. Als Resultat ist
das Netzwerk sehr sensitiv auf leichte Erhohungen des ADC-Outputs und generiert
viele fake Hits. Vermieden werden die fake Hits durch die Einfithrung eines Noi-
secuts. Dieser setzt alle Ausgaben des Netzwerks auf Null, welche unterhalb einer

Schwelle liegen. Die Hohe der Schwelle muss dabei festgelegt werden.

Berechnung des Noisecuts

Die Energie von fake Hits definiert die Hohe des benétigten Noisecuts. Die Schwelle
sollte so klein wie moglich sein, damit weniger Hits verloren gehen. Fiir die Netzwer-
ke zeigt sich, dass die Energien der fake Hits 1-2 BCs neben einem hochenergetischen
Hit maximal sind. Ein Maf fiir die Anzahl der fake Hits um einen echten Hit stellt
der Timing Score dar. Er ist definiert als die Anzahl von fake Hits, die in den 2 BCs
vor und nach einem Hit entstehen, gemittelt iiber den gesamten Energiebereich der
getesteten Hits. Der FIR-Filter erreicht mit seinem Noisecut (= 1.4 GeV) einen Ti-
ming Score von 0.005. Dies bedeutet, dass es im Mittel bei 0.5 % der getesteten Hits
zu einem fake Hit kam. Abbildung [5.4] zeigt den gemessenen Timing Score als Funk-
tion des Noisecuts fiir das Netzwerk CNN_multiple_exp2. Der finale Noisecut des
Netzwerks wird durch den Schnittpunkt mit dem Timing Score des FIR-Filters fest-
gelegt. Liegt der Schnittpunkt zwischen zwei Datenpunkten, wie es fiir das gezeigte
Netzwerk der Fall ist, wurde exponentiell interpoliert. Die erreichten Noisecuts der
Netzwerke sind in Tabelle[5.1]zu sehen. Der in Abbildung[5.3]angedeutete Vorteil der
Modelle Trigger Netzwerk und CNN_multiple ratio macht sich durch die geringen
Noisecuts von 0.93 GeV und 1.05 GeV bemerkbar. Die restlichen Netzwerke erzie-
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Abbildung 5.4: Der Timing Score in Abhéngigkeit des angewendeten Noisecuts.
Der Timing Score des FIR-Filters ist als orange Linie dargestellt. Der interpolierte
Schnittpunkt ergibt den Noisecut des Netzwerks.

len untereinander einen dhnlichen Noisecut im Bereich von 1.2 —1.27 GeV. Lediglich
CNN_single_exp2 hat mit 1.36 GeV einen auffallend groflen Noisecut. Alle Netzwerke

erzielen einen niedrigeren Noisecut als der FIR-Filter.

Netzwerk Noisecut in GeV
Trigger Netzwerk 0.93
Combinational Netzwerk 1.27
CNN_single_ratio 1.04
CNN_single_uniform 1.2
CNN_single_expl 1.24
CNN_single_exp?2 1.36
CNN _multiple_ratio 1.05
CNN _multiple_uniform 1.2
CNN _multiple_expl 1.23
CNN_multiple_exp2 1.25

Tabelle 5.1: Erhaltene Noisecuts mit der Methode des Timing Scores fiir die Netz-

werke.

Leistungsfihigkeit der Trigger

Fiir die im vorherigen Abschnitt berechneten Noisecuts kamen lediglich Sequenzen

mit isolierten Hits zum Einsatz. Um die Leistungsfihigkeit der Netzwerke und des

FIR-Filters zu untersuchen, werden diese, wie zuvor bei der Untersuchung der Ener-

gierekonstruktion, mit vollstdndigen LHC-Umlaufen getestet. Zur Beurteilung der

Leisungsfahigkeit wird die Prézision und Relevanz betrachtet. Die Prézision, auch

Effizient genannt, beschreibt den Anteil der Ereignisse mit einer Energie grofler als
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5.2. NOISECUT UND TRIGGEREIGENSCHAFTEN

dem Noisecut, die im richtigen BC detektiert wurden. Werden alle dementsprechen-
den Ereignisse gefunden, liegt die Prézision bei 1. Dieses Ergebnis erreicht allerdings
auch ein Trigger, der auf jedes beliebige Ereignis reagiert. Deshalb wird zusétzlich
die Relevanz, auch Reinheit genannt, berechnet. Sie beschreibt Anteil aus allen Er-
eignissen mit einer vorhergesagten Energie iiber dem Noisecut, deren wahre Energie
auch iiber dem Noisecut liegt. Prézision (Effizienz) und Relevanz (Reinheit) sind
definiert durch

RP
Prazision = ————— 2.1
HzISiOn = e (5.2.1)

und RD
Relevanz = P{l:)——}—F‘P (522)

Die richtig positiven(RP) Klassifikationen sind Sequenzen mit einer Energie tiber
dem Noisecut, welche auch dementsprechend detektiert werden. Bei den falsch posi-
tiven (FP) liegt die wahre Energie unterhalb des Noisecuts, die Vorhersage allerdings
dariiber. Ist die Vorhersage kleiner als der Noisecut und die wahre Energie grofer,
handelt es sich um eine falsch negative (FN) Klassifikation.

Abbildung zeigt das Ergebnis fiir 3 Netzwerke und den FIR-Filter. Unter den
gezeigten Netzwerken hat das Netzwerk CNN _single_uniform die beste Effizienz bei
der Detektion von niedrigenergetischen Hits. Die Netzwerke CNN_multiple_ratio und
Trigger _Netzwerk zeigen keine groflen Unterschiede und erreichen erst ab ca. 2.2 GeV
eine Préazision von 1. Alle Netzwerke erzielen eine bessere Effizienz bei der Detek-
tion von Hits, als der eingesetzte FIR-Filter. Das Modell CNN _single_unifrom er-
zielt auf der einen Seite die hochste Effizienz, hat aber auf der anderen Seite eine
schlechtere Reinheit der Vorhersagen. Erst ab einer vorhergesagten Energie von ca.
2.75GeV erreicht es eine Relevanz von 1, wohingegen dem Trigger Netzwerk dies
schon bei ca. 2GeV gelingt. Die Verwendung eines vortrainierten Triggers bei dem
Trigger Netzwerke resultiert in eine bessere Relevanz, wie der Vergleich mit dem
CNN_multiple_ratio zeigt. Die Auflésung der Relevanz fiir den FIR-Filters ist auf-
grund des fiir B2 verfiigharen Bereichs von 8 Bit eingeschriinkt. Eine hohere Rein-
heit und damit weniger fake Hits bei der Detektion von Hits ist bei den Netzwerken

trotzdem erkennbar.
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(b) Diagramm der Relevanz

Abbildung 5.5: In (a) ist die Priizision als Funktion von E#"! der getesteten Se-
quenzen fiir ausgewéhlte Netzwerke und dem FIR-Filter dargestellt. Die Relevanz
(b) ist in Abhéingigkeit von EP! dargestellt und beschreibt die Wahrscheinlichkeit,
dass die wahre Energie eines detektierten Ereignisses iiber dem Noisecut liegt. Die
Ergebnisse fiir die anderen trainierten Netzwerke befinden sich im Anhang unter

!
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Kapitel 6: Zusammenfassung

Zur Reduktion der Datenrate benotigt der ATLAS-Detektor ein leistungsfihiges
Triggersystem. Dieses besteht unter anderem in der ersten Stufe aus dem L1Calo-
System. Zu dessen Aufgaben zéhlt es, die im Kalorimeter gemessenen Teilchen zu
detektieren und deren Energie zu berechnen. Im Hinblick auf die héheren Lumi-
nositaten nach dem Phase-II Upgrade wurde untersucht, ob diese Aufgaben ein
neuronales Netz genauer und zuverlassiger bewerkstelligen kann, als der bisher ein-
gesetzte FIR-Filter.

Die fiir die Arbeit mit neuronalen Netzen benétigten Daten wurden durch die Simu-
lation ToyMC generiert. Es wurde das Signal eines TTs im TileLB fiir ein () = 40
aus vielen simulierten LHC-Uml&ufen verwendet. Die Untersuchung der Daten hat
gezeigt, dass fiir diesen Detektorbereich das thermische Rauschen die dominierende
Rauschquelle darstellt und der Pile-Up vernachléssigbar ist. Fiir die Untersuchung
des Einflusses der Trainingsdaten wurden aus diesen Daten insgesamt 4 Sets mit
unterschiedlicher Energieverteilung erstellt.

Das Training mit diesen Sets fand mit mehreren verschiedenen Netzwerkarchitektu-
ren statt. Die grundlegende Struktur bildete dabei ein Convolutional Neural Net-
work. Mehrere Ansétze zur Netzwerkstruktur wurden miteinander verglichen. Durch
ein Hypertuning und Early Stopping konnten die Hyperparameter optimal festgelegt
werden.

Der Test mit Daten aus LHC-Umlaufen hat gezeigt, dass die Netzwerke bei der
Auflésung der Energierekonstruktion und Effizienz der Detektion eine bessere Leis-
tung erzielen als der bisher eingesetzte FIR-Filter. Die Netzwerke erreichen bei nied-
rigeren Noisecuts eine bessere Effizienz der Detektion bei zugleich hoherer Reinheit.
Die Leistungsfiahigkeit des Triggers kann somit durch die Netzwerke erhoht werden.
Aus dem Vergleich der Netzwerke untereinander wird sichtbar, dass die Zusammen-
setzung der Trainingsdaten den gréfiten Einfluss auf die Leistung der neuronalen
Netze hat. Verdnderungen in der Architektur haben im Vergleich dazu geringe Aus-
wirkungen auf die Leistungsfahigkeit.

In den weiteren Schritten muss die Leistungsfihigkeit bei einem erwarteten (u) von
140-200, fiir das geplante Phase-11 Upgrade, getestet werden. Auflerdem ist eine Er-

weiterung des Energiebereichs notwendig, sowie die Implementierung auf FPGAs.
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Anhang A: Amplitudenverteilungen
der implementierten

Ereignisse
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(b) veradnderte Verteilung

Abbildung A.1: Verwendete Verteilung der Amplituden fiir die eingefiigten Pulse.
Die Veranderung der Verteilung in[A.Ta]erhoht das Auftreten von hoherenergetischen
Ereignissen.
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Anhang B: Leistungsfihigkeit von

Subnetzwerken

Trigger aus Trigger _Netzwerk
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(a) Trainingsdaten des Trigger Subnetzwerks (b) Leistungsfihigkeit des Triggers

Abbildung B.1: Fiir die Trainingsdaten des Subnetzwerks Trigger wurde eine uni-
forme Energieverteilung ausgewihlt (a). Anstatt einer wahren Energie enthalten die
Trainingsdaten eine 1 fiir einen Hit und ansonsten eine 0. Die Ausgabe des Triggers
liegt zwischen 0 und 1, wodurch sie mit der idealen Ausgabe verglichen werden kann.
In (b) ist die Leistungsfahigkeit des Triggers dargestellt. Die Ausgabe des Netzwerks
wurde fiir jeden Energiebereich gemittelt. Ab zwei 2 GeV erreicht der mittlere Out-
put 1, sodass alle Hits detektiert werden. Es ist aber auffillig, dass der mittlere
Output, insbesondere fiir den Energiebereich um 0 GeV, niemals Null ist. Dies lasst
darauf schlieffen, dass viele Sequenzen ohne Hit falsch detektiert werden. Auf die
Verwendung der Ausgabe des Triggers durch das E_cal Netzwerk hat man keinen
Einfluss.
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ANHANG B. LEISTUNGSFAHIGKEIT VON
SUBNETZWERKEN

Combinational Netzwerk

in Gev
t:

6
X in Gev Ef in Gev

(a) E_low Netzwerk (b) E_high Netzwerk

Abbildung B.2: Die Abbildung zeigt die Performance der Subnetzwerke in Form von
Eiruth(EPred)_Diagrammen. Die Testdaten stellen keine vollstéindigen Umliufe des
LHC, wie in Abbildung dar. Es wurden selektierte Sequenzen mit einer Vertei-
lung dhnlich zu [4.4a] verwendet.

(a) : Das Netzwerk hat sich bestmdglich an die Sequenzen mit Er < 1.5 GeV ange-
passt. Da die Trainingsdaten keine Sequenzen mit Et > 1.5 GeV beinhalteten, ist
die Vorhersage fiir diesen Energiebereich schlecht.

(b) : Die Leistungsfihigkeit ist umgekehrt zu E_low in (a): Gute Anpassung fiir
Et > 1.5 GeV und schlechte fir Er < 1.5 GeV
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Abbildung B.3: Die Trainingsdaten von E_low sind in (a) und von E_high in (b)
dargestellt. Um die Spezialisierung auf die Energiebereiche zu erreichen enthalten
die Trainingsdaten lediglich Sequenzen aus dem entsprechenden Energiebereich(fiir
E_low von 0 — 1.5GeV und fiir E_high von 1.5 — 10 GeV).
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Abbildung B.4: Die Abbildung zeigt den mittleren Output des Decision Netzwerk
fiir verschiedene Energien der Input Sequenzen. Die Ausgabe liegt zwischen 0 und
1. Die Fehlerbalken stammen aus einem Gauss’schen Fit. Die vertikale Linie zeigt
die Grenze des Detektionsbereichs von E_small und E_high.

Trainingsdaten
Trainingsdatenverteilung | Anzahl an verwendeter Sequenzen
ratio 324000
uniform 228096
exp 1 131364
exp 2 154772

Tabelle B.1: Aufgrund der charakteristischen Form der Verteilungen kommt es zu
unterschiedlich grofle Trainingsets.
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Anhang C: Zusatzliche

Ergebnisse
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Abbildung C.1: Die Abbildung zeigt die E¥"*(EP*!) Diagramme der restlichen
trainierten Netzwerke
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Abbildung C.2: In (a) ist die Priizision als Funktion von EF"h der getesteten Se-
quenzen fiir alle trainierten Netzwerke und den FIR-Filter dargestellt. In (b) ist die

Relevanz in Abhéingigkeit der vorhergesagten Energie EX™® fiir alle trainierten Mo-
delle und den FIR-Filter dargestellt
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