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Abstract

Due to the planned Phase-II upgrade of the Large Hadron Collider, the

number of occurring proton-proton collisions will increase to 140-200. The

resulting stronger background processes are challenging the ATLAS Level-1

Calorimeter Trigger. Its tasks include the detection and energy reconstruction

of measured particles in the calorimeters of the ATLAS detector.

In this thesis, it was investigated whether machine learning algorithms can

improve the performance of the trigger. For this purpose, artificial neural

networks were trained with simulated data from the hadronic calorimeter.

For a first feasibility study, data with an average number of proton-proton

collisions of 40 were used.

The investigation of the performance of the networks compared to the current

system has shown that for particles a more accurate reconstruction of their

transversal energy is possible using a neural network, especially in the low

energy range. In addition, the networks achieve better efficiency and purity

when detecting events.

Zusammenfassung

Durch das geplante Phase-II Upgrade des Large Hadron Colliders wird die

Anzahl der auftretenden Proton-Proton-Kollisionen auf 140-200 steigen. Die

dadurch stärkeren Untergrundprozesse stellen eine Herausforderung für den

ATLAS Level-1 Calorimeter Trigger dar. Zu seinen Aufgaben zählt die De-

tektion und Energierekonstruktion gemessener Teilchen in den Kalorimetern

des ATLAS-Detektors.

In dieser Arbeit wurde untersucht, ob Machine Learning Algorithmen die

Leistungsfähigkeit des Triggers verbessern können. Dafür wurden künstliche

neuronale Netze mit simulierten Daten aus dem hadronischen Kalorimeter

trainiert. Für eine erste Machbarkeitsstudie kamen Daten mit einer mittleren

Anzahl Proton-Proton-Kollisionen von 40 zum Einsatz.

Die Untersuchung der Leistungsfähigkeit der Netzwerke im Vergleich zu dem

aktuellen System hat gezeigt, dass insbesondere für niedrigenergetische Pulse

eine genauere Rekonstruktion der transversalen Energie durch ein neuronales

Netz möglich ist. Außerdem erreichen die Netzwerke bei der Detektion von

Ereignissen eine bessere Effizienz und Reinheit.
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Kapitel 1: Einleitung

Das A Toroidal LHC ApparatuS (ATLAS)-Experiment ist ein Teilchendetektor am

Large Hadron Collider (LHC), dem weltweit größten Teilchenbeschleuniger. In die-

sem werden Protonen auf eine Geschwindigkeit von bis zu 99.9999991 % der Lichtge-

schwindigkeit beschleunigt und zur Kollision gebracht. Durch die Energie der Kol-

lision entstehen Teilchen, deren Eigenschaften von ATLAS gemessen werden. So

konnte im Jahre 2012 das Higgs Boson durch die Experimente ATLAS[1] und Com-

pact Muon Solenoid (CMS)[2] nachgewiesen werden.

Eine wichtige Aufgabe im ATLAS-Experiment ist die Detektion und Energierekon-

struktion von Teilchen in den verschiedenen Detektorbereichen. Durch geplante Up-

grades des LHCs zu höheren Luminositäten steht der ATLAS-Detektor vor der Her-

ausforderung mit höheren Produktionsraten umgehen zu können. In [3] konnte für

das elektromagnetische Kalorimeter gezeigt werden, dass bei diesen Bedingungen die

Energierekonstruktion von Ereignissen durch neuronale Netze dem bisherigen Algo-

rithmus überlegen ist. Diese Arbeit stellt den ersten Schritt dar, um zu überprüfen,

ob dies auch für das hadronische Kalorimeter der Fall ist.

Im ersten Kapitel dieser Arbeit wird auf das aktuelle Triggersystem im ATLAS

eingegangen, gefolgt von einem Kapitel über die Grundlagen von künstlichen neuro-

nalen Netzen. Kapitel 3 geht genauer auf die Datenstruktur ein und behandelt die

verschiedenen Rauschquellen. Die Beschreibung der verwendeten Netzwerke und die

Anpassung an die verwendeten Daten erfolgt in Kapitel 4. Danach folgt die Unter-

suchung der Leistungsfähigkeit der Netzwerke und der Vergleich mit dem aktuellen

Trigger. Abschließend werden in Kapitel 6 die Ergebnisse zusammengefasst.

1.1 Der Large Hadron Collider

Der LHC ist ein Proton-Proton-Teilchenbeschleuniger der Europäischen Organisati-

on für Kernforschung (CERN). Er besteht aus einem Hauptring, der einen Umfang

von 26.7 km aufweist und bis zu 170 m unter der Oberfläche liegt. In einem System

aus Vorbeschleunigern werden Protonen auf 450 GeV vorbeschleunigt und in den

Hauptring injiziert. Dort werden sie auf eine Energie von 6.5 TeV beschleunigt. Dies

entspricht einer Schwerpunktsenergie von 13 TeV. An den insgesamt vier Kreuzungs-
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KAPITEL 1. EINLEITUNG

punkten der beiden Strahlen befinden sich die Experimente: ATLAS, A Large Ion

Collider Experiment (ALICE), CMS und Large Hadron Collider beauty (LHCb).[4]

Die Protonen sind im LHC in Protonen-Pakete, sogenannten Bunches, mit je

Abbildung 1.1: Übersicht des Large Hadron Collider mit dem Beschleunigungsring
und den 4 verschiedenen Experimenten[5]

1.2× 1011 Protonen aufgeteilt. Das Füllschema legt dabei die Anordnung der Bun-

ches während eines Umlauf im Hauptring fest. Die Bunches der entgegenlaufenden

Protonenstrahlen kollidieren in sogenannten Bunch Crossings (BCs) zu festgelegten

Zeiten mit einer Frequenz von 40 MHz. Zwei wichtige Größen bei Kollisionen ist

der Pile-Up ⟨µ⟩ und die Luminosität L. Die Luminosität ist ein Maß für die Strahl-

intensität. Der Zusammenhang zwischen Luminosität, Wirkungsquerschnitt σ und

der Ereignisrate dN
dt

ist durch folgende Gleichung gegeben:

dN

dt
= σ · L. (1.1.1)

Die Ereignisrate von Prozessen hängt vom Wirkungsquerschnitt des Prozesses und

der Luminosität ab. Seltene Prozesse werden somit bei einer höheren Luminosität

öfters beobachtet. Der Pile-Up ⟨µ⟩ ist direkt von der Luminosität abhängig und

beschreibt die Anzahl der inelastischen Streuungen pro BC. Während des letzten

Runs im Jahr 2018 wurde ein ⟨µ⟩ von 36 erreicht bei einer peak Luminosität von

19 · 1033 cm−2 s−1 [6]. Nach dem geplanten Phase-II Upgrade soll die peak Lumi-

nosität auf 7.5 · 1034cm−2 s−1 mit einer geschätzten Erhöhung von ⟨µ⟩ auf 140-200
ansteigen [7]. Daraus resultieren deutlich mehr produzierte Teilchen, deren Signal

vom Detektor verarbeiten werden muss.
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1.2. DAS ATLAS-EXPERIMENT

Abbildung 1.2: Das ATLAS Experiment mit den verschiedenen Teilbereichen[8]

1.2 Das ATLAS-Experiment

Der ATLAS-Detektor ist mit einem Durchmesser von 25 m, einer Länge von 46

m und einem Gewicht von 7000 t der weltweit größte Teilchendetektor an einem

Beschleuniger. ATLAS und CMS sind Allzweckdetektoren am LHC, deren unter-

schiedlicher Aufbau unabhängige Messungen erlaubt. Der ATLAS-Detektor ist sym-

metrisch um die Strahlachse gebaut und hat eine vorwärts-rückwärts Symmetrie

bezüglich des Kollisionspunktes der aufeinandertreffenden Strahlen. Der Aufbau be-

steht aus mehreren Teilsystemen (siehe Abbildung 1.2), um die Position, Energie

und den Impuls der entstandenen Teilchen zu bestimmen. Ganz im Inneren um den

Interaktionspunkt befindet sich das Tracking System. Ein Magnetfeld lenkt geladene

Teilchen auf eine gekrümmte Bahn, aus deren Form die Ladung und der Impuls be-

stimmt wird. Aufgebaut ist das Tracking System aus einem sehr hochauflösenden Pi-

xeldetekor, der von einem Silizium-Streifen-Detektor umschlossen wird. Die äußerste

Schicht des Tracking Systems bildet der Übergangsstrahlungsdetektor.

Zur Energiebestimmung besitzt der ATLAS-Detektor zwei Kalorimeterschichten au-

ßerhalb des Tracking Systems. In den Kalorimetern wird die Energie von Elektro-

nen, Photonen und Hadronen in Form von Schauern deponiert. Die verwendeten

Kalorimeter haben eine Sandwichstruktur aus abwechselnden Schichten aus einem

Absorber und einem aktiven Detektormaterial. Im Absorber bilden sich Schauer, die

im aktiven Material nachgewiesen werden. Aus dem Signal des aktiven Detektorma-

terials wird die deponierte Energie rekonstruiert. Das erste Kalorimeter bildet das

elektromagnetische Kalorimeter, welches Blei als Absorber und flüssiges Argon als
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KAPITEL 1. EINLEITUNG

aktives Material verwendet. In ihm wird die Energie von Elektronen und Photonen

präzise gemessen. Die Hadronen deponieren nur einen Teil ihrer Energie im elektro-

magnetischen Kalorimeter. Deshalb wird dieses von dem hadronischen Kalorimeter

umschlossen.

In dieser Arbeit ist das Tile Long Barrel (TileLB) von besonderer Bedeutung. Es

ist ein Teil des hadronischen Kalorimeters und deckt den Bereich |η1| < 1.0 ab. Das

TileLB ist aufgebaut aus vielen abwechselnden Schichten aus dem passiven Absorber

Stahl (3mm) und dem aktiven Detektormaterial in Form von Plastikszintillatoren

(14mm). Hadronen deponieren ihre Energie in Form eines hadronischen Schauers,

welcher über von ihm angeregte Photonen in den Plastikszintillatoren gemessen wird.

Das Myon-System bildet die äußerste Schicht des ATLAS-Detektors. Da Myonen ei-

ne ca. 200-fach größere Masse besitzen als Elektronen, sorgt die Bremsstrahlung erst

bei hohen Energien für einen signifikanten Energieverlust. Die zuvor beschriebenen

Detektorsysteme werden von den Myonen mit geringem Energieverlust durchdrun-

gen. Erst im Myon-System wird der Impuls gemessen und die Bahn vermessen [4]

[9].

1.3 Der ATLAS Level-1 Calorimeter Trigger

Ein abgespeichertes Ereignis des ATLAS-Detektors hat eine Größe von 1.5 MB. Bei

einer Kollisionsfrequenz der Bunches von 40 MHz würden innerhalb einer Sekun-

de mehrere TB an Daten anfallen. Die Aufgabe eines Triggers ist es, lediglich die

interessanten Ereignisse zu selektieren, damit diese für eine spätere Analyse abge-

speichert werden können. ATLAS verwendet für die Reduktion der Datenrate einen

zweistufigen Trigger aus einem hardwarebasierten Level-1 (L1) Trigger und einem

softwarebasierten High-Level Trigger (HLT). Der L1-Trigger selektiert aus dem De-

tektorsignal, mit einer Frequenz von 40 MHz, potentiell interessante Ereignisse mit

einer maximalen Design Rate von 100 kHz. Die für die Speicherung vorgesehenen

Ereignisse reduziert der HLT auf 1kHz.

Der L1-Trigger muss mit einer Latenz von 2.5µs nach einer Kollision eine Entschei-

dung treffen, da die Signale während der Prozessierung zwischengespeichert werden

müssen und die Zwischenspeicher volllaufen. Um dies zu bewerkstelligen, werden

vom L1-System viele Detektorbereiche parallel verarbeitet. Deshalb ist er aufge-

teilt in den Level-1 Calorimeter Trigger (L1Calo) und L1 Muon Trigger (L1Muon),

deren Ergebisse vom Central Trigger Processor (CTP) für eine finale L1 Entschei-

dung verwendet werden. Der Input von L1Calo besteht 7168 Trigger Tower (TT),

welche aus den 190 · 103 Zellen in dem elektromagnetischen und hadronischen Kalo-

1Pseudo-Rapidität η = − log (tan ( θ2 )), mit Winkel θ relative zur Strahlachse,
Azimuthwinkel ϕ : Winkel um die Strahlachse
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1.3. DER ATLAS LEVEL-1 CALORIMETER TRIGGER

rimeter kombiniert werden. Für einen TT wird das Signal mehrerer Zellen aus den

beiden Kalorimetern analog aufsummiert. Die dadurch höhere Granularität liegt im

TileLB bei ∆η × ∆ϕ = 0.1 × 0.1. Das Signal der TT gelangt über 30-70 m lange

Twisted-Pair-Kabel zu den Receivern des L1Calo, welcher sich nicht direkt am De-

tektor befindet. Mithilfe von Gain-Faktoren wird das analoge Signal skaliert und die

gemessene Energie E in die transversale Energie ET umgerechnet2. Das kalibrierte

Signal erreicht anschließend den PreProcessor (PPr) des L1Calo. Im PPr wird zuerst

ein Offset auf das Signal addiert, damit das Signal für den folgenden Analogue-to-

Digital Converter (ADC) das korrekte Pedestal3 von 32 Counts erhält. Im ADC

wird das analoge Signal mit einer Frequenz von 80 MHz digitalisiert, sodass mit den

gewählten Gain-Faktoren im Reciver 1 ADC Count 250MeV entsprechen. Die 80

Mhz Digitalisierung wird für den Fall eines saturierten Pulse benötigt. Ist dies nicht

der Fall wird auf 40 MHz reduziert. Aus dem digitalisierten Signal werden anschlie-

ßend die Pulse, welche signifikanten Energiedepositionen entsprechen, ausgewählt.

Für diese Pulse findet eine Bestimmung des korrekten BCs4 sowie der transversalen

Energie statt. Diese beiden Aufgaben des PPrs sind für diese Arbeit von besonderer

Bedeutung.

Die Informationen über Position und Energie von detektierten Signalen werden von

dem JetEnergy Processor (JEP) und Cluster Processor (CP) weiterverarbeitet. Der

CP sucht nach Elektronen, Photonen und τ -Lepton-Kandidaten in Form von schma-

len Clustern in den Kalorimetern. Er unterscheidet elektromagnetische und hadro-

nische Schauer, während im JEP nach Jet-Kandidaten gesucht, deren Eigenschaften

bestimmt und die globale Energiesumme berechnet wird. Der CTP bestimmt mit

den Informationen aus dem L1Calo und dem L1Muon, ob das Ereignis verworfen

oder behalten wird. Bei letzterem wird ein Level-1 Accept (L1A) erteilt und die In-

formationen über die Kandidaten, wie z. B. ihre Koordinaten, an den HLT in Form

von Regions of Interest (ROIs) weitergegeben. Der HLT benutzt anders als der L1

eine feinere Granularität der Kalorimeter, Präzisionsmessungen des Muon-Systems

und Spurinformationen aus dem Tracking System, um die Auswahl der Kandidaten

von L1 weiter einzuschränken [10] [11].

Finite-Impulse-Response-Filter

Der Finite-Impulse-Response (FIR)-Filter befindet sich im PPr des L1Calo. In den

Kalorimetern gemessene Teilchen werden durch einen charakteristischen Puls im

2Die Umrechnung von E zu ET findet für das hadronische Kalorimeter in den Recivern satt,
während dies für das elektromagnetische Kalorimeter schon in der Elektronik am Detektor ge-
schieht.

3Das Pedestal ist die Grundlinie des ADC-Outputs und hat einen nominellen Wert von 32 ADC
Einheiten.

4Das korrekte BC ist definiert durch die Position an der der Pulse die maximale Amplitude hat.
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KAPITEL 1. EINLEITUNG

digitalen Signal sichtbar. Der FIR-Filter bestimmt das korrektes BC und die trans-

versale Energie (ET ) dieser Pulse in dem digitalen Signal mit einem Optimal Filter,

der von Cleland und Stern in [12] beschrieben wird. Der FIR-Filter stellt die erste

Stufe dar, um interessante Ereignisse zu filtern. In der folgenden Arbeit werden neu-

ronale Netze traininert, um die Aufgaben des FIR-Filters zu übernehmen. Da dieser

dabei als Vergleich dient, wird im Folgenden etwas genauer auf seine Funktionsweise

eingegangen:

(a) Architektur des L1Calo [10] (b) Aufbau des FIR-Filters [13]

Abbildung 1.3: Übersicht über den L1Calo des ATLAS Experiments (a) und des im
PreProcessor eingesetzten FIR-Filters (b). Bei der Darstellung des FIR-Filter fehlt
die erwähnte Pedestal Korrektur.

Alle 25 ns (Abstand zwischen zwei BCs) wird, gemäß

f(t) =
5∑
i

ai · d(t+ i− 2)− fpedCorr(t), (1.3.1)

der FIR-Output mit fünf aufeinander folgenden Werten des ADC-Signals d(i) be-

rechnet. Eine gewichtete Summe aus den ADC-Outputs skaliert mit festgelegten

Konstanten ai. Dadurch wird das Signal-to-Noise Verhältnis für die erwartete Puls-

form (für TileLB siehe Abbildung 3.1) erhöht. Die Subtraktion von fpedCorr(t) von

der gewichteten Summe stellt die Pedestal Korrektur dar. Da es aufgrund des Füllschemas

(siehe 3.2) im LHC zu Verschiebungen des Pedestals während eines kompletten Um-

laufs kommen kann, müssen diese mit fpedCorr(t) korrigiert werden. Dabei wird der

FIR-Output über 216 Umläufe gemittelt und anschließend die Differenz zum mitt-

leren Pedestal berechnet. Energiedepositionen in Form von Pulsen im FIR-Output

6



1.3. DER ATLAS LEVEL-1 CALORIMETER TRIGGER

werden vom Peak-Finder-Algorithmus detektiert und parallel ihre Energie über eine

Look-Up Table (LUT) berechnet. Der Peak-Finder vergleicht 3 aufeinander folgende

FIR-Outputs. Befindet sich an der mittleren Position das Maximum der drei Signa-

le, gibt der Peak-Finder eine 1 aus. Ist dies nicht der Fall, wird eine 0 ausgegeben.

In diesem Fall wird der Output der LUT auf Null gesetzt. Auf diese Weise können

nur detektierten Pulsen Energien ungleich null zugeordnet werden. Das Blockdia-

gramm des FIR-Filters in Abbildung 1.3b veranschaulicht die Funktionsweise. Die

LUT, charakterisiert durch eine Slope, ein Offset und einen Noisecut, berechnet die

Energie ET eines detektierten Pulses:

LutOut =

(LutIn · Slope−Offset + 2048)≫ 12 falls LutIn · Slope−Offset > Noisecut

0 sonst
.

(1.3.2)
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Abbildung 1.4: Die LUT mit LutOut als Funktion von LutIn. Sie ist Teil des FIR-
Filters und bestimmt die transversale Energie ET von detektierten Pulsen. Der Pa-
rameter Slope und Offset sind so gewählt, dass 1 LutOut 1 GeV entspricht.

Aufgrund der Hardwareimplementierung hat LutIn eine Größe von 10 Bit und

für LutOut stehen 8 Bit zur Verfügung. Dies wird berücksichtig, indem f(t) für Lu-

tIn auf 10 Bits reduziert wird und für LutOut 12 Bits abgeschnitten werden. Der

Noisecut verhindert fake Hits durch Rauschen im Signal und setzt LutOut auf Null

falls die Energie unterhalb einer Schwelle liegen sollte [4][14].

Bei den Untersuchungen in dieser Arbeit wurden die Daten aus einem TT im TileLB

mit einer Pseudo-Rapidität η = −0.25 verwendete. Für die Implementierung des

FIR-Filters werden Parameter verwendet, die für diesen Detektorbereich in [4] bei

einem ⟨µ⟩ von 40 optimiert wurden.

Der Noisecut für die in Tabelle 1.1 angegebenen Parameter wurde für die ver-

wendeten Daten über die Methode der Integrated Occupancy bestimmt [14]. Die

7



KAPITEL 1. EINLEITUNG

Parameter verwendeter Werte
a1 1
a2 9
a3 15
a4 10
a5 4
db 5

Slope 1128
Offset 43428

Tabelle 1.1: Parameter aus [4] für die Implementierung des FIR-Filters

Integrated Occupancy einer beliebigen Energie beschreibt den Anteil aller detektier-

ten Ereignisse mit mindestens dieser Energie. Der Noisecut entspricht der Energie,

bei der ein Anteil von 0.5 % erreicht wird. Die Abbildung 1.5 zeigt die Integrated

Occupancy für den implementierten FIR-Filter und den verwendeten Daten. Der

somit bestimmte Noisecut beträgt 5928. Dies entspricht etwa einer transversalen

Energie von ET = 1.4GeV.
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Abbildung 1.5: Die Integrated Occupancy ist in Abhängigkeit von (LutIn*Slope-
Offset) dargestellt, da dies für den Fir-Filter die relevante Größe darstellt. Für den
Schnittpunkt mit 0.5 % wurde zwischen den Bins linear interpoliert.
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Netze

Künstliche Neuronale Netze (engl. : Artifical Neural Networks (ANN)) bilden eine

Kategorie von Machine Learning (ML) Algorithmen. Was ML eigentlich bedeutet,

beantwortet T. Mitchell 1997 : ”Man sagt, dass ein Computerprogramm dann aus

Erfahrungen E in Bezug auf eine Aufgabe T und ein Maß für die Leistung P lernt,

wenn seine durch P gemessene Leistung bei T mit der Erfahrung E anwächst”[15].

In den letzten Jahren haben ANN stetig mehr Aufmerksamkeit bekommen und es

geschafft, immer komplexere Probleme lösen zu können, wie z.B. in der Bild- und

Spracherkennung. Im November 2020 ist dem Netzwerk AlphaFold von Deep-Mind

ein Durchbruch in der Biologie gelungen, indem genaue Vorhersagen über die 3D-

Struktur von Proteinen anhand ihrer Aminosäuresequenz möglich wurden [16]. Die

Idee von ANN ist jedoch schon älter. Im Jahr 1943 stellten McCulloch und Pitts

das erste Mal die Idee von einem neuronalen Netz vor [17]. Sie ließen sich von Neu-

ronen lebender Organismen und deren Signalverarbeitung inspirieren und es gelang

ihnen, jede logische Operation mit künstlichen Neuronen durchzuführen. Die Verbin-

dung zu biologischen Neuronen stellt lediglich die Grundidee dar. Es ist keineswegs

das Ziel von ANN, die Funktionsweise des Gehirns nachzubilden [18]. Der Baustein

von neuronalen Netzen wurde 15 Jahre später von Rosenblatt mit dem Percep-

tron veröffentlicht und auch die Verknüpfung mehrerer Perceptrons in einer Schicht

und Trainingsalgorithmen wurden entwickelt. Die Forschung kam zum Stillstand als

Minsky und Pepert 1969 Nachteile des Perceptron hervorhoben, wie z.B. die nicht-

Lösbarbeit des XOR-Problems1. In den Folgejahren konzentrierte sich die Forschung

auf andere ML-Verfahren. Erst mit der gestiegenen Rechenkapazität zum Trainieren

großer Netze, den verbesserten Trainingsalgorithmen und der Verfügbarkeit riesiger

Datenmengen sind ANN in den letzten Jahren wieder populär geworden. Im ATLAS-

Detektor finden ANN an vielen Stellen Anwendung:

• Bei der besseren Energierekonstruktion von Signalen im Liquid Argon Kalori-

1Das XOR-Problem ist eine Klassifikationsaufgabe, bei der die XOR-Operation implementiert
werden muss. Dabei handelt es sich um nicht linear trennbare Daten, weshalb ein einzelnes Per-
ceptron die Aufgabe nicht lösen kann, mehrere in Reihe dagegen schon.

9
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meter für die high-luminosity Phase des LHC [3]

• Um mit einer lokalen Pile-Up Korrektur durch ANN die Auswirkungen des

Pile-Up auf die Energie von detektieren Jets oder anderen Objekten zu redu-

zieren und damit die fehlende transversale Energie Emiss
T genauer bestimmen

zu können [19]

• Die b-Jet Identifikation wird durch einen neuen Algorithmus mit ANN verbes-

sert. [20]

Dies sind nur wenige Beispiele von vielen Anwendungen. Im folgenden Abschnitt wer-

den die Grundlagen, das Training und die in dieser Arbeit benutzten Netzwerkarten

genauer beschrieben. Die Informationen dafür wurden, wenn nicht anders gekenn-

zeichnet, von [21] bezogen.

2.1 Grundlagen neuronaler Netze

Ziel eines neuronalen Netzes ist es, eine Funktion f ∗(x⃗) zu lernen. Diese ist abhängig

von den Input Daten x⃗, auch Feature genannt, und kann z. B. im Falle einer Klassifi-

kation ein Bild x⃗ einer Klasse y = f ∗(x⃗) zuordnen. Das neuronale Netz bestimmt die

Kategorie y mit der gelernten Funktion f(x⃗; θ). Die Parameter θ werden während

des Trainings mit einem Trainingsdatensatz optimiert, sodass die wahre Funktion f ∗

möglichst genau durch f approximiert wird. f(x⃗; θ) ist eine Verschachtelung vieler

mathematischer Funktionen, die auch als einzelne Neuronen bezeichnet werden. Ein

einzelnes Neuron kann als mathematische Funktion gesehen werden. Es gibt einen

Input x⃗, welcher vektoriell sein kann, und einen von x⃗ abhängigen Output y(x⃗). Der

Output entsteht aus einer gewichteten Summe aus dem Input, Gewichten θ⃗, Bias b

und einer Aktivierungsfunktion f :

y(x⃗) = f(θ⃗ · x⃗+ b). (2.1.1)

Die Aktivierungsfunktion bestimmt dabei, welcher Net-Input (θ⃗ · x⃗ + b) zu großen

Ausgaben des Neurons führt und steuert so die Reaktion des Neurons auf die Einga-

be. Neuronen, welche parallel aufgebaut sind, also den gleichen Input erhalten, aber

unterschiedliche Gewichte haben, bilden eine Schicht (engl. : Layer). Damit hat das

Netz die Möglichkeit, verschiedene Eigenschaften des Inputs getrennt hervorzuhe-

ben. Bei neuronalen Netzen kommt es häufg vor, dass Schichten übereinander plat-

ziert werden und der Output einer Schicht den Input der nächsten Schicht darstellt.

Die erste Schicht, in der sich die Features befinden, wird Eingabeschicht genannt.

Die letzte Schicht mit dem Ausgabeneuron heißt Ausgabeschicht. Alle Schichten

10



2.1. GRUNDLAGEN NEURONALER NETZE

dazwischen sind verborgene Schichten (Hidden Layer). Die Anzahl der verwende-

ten Schichten wird als Tiefe bezeichnet während die Breite die maximale Anzahl

von Neuronen in einer Schicht beschreibt. Die Gewichte und der Bias sind die ein-

zigen Parameter, die das Netzwerk während des Trainings verändern kann. Alle

anderen, wie z.B. die Tiefe oder die Breite, sind Hyperparameter und müssen bei

der Initialisierung des Netzwerkes festgelegt werden. In dieser Arbeit wurden aus-

schließlich Feedforward Netze eingesetzt. Das heißt, es kommt an keiner Stelle zu

einer Rückführung des Signals.

Abbildung 2.1: Darstellung eines neuronalen Netzes mit 3 Hidden Layer (blau) und
einer Breite von 4. Die Eingabeschicht (grün) besitzt 3 Neuronen, während es ein
Neuron in der Ausgabeschicht (rot) gibt. Ein Kreis entspricht dabei einem Neuron,
welches eine mathematische Operation (Gleichung 2.1.1) repräsentiert.

Abbildung 2.1 zeigt die Struktur eines ANN. Die Ausgabe li,j eines Neurons in

der i-ten Schicht und an j-ter Stelle setzt sich zusammen aus: den Gewichten θ⃗i,j,

dem Bias bi,j und der Aktivierungsfunktion fi. Der Output des gesamten Netzwerks

ergibt sich aus:

y(x⃗) = l4(l⃗3(l⃗2(l⃗1(x⃗)))) (2.1.2)

oder in ausgeschriebener Form

y(x⃗) = f4(θ⃗4 · f⃗3(θ⊤3 · f⃗2(θ⊤2 · f⃗1(θ⊤1 · x⃗+ b⃗1) + b⃗2) + b⃗3) + b4). (2.1.3)

Die Gewichte der verborgenen Schichten l1−3 sind als Gewichtsmatrix θ1−3 darge-

stellt, deren j-te Spalte durch θ⃗1−3,j besetzt wird. Da die Ausgabeschicht aus lediglich

einem Neuron besteht, reduziert sich die Gewichtsmatrix auf einen Vektor θ⃗4.

Aktivierungsfunktion

Die Aktivierungsfunktion jeder Schicht (f1−4 in dem Netz von Abbildung 2.1) ist

von zentraler Bedeutung für die Fähigkeit von ANNs, komplexe Aufgaben zu lösen.

11
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Es ist wichtig, dass die Aktivierungsfunktion nicht linear ist, da sonst alle Schichten

und Neuronen zu einem linearen Modell zusammengefasst werden können:

y(x⃗) = θ⊤linearx⃗+ b⃗linear. (2.1.4)

Hierdurch wären komplexe Aufgaben nicht lösbar. Die Parameter θ⊤linear und b⃗linear

setzen sich in diesem Fall aus den Gewichtsmatrixen und Biasvektoren des Netz-

werks zusammen. Die verwendeten Aktivierungsfunktionen sind in Abbildung 2.2

dargestellt.

Die Rectified Linear Unit (ReLU)(Abbildung 2.2a) ist definiert durch:

ReLU(x) = max{0, x}. (2.1.5)

Sie ist ein verbreiteter, gut funktionierender Standard. Durch ihre stückweise Linea-

rität ist die Ableitung im Vergleich zu anderen Aktivierungsfunktionen wie die der

später vorgestellten Sigmoid nicht nur groß, sondern auch konstant für den aktiven

Bereich der Funktion. Dies hat Vorteile bei dem Training der Netzwerke. Bei x = 0

existiert allerdings ein Punkt, an dem sie nicht differenzierbar ist, wodurch es zu

Sprüngen während des Trainings kommen kann. Neben der ReLU wurde mit der

Exponential Linear Unit (ELU) noch eine weitere Aktivierungsfunktion verwendet:

ELU(x) =

{
x wenn x > 0

α(exp(x)− 1) wenn x ≤ 0
. (2.1.6)

Sie ist für x > 0 identisch mit der ReLU, geht aber für negative x asymptotisch

gegen −α und ist an der Stelle x = 0 differenzierbar. Diese Eigenschaften führen zu

einer höheren Generalisierung des Netzwerkes und zu schnellerem Lernen [22]. Durch

die im Vergleich zur ReLU komplizierteren Form dauern die Berechnungen hingegen

länger. Neben der ReLU und ELU fand auch noch bei den Ausgabeschichten die

Sigmoid Aktivierungsfunktion, definiert als

sigmoid(x) =
expx

1 + exp x
, (2.1.7)

Verwendung.
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(a) Rectified Linear Unit (b) Exponential Linear Unit (α = 1)

Abbildung 2.2: Verwendete Aktivierungsfunktionen

2.2 Training von ANN

Der größte Unterschied zwischen ANN und klassischen Filtern ist die Berechnung

der Gewichte jedes Neurons [23]. Diese werden während des Trainings von dem Netz-

werk ohne Eingreifen des Entwicklers selbständig optimiert. Das Training von ANN

unterteilt sich in zwei Gebiete: das Supervised und Unsupervised Learning. In die-

ser Arbeit wurde das Supervised Learning verwendet. Dabei stehen dem Netz neben

dem Datensatz der Input Feature X auch die gewünschten Ausgaben Y , welche das

Netz mit X berechnen soll, zur Verfügung. Während des Trainings wird der vom

Netzwerk berechnete Output ŷ mit dem wahren Wert y verglichen und basierend

darauf werden die Gewichte und der Bias der einzelnen Neuronen verändert. Beim

Unsupervised Learning versucht das Netzwerk die der Daten X zugrundeliegende

Verteilung zu erlernen.

Die zur Verfügung stehenden Daten X mit dem gewünschten Output Y müssen

in ein Trainingsdatensatz (Xtrain, Ytrain) und ein Testdatensatz (Xtest, Ytest) aufge-

teilt werden. Das Training findet ausschließlich mit Xtrain statt und Xtest dient zur

Evaluierung. Das Training des Netzes hat zwei Ziele:

1. Reduktion des Trainingfehlers

2. Reduktion des Unterschieds zwischen Trainings- und Testfehler

Trainingsfehler und Testfehler sind dabei folgendermaßen definiert:

Trainingsfehler =
1

mtrain

mtrain∑
i=1

(yi − ŷi)
2 mit yi ∈ Ytrain (2.2.1)

und

Testfehler =
1

mtest

mtest∑
i=1

(yi − ŷi)
2 mit yi ∈ Ytest. (2.2.2)
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Die Größen mtest und mtrain stellen die Anzahl der verfügbaren Trainings-/Testdaten

(xi, yi) dar. Der Trainingsfehler wird auch Loss genannt und mittels einer Loss Funk-

tion J (in 2.2.1 der mittlere quadratische Fehler) berechnet. Andere mathematische

Funktionen, wie z. B. die mittlere absolute Differenz oder der mittlere prozentuale

Fehler, können für J ebenso verwendet werden.

Das erste Ziel beschreibt die Optimierung der Gewichte an die gesehenen Daten in

Xtrain, während das zweite Ziel für die Generalisierung (Performance für nicht trai-

nierte Daten) des Netzes steht. Das Netzwerk darf sich, um beide Ziele zu erfüllen,

nicht zu stark an Xtrain anpassen, da sonst der Fehler für Xtest steigt. Dies entspricht

einem Overfit. Beim Underfit hingegen ist der Trainingsfehler hoch, da das Netz-

werk nicht die Möglichkeiten hat, sich Xtrain anzupassen. Die Netzwerkarchitekur

und Länge des Trainings bestimmen maßgeblich die Tendenz für den Over- oder

Underfit und müssen deshalb an die Aufgabe angepasst werden.

Der grundlegende Algorithmus hinter dem Training ist der Backpropagation Al-

gorithmus. In einem Vorwärtsdurchlauf wird für einen Teil der Trainingsdaten die

Ausgabe aller Neuronen, sowie der Output des gesamten Netzes ŷ(θ⃗) in Abhängigkeit

aller Gewichte θ⃗ berechnet. Der Trainingsfehler J(y, ŷ(θ⃗)) setzt sich dann aus dem

gewünschten Output y, der Loss Funktion J und dem berechneten Output ŷ(θ⃗)

zusammen. Der folgende Rückwärtsdurchlauf dient zur Anpassung der Parameter.

Zuerst berechnet der Algorithmus die Beiträge der Gewichte an der Loss Funktion

mittels der Gradienten ∇θ⃗J(θ⃗). Dabei beginnt er bei der Ausgabeschicht und arbei-

tet sich, durch Anwenden der Kettenregel, stückweise zur Eingabeschicht durch das

gesamte Netzwerk. Der letzte Schritt dient zur Aktualisierung der Gewichte mit den

berechneten Gradienten mit dem Ziel, das globale Minimum der Loss Funktion zu

finden. Die einfachste Art, die Gewichte anzupassen, stellt das Gradientenverfahren

dar:

θ⃗ ←− θ⃗ − η · ∇θ⃗J(θ⃗). (2.2.3)

Der Hyperparameter η ist die Lernrate und bestimmt die Schrittlänge, mit wel-

cher der Algorithmus die Gewichte in entgegengesetzter Richtung der Gradienten

verändert. Der Rückwärtsdurchlauf ist somit abschlossen und neue Datenpunkte

beginnen mit dem Forwärtsdurchlauf. Nach der Verwendung aller Daten im Trai-

ningsdatensatz ist eine Epoche abschlossen. Für eine gute Anpassung der Parameter

sind immer mehrere Epochen pro Training notwendig.

Das Gradientenverfahren hat den Nachteil, dass bei kleinen Gradienten die Op-

timierung der Gewichte sehr langsam stattfindet. Deshalb fand der Adam Optimizer

[24] in dieser Arbeit Anwendung. Dieser benutzt nicht nur die Gradienten des ak-

tuellen Schrittes, sondern berücksichtigt auch die vorangegangenen Schritte, um so
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schneller und direkter das Minimum zu finden [18].

2.3 Netzwerkarten

Es gibt viele verschiedene Arten von neuronalen Netzen. Sie unterscheiden sich da-

bei nicht nur in ihrer unterschiedlichen Anzahl an Schichten oder benutzen Aktivie-

rungsfunktionen, sondern auch in der Struktur, wie die einzelnen Neuronen ihr Signal

weitergeben. Die in dieser Bachelorarbeit genutzten Netzwerkarten sind Multilayer

Perceptron (MLP)-Netze, Convolutional Neural Networks (CNNs) oder Kombina-

tionen aus Beiden. Für die Realisierung der Netze sowie dem Training wurden die

Bibliotheken von Tensorflow [25] und Keras [26] in Python verwendet.

Multi-Layer Perceptron Netzwerk

Ein MLP ist von der Struktur aufgebaut wie das Netzwerk in Abbildung 2.1 mit

lediglich mehr und breiteren Schichten. Es stellt die einfachste Struktur dar, in der

die Neuronen verbunden werden. Die Ausgabe eines Neurons wird an alle Neuronen

der nachfolgenden Schicht weitergegeben, sodass man von einem vollständig verbun-

denen Netzwerk spricht. Die entscheidenden Parameter für MLP sind die Anzahl der

Schichten, die Neuronen pro Schicht und die Aktivierungsfunktionen jeder Schicht.

Convolutional Neural Networks

CNNs sind besonders erfolgreich bei der Erkennung von Strukturen, wie z.B. der

Objekterkennung in Bildern oder von Pulsen in einer Zeitserie, weshalb sie für diese

Arbeit ausgewählt wurden. Sie besitzen mindestens eine Convolutional Layer, des-

sen Funktion an der mathematischen Operation der Faltung angelehnt ist.

Eine Serie von Inputdaten, deren Länge dem Receptive Field entspricht, wird von

einem Kernel mit einem Fenster, realisiert durch ein Neuron, abgefahren. Die Anzahl

an Inputs, die das Neuron verarbeitet, bestimmt das Fenster des Kernels, welches

kleiner als das Receptive Field sein muss. Während des stückweisen Abfahrens der

Inputdaten verarbeitet das Neuron gemäß Gleichung 2.1.1, mit gelernten Gewichten

und einem Bias, die im Fenster liegenden Daten zu einem eindimensionalen Output.

Abbildung 2.3 visualisiert diese Verfahren. Neben der Fenstergröße des Kernels ist

ein weiterer wichtiger Parameter die Anzahl der Feature Maps in dem Convolutio-

nal Layer. Die Feature Maps geben an, wie viele Kernel die Input Serie parallel

durchgehen. Diese besitzen dabei unterschiedliche Gewichte und können sich so auf

unterschiedliche Muster spezialisieren. Die nachfolgende Schicht erhält den Output

der verschiedenen Kernels aus den Feature Maps.

Nach oder zwischen den Convolutional Layern folgen meistens noch Schichten zur
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Reduktion der Datenmenge, den Pooling Layern, gefolgt von Schichten mit vollständig

verbunden Neuronen, die den Output der Convolutional Layer verarbeiten und die

Ausgabe des gesamten Netzwerks berechnen. Der Vorteil von CNNs liegt darin, ins-

gesamt weniger Parameter zu benötigen und viele Parameter mehrmals verwenden

zu können. Der Kernel fährt das komplette Receptive Field mit den gleichen Pa-

rametern ab, während im Vergleich dazu ein MLP-Netz für jeden Zeitschritt im

Receptive Field ein Neuron mit eigenen Gewichten zugeteilt hat.

Entscheidende Hyperparameter bei der Initialisierung sind dabei die Kernelgröße,

die Anzahl an Feature Maps, die Aktivierungsfunktionen, die Anzahl der Convo-

lutional Layer, die Art und Häufigkeit von Pooling Layern sowie die Anzahl der

vollständig verbundenen Neuronen.

Abbildung 2.3: Die Abbildung illustriert die Funktionsweise zweier hintereinander
platzierten Convolutional Layer. Der Kernel von Conv 1 wird dargestellt als eine
Reihe von identischen Neuronen (weiße Würfel), bei denen jedes Neuron nur ein
kleines Fenster (Fenstergröße des Kernels) des Receptive Fields sieht. Drei Feature
Maps in Conv 1 sind durch die parallelen Reihen der Neuronen dargestellt, deren un-
terschiedliche Gewichte mit 3 Farben gekennzeichnet sind. Durch die Feature Maps
in Conv 1 erhält Conv 2 einen zweidimensionalen Input und der Kernel wird zu
einem 6× 3 Fenster, welches, die Inputsequenz abfährt. Bildausschnitt aus [3]
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Kapitel 3: Simulation und

Datenstruktur

Für das Supervised Learning wird ein umfangreicher Datensatz zu dem ADC-Output

des Tile-Kalorimeters mit der wirklichen Energie der detektieren Teilchen benötigt.

Echte Daten aus älteren Läufen des LHC haben das Problem, dass die den Hits zu-

gewiesene Energie aus der Berechnung mit dem FIR-Filter stammt. Das trainierte

Netz wäre somit von der Zuverlässigkeit des FIR-Filters abhängig. Auch werden bei

detektierten Hits nur 5 oder 7 BC abgespeichert, wodurch die Netzwerkarchitek-

tur eingeschränkt wäre. Eine Alternative stellen Zero Bias Daten mit hinzugefügten

Pulsen bekannter Energie dar.

Die Daten wurden mithilfe der Simulation TOYMC generiert. Diese entwickelte A.

C. Daniels im Rahmen seiner Doktorarbeit[4], um die Parameter des FIR-Filters zu

optimieren. TOYMC simuliert den vollständigen ADC-Output der TT in den Ka-

lorimetern über einen kompletten Umlauf im LHC für beliebige |η|. Berücksichtigt
wird dabei das Füllschema des LHCs, damit Effekte wie in-time und out-of-time

Pile-Up sowie verschiedene Rauschquellen genau rekonstruiert werden. Der Vorteil

einer Simulation des vollständigen ADC-Outputs besteht darin, durch längere Ein-

gangssequenzen flexibler in der Architektur der Netzwerke zu sein. Neben dem di-

gitalisierten Signal eines TT kann auf die Energie der im Output platzierten Pulse

zurückgegriffen werden, womit sich das Supervised Learning für die neuronalen Net-

ze realisieren lässt. Dieses Kapitel behandelt die Struktur der verwendeten Daten

und geht auf die Implementierung in der Simulation ein.

3.1 Rauschquellen

Die größten Rauschquellen im Tile-Kalorimeter sind das thermische Rauschen und

der Pile-Up. Die Auswirkung auf die Leistungsfähigkeit des Triggers liegen in der

schlechteren Effizienz bei der Detektion von niedrigenergetischen Hits und der re-

duzierten Auflösung für die Energiebestimmung bei getriggerten Hits. Dies ist der

Grund für die Einführung eines Noisecuts im FIR-Filter und den trainierten Netz-
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werken. Ohne Noisecut steigt die Rate von falsch detektierten Ereignissen mit nied-

riger Energie. Das thermische Rauschen hat ein weißes Spektrum. Es hängt von

der Detektor Charakteristik und der elektronischen Verarbeitung des Signals, wie

z. B. den Verstärkern oder Kabeln, ab. Für den untersuchten TT in dieser Arbeit

bei η = −0.25 wird in den TOYMC Tool ein gaussförmiges thermisches Rauschen

mit einer Standardabweichung von σThermal = 0.357GeV verwendet. Im Vergleich

zu TT bei höheren |η| ist das thermische Rauschen, für den betrachteten TT, deut-

lich höher. Das Rauschen ist abhängig von der deponierten Energie. Da jedoch im

Trigger die transversale Energie bestimmt wird, skaliert das thermische Rauschen

mit sin(θ) [4]. Die Simulation berücksichtigt das thermische Rauschen, indem für

jedes BC ein zufälliger Wert gemäß der Normalverteilung für den simulierten TT

zum Pedestal addiert wird.

Eine weitere Rauschquelle entsteht durch das Digitalisieren des analogen Signals

auf 10 Bit. Für den ADC-Output mit einem least significant Bit (LSB) von 0.25GeV

beträgt der mittlere Fehler gemäß der Regel LSB√
12

[27] ungefähr 72MeV.

Der Pile-Up entsteht dadurch, dass es in jedem BC zu Ereignissen mit hohem

Wirkungsquerschnitt kommt. Die Größe ⟨µ⟩ beschreibt, wie viele Proton-Proton-

Interaktionen es imMittel pro BC gibt und stellt somit ein Maß für die Höhe des Pile-

Ups dar. Da die meisten dieser Interaktionen uninteressant sind, es aber trotzdem

zu einer Energiedeposition in den Kalorimentern kommt, tragen sie zum Rauschen

bei. Es wird unterschieden zwischen dem in-time Pile-Up und out-of-time Pile-Up.

Abbildung 3.1: Puls in analoger und digitalisierter Form in dem Kalorimeterbereich
TileLB aus Oszilloskop-Messungen[14]. Nach dem positiven Ausschlag folgt der Un-
dershoot mit leicht negativer Amplitude. Bei Pulsen im Tile-Kalorimeter ist der
Undershoot deutlich geringer im Vergleich zum elektromagnetischen Kalorimeter.
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Out-Of-Time Pile-Up

Die Untergrundprozesse erzeugen genauso wie hochenergetische Hits einen Puls im

analogen Output des Kalorimeters, wie er in Abbildung 3.1 zu sehen ist. Da die

gesamte Pulslänge inklusive Undershoot sich insgesamt über mehrere BCs erstreckt,

beeinflusst ein Pile-Up Event bis zu 26 nachfolgende BCs. Der Zeitnullpunkt wird als

das Maximum des Pulses definiert. Aufgrund der Pulsbreite kann sich der Einfluss

eines Pile-Up Events auch auf bis zu 3 vorherige BCs erstrecken. Die Pile-Up Events

erzeugen eine ständige Überlagerung von Untergrund-Pulsen und hochenergetischen

Hits. Der out-of-time Pile-Up kann interessante Ereignisse auf verschiedene Weise

beeinflussen: Es entsteht eine konstruktive Interferenz zwischen Pile-Up Event und

hochenergetischem Hit, wenn der Pile-Up nahe der Pulsamplitude auftritt. Die Ener-

gie des Hits wird überschätzt. Durch den Undershoot der Pulse kann aber auch eine

destruktive Interferenz entstehen, wodurch es zu einer Unterschätzung der Energie

des Hits kommt.

In-Time Pile-Up

Der in-time Pile-Up entsteht, anders als der out-of-time Pile-Up nicht durch Pile-

Up Events aus vorherigen BCs, sondern von Ereignissen im selben BC. Die Pul-

samplituden des interessanten hochenergetischen Hits und dem in-time Pile-Up

überlagern sich und sind nicht zu unterscheiden. Die konstruktive Interferenz führt

zu einer Überschätzung der Energie des Hits. Der Pile-Up wird in der Simulation

berücksichtigt, indem in jedes BC ein Pulse mit zufälliger Amplitude eingefügt wird.

Die Abbildung 3.2 zeigt die auftretenden Pile-Up Ereignisse als Funktion ihrer Am-

plitude in ADC Counts. Die maximale Pile-Up Amplitude beträgt 1.8 ADC und da-

mit 0.45GeV. Verglichen mit dem thermischen Rauschen mit σThermal = 0.357GeV

ist der Pile-Up mit einer mittleren Amplitude von 0.025GeV klein. Somit ist die

dominierende Rauschquelle für die betrachteten Daten rein gauss’sches Rauschen.

Diese Werte gelten für ein simuliertes ⟨µ⟩ von 40.
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Abbildung 3.2: Amplituden der Pile-Up Ereignisse bei einer Simulation von 1.4 · 108
BCs bei ⟨µ⟩ = 40

3.2 Füllschema

Die Bunches im LHC sind nicht gleichmäßg mit Teilchen gefüllt, sondern gemäß

eines Füllschemas. Für die Simulation wurde ein 4-4-2 Schema verwendet, wie es

in Abbildung 3.3 zu sehen ist. Es werde jeweils zwei oder vier Gruppen aus 72

gefüllten Bunches in sogenannte Batches zusammengefasst. Zwischen den Gruppen

liegt die Short Gap mit einer Länge von 8 nicht gefüllten Bunches. Nach einem

Batch folgt die Long Gap von 36 nicht gefüllten Bunches bis zum nächsten Batch.

Dies wird in dem Muster 4-4-2 wiederholt, bis die Abort Gap am Ende eines LHC-

Umlaufs das Füllschema abschließt. Dieses Schema resultiert aus den Eigenschaften

des Vorbeschleunigersystems.

Die Lücken im Füllschema, in denen keine Proton-Proton-Interaktionen auftreten,

haben Auswirkungen auf den ADC-Output aufgrund des out-of-time Pile-Ups. Es

entsteht eine BC-abhängige Verschiebung des Pedestals. Abbildung 3.4 zeigt den

gemittelten ADC-Output über 6.5 · 104 LHC-Umläufe. Das Pedestal ist überall dort

größer als das mittlere Pedestal von 31.68, wo die Bunches gefüllt sind. Ursache dafür

ist der Puls (Abbildung 3.1), welcher nicht auf Null normiert ist, wie es in anderen

Detektorbereichen der Fall ist. Jeweils zu Beginn einer Gruppe ist ein deutlicher

Anstieg, relativ zum Rest der Gruppe, sichtbar. Der ADC-Output setzt sich aus

einer Überlagerung von Hits, Undershoot von vorherigen Hits, in-time Pile-Up, out-

of-time Pile-Up und thermischem Rauschen zusammen. Aufgrund der nicht gefüllten

BCs in der Short Gap fehlen am Anfang einer Gruppe der Undershoot von Pile-Up

Events und Hits aus vorherigen BCs. Daher steigt das Pedestal dort stark an. Je

länger die Gap vor einer Gruppe ist, desto höher fällt der Anstieg aus. Innerhalb

einer Gruppe führen die Überlagerungen von Hits und Pile-Up Events aus vorherigen

20



3.2. FÜLLSCHEMA

BCs zunächst zu einer Verringerung des Pedestals bis dieser schlussendlich konstant

wird.

Abbildung 3.3: Verwendetes 4-4-2 Füllschema des LHC[4]
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Abbildung 3.4: Auswirkungen des Füllschemas und Pile-Ups auf das mittlere Pede-
stals
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KAPITEL 3. SIMULATION UND
DATENSTRUKTUR

3.3 Implementierung von Hits

Der Pile-Up und die Hits, welche durch den Filter erkannt werden sollen, sind in der

TOYMC Simulation getrennt voneinander. Somit werden neben den Pile-Up Pulsen

auch Pulse implementiert, deren Amplitude aus einer Verteilung für die Hits gezo-

gen wird. Die Verteilung der Amplituden stammt aus experimentellen Messungen

und wurde für die Arbeit mit den Netzen modifiziert, sodass höherenergetische Hits

öfters auftreten. Für das Training mit den Netzwerken ist eine hohe Anzahl von Hits

mit höheren Energien notwendig. Die Modifikation verkürzt dabei die Rechenzeit.

Beide Verteilungen sind im Anhang zu finden (Abbildung A.1).

In Abbildung 3.5 ist der TOYMC Output für einen Ausschnitt von 100 aufeinan-

der folgenden BCs dargestellt. Die blaue Linie zeigt den ADC-Output, welcher als

Input für die Modelle dient. Weiter zu sehen sind die verschiedenen, zuvor beschrie-

benen, Beiträge, aus welchen sich der ADC-Output zusammensetzt. Die orangene

Linie beschreibt die implementierten Hits, die rote Linie ist der Pile-Up und das

thermische Rauschen wird durch die grünen Balken dargestellt. Der Puls bei dem

BC 2403 besteht aus einer Überlagerung von zwei direkt hintereinander auftreten-

den Pulsen mit Energien von 0.96GeV und 2.32GeV. Alle anderen implementierten

Ereignisse in dem Ausschnitt liegen in einem Bereich von ca. 0.1 − 0.5GeV. Auf-

grund des starken thermischen Rauschens sind diese Ereignisse im ADC-Output

nicht erkennbar. Der Pile-Up hat im Vergleich zum thermischen Rauschen einen

vernachlässigbaren Einfluss auf den ADC-Output.
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Abbildung 3.5: Output der TOYMC Simulation mit den verschiedenen Rauschquellen
und implementierten Hits

22



Kapitel 4: Initialisierung und Trai-

ning der Netzwerke

In diesem Kapitel wird die Implementierung der in Kapitel 2 beschriebenen Netz-

werkarten mit den in Kapitel 3 eingegangenen Daten diskutiert. Die grundlegende

Aufgabe, die durch ein trainiertes Modell gelöst werden soll lautet: Hits im ADC-

Output identifizieren und ihre Energie genau berechnen. Ein gutes Netz zeichnet

sich dadurch aus, dass Hits auch bei niedrigen Energien dem richtigen BC zuge-

ordnet werden und die Auflösung der Energiebestimmung hoch ist. Das Netz erhält

als Input eine Sequenz des ADC-Outputs, den Featuren, und wird darauf trainiert,

auf einen bestimmten Eintrag in der Sequenz sensitiv zu sein. Die Ausgabe des

Netzwerks entspricht der Energie des Pulses, dessen Amplitude sich an dem sen-

sitiven BC befindet. Gibt das Netzwerk eine Energie von Null aus, bedeutet dies,

dass es keinen Puls an der entsprechenden Stelle identifiziert hat. Es ist dadurch

möglich, eine ausgegebene Energie eindeutig einem BC zuzuordnen. Abbildung 4.1

veranschaulicht das Vorgehen.

Abbildung 4.1: Es sind zwei Beispiele dargestellt, wie die grundlegende Struktur
der Netzwerke aufgebaut ist. Die dargestellte Sequenz aus dem ADC-Output hat
eine Länge von 11 BC und stellt die Feature dar. Der darüber aufgezeichnete Puls
befindet sich an dieser Stelle im ADC-Output. Die sensitive Position in der Sequenz
ist gelb markiert und entspricht dem 5. Eintrag. Befindet sich dort die maximale
Amplitude eines Pulses, soll das Modell die Energie berechnen und ausgeben (oberes
Beispiel). Ist dies nicht der Falle, gibt das Netzwerk idealerweise eine Energie von 0
aus (unteres Beispiel).
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KAPITEL 4. INITIALISIERUNG UND TRAINING DER NETZWERKE

Die implementierten Hits können Energien zwischen 0 und 10 GeV haben. Das

Training zielt darauf ab, alle Hits unabhängig ihrer Energie zu finden. Da dies bei

niedrigen Energien, wegen des thermal Noise, aber unmöglich ist, wird auf die Aus-

gabe der Netze ein Noisecut angewendet. Die Bestimmung des Noisecuts wird in 5.2

thematisiert. Zu diesem Zeitpunkt wird vorerst kein Noisecut verwendet.

4.1 Verwendete Netzwerke

Für die spezielle Architektur der Netze wurden mehrere Ansätze realisiert und deren

Performance später verglichen. Im folgenden Teil werden die unterschiedlichen Netze

vorgestellt.

Trigger Netzwerk

Die Architektur des Trigger Netzwerks ist inspiriert durch [3]. Das Modell setzt sich

aus zwei Teilen zusammen: dem Trigger und dem E cal Netzwerk. Der Trigger ist

dafür zuständig, in der Inputsequenz Hits zu erkennen. Seine Ausgabe liegt zwischen

Null und Eins. Eine Eins bedeutet, dass die Wahrscheinlichkeit für einen Hit an der

sensitiven Position hoch ist. Bei einer geringen Wahrscheinlichkeit liegt der Out-

put nahe Null. Das E cal Netzwerk verarbeitet die Ausgabe des Triggers zusammen

mit der Sequenz, um daraus die Energie eines möglichen Pulses zu bestimmen. Die

Verwendung der Informationen des Triggers unterliegen keinen Vorgaben und wird

während des Trainings vom Netz selbstständig festgelegt. Der Trigger und auch das

E cal Netzwerk bestehen aus CNNs mit zwei Convolutional Layern. Das Training

findet zuerst getrennt statt, indem der Trigger vortrainiert wird. Erst danach opti-

miert sich das gesamte Modell aus Trigger und E cal Netzwerk. Durch diesen Ansatz

erhofft man sich eine bessere Leistungsfähigkeit, da die Detektion und Energiebe-

rechnung von Hits durch zwei separate Netze durchgeführt wird. In Abbildung 4.2a

ist die Struktur des Trigger Netzwerks dargestellt. Die Performance des vortrainier-

ten Triggers ist im Anhang unter B.1 zu finden.

Combinational Netzwerk

Wie das Trigger Netzwerk, so besteht auch das Combinational Netzwerk aus vortrai-

nierten Modellen. Aber anstatt eines Triggers verwendet das Combinational Netz-

werk drei Subnetzwerke, welche verschiedene Aufgaben erfüllen. Das Erste heißt

E low und ist darauf spezialisiert, die Energie von niedrigenergetischen Hits (<

1.5GeV) zu berechnen und vom Hintergrund zu unterscheiden. Beim zweiten Sub-

netzwerk, dem E high, findet die Energiebestimmung für höherenergetische Hits
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4.1. VERWENDETE NETZWERKE

(> 1.5GeV) statt. Die Entscheidung welches Subnetzwerk für die Ausgabe verant-

wortlich ist, trifft das Decision Netzwerk. Dessen Output w liegt zwischen 0 und

1, wobei 0 für ET < 1.5GeV bzw. 1 für ET > 1.5GeV steht. Der finale Output

entsteht aus einer gewichteten Summe aus dem Output von E low, E high und den

Gewichten w:

Output(w,E high,E low) = E high ∗ w + E low ∗ (1− w). (4.1.1)

In Abbildung 4.2b ist diese Struktur graphisch dargestellt. E high und E low wer-

den durch MLP-Netze realisiert, während das Decision Netz aus einem CNN mit

zwei Convolutional Layern aufgebaut ist. Durch die Aufteilung des Energiebereichs

während des Trainings auf zwei separate Netze, wird sich eine bessere Detektion der

niedrigenergetischen Hits erhofft, ohne die hochenergetischen zu vernachlässigen. Die

Performance der drei Subnetzwerke befindet sich im Anhang unter B.

(a) Trigger Netzwerk (b) Combinational Netzwerk

Abbildung 4.2: Datenfluss des verwendeten Trigger und Combinational Netzwerks.
(a) : Der vortrainierte Trigger verarbeite zuerst die Sequenz und das E cal Netzwerk
berechnet die Energie mit der Sequenz und dem Output des Triggers. Der leer Array
symbolisiert eine beliebige Sequenz des ADC-Outputs analog zu Abbildung 4.1
(b) : Das E low und E high Netzwerk berechnen ihren Output basierend auf der
Input Sequenz. Das Decision Netzwerk bestimmt mit seinem Output w die Gewich-
tung der beiden Netzwerke. Der finale Output wird über Gleichung 4.1.1 berechnet.
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KAPITEL 4. INITIALISIERUNG UND TRAINING DER NETZWERKE

CNN single und CNN multiple

CNN single und CNN multiple sind Netzwerke mit einer CNN-Architektur. Der ein-

zige Unterschied zwischen beiden ist die Art und Weise, wie die Trainingsdaten ver-

wendet werden. Die Abbildung 4.3 zeigt die Unterschiede zwischen CNN single und

CNN multiple.

(a) CNN single

(b) CNN multiple

Abbildung 4.3: Unterschied zwischen den Netzwerkstrukturen CNN single und
CNN multiple.
(a) : Das Netzwerk bestimmt die Energie Ê5 des 5. Eintrags in der Inputsequenz
bestehend aus den ADC-Werten di. Trainiert wird es mit Sequenzen und der wahren
Energie der 5. Stelle E5.
(b) : Das CNN multiple ist darauf designt, die Energie von jeder Stelle der Inputse-
quenz zu bestimmen. Die finale Ausgabe des Netzwerks bildet jedoch nur die Energie
des 5. Eintrags analog wie beim CNN single. Der entscheidende Unterschied ist je-
doch, dass das Training nicht nur mit E5 sondern, wie dargestellt, mit allen wahren
Energien durchgeführt wird. Auf diese Weise erhält das Netzwerk während des Trai-
nings deutlich mehr Informationen.

Wie schon vorher beschrieben und in Abbildung 4.1 dargestellt, wird für eine
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4.2. TRAININGSDATEN

Sequenz aus ADC-Werten nur die Energie der 5. Stelle vorhergesagt. Die Trainings-

daten enthalten dementsprechend Paare aus den Sequenzen und deren wahren Ener-

gien an der 5. Stelle. Dieses Vorgehen wird von allen zuvor beschriebenen erstellten

Netzwerken sowie den CNN single umgesetzt. Ein Aspekt, der dabei nicht beachtet

wird ist, dass alle Informationen über Energiedepositionen an anderen Positionen

in der Sequenz unberücksichtigt bleiben. Die Idee des CNN multiple ist es, diese

zusätzlichen Informationen über die Sequenz mit zu benutzen. Die Eigenschaft, der

Equivarianz gegenüber Translation [21], von CNNs wird dabei ausgenutzt. Sie be-

sagt, dass ein in der Input Sequenz verschobener Puls ein um den selben Betrag

verschobenen Output erzeugt. Das CNN multiple hat somit die Möglichkeit, auch

von Pulsen zu lernen, deren Amplitude nicht an der 5. Stelle der Input Sequenz liegt.

4.2 Trainingsdaten

Die Trainingsdaten sind neben der Architekur der Netze ein zentraler Bestandteil

für die Arbeit mit ANNs. Für die Simulation der Umläufe des LHC wurde das

TOYMC verwendet. Aufgrund des seltenen Auftretens von hochenergetischen Hits

in der Zeitserie ist ein Training mit den kompletten Daten aus mehreren Umläufen

nicht möglich. Andererseits entsteht ein Modell, indem nur niedrigenergetische Hits

aufgrund ihres häufigen Auftretens (mittlere Energie der implementierten Hits liegt

bei 0.29GeV siehe Abbildung A.1a) erkannt werden und die Anpassung an hoch-

energetische Hits nicht gelingt. Um dem entgegenzuwirken, wurde die Energievertei-

lung der Hits verändert und die Sequenzen mit Hits aus den Umläufen aussortiert.

Zusätzlich fand noch eine Auswahl von Sequenzen ohne Hit ( 1
15

des Trainingsets)

und mit verschobenen Hit(1
3
des Trainingsets) statt. Um die Auswirkungen der Ener-

gieverteilung der Trainingsdaten zu studieren, wurden 4 verschiedene Trainingssets

erstellt. Abbildung 4.4 zeigt die Energieverteilung der verwendeten Trainingsdaten.

Die Anzahl der verwendeten Sequenzen pro Trainingssets ist im Anhang B.1 zu

finden.

27



KAPITEL 4. INITIALISIERUNG UND TRAINING DER NETZWERKE
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Abbildung 4.4: Die Abbildung zeigt die verschiedenen benutzten Energieverteilun-
gen der Trainingsets aus ausgewählten Sequenzen.
(a) : Bei der ratio Verteilung sind die Hits aus vielen Umläufe zufällig aus-
gewählt. Dadurch bildet sich die große Anzahl niedrigenergetischer Sequenzen
(ET < 1.5GeV). Die unifrom verteilten hochenergetischen Hits entstehen aus der
Modifizierung der zugrundeliegenden Energievertielung in der Simulation. Die Trai-
ningsdaten bilden dadurch die tatsächliche Verteilung der Daten am genauesten ab,
werden aber dominiert von Energien kleiner 1.5GeV.
(b) : Die zweite Verteilung verwendet uniform verteilte Hitenergien mit zusätzlichen
Daten ohne Hit, wodurch alle Energien größer Null eine gleiche Gewichtung besit-
zen.
(c) & (d) : Verteilung 3 und 4 stellen den Mittelweg zu den Extremen in Verteilung
1 und 2 dar. Die Energien der Trainingsdaten wurden dafür möglichst genau an die
Funktion f(x) = e−a·x + b mit a = 1 und a = 0.1 für Verteilung 3 bzw. 4 angepasst.
Die ausgewählte Form soll kleine Energien stärker berücksichtigen, da diese auch
öfters auftreten, aber gleichzeitig hohe Energien nicht vernachlässigen.
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4.3. TRAINING UND HYPERTUNING

4.3 Training und Hypertuning

Vor dem Training der Netzwerke mit einem Trainingsset müssen die Hyperpara-

meter der verschiedenen Modelle festgelegt werden. Die dafür verwendete Methode

heißt Hypertuning. Der benutzte Algorithmus [28] initialisiert dabei das Netzwerk

mit vielen unterschiedlichen Sets von Hyperparametern, trainiert und evaluiert es.

Die Evaluation findet mit 30 % der Trainingsdaten statt, dem Validation Set. Es

wird nicht für das Training verwendet, sondern nur zum Testen der unterschied-

lich initialisierten Modelle. Das finale Netzwerk erhält schließlich das Set an Hy-

perparametern, welches den geringsten Validierungsfehler1 hatte. Der Vorteil des

Hypertunings ist, dass die Hyperparameter, wie z. B. die Anzahl an Neuronen, auf

eine optimale Generalisierung optimiert werden. Das in Abschnitt 2.2 beschriebene

Over-/Underfitting wird somit verhindert. Nach dem Hypertuning fand das finale

Training mit einem der vier erzeugten Trainingsdatensätze statt. Um dabei einen

Overfit durch zu langes Training zu verhindern, wurde ein Early Stopping verwendet.

Der minimale Validierungsfehler pro Epoche bestimmt dabei die Anzahl der verwen-

deten Epochen. Folgende Kombinationen aus den erstellten Netzen (Abschnitt 4.1)

und Trainingsdaten (Abschnitt 4.2) kamen zum Einsatz:

Netzwerk Trainingsdaten Abkürzung Parameter
Trigger Netzwerk ratio/uniform Trigger Netzwerk 13247

Combinational Netzwerk ratio/uniform Combinational Netzwerk 5173
CNN single ratio CNN single ratio 5496
CNN single uniform CNN single uniform 3996
CNN single exp1 CNN single exp1 3851
CNN single exp2 CNN single exp2 3726

CNN multiple ratio CNN multiple ratio 3418
CNN multiple uniform CNN multiple uniform 4743
CNN multiple exp1 CNN multiple exp1 7618
CNN multiple exp2 CNN multiple exp2 7618

Tabelle 4.1: Benutzte Kombinationen aus den verschiedenen Trainingssets und Netz-
werken und der finalen Anzahl an Parametern nach dem Hypertuning

Die insgesamt möglichen Kombinationen an Hyperparametern betrugen bis zu

ca. 8200 für ein einzelnes Netz. Da es unmöglich war, alle möglichen Sets zu initiali-

sieren, wählte der Algorithmus pro Netzwerk 200 zufällige aus. Die Validierungsfeh-

ler der 200 verschiedenen Sets geben einen Anhaltspunkt, welche Hyperparameter

einen großen Einfluss auf die Performance haben und welche nicht. Diese Informa-

tion ist besonders bei einer möglichen Implementierung auf Field Programmable

1Dieser wird analog zum Testfehler, aber mit dem Validationset, berechnet (siehe Gleichung
2.2.2)
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KAPITEL 4. INITIALISIERUNG UND TRAINING DER NETZWERKE

Gate Arrays (FPGAs) interessant. Die Größe der Netzwerke oder z. B. die Anzahl

an Inputfeatures können so bezüglich vorhandener Ressourcen optimiert werden.

In Abbildung 4.5 sind die Ergebnisse des Hypertunings von 4 ausgewählten Hy-

perparametern dargestellt. Aufgetragen ist die Verteilung des Validierungsfehlers

für die möglichen Werte des gezeigten Hyperparameters. Die in Abbildung 4.5d dar-

gestellten Hyperparameter crop lower limit und crop upper limit beschreiben die

Kürzung am Anfang beziehungsweise am Ende des benutzten Receptive Fields von

11 BCs. Bei einem crop lower limit von 3 wird von den selektierten Sequenzen die

ersten 3 BCs abgeschnitten. Teile des Pulses gehen dabei möglicherweise verloren,

aber eine Reduktion des Receptive Fields führt andererseits zu einer Reduktion der

Parameter. Das Hypertuning hat gezeigt, dass für die Netzwerke ein Abschneiden

am Anfang der Sequenz zu einer sichtbaren Erhöhung des Validierungsfehlers führt

(siehe Abbildung 4.5a). Das Kürzen am Ende der Sequenz, beschrieben durch crop

upper limit, hat nur negative Auswirkungen für CNN multiple (siehe Abbildung

4.5b), nicht aber für CNN single. Abbildung 4.5c zeigt das Ergebnis für die Akti-

vierungsfunktion in der Ausgabeschicht von CNN multiple exp3 mit einer starken

Tendenz für die ELU. In vielen Schichten wurden die in Abschnitt 2.1 beschriebe-

nen Aktivierungsfunktionen ELU und RELU getestet, aber ohne eine allgemeine

Präferenz für eine Funktion zu erhalten. Das Histogramm 4.5d zeigt beispielhaft,

dass die Erhöhung der Parameter wie hier durch eine größere Anzahl an Feature

Maps nicht immer eindeutig zu einem geringeren Validierungsfehler führte und da-

mit die Größe der erstellten Netze der Aufgabe angemessen war.
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4.3. TRAINING UND HYPERTUNING

(a) Modell : CNN single uniform (b) Modell : CNN multiple exp2

(c) Modell : CNN multiple exp3 (d) Modell : CNN multiple ratio

Abbildung 4.5: Die Abbildung zeigt 4 Ergebnisse des Hypertunings. Es sind einige
Beispiele von Hyperparametern dargestellt, bei denen es zu großen Unterschieden des
Validierungsfehlers zwischen den eingestellten Möglichkeiten kam. Die Diagramme
zeigen jeweils für jeden möglichen Wert eines Hyperparameters das normierte Hi-
stogramm der erzielten Validierungsfehler. Das Histogramm hängt jedoch stark von
den anderen Hyperparamtern ab, da diese nicht konstant sind, sondern stattdessen
bei jeder Initialisierung zufällig ausgewählt wurden. Auch ist, aufgrund der Sichtbar-
keit, nur der relevante Bereich des Histogramms bei minimalem Validierungsfehler
dargestellt.
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Kapitel 5: Ergebnisse

5.1 Energierekonstruktion

Für die Untersuchung der Leistungsfähigkeit der Netzwerke und dem Vergleich mit

dem FIR-Filter kommt der Trainingsdatensatz zum Einsatz. Dieser enthält aus-

schließlich Daten, die in keiner Weise für das Training oder Hypertuning zum Einsatz

kamen, um Aussagen über die Generalisierung treffen zu können. Im Gegensatz zu

den Trainingsdaten enthält der Testdatensatz keine selektierten Sequenzen, sondern

benutzt die vollständigen Daten aus 4378 oder 5837 Umläufen. Die der Simulation

zugrundeliegende Energieverteilung der Hits wurde, wie zuvor beschrieben, modi-

fiziert. Die Tests sind somit keine exakte Nachbildung der ATLAS-Daten während

mehrerer Umläufe. Für die Leistung der in dieser Arbeit betrachteten Modelle ist

das jedoch ausreichend. Die verwendeten Daten bilden durch die Anzahl der nied-

rigenergetischen Hits sowie durch die Verschiebung des Pedestals den ADC-Output

realistisch nach, während zusätzlich die Performance für hochenergetische Hits ver-

glichen werden kann.

Abbildung 5.1 zeigt die Genauigkeit der Energierekonstruktion in Form der relativen

Abweichung zur wahren Energie Etruth
T . Die Ergebnisse von Hits in einem Energieab-

schnitt, mit der Breite von 1 GeV, wurden gemittelt. Punkte mit der gleichen Farbe

deuten auf die gleiche Netzwerkstruktur (CNN single/CNN multiple) hin und glei-

che Marker auf die gleichen Trainingsdaten. Bei niedrigen Energien (Etruth
T < 4GeV)

besitzen die Modelle den größten relativen Fehler von 0.1 beim CNN multiple exp2

bis hin zu 0.6 beim FIR-Filter. Die wahre Energie Etruth
T wird im Mittel modellu-

nabhängig unterschätzt. Die größten Unterschiede zwischen den Modellen befinden

sich ebenfalls in diesem Energiebereich. Es lassen sich dabei zwei Gruppen erkennen:

Netzwerke mit den Trainingsdaten ratio, wie CNN single ratio, CNN multiple ratio

und Trigger Netzwerk, erzielen einen höheren relativen Fehler als die Netzwerke

mit den anderen Trainingsdatensätzen. Das Combinational Netzwerk wechselt zwi-

schen beiden Gruppen aufgrund seines Aufbaus. Für kleine Energien befindet es sich

in der Gruppe der ratio trainierten Daten. Ab ca. 1.5 GeV, der Grenze zwischen

den Subnetzwerken verbessert sich die relative Abweichung und das Combinational
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Abbildung 5.1: Der mittlere relative Fehler in Abhängigkeit der wahren Energie für
alle trainierten Modelle und den FIR-Filter. Die Testdaten stellen die vollständigen
Daten mehrere LHC-Umläufe dar.

Netzwerk gelangt in die Gruppe der Netzwerke, die nicht mit ratio trainiert wur-

den. Die Genauigkeit der Energiebestimmung dieser Gruppe ist insbesondere bei

kleinen Energien deutlich besser als beim eingesetzten FIR-Filter. Dieser hat auf-

grund der verfügbaren 8 Bits für die Energiebestimmung einen deutlichen Nachteil

gegenüber den Netzwerken. Bei Hits mit Energien über 4GeV liegen die Mittel-

werte aller getesteten Modelle größtenteils bei 0, wobei manche einen leichten aber

konstanten Offset beibehalten. Das CNN multiple exp2 hat, z. B. für Energien über

4GeV, eine mittlere relative Abweichung von -0.3. Abhängigkeiten des Offsets von

der Netzwerkstruktur oder den Trainingsdaten sind dabei nicht erkennbar. Auch ist

zwischen den Netzwerkstrukturen CNN single und CNN multiple kein großer Un-

terschied feststellbar.

Die Abhängigkeit von dem Trainingsdatensatz ratio wird auch in der Abbildung

5.2 deutlich. Für jede Sequenz in den Testdaten ist die vorhergesagte Energie Epred
T

gegen die wahre Energie Etruth
T aufgetragen. Die Winkelhalbierende zeigt die Posi-

tion einer perfekten Vorhersage an. Die Abbildung 5.2 bestätigt die Erkenntnisse

aus der Abbildung 5.1. Die größten Unterschiede der Netzwerke liegen bei Energien
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(a) Modell : CNN multiple ratio
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(b) Modell : Trigger Netzwerk
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(c) Modell : Combinational Netzwerk
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(d) Modell : CNN single uniform

Abbildung 5.2: Die Etruth
T (Epred

T ) Diagramme zeigen die allgemeine Struktur der Vor-
hersage für den trainierten Energiebereich. Die Ergebnisse für die anderen Netzwerke
sind im Anhang unter C.1 zu finden
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KAPITEL 5. ERGEBNISSE

Abbildung 5.3: Die Abbildung zeigt die Verteilung der Energie der fake Hits (Se-
quenzen, die keinen Hit beinhalten oder bei denen die Pulsamplitude nicht an der
5. Stelle in der Sequenz liegt, sie aber trotzdem vom Netzwerk als Hit detektiert
werden). Die dargestellten Modelle entsprechen den aus Abbildung 5.2.

unterhalb von 4GeV. Bei höheren Energien ist die Vorhersage größtenteils um die

wahre Energie zentriert mit eine mittleren Standardabweichung von 0.35GeV für das

gezeigte CNN multiple ratio. Die Auflösung in diesem Energiebereich ist durch das

thermische Rauschen limitiert. Die Abbildung 5.2a zeigt, dass die in Abbildung 5.1

beobachteten größeren relativen Fehler der Netzwerke mit dem ratio Trainingsdaten-

satz aus einer Anpassung an eine charakteristische Form resultieren. Für Energien

kleiner 2GeV sind Vorhersagen weniger zentriert, wie es bei CNN single uniform

(5.2d) der Fall ist, aber auch deutlich weniger gestreut. Dies zeigt auch die Be-

trachtung der Sequenzen ohne implementierte Pulse (Abbildung 5.3), welche die

Testdaten dominieren. Diese Anpassung führt allerdings zu schlechteren Vorhersa-

gen bei Sequenzen mit der Enegie von ca. 2GeV, sodass Vorhersagen erst wieder

ab 4GeV um den wahren Wert zentriert sind. Diese Form entsteht aufgrund der

Zusammensetzung der Trainingsdaten ratio, welche hauptsächlich aus Sequenzen

mit Energien kleiner als 1GeV bestehen. Das Combinational Netzwerk (5.2c) er-

reicht für kleine Energien eine geringe Streuung, ohne die charakteristische Form

von CNN single ratio anzunehmen.

Das Trigger Netzwerk (Abbildung 5.2b) erzielt die beste Performance für die

Sequenzen ohne Hit. Da es aber auch mit dem ratio Trainingsdatensatz trainiert

wurde, ist die gleiche charakteristische Form wie bei CNN m ratio erkennbar. In

Abbildung 5.2 sind bei allen Netzwerken auffälligen Sequenzen mit Etruth
T = 0, welche

36



5.2. NOISECUT UND TRIGGEREIGENSCHAFTEN

aber mit Energien von bis zu 9GeV vorhergesagt wurden, sichtbar. Diese Fehler

entstehen durch Situationen, bei denen hochenergetische Hits einen Abstand von nur

wenigen BCs besitzen. Aufgrund der Überlagerung der Pulse erkennt das Netzwerk

in dem BC zwischen den Pulsen einen hochenergetischen Hit. Diese Ergebnisse sind

selten und Resultat der veränderten Energieverteilung für die Hits.

5.2 Noisecut und Triggereigenschaften

Neben der Energieberechung der Hits ist die zweite wichtige Aufgabe die Bestim-

mung des richtigen BCs, in dem ein Hit auftrat. Abbildung 5.3 zeigt, dass die Netz-

werke bei Sequenzen ohne einen Hit an der sensitiven Stelle häufig triggern und

einen sogenannten fake Hit detektieren. Das Netzwerk CNN multiple ratio hat z. B.

eine mittlere Ausgabe von 0.13GeV bei Sequenzen ohne Hit. Die Ursache für die

hohe fake Hit-Rate liegt in den Trainingsdaten. Diese beinhalten selbst Pulse mit

einer Energie kleiner als σthermal. Für das Netzwerk war es nicht möglich, Hits dieser

geringen Energie von Sequenzen mit reinem Noise zu unterscheiden. Als Resultat ist

das Netzwerk sehr sensitiv auf leichte Erhöhungen des ADC-Outputs und generiert

viele fake Hits. Vermieden werden die fake Hits durch die Einführung eines Noi-

secuts. Dieser setzt alle Ausgaben des Netzwerks auf Null, welche unterhalb einer

Schwelle liegen. Die Höhe der Schwelle muss dabei festgelegt werden.

Berechnung des Noisecuts

Die Energie von fake Hits definiert die Höhe des benötigten Noisecuts. Die Schwelle

sollte so klein wie möglich sein, damit weniger Hits verloren gehen. Für die Netzwer-

ke zeigt sich, dass die Energien der fake Hits 1-2 BCs neben einem hochenergetischen

Hit maximal sind. Ein Maß für die Anzahl der fake Hits um einen echten Hit stellt

der Timing Score dar. Er ist definiert als die Anzahl von fake Hits, die in den 2 BCs

vor und nach einem Hit entstehen, gemittelt über den gesamten Energiebereich der

getesteten Hits. Der FIR-Filter erreicht mit seinem Noisecut (≈ 1.4GeV) einen Ti-

ming Score von 0.005. Dies bedeutet, dass es im Mittel bei 0.5 % der getesteten Hits

zu einem fake Hit kam. Abbildung 5.4 zeigt den gemessenen Timing Score als Funk-

tion des Noisecuts für das Netzwerk CNN multiple exp2. Der finale Noisecut des

Netzwerks wird durch den Schnittpunkt mit dem Timing Score des FIR-Filters fest-

gelegt. Liegt der Schnittpunkt zwischen zwei Datenpunkten, wie es für das gezeigte

Netzwerk der Fall ist, wurde exponentiell interpoliert. Die erreichten Noisecuts der

Netzwerke sind in Tabelle 5.1 zu sehen. Der in Abbildung 5.3 angedeutete Vorteil der

Modelle Trigger Netzwerk und CNN multiple ratio macht sich durch die geringen

Noisecuts von 0.93GeV und 1.05GeV bemerkbar. Die restlichen Netzwerke erzie-
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KAPITEL 5. ERGEBNISSE

Abbildung 5.4: Der Timing Score in Abhängigkeit des angewendeten Noisecuts.
Der Timing Score des FIR-Filters ist als orange Linie dargestellt. Der interpolierte
Schnittpunkt ergibt den Noisecut des Netzwerks.

len untereinander einen ähnlichen Noisecut im Bereich von 1.2−1.27GeV. Lediglich

CNN single exp2 hat mit 1.36GeV einen auffallend großen Noisecut. Alle Netzwerke

erzielen einen niedrigeren Noisecut als der FIR-Filter.

Netzwerk Noisecut in GeV
Trigger Netzwerk 0.93

Combinational Netzwerk 1.27
CNN single ratio 1.04

CNN single uniform 1.2
CNN single exp1 1.24
CNN single exp2 1.36

CNN multiple ratio 1.05
CNN multiple uniform 1.2
CNN multiple exp1 1.23
CNN multiple exp2 1.25

Tabelle 5.1: Erhaltene Noisecuts mit der Methode des Timing Scores für die Netz-
werke.

Leistungsfähigkeit der Trigger

Für die im vorherigen Abschnitt berechneten Noisecuts kamen lediglich Sequenzen

mit isolierten Hits zum Einsatz. Um die Leistungsfähigkeit der Netzwerke und des

FIR-Filters zu untersuchen, werden diese, wie zuvor bei der Untersuchung der Ener-

gierekonstruktion, mit vollständigen LHC-Umläufen getestet. Zur Beurteilung der

Leisungsfähigkeit wird die Präzision und Relevanz betrachtet. Die Präzision, auch

Effizient genannt, beschreibt den Anteil der Ereignisse mit einer Energie größer als
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5.2. NOISECUT UND TRIGGEREIGENSCHAFTEN

dem Noisecut, die im richtigen BC detektiert wurden. Werden alle dementsprechen-

den Ereignisse gefunden, liegt die Präzision bei 1. Dieses Ergebnis erreicht allerdings

auch ein Trigger, der auf jedes beliebige Ereignis reagiert. Deshalb wird zusätzlich

die Relevanz, auch Reinheit genannt, berechnet. Sie beschreibt Anteil aus allen Er-

eignissen mit einer vorhergesagten Energie über dem Noisecut, deren wahre Energie

auch über dem Noisecut liegt. Präzision (Effizienz) und Relevanz (Reinheit) sind

definiert durch

Präzision =
RP

RP + FN
(5.2.1)

und

Relevanz =
RP

RP + FP
. (5.2.2)

Die richtig positiven(RP) Klassifikationen sind Sequenzen mit einer Energie über

dem Noisecut, welche auch dementsprechend detektiert werden. Bei den falsch posi-

tiven (FP) liegt die wahre Energie unterhalb des Noisecuts, die Vorhersage allerdings

darüber. Ist die Vorhersage kleiner als der Noisecut und die wahre Energie größer,

handelt es sich um eine falsch negative (FN) Klassifikation.

Abbildung 5.5 zeigt das Ergebnis für 3 Netzwerke und den FIR-Filter. Unter den

gezeigten Netzwerken hat das Netzwerk CNN single uniform die beste Effizienz bei

der Detektion von niedrigenergetischen Hits. Die Netzwerke CNN multiple ratio und

Trigger Netzwerk zeigen keine großen Unterschiede und erreichen erst ab ca. 2.2GeV

eine Präzision von 1. Alle Netzwerke erzielen eine bessere Effizienz bei der Detek-

tion von Hits, als der eingesetzte FIR-Filter. Das Modell CNN single unifrom er-

zielt auf der einen Seite die höchste Effizienz, hat aber auf der anderen Seite eine

schlechtere Reinheit der Vorhersagen. Erst ab einer vorhergesagten Energie von ca.

2.75GeV erreicht es eine Relevanz von 1, wohingegen dem Trigger Netzwerk dies

schon bei ca. 2GeV gelingt. Die Verwendung eines vortrainierten Triggers bei dem

Trigger Netzwerke resultiert in eine bessere Relevanz, wie der Vergleich mit dem

CNN multiple ratio zeigt. Die Auflösung der Relevanz für den FIR-Filters ist auf-

grund des für Epred
T verfügbaren Bereichs von 8 Bit eingeschränkt. Eine höhere Rein-

heit und damit weniger fake Hits bei der Detektion von Hits ist bei den Netzwerken

trotzdem erkennbar.

39



KAPITEL 5. ERGEBNISSE

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Etruth

T  in GeV

0.0

0.2

0.4

0.6

0.8

1.0

Pr
äz

isi
on

CNN_multiple_ratio
CNN_single_uniform
trigger_network
Fir-Filter

(a) Diagramm der Präzision
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(b) Diagramm der Relevanz

Abbildung 5.5: In (a) ist die Präzision als Funktion von Etruth
T der getesteten Se-

quenzen für ausgewählte Netzwerke und dem FIR-Filter dargestellt. Die Relevanz
(b) ist in Abhängigkeit von Epred

T dargestellt und beschreibt die Wahrscheinlichkeit,
dass die wahre Energie eines detektierten Ereignisses über dem Noisecut liegt. Die
Ergebnisse für die anderen trainierten Netzwerke befinden sich im Anhang unter
C.2.
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Kapitel 6: Zusammenfassung

Zur Reduktion der Datenrate benötigt der ATLAS-Detektor ein leistungsfähiges

Triggersystem. Dieses besteht unter anderem in der ersten Stufe aus dem L1Calo-

System. Zu dessen Aufgaben zählt es, die im Kalorimeter gemessenen Teilchen zu

detektieren und deren Energie zu berechnen. Im Hinblick auf die höheren Lumi-

nositäten nach dem Phase-II Upgrade wurde untersucht, ob diese Aufgaben ein

neuronales Netz genauer und zuverlässiger bewerkstelligen kann, als der bisher ein-

gesetzte FIR-Filter.

Die für die Arbeit mit neuronalen Netzen benötigten Daten wurden durch die Simu-

lation TOYMC generiert. Es wurde das Signal eines TTs im TileLB für ein ⟨µ⟩ = 40

aus vielen simulierten LHC-Umläufen verwendet. Die Untersuchung der Daten hat

gezeigt, dass für diesen Detektorbereich das thermische Rauschen die dominierende

Rauschquelle darstellt und der Pile-Up vernachlässigbar ist. Für die Untersuchung

des Einflusses der Trainingsdaten wurden aus diesen Daten insgesamt 4 Sets mit

unterschiedlicher Energieverteilung erstellt.

Das Training mit diesen Sets fand mit mehreren verschiedenen Netzwerkarchitektu-

ren statt. Die grundlegende Struktur bildete dabei ein Convolutional Neural Net-

work. Mehrere Ansätze zur Netzwerkstruktur wurden miteinander verglichen. Durch

ein Hypertuning und Early Stopping konnten die Hyperparameter optimal festgelegt

werden.

Der Test mit Daten aus LHC-Umläufen hat gezeigt, dass die Netzwerke bei der

Auflösung der Energierekonstruktion und Effizienz der Detektion eine bessere Leis-

tung erzielen als der bisher eingesetzte FIR-Filter. Die Netzwerke erreichen bei nied-

rigeren Noisecuts eine bessere Effizienz der Detektion bei zugleich höherer Reinheit.

Die Leistungsfähigkeit des Triggers kann somit durch die Netzwerke erhöht werden.

Aus dem Vergleich der Netzwerke untereinander wird sichtbar, dass die Zusammen-

setzung der Trainingsdaten den größten Einfluss auf die Leistung der neuronalen

Netze hat. Veränderungen in der Architektur haben im Vergleich dazu geringe Aus-

wirkungen auf die Leistungsfähigkeit.

In den weiteren Schritten muss die Leistungsfähigkeit bei einem erwarteten ⟨µ⟩ von
140-200, für das geplante Phase-II Upgrade, getestet werden. Außerdem ist eine Er-

weiterung des Energiebereichs notwendig, sowie die Implementierung auf FPGAs.
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Anhang A: Amplitudenverteilungen

der implementierten

Ereignisse

(a) unveränderte Verteilung

(b) veränderte Verteilung

Abbildung A.1: Verwendete Verteilung der Amplituden für die eingefügten Pulse.
Die Veränderung der Verteilung in A.1a erhöht das Auftreten von höherenergetischen
Ereignissen.
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Anhang B: Leistungsfähigkeit von

Subnetzwerken

Trigger aus Trigger Netzwerk
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(a) Trainingsdaten des Trigger Subnetzwerks (b) Leistungsfähigkeit des Triggers

Abbildung B.1: Für die Trainingsdaten des Subnetzwerks Trigger wurde eine uni-
forme Energieverteilung ausgewählt (a). Anstatt einer wahren Energie enthalten die
Trainingsdaten eine 1 für einen Hit und ansonsten eine 0. Die Ausgabe des Triggers
liegt zwischen 0 und 1, wodurch sie mit der idealen Ausgabe verglichen werden kann.
In (b) ist die Leistungsfähigkeit des Triggers dargestellt. Die Ausgabe des Netzwerks
wurde für jeden Energiebereich gemittelt. Ab zwei 2GeV erreicht der mittlere Out-
put 1, sodass alle Hits detektiert werden. Es ist aber auffällig, dass der mittlere
Output, insbesondere für den Energiebereich um 0GeV, niemals Null ist. Dies lässt
darauf schließen, dass viele Sequenzen ohne Hit falsch detektiert werden. Auf die
Verwendung der Ausgabe des Triggers durch das E cal Netzwerk hat man keinen
Einfluss.
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ANHANG B. LEISTUNGSFÄHIGKEIT VON
SUBNETZWERKEN

Combinational Netzwerk

(a) E low Netzwerk (b) E high Netzwerk

Abbildung B.2: Die Abbildung zeigt die Performance der Subnetzwerke in Form von
Etruth

T (Epred
T )-Diagrammen. Die Testdaten stellen keine vollständigen Umläufe des

LHC, wie in Abbildung 5.2, dar. Es wurden selektierte Sequenzen mit einer Vertei-
lung ähnlich zu 4.4a verwendet.
(a) : Das Netzwerk hat sich bestmöglich an die Sequenzen mit ET < 1.5GeV ange-
passt. Da die Trainingsdaten keine Sequenzen mit ET > 1.5GeV beinhalteten, ist
die Vorhersage für diesen Energiebereich schlecht.
(b) : Die Leistungsfähigkeit ist umgekehrt zu E low in (a): Gute Anpassung für
ET > 1.5GeV und schlechte für ET < 1.5GeV

(a) Trainingsdaten von E low (b) Trainingsdaten von E high

Abbildung B.3: Die Trainingsdaten von E low sind in (a) und von E high in (b)
dargestellt. Um die Spezialisierung auf die Energiebereiche zu erreichen enthalten
die Trainingsdaten lediglich Sequenzen aus dem entsprechenden Energiebereich(für
E low von 0 − 1.5GeV und für E high von 1.5 − 10GeV).
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Abbildung B.4: Die Abbildung zeigt den mittleren Output des Decision Netzwerk
für verschiedene Energien der Input Sequenzen. Die Ausgabe liegt zwischen 0 und
1. Die Fehlerbalken stammen aus einem Gauss’schen Fit. Die vertikale Linie zeigt
die Grenze des Detektionsbereichs von E small und E high.

Trainingsdaten

Trainingsdatenverteilung Anzahl an verwendeter Sequenzen
ratio 324000

uniform 228096
exp 1 131364
exp 2 154772

Tabelle B.1: Aufgrund der charakteristischen Form der Verteilungen kommt es zu
unterschiedlich große Trainingsets.
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Anhang C: Zusätzliche

Ergebnisse
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(a) Modell : CNN multiple exp1
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(b) Modell : CNN multiple exp2
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(c) Modell : CNN multiple uniform
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(d) Modell : CNN single exp1
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(e) Modell : CNN single exp2
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(f) Modell : CNN single ratio

(g) Modell : Fir-Filter

Abbildung C.1: Die Abbildung zeigt die Etruth
T (Epred

T ) Diagramme der restlichen
trainierten Netzwerke
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(a) Diagramm der Präzision
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(b) Diagramm der Relevanz

Abbildung C.2: In (a) ist die Präzision als Funktion von Etruth
T der getesteten Se-

quenzen für alle trainierten Netzwerke und den FIR-Filter dargestellt. In (b) ist die
Relevanz in Abhängigkeit der vorhergesagten Energie Epred

T für alle trainierten Mo-
delle und den FIR-Filter dargestellt
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1.1 LHC-Übersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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