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Abstract

Throughout the last decades, matrix-based unfolding has been used in count-
less analyses to remove detector effects from measured data. The main bot-
tleneck of these approaches is the exponential scaling of computational re-
sources for multiple dimensions due to the introduced binning of the phase
space. Hence, there is a demand for unbinned approaches, which use an
event-by-event treatment of the data. In recent years, machine learning tools
have thus been applied to the task of unfolding. One possibility is to use
conditional Invertible Neural Networks (cINN).
This thesis proposes a method for comparrison of the matrix-based algorithms
to cINN unfolding by implementing a matrix-based single event unfolding. In
addition, an extension of cINN unfolding is proposed to iteratively reduce the
model-dependency in the unfolding process. The performance of this Itera-
tive cINN unfolding (IcINN) is demonstrated by unfolding pseudo-data with
a pp→ Zγγ final state.

Abstract (in deutscher Übersetzung)

In den letzten Jahrzehnten wurden matrix-basierte Unfolding-Algorithmen
eingesetzt um Detektoreffekte von gemessenen Daten zu entfernen. Das Haupt-
problem dieser Ansätze ist das exponentielle Skalieren der benötigten Rechen-
leistung für höhere Dimensionen aufgrund der eingeführten Histogrammdar-
stellung des Phasenraumes. Infolgedessen existiert eine Nachfrage für Ansät-
ze, welche auf diese Histogrammdarstellung verzichten und stattdessen die
Daten auf Basis einzelner Events behandeln. In den letzten Jahren wurden
daher Werkzeuge des maschinellen Lernens auf die Herausforderung des Un-
foldings angewandt. Eine Möglichkeit ist hierbei die Verwendung von kondi-
tionalisierten invertierbaren neuronalen Netzen (cINN).
Diese Arbeit schlägt eine Möglichkeit vor, wie matrix-basierte Algorithmen
durch die Implementierung eines matrix-basiertes Unfolding von einzelnen
Events mit cINN Unfolding verglichen werden können. Des Weiteren wird
eine Erweiterung des cINN Unfoldings vorgeschlagen, welches die Modell-
abhängigkeit im Unfolding-Prozess iterativ reduziert. Die Wirksamkeit die-
ses Iterativen cINN Unfolding (IcINN) wird anhand von Pseudo-Daten mit
pp→ Zγγ im Endzustand demonstriert.
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1. Introduction
The detectors used in modern particle colliders perform some of the most precise measure-
ments throughout physics. In order to probe theoretical predictions from the Standard
Model of Particle Physics, it is necessary to compare them to measured data. This can
be a challenge as the uncertainty of the experimental data depends on the resolution
of the detector. These uncertainties are so-called detector effects, which are not present
in the theoretical predictions. To allow for comparisons in experimental searches, these
detector effects can either be added to the theoretical predictions or removed from the
experimental data. The latter is called unfolding. Both approaches require a precise
knowledge of the detector’s response to the measured phenomena.

Unfolding a data distribution is a non-trivial task due to the statistical nature of the
data-taking process. In the last decades, mostly matrix-based unfolding has been used,
which relies on the construction and (pseudo-)inversion of the detector response matrix
[1]. A simple matrix inversion produces a mathematically correct, but physically undesir-
able result, because it includes large bin-to-bin fluctuations and uncertainties. Hence, it
is necessary to implement a regularization [2]. A different approach to matrix-based un-
folding are iterative matrix-based algorithms [3, 4]. These algorithms perform a bayesian
pseudo-inversion of the detector response, which is based on an explicit prior assumption
about the result of the unfolding.
The unfolding result carries a certain amount of bias towards this prior assumption.
This problem is called model dependency : the final result depends on the model which
has been used to describe the data. The prior is iteratively corrected, thus reducing
the model dependency. Unfortunately, an increasing number of iterations increases the
uncertainties. Hence, only a limited amount of iterations is beneficial. It is essential to
choose the number of iterations such that a balance between the model dependency and
the uncertainty is obtained.
The introduced binning in the matrix-based algorithms creates challenges: in a multi-
dimensional unfolding, the number of entries in the response matrix increases exponen-
tially with each further dimension. Therefore, the unfolding of the full phase space
information, i.e. an unfolding of all observables measured by the detector, is computa-
tionally not feasible.

Due to this, it is desirable to introduce an unbinned unfolding based on machine learning
tools. These tools treat the data on an event-by-event basis, which is easily scalable to
higher dimensions. One possibility to implement a machine learning based unfolding is to
use conditional invertible neural networks in the so-called cINN unfolding [5]. The basic
idea of this approach is the implementation of an event-generation conditionalised on
measured events. As a consequence, the cINN is not only able to unfold a full measured
distribution, but also single events. Several applications of the cINN unfolding will be
explored in this thesis.
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1 Introduction

After recapitulating several aspects of the Standard Model and a discussion of the AT-
LAS detector in Section 2, the basics of matrix-based unfolding as well as an analytic toy
model for unfolding are introduced in Section 3. The subsequent Section 4 introduces the
basics of machine learning. Section 5 explains how machine learning tools are currently
used in unfolding problems.
Section 6 discusses a fundamentally new approach to predict single event unfolded distri-
butions, using the matrix-based unfolding algorithms. Especially the iterative algorithms
yield promising results. In Section 7 the limits of cINN unfolding are demonstrated and
a new, iterative unfolding algorithm based on cINN unfolding is introduced: the Iterative
cINN unfolding (IcINN). The performance of this algorithm is illustrated in Section 8 by
unfolding pseudo-data of the process pp→ Zγγ [6].

Author’s contribution
The first project was the generation of single event unfolded distribution for the matrix-
based methods. To achieve this, I modified the standard matrix-based unfolding al-
gorithms implemented in the package RooUnfold [7], which is provided by CERN. To
demonstrate the proper functionality, I constructed an analytically solvable toy model to
validate the performance.
The second project was the implementation of the IcINN algorithm and its deeper inves-
tigation. Starting from code provided by Anja Butter, I implemented the analytic toy
model as well as the two-dimensional physical Zγγ example. For the latter, I first had to
generate pseudo-data using MadGraph5 [8], Pythia8.308 [9] and DELPHES 3.5.0 [10].
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2. Modern Particle Physics
High energy physics is one of the most important research areas in modern physics. The
underlying theory -the Standard Model of Particle Physics- has been well established over
the last decades, predicting most of the observed effects to a high amount of precision.
The success of this model is based on the thorough theoretical groundwork as well as the
development of high precision detectors in experiments.
The Standard Model of Particle Physics includes three of the four fundamental forces: the
electromagnetic force, the weak force and the strong force. It is in general formulated as a
consistent Quantum Field Theory (QFT) which is required to fulfill several symmetries.
This field theory predicts observables depending on constants like masses or coupling
strengths. In order to obtain an estimation of how valid the theoretical assumptions
actually are, a highly accurate measurement of these observables is necessary. This is
thus the main objective of modern detector systems.
In recent years, circular colliders like the Large Hadron Collider (LHC) at CERN (Conseil
européen pour la recherche nucléaire) contributed to significant discoveries of several
types. There are four major experiments at the LHC: ATLAS, LHCb, CMS and ALICE.
Currently (2022), the third run of data-taking has started.

2.1. The Standard Model of Particle Physics
The Standard Model is based on a Lagrangian which is symmetric under the Poincaré
group of the special theory of relativity as well as the combined gauge groups

SU(3)C × SU(2)L ×U(1)Y. (2.1)

In addition to these symmetries, the final Lagrangian is required to produce a renormal-
izable theory, i.e. the predicted observables should be finite. A more involved discussion
on how to derive the possible terms of the Lagrangian can be found in advanced literature
[11, 12, 13].
The strong interaction is associated with the gauge group SU(3)C, the corresponding
part of the standard model is called Quantum Chromodynamics [14, 15, 16]. The elec-
tromagnetic force and the weak force are unified in the Glashow-Salam-Weinberg model
[17, 18, 19], their corresponding gauge group is SU(2)L × U(1)Y. The Standard Model
Lagrangian can in general be written down as

LSM = LGauge + LFermion + LHiggs + LYukawa. (2.2)

The Gauge part of the Lagrangian is introduced to implement the gauge boson dy-
namics of each force. Gauge bosons are needed to preserve that the full Lagrangian is
invariant under local gauge symmetries [11]. The gauge fields associated with each gauge
symmetry can be introduced as:

• SU(3)C: Ga
µ with a ∈ {1, 2, ..., 8},

3



2 Modern Particle Physics

• SU(2)L: W i
µ with i ∈ {1, 2, 3},

• U(1)Y: Bµ.

The field-strength tensors are defined as

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν (2.3)

Bµν = ∂µBν − ∂νBµ.

using the structure constant of SU(3)C (fabc) and the structure constant of SU(2)L (ϵijk)
as well as the corresponding coupling constants gs and g. The gauge part of the Standard
Model Lagrangian can be written down as [20]

LGauge = −1

4
Ga

µνG
aµν − 1

4
W i

µνW
iµν − 1

4
BµνB

µν . (2.4)

These terms implement gauge boson dynamics into the Standard Model. At this point
it is instructive to have a closer look at the first term of the equation. Due to the non-
abelian structure of the group SU(3)C and its non-vanishing structure constant fabc, the
gauge boson dynamics of the gluon Ga

µ give rise to gluon-gluon self interactions, depicted
in Figure 2.1. As explained later, the gluons couple to the fermions, which carry a
color charge: the quarks. Experimentally it is observed that there are in general no free
quarks. This behavior is explained by the hypothesis of color confinement, which states
that colored objects are always confined to color singlet states [21]. This assumption is not
yet analytically proven, but there is a qualitative explanation. The strong interaction
between two quarks is exchanged via gluons. If they would be pulled apart, a "field
tube" would form because of the attractive interactions of the gluons due to their self-
interaction. This phenomenon is shown in Figure 2.2. In contrast to the electric field,
where the field lines are spreading out, the energy density is constant inbetween the
quarks [22]. This behavior can be modeled with a potential of the form

V (r) ∝ r. (2.5)

The consequence of this potential is a very large attractive force between any two un-
confined quarks, regardless of separation. Hence, the observed hadronic states are all
colorless combinations of quarks [21]. This color confinement leads to the effect of hadro-

Figure 2.1: Gluon-gluon self interaction for a field theory based on the non-abelian gauge
group SU(3)C: on the left the triple gluon interaction vertex, on the right a
quartic gluon interaction vertex.
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2 Modern Particle Physics

Figure 2.2: Qualitative explanation of color confinement. In Figure (a) it is shown how
the gluon self-interactions cause attractive forces between the exchanged glu-
ons of a qq-pair. Figure (b) and (c) show the resulting field lines of the
electromagnetic and strong force, respectively. While in (b) the field lines
spread out, in (c) the color field is squeezed into a tube which causes a con-
stant energy density and consequently color confinement. Source: [21].

nisation: by producing a qq pair, for example at an electron-positron-collider, single
quarks are not observed directly, but only as a jet. Separating the qq pair leads to a
strong field between them with enough energy to perform a pair production of further
quarks. This happens repeatedly until the energy of the collision is stored in two jets
of hadrons moving in different directions. Like the color confinement, this effect is only
described phenomenologically.
An additional result of the gluon-gluon self-interactions is the asymptotic freedom of
quarks. The strength of the coupling between quarks and gluons is determined by the
strong coupling constant gs. This value is not actually a constant but rather a run-
ning coupling, which is large at the low-energy scale and declines with increasing energy.
This behavior is based on the fact that loop corrections need to be applied to the gluon
propagator as depicted in Figure 2.3. For non-abelian gauge theories there is always a
declining running coupling [11]. For abelian gauge theories (based e.g. on U(1) for pho-
tons) this is not the case because the missing self-interaction of the photon forbids the last
two diagrams of Figure 2.3. An example for such an increasing coupling would be pure
Quantumelectrodynamics (QED). The gauge boson dynamics of the symmetry groups
SU(2)L and U(1)Y will be discussed separately in the context of the Higgs mechanism.

= + +

+ + ...

Figure 2.3: 0-loop and 1-loop contributions to the gluon propagator. The fermionic loop
(upper right) contributes to an increasing running coupling, but the gluonic
loops (lower row) dominate in their contribution to a declining running cou-
pling for gs. An explicit calculation of these effects can be found in reference
[11].
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2 Modern Particle Physics

The Fermion part of the Lagrangian implements interactions between the gauge
bosons and the fermions which carry their respective charges, for example the strong
interaction couples only to fermions carrying a color charge: the quarks. At this point it
is implemented that only left-(right-)handed (anti-)fermions couple to the W-boson, this
is represented by the group SU(2)L and its conserved charge, the third component of the
weak isospin I3W . Finally, the hypercharge Y is chosen to fulfill the Gell-Mann-Nishijima
relation to the electric charge Q of the fermion [23]:

Q = I3W +
Y

2
. (2.6)

Experimentally it is found that there are three generations of fermions in the Standard
Model, where corresponding fermions in each generation only differ by their masses.
The generations of the Standard Model are summarised in Table 1, combined with their
representation under the Standard Model symmetry gauge group and their respective
charges. To determine the interactions between gauge bosons and fermions, the covariant
derivative is constructed using the generators T a and IiW of the gauge groups as well as
the coupling constant g′ of U(1)Y:

Dµ = ∂µ − igsT
aGa

µ − igIiWW
i
µ − ig′

Y

2
Bµ. (2.7)

Fields Generation Represen- Charges

1st 2nd 3rd tation I3W Y Q

Leptons
E′

L

(
ν ′e
e′

)

L

(
ν ′µ
µ′

)

L

(
ν ′τ
τ ′

)

L

(1,2)−1

1
2 -1 0

−1
2 -1 -1

e′R e′R µ′R τ ′R (1,1) 1
3

0 -2 -1

Quarks
Q′

L

(
u′

d′

)

L

(
c′

s′

)

L

(
t′

b′

)

L

(3,2) 1
3

1
2

1
3

2
3

−1
2

1
3 −1

3

u′
R u′R c′R t′R (3,1) 4

3
0 4

3
2
3

d′
R d′R s′R b′R (3,1)− 2

3
0 −2

3 −1
3

Table 1: The fermions of the three generations of the Standard Model. The representation
under the gauge group of the Standard Model is given by (SU(3)C, SU(2)L)U(1)Y .
The weak isospin I3W and the hypercharge Y combine to the electric charge Q
as predicted in Equation (2.6). Source: [23].
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2 Modern Particle Physics

Figure 2.4: Display of the possible Standard Model interactions of gauge bosons with
themselves and fermions. Not included is a possible interaction between the
Higgs-boson and the neutrinos, since the mass generation process of neutrinos
is still unclear. Source: [24].

In general, the fermionic part of the Lagrangian is written as

LFermion =
3∑

i=1

(
E

′
L,i /DE

′
L,i +Q

′
L,i /DQ

′
L,i + e′R,i /De

′
R,i + u′R,i /Du

′
R,i + d

′
R,i /Dd

′
R,i

)
. (2.8)

The representation for each fermion under each gauge group needs to be considered with
respect to which terms appear in each covariant derivative D. Left handed electrons,
muons or tauons are for example part of a color singlett, therefore no interaction with
gluons is possible. This part of the Lagrangian gives rise to the fermion dynamics as well
as the fermion interactions displayed in Figure 2.4 (exept the Higgs boson interaction
which will be discussed in the next paragraph). The corresponding Feynman diagrams
can be found in Appendix A.2.

The Higgs part of the Lagrangian is mainly motivated by the need for mass terms in
the Lagrangian. In pure QED, naive mass terms like

LMass = −mψψ = −m(ψLψR + ψRψL), (2.9)

with specified left- and right-handed fermions are possible. In general, this naive formu-
lation arises by considering that masses are associated with poles of the propagator and
are therefore connected to quadratic terms of fields. This path-integral approach to QFT
is further explained in [11, 12].
The main problem that arises with these types of mass terms are the different transfor-
mation properties of left- and right-handed fermions under SU(2)L. This means that the
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2 Modern Particle Physics

naive mass terms are no longer gauge invariant, which makes them invalid. The solution
to this problem is the Higgs Mechanism connected with Spontaneous Symmetry Breaking
[25, 26, 27].
The Higgs field is introduced as a scalar SU(2)L doublet which has the representation
(1,2)1 under the Standard Model gauge group:

Φ(x) =

(
ϕ+(x)
ϕ0(x)

)
. (2.10)

For this field the gauge dynamics and the Higgs potential are chosen as

LHiggs =
∣∣DµΦ

∣∣2 − V (Φ)

=

∣∣∣∣
(
∂µ − igIiWW

i
µ − ig′

1

2
Bµ

)
Φ

∣∣∣∣
2

+ µ2(Φ†Φ)− λ

2
(Φ†Φ)2, (2.11)

with λ, µ2 ∈ R. This Lagrangian is invariant under the gauge transformations of the
Standard Model. However, the vacuum expectation value ("vev") Φ0 of the Higgs field
corresponds to the minimum of the potential which requires the condition

|Φ0|2 =
µ2

λ
=
v2

2
. (2.12)

The vacuum expectation value is in general set to

Φ0 =
1√
2

(
0

v + h(x)

)
, (2.13)

introducing small deviations from the vev in the form of h(x). The next step is to insert
the vev into the Higgs Lagrangian (2.11). The resulting Lagrangian will not be invariant
under gauge transformations of SU(2)L×U(1)Y anymore: these symmetries are "broken".
The first part of the Higgs Lagrangian can be calculated as

|DµΦ0|2 =
1

2

v2

4

(
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (−gW 3

µ + g′Bµ)
2

)
+O(h). (2.14)

As a result, mass terms for linear combinations of W i
µ and Bµ are obtained, the mass

eigenstates are

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ),

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ), (2.15)

Aµ =
1√

g2 + g′2
(g′ W 3

µ + gBµ).

The first eigenstates correspond to the charged W±-boson and the Z-boson. The photon
Aµ is chosen as an orthogonal state to Zµ and fulfills the relation

(
Aµ

Zµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
Bµ

W 3
µ

)
, (2.16)

8



2 Modern Particle Physics

where the weak mixing angle θW is defined as

cos θW =
g√

g2 + g′2
. (2.17)

After the symmetry breaking, these bosons carry the masses

mW =
v

2
g, mZ =

v

2

√
g2 + g′2, mA = 0. (2.18)

It can be shown that the operator

Q := I3W +
Y

2
, (2.19)

still imposes a valid symmetry operation on the new Lagrangian [11]. This comes as
no surprise, since there is a conserved electric charge after the spontaneous symmetry
breaking. The Higgs mechanism therefore implies the symmetry breaking

SU(2)L ×U(1)Y ⇒ U(1)Q. (2.20)

The three broken symmetry degrees of freedom manifest themselves in the gauge boson
masses of W± and Z, i.e. as their longitudinal polarisations. This is predicted in the
Goldstone-Boson-Equivalence theorem [11].
In Equation (2.14) the terms containing the excitation of the Higgs field h(x) were ne-
glected. By including h(x) interactions between the Higgs-boson and the massive elec-
troweak gauge bosons are obtained. Additionally, inserting the vev into the Higgs po-
tential raises the Higgs mass as well as the Higgs self-interaction.
At this point it is suitable to revisit the discussion on the gauge part of the Standard
Model Lagrangian by plugging in the derived fields from Equation (2.16) into the cor-
responding part of the gauge Lagrangian (2.4). This procedure results in several inter-
actions inbetween gauge bosons of the electroweak sector. The corresponding Feynman
diagrams of the Higgs self-interaction and the electroweak boson interactions are shown
in Appendix A.1.

The Yukawa part of the Lagrangian finally introduces the fermion masses in the
context of the Higgs mechanism [12]. In a gauge invariant form it is defined as

LYukawa =
3∑

i=1

(
−λe,iEL,iϕ eR,i − λd,iQL,iϕdR,i − λu,iϵ

abQL,i,aϕ
†
buR,i

)
+ h.c. , (2.21)

with the Yukawa mass couplings λi. The charge-conjugate of the Higgs field contains
a Levi-Civita-Tensor ϵab to preserve gauge invariance. Applying the Higgs mechanism
on Equation (2.21), i.e. plugging in the vev, leads to a broken gauge symmetry as well
as quadratic terms of fields which are interpreted as mass terms. Each fermion of the
Standard Model (with the possible exception of neutrinos) has a non-vanishing Yukawa
coupling which determines its mass. There is currently no explanation for the differences

9



2 Modern Particle Physics

in these couplings, this is known as the hierarchy problem. Every massive fermion con-
sequently couples to the Higgs boson, the interaction vertex is given in Figure 2.5.
In general, there is no reason why the mass eigenstates EL and QL of Equation (2.21)
and the flavour eigenstates E′

L and Q′
L coupling to the electroweak gauge Bosons via

Equation (2.8) should be identical [28]. Hence, a unitary transformation which connects
a mass eigenstate f with a flavour eigenstate f ′ is needed:

fL,i =
3∑

j=1

Uf
L,ijf

′
L,j , fR,i =

3∑

j=1

Uf
R,ijf

′
R,j . (2.22)

Since these transformations are unitary, they do not affect neutral current interactions.
Since neutrino masses are not always considered a part of the Standard Model, the
neutrino and lepton transformations are chosen to be equal. Therefore, the charged
currents of neutrino-lepton interactions are not affected by this. This idea is of course
incomplete since the detection of neutrino oscillations proved the existence of neutrino
masses [29, 30]. Deeper theoretical models lead to the construction of the PMNS-matrix
[31, 32, 33].
The charged current interactions of quarks are affected by these transformations. Since
in general the transformation of up-type and down-type quarks according to Equation
(2.22) are unequal Uu

L ̸= Ud
L, the charged current Lagrangian as a part of LFermion reads

Lcc ∝
3∑

(i,j)=1

(
ui,L(U

u
LU

d†
L )ijdL,j /W

+
+ dL,i(U

d
LU

u†
L )ijuL,j /W

−
)
. (2.23)

The additional matrix factor in the charged current can be summarized in the CKM
matrix VCKM defined as

VCKM = Uu
LU

d†
L . (2.24)

It can be shown that the CKM matrix for three generations has four degrees of freedom:
three rotation angles and one complex phase. This complex phase is the only source of
CP-violation in the Standard Model [28].

h

f

f

Figure 2.5: Interaction vertex of the Higgs boson with massive fermions. The strength of
the coupling is proportional to the Yukawa coupling, i.e. the particle mass.

10
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2.2. Effective Field Theory
The Standard Model of Particle Physics is one of the most successful physical theories
ever probed. Nevertheless there are still loose ends which cannot be explained: dark
matter [34], neutrino masses [29] or the strong CP problem [35], to mention a few. The
LHC and especially the experiments ATLAS and CMS have majorly been designed to
probe the electroweak sector of the Standard Model and discover the Higgs boson. After
the discovery of the Higgs boson [36, 37] there were no signs of further fundamental
particles in any direct searches, i.e. no resonant production of a heavy particle.
One reason for the missing signs of further particles could be their mass. Several theories
like Supersymmetry [38] or the Seesaw mechanism [39] propose particles with masses
way beyond the electroweak scale, i.e. current colliders cannot produce them. Never-
theless, these particles could have an influence on other processes, an indirect search
is therefore possible. Such indirect knowledge is ambiguous in the way that it can be
the low energy-implication of several models. The main reason for this is the decou-
pling theorem which states how the non-analytic structure of correlation functions due
to heavy states are projected out onto a low energetic effective field theory (EFT) [40, 41].

A historic example for an EFT is the Fermi theory of weak interaction [21]. The W -boson
propagator can be derived from the gauge part of the Lagrangian 2.4 to be

−i
q2 −m2

W

(
gµν −

qµqν
m2

W

)
. (2.25)

In the low-energy approximation |q2| ≪ m2
W , which is valid for most particle decays this

simplifies to

i
gµν
m2

W

. (2.26)

Physically, this simplification can be understood as the reduction to a point-like interac-
tion as shown in Figure 2.6. This description by Fermi [42] therefore considered the weak
interaction to be a force without range. As shown later with the success of electroweak
unification and the subsequent discovery of the W±- and Z-boson, this approach was
too simplistic. The theory proved useful to calculate for example muon decay rates more
precisely. It was hence beneficial up to the point where colliders reached higher energies.
As described earlier particle physics is currently in a similar position: there are no signs

of potential heavy particles, so it might be worthwhile to look at their low-energy impli-
cations. This can be done by integrating out the heavy particles to obtain a correction
to a Standard Model interaction or a completely new interaction.
The Standard Model Effective Field Theory (SMEFT) is an approach to extend the Stan-
dard Model in the most general way possible. The idea is to add terms in the Standard
model Lagrangian LSM which are constructed of gauge-invariant, (d > 4)-dimensional
operators Q(d)

i built out of the Standard Model fields introduced earlier. Explicitly the
Lagrangian is expanded as

LSMEFT = LSM + L(5) + L(6) + L(7) + L(8) + ..., (2.27)

11



2 Modern Particle Physics

using

L(d) =

nd∑

i=1

C
(d)
i

Λ(d−4)
Q

(d)
i , for d > 4. (2.28)

In this equation the operators Q(d)
i are suppressed by (d− 4) powers of the cut-off scale

Λ, which is well above the electroweak energy scale and marks the scale at which SMEFT
breaks down [40]. The Wilson coefficients C(d)

i are determined by a theory containing
heavy particles or mediators at higher energy scales than currently investigated. The
aim is therefore to determine their values experimentally or at least find restrictions for
them.
It can be shown [43] that the invariant operators constructed from the SM fields satisfy

1

2
(∆B −∆L) = dmod2, (2.29)

with the change of the baryon number ∆B and the change of the lepton number ∆L for
the interaction the operator is implying. For uneven d this implies that the interactions
either violate lepton number conservation or baryon number conservation. There are
ideas to implement neutrino masses in L(5) but this is beyond the scope of this thesis.
For three generations there are already numerous contributions by the six-dimensional
component L(6): there are 2499 independent baryon-number conserving operators [44]
and 546 baryon-number violating operators [45]. This formulation of SMEFT is the so-
called Warsaw basis as introduced in reference [46]. For L(8) there are 44 807 SMEFT
operators, a complete list of them can be found in [47].

To estimate the Wilson coefficients processes sensitive to altered or new interactions
introduced by L(6) or L(8) are studied. This thesis investigates the general process

pp→ Zγγ, Z → µ+µ−. (2.30)

An example for a Feynman diagram at leading order in the pure Standard Model is
given in Figure 2.7 on the left. The inclusion of additional SMEFT terms can have two
effects: either an already existing interaction vertex gets an additional contribution or a
completely new interaction vertex is introduced. Couplings that were not present in the

e−

νe

µ−

νµ

→

e−

νe

µ−

νµ

W−

Figure 2.6: Visualisation of Fermi theory as an EFT of the weak interaction. The W -
boson propagator is reduced to a point-like interaction. Source: [21].
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q γ

q γ

µ−

µ+

Z

q

q

γ

γ

µ−

µ+

Z/γ∗ Z

Figure 2.7: Feynman diagrams for the process qq → Zγγ with Z decaying into muons.
On the left the Standard Model leading-order process is shown, on the right
additional contributions that appear after including the EFT operator Q(8)

T,8

enabling the anomalous quartic gauge couplings ZZγγ and Zγγγ.

Standard model are called Anomalous Gauge Couplings, for dimension six or eight there
are anomalous triple gauge couplings (aTGGs) or anomalous quartic gauge couplings
(aQGCs).
For the process at hand the aTGC introduced by the dimension-six operators do not
contribute to the production of Zγγ. The aQGCs introduced via the dimension-six
operators are also not contributing to this process since they do not give rise to purely
neutral aQGCs [48].
Hence, to construct a larger SMEFT contribution a dimension-eight operator is needed

LT,8 =
C

(8)
T,8

Λ4
BµνB

µνBαβB
αβ. (2.31)

For simplicity all Wilson coefficients in the simulation are set to zero except C(8)
T,8. LT,8

introduces aQGCs of the neutral electroweak gauge bosons: ZZZZ, ZZZγ, ZZγγ, Zγγγ
and γγγγ [49, 50]. The last three interactions lead to additional Feynman diagrams for
the production of Zγγ, they are displayed in Figure 2.7 on the right.

2.3. The ATLAS Experiment at the LHC
The ATLAS (originally "A Toroidal LHC ApparatuS") experiment is one of the four
main experiments at the LHC at CERN. The main purpose of the ATLAS detector was
the discovery of the Higgs-boson, which was accomplished in 2012 [36, 37]. Today the
ATLAS detector is used as a multi-purpose detector to investigate multiple research top-
ics like precision measurements of masses, top quark properties or b-meson physics. One
of the most recent discoveries was the measurement of a potential four-charm tetraquark
[51]. In the following an overview over the LHC in general as well as the ATLAS detector
in specific is given.
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Figure 2.8: Overview of the experiments and the accelerator complex at CERN during
Run 2. Source: [54].

2.3.1. The Large Hadron Collider (LHC)

The LHC [52] is the largest and most powerful particle accelerator ever built. The aim
is to study processes of the Standard Model in great detail by colliding accelerated pro-
tons or heavy ions at center-of-mass-energies up to

√
s = 13.6TeV and an instantaneous

luminosity of 1034 cm−2s−1. The structure of the accelerators located at CERN is shown
in Figure 2.8. The LHC itself has a circumference of 26.659 km and is located ≈ 100m
below the surface. To reach the center of mass energy of 13.6TeV protons need to be pre-
accelerated. As an example, during Run 2 the LINAC2 (LINear ACcelerator 2) started
the acceleration chain by accelerating negative charged hydrogen ions to 160MeV. Af-
ter this the electrons are stripped of the hydrogen ions and the remaining protons are
further accelerated in the Proton Synchrotron Booster (PSB), the Proton Synchrotron
(PS) as well as the Super Proton Synchrotron (SPS). After reaching 450GeV the protons
are injected into the LHC beam pipe, where they are accelerated to their final energy.
During Run 2 each beam consisted of about 2800 bunches with up to 1011 protons per
bunch, since 2015 the collisions are timed 25 ns apart from each other [53].
The tunnel of the LHC is constructed with eight straight segments and eight curved
ones and therefore not perfectly round. To keep the protons on this trajectory there are
over 1200 superconducting dipole magnets which are operated at a current of 12 000A
and a temperature below 2K to create a magnetic field of more than 8T. To reach
temperatures this low the magnets have to be cooled continuously using liquid nitrogen
as a pre-cooling and superfluid helium to reach the final temperature. The strength of
the magnets is the main limiting factor for the final kinetic energy. The beam pipes
themselves contain a vacuum at approximately 10−13 bar [55].
The beams cross at the four interaction points where the experiments are placed. To con-
nect the number of expected events NEvents for a specific process in one of the detectors
with the instantaneous luminosity L, the cross-section σ is introduced, which is an ex-
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pression of the underlying quantum field theoretical probability that such an interaction
will occur. It can be shown [21] that

dNEvents

dt
= σL. (2.32)

The total number of events can be calculated by integrating over t.
The four main detector systems at CERN have all been designed for specific purposes.
ALICE (A Large Ion Collider Experiment) [56] is designed to investigate quark-gluon-
plasmas which are created by the collision of heavy nuclei, often lead (Pb). There are
theories that similar conditions have existed in the early stage of the universe. The
LHCb (Large Hadron Collider beauty) [52] is a proton-collision experiment to investigate
heavy-flavour physics, especially b-mesons. Connected to this is precise measurement
of the CKM-phase causing CP-violation, which might be an explanation for the matter-
antimatter asymmetry of the universe. CMS (Conducting Muon Solenoid) [57] represents
together with the ATLAS experiment the general purpose detectors of the LHC. The main
difference between them is the used detector technology. As already given by the name,
CMS contains a huge solenoid magnet and a very precise muon measurement system. Its
main purpose was the search for the Higgs-boson, today it is used for lots of analyses like
precision measurements of the top-sector and the search for signs of supersymmetry.

2.3.2. The ATLAS Detector

The ATLAS experiment [58] is a cylindrical detector system with a length of 44m and
a diameter of 25m. The main challenges for the detector systems are the high particle
multiplicities in connection with the high interaction rates as well as the radiation doses
the individual components are exposed to. During Run 2 of the LHC, the ATLAS
detector recorded an integrated luminosity [58] of

L̃ =

∫
dtL = 139 fb−1. (2.33)

There are four main components of the ATLAS detector: the Magnet System, the
Calorimeters, the Muon Chambers and the Inner Detector. An overview of the AT-
LAS detector is given in Figure 2.9.

The Magnet System [59] and its design is the fundamental choice that drives the rest
of the detector design. A thin superconducting solenoid [60] surrounds the inner detector
to create a magnetic field up to 2T, which causes curved trajectories for charged particles.
In addition, there are three large superconducting toroids (one barrel, two end-caps)
arranged around the calorimeters with an eight-fold azimuthal symmetry. The magnetic
field created by the toroid system has a strength up to 3.5T. This is especially relevant
for the measurement of muon momenta.
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Figure 2.9: Overview of the ATLAS detector and its subcomponents. Source: [58].

Figure 2.10: Cut-away view of the Inner Detector of the ATLAS experiment. Source:[58].

The Inner Detector [61] is designed to measure the track and the momentum of elec-
trically charged particles. A schematic of the inner detector is shown in Figure 2.10. To
achieve the required resolution, a semiconductor tracker (SCT) [62] consisting of pixels
in the inner layers and a silicon strip detector in the outer layers are used, followed by a
transition radiation tracker (TRT) [63]. The SCT achieves high granularity and precision,
in addition it is easily replaceable in a long shutdown, which is advantageous because of
the high radiation dose it is exposed to. The applied magnetic solenoid field causes a
curved trajectory for charged particles which can be used for charge identification. The
SCT can also be used for full particle identification since the differential energy dE/dx
can be determined and matched to a Bethe-Bloch-curve. The attached TRT helps to
distinguish electrons and charged hadrons via the γ-factors of the transition radiation.
This is especially interesting to distinguish electrons and charged pions.
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Figure 2.11: Cut-away view of the calorimeter system at ATLAS containing an electro-
magnetric and a hadronic calorimeter. Source: [58].

The Calorimeter System [64] of ATLAS contains an electromagnetic (EM) calorime-
ter as well as a hadronic calorimeter. Their setup is displayed in Figure 2.11. The main
task of the calorimeters is to provide a reliable energy measurement of electromagnetic
and hadronic showers as well as making sure that the majority of these particles are
absorbed. Therefore, calorimeter depth is an important consideration. The calorimeters
used in ATLAS are sampling calorimeters, i.e. they use a combination of absorbing layers
to restrict the particle showers arising from collision, as well as active layers in which the
signal is produced. The advantage of sampling calorimeters is that each material can be
chosen to be well-suited for their task. For example an absorbing material with a high
density can be used to produce a shower that evolves fast in a limited space, although
the material might be unsuitable for measuring the deposited energy of the shower [65].
The EM calorimeter [66] uses lead as an absorbing and liquid argon as an active material.
It consists of two endcaps as well as a central barrel calorimeter. For a better performance
the electromagnetic calorimeter shares a vacuum vessel with the central solenoid. The
lead plates are arranged in an accordeon-shape with the liquid argon inbetween. This
special geometry provides a full ϕ symmetry without any azimuthal cracks. The main
purpose of the EM calorimeter is a high resolution for photon and electron energies as
well as the absorption of the mainly electromagnetic showers caused by them. To ensure
this the total thickness of the EM calorimeter is approximately 22 radiation lengths X0

in the barrel and 24 X0 in the end-caps [58].
The hadronic calorimeter [67] is placed around the EM calorimeter and consists of sev-
eral components as can be seen in Figure 2.11. The tile calorimeter (barrel and extended
barrel) uses steel as absorber and scintillating tiles as an active material. In addition to
these calorimeters, there are the hadronic end-cap calorimeters (HEC) and the forward
calorimeters (FCal). HEC is placed directly behind the EM end-cap calorimeters and
is therefore overlapping in its measurement region with the tile calorimeter and FCal.
The absorbing material is copper, the active material is liquid argon. It is therefore
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convenient to share a common liquid argon cryostat with the EM calorimeter endcaps.
The FCal is placed very close to the beam itself and is therefore exposed to high en-
ergetic radiation. The consequence is a high-density choice for the absorbing material:
copper and tungsten. The active material is again liquid argon. In general the hadronic
calorimeters are designed to initiate and measure hadronic jets, as well as absorbing most
of their components. The main difficulty compared to electromagnetic calorimeters is the
unknown ratio of electromagnetic to hadronic particles in the measured jet. This is also
the reason why electromagnetic calorimeters in general have a better energy resolution
than hadronic calorimeters [65].
With this calorimeter design a nearly 4π-coverage of the calorimeter system is achieved.
In addition, nearly all particles coming from the collision are absorbed, except of muons
and neutrinos.

The Muon Spectrometer [68] is used to identify and measure the remaining muons
using the magnetic field provided by the toroid magnet system. Its setup is shown
in Figure 2.12. The toroid produces a magnetic field which is mostly orthogonal to the
trajectory of the muons. The measurement of the deflection in trajectory implicitly allows
a momentum estimation. To perform these measurements a combination of precision
tracking detectors as well as trigger chambers are used. The precision tracking detectors
are monitored drift tubes (MDT) and cathode strip chambers (CSC). The MDT and CDC
mainly measure the track coordinates in the principal bending direction of the magnetic
field. In addition to this, the orthogonal muon coordinate is measured with the trigger
chambers consisting of resistive plate chambers (RPC) and thin gap chambers (TGC).
Furthermore the trigger chambers provide bunch-crossing identification and well-defined
pT -thresholds. In general the muon spectrometer is optimized to provide a high-resolution
muon momentum measurement with an almost 4π-coverage [58, 69].

Figure 2.12: Cut-away view of the muon spectrometer system at ATLAS. Starting at a
radius of 4.25m and reaching out to the full radius of the detector it is the
largest subdetector in terms of volume. Source: [58].
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2.4. Observables
The interacting objects in a proton collider are the point-like constituents of the proton:
the partons. The underlying idea is the parton model, which was Richard Feynman’s
attempt to explain the Bjorken scaling at the SLAC experiment in the 1960s [70]. In
this model he considers the partons to be in an infinite momentum frame (masses can be
neglected), where the whole parton energy comes from the proton momentum in beam
direction. Every parton k carries a fraction xk of the nucleons momentum p, i.e.

pk = xkp,
∑

k

xk = 1. (2.34)

Today the partons of the proton are identified with the quarks and gluons. Since the
quarks inside the proton can interact via gluons they are today described with a probabil-
ity distribution rather than a fixed momentum. These probability distributions are called
parton distribution functions (PDFs). The proton mainly consists of three valence quarks
(uud). Nevertheless the gluon dynamics between them enables quark pair-productions,
as a consequence more massive quarks (c, s) can be found in the proton. These quarks
are called sea-quarks and are also described using PDFs.
The fundamental shapes of the PDFs depend on the detailed dynamics of the proton and
are a priori not known, experimentally it has been shown that they depend on the amount
of transfered momentum Q2 (scaling violations) [21]. One way to construct the PDFs
is by starting from a parametrisation of non-pertubative PDFs at a low Q2-scale and
fitting them to experimental data obtained from electron-proton scattering (e.g. HERA
[71]). Although a prediction of the PDFs themselves from first principles is not possible,
the DGLAP equations [72, 73, 74] describe their Q2-dependence and therefore allow to
calculate them for every Q2. The resulting PDFs depend on multiple parameters, for
example the chosen order of perturbation, the choice of the input data, the treatment of
heavy quarks or the correlation between gs and the PDFs. The DGLAP equations are
based on parton splitting functions for the QCD processes q → qg and g → qq, their
(rather involved) derivation can be found in [75].

At this point it is suitable to introduce several kinematic observables which are mea-
sured by the ATLAS detector. The 4-momentum pµ = (E,p) of a measured particle is
defined in a spherical coordinate system with z-axis in beam direction. Starting from
the momentum p = (px, py, pz) the transversal momentum is defined as

pT =
√
p2x + p2y, (2.35)

as well as the azimuthal angle

ϕ = arctan

(
py
px

)
. (2.36)

In a collider process with two protons the actual interaction happens on parton level.
Since each of the two colliding partons carry fractions x1 and x2 of the proton energy Ep,
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the net longitudinal momentum of the colliding parton-parton system with respect to
the center of mass system of the protons is given by (x1 − x2)Ep. Consequently the final
state system is boosted along the beam axis. This boost is the reason to construct only
observables invariant under these boosts in beam direction, which was easily possible
with pT and ϕ. For this reason the missing angle θ between beam direction and particle
direction is often expressed in terms of the rapidity

y =
1

2
ln

(
E + pz
E − pz

)
. (2.37)

It can be shown that differences in the rapidity are invariant under Lorentz transforma-
tions along the beam direction [21]. For high-energy jets where the jet mass is negligible
the pseudorapidity

η = − ln

(
tan

(
θ

2

))
, (2.38)

is often used instead of the rapidity y.
Another important observable for this project is the pT value of a Z-boson which decays
into a muon-antimuon pair. It is possible to express pZT as a function of the measured pT -
and ϕ-values of the muon and antimuon. Assuming energy and momentum conservation
in the decay pZT is written as

pZT =
√
(pZx )

2 + (pZy )
2 =

√
(p−x + p+x )2 + (p−y + p+y )2, (2.39)

with p− and p+ representing the muon and antimuon momenta. The x- and y-momentum
can be reexpressed in terms of ϕ and pT as

px = pT cos(ϕ), py = pT sin(ϕ). (2.40)

Using this for the respective muon momenta in Equation (2.39) and with a trigonomet-
rical theorem the final result reads

pZT =
√
(p−T )

2 + (p+T )
2 + 2 (p−T )(p

+
T ) cos(ϕ

− − ϕ+) . (2.41)
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3. Unfolding
One of the central tasks of modern particle physics is to test the assumptions of the
Standard Model by measuring its predictions. The predictions of the Standard Model
are manifested in observables like particle distributions, particle energies or decay times.
With Monte Carlo event generation (MadGraph5 [8] and Pythia8.308 [9]), it is possible
to produce predictions for the event distributions of observables. The generated events
are referred to as truth-level or particle-level events. Real experimental data cannot be
measured arbitrarily precise because of the limited measuring abilities of detector sys-
tems. These detector effects exist due to resolution inaccuracies, non-linear responses of
detector components, limited acceptance, missed particles or mislabeling. The measured
events are referred to as reconstruction-level or detector-level events.
To probe a specific theory or model, it is necessary to compare the predicted and measured
observables on the same level. To compare them on detector-level a detector simulation
is applied to the generated events on truth-level, which is often referred to as folding,
i.e. a convolution with the detector response function. This can be done in the case of
experiments like ATLAS with DELPHES 3.5.0 [10]. In general, this is the easier way to
compare theory and experiment. To compare event distributions on truth-level a more
complicated procedure is needed: the removal of the detector effects from the measured
data, called unfolding (see Figure 3.1). This is done by finding a (pseudo-)inverse to
the detector response function, which requires a deep knowledge of the detector and its
effects. In general it is preferable to publish the measured data along with its detector
response function, since a detector simulation is easier than an unfolding [1].

Measurement
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Figure 3.1: General idea of Unfolding as an inversion of a measurement. A truth distribu-
tion (red, right) is measured using a particle detector (blue, left). Unfolding
inverts this measurement to reobtain the truth distribution [76].
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Nevertheless, it is sometimes necessary to obtain truth-level data via unfolding, for exam-
ple to compare results of different experiments with different response functions. Another
reason to desire truth-level data is that modern theories in particle physics usually contain
free parameters. Some parameters do not have obvious limitations, a scan of the model
parameter space is therefore necessary. These scans are, in general, better applicable on
truth-level. A third reason for unfolding is the complexity of modern detector response
functions, which might be used in a wrong way by future generations of scientists. In
general, it is an individual decision whether or not to unfold, a more involved discussion
can be found in more involved literature [1].
With the assumption that it is decided to unfold the experimental data, there are several
algorithms that have proven to be useful. On the one hand there are the "classical",
matrix-based algorithms which have been used for several years [2, 3, 4], on the other
hand there are machine learning algorithms to unfold experimental data which have been
developed more recently [5, 77, 78].

3.1. Matrix-based Algorithms
As a start a naive mathematical formulation of the unfolding (following [1, 79]) is intro-
duced. Let f(t) be the true underlying function ehich determines the event distribution.
Instead of observing f(t) directly, only a measured distribution of events g(r) is observed,
which is the result of convoluting the true function with an abstract detector response
function R(r|t).

g(r) =

∫
R(r|t)f(t) dt. (3.1)

The detector response function R has to be constructed with a Monte Carlo simulation,
which is based on real test beam measurements. The goal of unfolding is to obtain the
best estimate for f(t). Formally, the true distribution can be obtained from the measured
distribution via

f(t) =

∫
R̃(t|r)g(r) dr, (3.2)

where R̃(t|r) is a (pseudo-) inverse detector response function, i.e. the conditional prob-
ability density at truth-level given a measured event t. To obtain an inverted detector
response function there are several unfolding algorithms.

In the standard unfolding methods the distributions ftrue(t) and gmeas(r) are converted
into histograms t and r, which introduces a binning. The size of this binning is already
an important choice. Too small bins lead to large bin-to-bin correlations, while too large
bins do not resolve interesting structures. Equation (3.1) can be rewritten as

ri =
∑

j

Rij · tj , (3.3)
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where ri and tj are the number of events in the i’th and j’th bin of the respective
histogram. i is always a detector-level index, j always a truth-level index. The detector
response matrix Rij is a binned representation of the continuous response function R(r|t).
The response matrix is constructed using a Monte Carlo simulation with truth-level
events t̃, which are mapped to detector-level events r̃. With no inefficiencies in the
model a generated event will appear in a certain bin j on truth-level as well as in a bin i
on detector-level. Since this is a statistical process there are events which contribute to
the same bin on truth-level but to different bins on detector-level and vice versa. Given
that there are enough Monte Carlo events, it is possible to construct the migration matrix
A. A single entry of this matrix, Aij , counts the number of events which correspond to
truth-level bin j and detector-level bin i in the Monte Carlo simulation. The detector
response matrix is characterized by its probabilistic interpretation as

Rij = P (observed in bin i | true value in bin j). (3.4)

Without inefficiencies, the sum over all possible bins of the observed value is normalized
∑

i

Rij = P (observed in any bin | true value in bin j) = 1. (3.5)

The detector response matrix is derived by normalizing the migration matrix for a truth-
level event as

Rij =
Aij

t̃j
=

Aij∑
k Akj

. (3.6)

The detector response matrix is dependent on the Monte Carlo simulation. To unfold
a given measured distribution, the detector response matrix needs to be inverted and
applied to the measured histogram.

Simple Matrix Inversion considers the inversion to be a purely mathematical prob-
lem: the inversion of the detector response reduces to the inversion of the detector
response matrix. The corresponding binned equation for Equation (3.2) can be written
as

rj =
∑

i

R−1
ji · ti. (3.7)

The idea of a simple matrix inversion has several flaws. In general, it is possible that small
differences between simulation and experiment introduce large bin-to-bin correlations and
fluctuations. This phenomenon is called the high frequency problem [1]. A visualization
of the phenomenon is illustrate in Figure 3.2. The truth distribution (left) has two sharp
peaks in a generic observable (here pT ), while a detector measurement (center) smears the
distribution and the peaks are less sharp. The effect of the detector response is therefore
to smear out any fine structure. However, its inverse will consequently introduce fine
structure. The distribution measured in experiments is in general different to the Monte
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Figure 3.2: Example for a high-frequency problem. A truth distribution with two peaks
(red, left) is measured with a detector which smears out fine structure (blue
dotted line, center). The response matrix was constructed upon a Monte
Carlo detector-level distribution which looked slightly different than the de-
tector simulation (blue solid line, center). The application of the inverse of the
response matrix to the measured distribution results in a highly fluctuating
distribution with huge uncertainties (red, right). Source: [1].

Carlo simulation since there are statistical fluctuations. Applying the inverted detector
response matrix to the experimentally obtained distribution (dotted in the center) leads
to a heavily fluctuating unfolded distribution (right) with large uncertainties. Due to
the introduction of fine structure through the inverted detector response, the unfolded
distribution shows such a behavior. It is problematic that the negative entries of the
unfolded distribution are unphysical, they appear because a true inversion of the detector
response matrix needs to contain negative entries. Although this unfolding example
is mathematically correct it is obviously not the desired outcome. Nevertheless, the
unfolded distribution has two desirable features: it has zero bias and a minimum variance.
A proof of this can be found in [1]. Using a regularization is possible to smooth out the
distributions or to reduce the variances, but this will always result in a bias towards
the Monte Carlo simulation. This trade-off between a small bias and an acceptable
uncertainty is managed with the strength of the regularization.

Singular Value Decomposition (SVD) [2] is one of the most-used unfolding algo-
rithms. The solution to the simple matrix inversion is the maximum likelihood solution
if independent Poissonian fluctuations are assumed in each bin. In this case the log-
likelihood function is

lnL(̂t) =
∑

i

(
ri ln(

∑
j Rij t̂j)− ln(

∑
j Rij t̂j)− ln(ri!)

)
, (3.8)

with the response matrix Rij , the measured distribution ri and the estimator of the
bin means of the true histogram t̂j . To maximise the log-likelihood, its derivative with
respect to each t̂j has to be zero. The solution for the maximum likelihood estimator is
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3 Unfolding

given as

ri =
∑

j

Rij t̂j ⇔ t̂j = R−1
ji ri, (3.9)

under the assumption that R is invertible. To avoid the high frequency problem, a term
is added to the maximum likelihood in order to achieve smoothness of the resulting
unfolded distribution. The new maximum likelihood estimator reads

ϕ = lnL(̂t) + τS(̂t), (3.10)

with a regularization parameter τ and the Tikhonov regularization [80]

S(̂t) =
∑

j

[
(t̂j+1 − t̂j)− (t̂j − t̂j−1)

]−2
. (3.11)

This additional term keeps "the integrated square of the second derivative of t̂ con-
strained" [81]. Therefore, the unfolded distribution is required to be smooth and the
oscillating behavior is reduced. The strength of the regularization is determined by the
parameter τ : if τ is chosen too small, the unfolded distribution will oscillate too much,
if τ is too large, the result will be strongly biased towards the Monte Carlo simulation.
The actual implementation of this regularized log-likelihood is efficiently executed using
the algorithm by Höcker and Kartvelishvili [2]. In this algorithm an additional rescaling
as well as the name-giving singular value decomposition (SVD) of the rescaled response
matrix are used. A SVD is a factorisation of a matrix in two unitary and a diagonal
matrix which contains the eigenvalues. Further information about this can be found in
their paper [2].

Iterative Bayesian Unfolding (IBU) [3] is another possibility to obtain a biased
unfolded distribution with reasonable uncertainties. If the detector response function is
interpreted as a conditional probability Rij = P (ri|tj), the posterior distribution calcu-
lated with Bayes’ theorem can be written as

R̃ji = P (tj |ri) =
P (ri|tj)P (tj)

P (ri)
=

P (ri|tj)P (tj)∑
k P (ri|tk)P (tk)

, (3.12)

using Equation (3.1) and defining the probability distributions of the true and reco
distribution as

P (tj) =
tj∑
k tk

and P (ri) =
ri∑
l rl
. (3.13)

With no inefficiencies each event on truth level corresponds to one event on reco level.
Therefore it is possible to use

∑
k tk =

∑
l rl to rewrite

R̃ji =
Rijtj∑
k Riktk

. (3.14)

25



3 Unfolding

In this algorithm the dilemma of ill-defined inverse problems can be seen: in order to
obtain the posterior, knowledge about the true underlying distribution is needed in the
first place. The basic idea of Iterative Bayesian Unfolding is to assume a distribution for
tj , which is based on a prior belief of the unfolding result. A usual choice of this prior
is the truth component of the Monte Carlo simulation t̃j . Using Equation (3.6), R̃ji is
reexpressed as

R̃ji =
Rij t̃j∑
k Rik t̃k

=
Aij∑
k Aik

=
Aij

r̃i
. (3.15)

The resulting formula shows a similar shape as Equation (3.6). The posterior distri-
bution can be used to propagate events from reco level to truth level, i.e. the unfolded
distribution uj is obtained to be

uj =
∑

i

R̃jiri =
∑

i

Aij

r̃i
ri. (3.16)

If the experimental data (tj , ri) and the Monte Carlo simulation (t̃j , r̃i) are equal, the
unfolding result will be perfect. In an example where experiment and simulation are very
different, the resulting unfolded distribution uj carries a strong bias towards the Monte
Carlo simulation. This model dependency of the unfolding procedure can be reduced by
iterating the calculation several times with the unfolded distribution as a new prior. The
complete algorithm for Iterative Bayesian Unfolding is given in Algorithm 1 [82].
The crucial parameter in Iterative Bayesian Unfolding is the number of iterations N .
Although biases decrease with higher number of iterations, statistical uncertainties in-
crease. For an infinite number of iterations the unfolding result converges towards the

Algorithm 1 Iterative Bayesian Unfolding
Choose prior for the unfolded distribution to be the Monte Carlo truth distribution:

u
(0)
j = t̃j . (3.17)

for training iteration n ∈ [1, 2, ..., N ] do
Calculate the current posterior distribution as

R̃
(n)
ji =

Riju
(n−1)
j∑

k Riku
(n−1)
j

. (3.18)

Recalculate the unfolded distribution as

u
(n)
j =

∑

i

R̃
(n)
ji ri. (3.19)

end for
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3 Unfolding

result of the simple matrix inversion [3]. As before, the art of unfolding consists in finding
a trade-off between an acceptable uncertainty and a minimum bias towards the Monte
Carlo simulation.

Iterative Dynamic Stabilising (IDS) [4] is based on the same principles as Iterative
Bayesian Unfolding. Nevertheless, this algorithm is far more involved with several new
ideas taken into account. This section provides a brief introduction into the mathematical
foundation of this algorithm, further details can be found in [4, 83].
First, a regularization function f is defined. The main idea of this function is to provide
an information of the significance of an absolute deviation between two bins ∆x with
respect to its corresponding error σ. In general, the function can be any smooth function
with limits [0, 1]. The function used in this project is

f(∆x, σ, λ) := 1− exp−
(

∆x
λσ

)2
, (3.20)

where the free parameter λ denotes the strength of the regularization: small λ lead to
higher values of the function, hence deviations are interpreted as more significant; a large
λ has the opposite effect. The function is displayed in Figure 3.3 on the left.
In general, the Monte Carlo simulations are build to be normalized to the same value as
the detector-level data which is unfolded. This approach does not consider the fact that
the detector-level data might contain additional structures which are not present in the
simulation. An example of such a case is shown in Figure 3.3 (right). To gain a better
normalization for the Monte Carlo distribution, the additional unknown structures need
to be ignored. If this problem was dismissed, the result could generate fake differences
between the two spectra in regions where the data is well described by the simulation
[4].
The first estimation of the number of data events corresponding to structures simulated
in the Monte Carlo N (0)

MC is the number of measured data events

N
(0)
D =

∑

i

ri. (3.21)

A better estimation of N (0)
D can be calculated as

N
(1)
D = N

(0)
D +

∑

i

[
1− f(|∆ri|, σ̂(ri), λN )

]
·∆ri , (3.22)

with

∆ri = ri −
N

(0)
D

NMC
r̃i , (3.23)

σ̂(ri) =

√

σ2(ri) +

(
N

(0)
D

NMC

)2

σ2(r̃i) , (3.24)

27



3 Unfolding

0 2 4 6 8

x/σ

0.0

0.2

0.4

0.6

0.8

1.0
f
(
x σ
λ

)

λ = 1

λ = 2

λ = 3

0.0 0.2 0.4 0.6 0.8 1.0

Observable

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
u

m
b

er
of

E
ve

nt
s

×103

Measured Data

Simple MC

MC + Norm correction

Figure 3.3: The regularization function (left) assigns individual weights depending on
the ratio of differences and uncertainties [4]. The function is plotted for
different parameters λ. The toy example (right) shows that a regularization
in the calculation of the Monte Carlo norm correction ND/NMC is necessary if
there is additional structure which is present only in the data. A usual fitting
function (black) is not able to model the data (red). The normalisation
correction accounts for the additional structure [84].

using the total number of Monte Carlo Events NMC and the uncertainties of the detector-
level data σ(ri) and Monte Carlo σ(r̃i). The new introduced parameter λN determines
the strength of the norm regularization.
Equation (3.22) can be used for Niter,norm iterations to get updated values for ND, ob-
taining a better normalization factor ND/NMC. Equation (3.22) is not only used to
derive correction factors between ri and r̃i, but also for a comparison between an un-
folded distribution uj and the Monte Carlo truth component t̃j . After calculating the
normalization factor it is possible to start the unfolding itself. In the case of identical
initial and final binning the unfolded distribution is given as [4]

uj =
ND

NMC
· t̃j +

∑

i

[
f(|∆ri|, σ̂(ri), λU ) ·∆ri · R̃ji

+ (1− f(|∆ri|, σ̂(ri), λU ))∆riδij
]
. (3.25)

The first term of this equation is the Monte Carlo truth component with a corrected
norm. The second part (in square brackets) adds the structures which are only visible in
the data and not covered by the simulation. Only a fraction f of these events is unfolded
using the current unfolding probability matrix R̃ji, the rest of the events are kept in
their respective bin. Reducing the unfolding parameter λU reduces the number of events
which are unfolded.
In analogy to Equation (3.15) an updated migration matrix A′

ij is used. This migration
matrix is calculated as

A′
ij = Aij + f(|∆tj |, σ̂(tj), λM )∆tj

NMC

ND
Rij , (3.26)
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with

∆tj = tj,unf −
ND

NMC
t̃j , (3.27)

σ̂(tj) =

√
σ2(tj,unf) +

(
ND

NMC

)2

σ2(t̃j) . (3.28)

A relative weighting factor f is introduced again to regularize the size of the updates.
The strength of the regularization is again determined with a parameter λM . If the
function f is set to one, the updating algorithm of IBU is reobtained. Regardless of the
update of the migration matrix, the original detector response is not changed throughout
this process; the detector response matrix Rij stays the same.
The full Iterative Dynamic Stabilising method is summarised in Algorithm 2 [83]. Addi-
tionally, there is an extended algorithm which discusses how to treat background subtrac-
tions, more information about this can be found in [4]. The parameters λN , Niter,norm,
λU , λM and Niter usually need to be determined by using different pseudo-experiments
to judge the introduced biases and sensitivity to injected signals [85].

Algorithm 2 Iterative Dynamic Stabilising
Choose prior for the unfolded distribution to be the Monte Carlo truth distribution:

u
(0)
j = t̃j . (3.29)

for training iteration n ∈ [1, 2, ..., N ] do
Calculate the updated migration matrix

A
(n)
ij = A

(n−1)
ij + f(|∆tj |, σ̂(tj), λM )∆tj

NMC

ND
Rij , (3.30)

to obtain the unfolding probability matrix

R̃
(n)
ji =

A
(n)
ij∑

k A
(n)
ik

. (3.31)

Recalculate the unfolded distribution

uj =
ND

NMC
· t̃j +

∑

i

[
f(|∆ri|, σ̂(ri), λU ) ·∆ri · R̃ji

+ (1− f(|∆ri|, σ̂(ri), λU ))∆riδij
]
. (3.32)

end for
The needed Monte Carlo normalization factors are iteratively determined according to
Equation (3.22).
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3.2. Inefficiencies, Fakes and Misses
Up to this point, each event on truth-level corresponds to one event on detector-level.
In reality, it is possible that an event is missed, misidentified or not accepted because
of certain selection criteria. This leads to the possibility of a particle only appearing on
one level. An event which appears on truth-level but does not appear on detector-level
is labeled as a miss; a detector-level event that does not appear on truth-level is labeled
as a fake. This influence of fakes and misses needs to be taken into account [85].
In addition to the information on how detectors measure events and the strength of
their smearing, it is required to have prior information about the probability of an event
appearing on truth- and detector-level. Therefore, the distribution of the fakes and misses
already needs to appear in the Monte Carlo simulation of the detector measurement.
This is illustrated in Figure 3.4. The easiest approach to consider misses and fakes in
the unfolding is to apply efficiencies to the observed data ri and the unfolding result uj .
With the distribution of fakes fi and the distribution of misses mj the needed efficiencies
are defined as

ϵ
(fake)
i =

fi
fi + r̃i

and ϵ
(miss)
j =

mj

mj + t̃j
. (3.33)

using the truth-level Monte Carlo t̃j and the detector-level Monte Carlo r̃i. The measured
distribution is corrected by multiplying bin-wise with the fake efficiency ϵ

(fake)
i , this is

known as a purity correction. The unfolding result is corrected by dividing with the miss
efficiency ϵ(miss)

j , this is commonly referred to as stability correction [86].

Figure 3.4: Visualization of the treatment of fakes and misses in matrix-based unfold-
ing algorithms. The distribution of misses/fakes is appended in an extra
column/row to the migration matrix. The summation over columns/rows
returns the detector-level/truth-level distribution of the Monte Carlo simula-
tion. Source: [85].
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3.3. Uncertainties
After the choice for a specific unfolding algorithm, an unfolded distribution uj is ob-
tained. The evaluation of uncertainties is difficult since the resulting distribution for uj
cannot be assumed to be Poissonian anymore. For example, non-zero off-dimensional
elements of R̃ji introduce some degree of correlations between unfolded bins. Therefore,
it is wrong to calculate the square root of the number of events in one bin to evaluate
its uncertainty [3]. The calculation of covariance matrices is possible for some of the un-
folding algorithms, nevertheless this thesis sticks to a more general form of uncertainty
estimation: Bootstrapping [87].
The idea of bootstrapping is to unfold a measured distribution several times while mak-
ing small changes in the measured distribution ri as well as the Monte Carlo simulated
migration matrix Aij . The value of each measured bin ri is replaced by a number drawn
from a Poisson distribution P(ri). In analogy, the entries of the migration matrix are
fluctuated (including the fakes and misses) by drawing a new entry from P(Aij). These
fluctuations will consequently impact the unfolded distribution uj . These "toy fluctua-
tions" are performed several times to calculate the covariance matrix

covij =
1

Ntoys

Ntoys∑

n=1

(u
(n)
i − ui)(u

(n)
j − uj), (3.34)

with the number of toys Ntoys and the mean value

ui =
1

Ntoys

Ntoys∑

n=1

u
(n)
i . (3.35)

The standard deviation in each bin and the correlation matrix can be calculated as

σj =
√
covjj , corij =

covij
σiσj

. (3.36)

3.4. Analytic Toy Example
To demonstrate the unfolding algorithms it is beneficial to construct an example which is
analytically solvable. Such an example can be constructed if every relevant distribution
is a Gaussian. The detector response function is set to be a Gaussian shift and smearing
with the parameters µs = −6, σs = 3. The analytic detector response function to connect
distributions on truth-level t with their corresponding distributions on detector-level r
reads

p(r|t) = 1√
2πσ2s

exp

(
−(r − (t+ µs))

2

2σ2s

)
. (3.37)

With the generic Gaussian function G(x, µ, σ) the truth-level distributions are defined as

• Monte Carlo simulation at truth-level: f̃(t) = G(t, µt = 4, σt = 4),
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Figure 3.5: The toy example used in this section. All distributions are Gaussian, for
illustration purposes there are huge differences between the simulation and
the pseudo-experiment. The continuous functions are shown on the left, their
binned version with 106 sampled events on the right. There graphs show the
truth-level data (red, solid), the detector-level data (red, dashed), the truth-
level Monte Carlo (blue, solid) and the detector-level Monte Carlo (blue,
dashed).

• pseudo-experimental data at truth-level: f(t) = G(t, µTruth = 10, σTruth = 3.8).

The corresponding detector-level distributions can be calculated by evaluating the con-
volution integral of the truth distribution with the detector response function

g(r) =

∫
dt p(r|t)f(t). (3.38)

Since a Gaussian smearing is applied to a Gaussian function, the result is a new Gaussian
function with summed means and variances:

• Monte Carlo simulation at detector-level: g̃(r) = G(r, µr = µt+µs, σ
2
r = σ2t +σ

2
s),

• pseudo-experimental data at detector-level: g(r) = G(r, µM = µTruth + µs, σ
2
M =

σ2Truth + σ2s).

The "data" used in this toy example is of course not measured by an experiment. A more
precise expression would be "generated pseudo-data", for simplicity the term "data" is
used in the following.
The distributions mentioned above are shown in Figure 3.5, both as continuous functions
(left) as well as in a binned histogram (right). It can clearly be seen that this toy example
shows a mismodeling situation where the Monte Carlo simulation (blue) is in no way close
to the experimental data (red). In addition to this mismodeling there is a huge detector
response with both a smearing and a shift, hence this toy example produces a worst-case
scenario. It is possible to calculate an analytic expectation for the iterative algorithms.
By using Bayes theorem and assuming the truth-level Monte Carlo as a prior for the
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unfolded distribution f̃(t) = f̃prior,0(t), the pseudo-inverted function p(t|r) is calculated
as

p(t|r) = p(r|t) f̃prior,0(t)
g̃(r)

=
1√
2π

√
σ2r
σ2t σ

2
s

exp

(
−(r − (t+ µs))

2

2σ2s
− (t− µt)

2

2σ2t
+

(y − µr)
2

2σ2r

)
. (3.39)

The unfolded distribution after one iteration fu,1(t) can be calculated by convoluting this
pseudo-inverse with the measured distribution g(r):

fu,1(t) =

∫
p(t|r)g(r)dr = 1

2π

√
σ2r

σ2t σ
2
sσ

2
M

·
∫

dr exp

(
−(r − (t+ µs))

2

2σ2s
− (t− µt)

2

2σ2t
+

(r − µr)
2

2σ2r
− (r − µM )2

2σ2M

)
. (3.40)

The result is an updated prior function, a Gaussian distribution with parameters

µt,1 =
µMσ

2
t + µtσ

2
s − µsσ

2
t

σ2s + σ2t
, σt,1 =

√
σ2t σ

2
M + σ2t σ

2
s + σ4s

σ2s + σ2t
σt. (3.41)

This is everything needed for analytic predictions of the unfolded distribution in each
iteration of an iterative unfolding algorithm. To obtain the parameters of the distribution
after the second iteration, a recalculation of Equation (3.41) with the values {µt,1, σt,1}
instead of {µt,0, σt,0} is needed. To make sure that this is a consistent result, it can be
shown that in the limit of infinite iterations the mean value and the standard deviation
approach the exact result {µTruth, σTruth}. This is derived in Appendix A.3.

3.5. Unfolding the Toy Example
At this point the classical matrix-based unfolding algorithms can be applied to the toy
example described above. Since there are strong differences between the Monte Carlo and
the data, it is expected that a simple inversion of the response matrix will not succeed
to obtain a proper unfolding result. Hence, more sophisticated matrix-based algorithms
will be needed. Especially for the iterative algorithms it is interesting to compare the
unfolded distribution after each iteration with the analytic prediction. In general, this is
more a sanity check whether the algorithms are implemented properly, since the Iterative
Bayesian Unfolding executes the exact same steps used for the analytic derivation with
a binned phase space.
The results for the simple matrix unfolding are shown in the upper left of Figure 3.6. It
behaves as expected: due to a lack of regularization it is unable to obtain an unfolding
result which obeys to a physical smoothness. Instead there are large bin-to-bin fluctua-
tions, which imply strong correlations between the bins. This demonstrates the necessity
of regularized unfolding algorithms.
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Figure 3.6: Unfolding the toy model using different matrix-based algorithms. The figures
show the truth-level Monte Carlo (blue), the truth-level data (red) as well
as the unfolding result (green). In the upper left graph the simple matrix
inversion is applied, the result is an expected high-frequency spectrum. This
demonstrates that the problem requires some kind of regularization. In the
upper right and the two lower plots the SVD algorithm is applied using several
different strengths of the regularization parameter τ . In the lower left the
regularization is too strong, i.e. the unfolded distribution is biased towards
the truth-level Monte Carlo simulation. In the lower right the regularization
is too weak leading to a fluctuating result. In the upper right a compromise
between bias and fluctuations is shown. This compromise still significantly
deviates from the true distribution.

The SVD unfolding with a Tikhonov regularization depends on the regularizing parame-
ter τ . As explained in Section 3.1, if τ is too low the regularization is too weak to suppress
the oscillations. If τ is too high the unfolded distribution will have a bias towards the
truth-level Monte Carlo simulation. This behavior is demonstrated in the other three
plots of Figure 3.6. It can be seen that the SVD algorithm does not succeed in unfolding
the distributions properly. This is due to the fact that the toy example was designed
specifically to see an iterative improvement, the plain non-iterative SVD cannot correct
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Figure 3.7: Unfolding the toy model with iterative matrix-based algorithms. On the left
the result for IBU, on the right the result for IDS with the unfolded distribu-
tion are shown after each iteration. The unfolded distributions (purple, black
and green solid line) fit the analytic expectations (respective dashed lines)
in the region of high statistics. The ratios with the experimental truth-level
data (red) show that the bias towards the truth-level Monte Carlo (blue) is
iteratively reduced.

for the strong shape difference.
The iterative IBU and IDS algorithms fulfill the expectations. After each iteration it is
possible to compare the analytic prediction with the unfolding result. The results up
to iteration Niter = 4 are shown in Figure 3.7. The parameters for Iterative Dynamic
Stabilising are set to λN = 0, Niter,norm = 5 and λU = λM = 0.5.
The choice skips the correction of the normalization. This can be done because there are
no local structures in this toy model which might have an impact on the normalization.
The values for λU and λM are standard values for these parameters. Because of this
rather conservative choice it is not surprising that the IDS algorithm approaches nearly
the same result as the IBU algorithm.

The main result of this section is that the iterative algorithms succeed in unfolding this
toy example, whereas the non-iterative do not. The example can therefore be used in
Section 7 to demonstrate the limits of a non-iterative cINN unfolding, and to show that
the result can be improved by adapting an iterative approach.
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4. Neural Networks
Artificial neural networks are an approach of deep learning inspired by the neurons of the
human brain. The biological neuron is constructed to release a chemical transmitter once
a certain action potential in form of an electrical impulse is reached [88]. This release
induces another electrical impulse which is passed to other neurons and so on. The idea
of interacting neurons is the basis on which an artificial neural network is constructed.

4.1. Basic Structure
The simplest possible neural network is a single neuron (also called perceptron) where
an output y is calculated using several inputs xi. The neuron multiplies weights wi

with the inputs, adds a bias b and finally applies a non-linear activation function f .
Mathematically this is expressed as

y = f

( n∑

i=1

wixi + b

)
. (4.1)

This is visualised in Figure 4.1. The idea of machine learning is to optimize these weights
to produce a desired outcome, for example to learn a certain pattern or mapping. To
approach more difficult problems, the neurons can be organised in layers, where they are
evaluated in parallel. This is visualised in Figure 4.2. In a fully-connected neural network
the inputs of a neuron in each layer is given by the previous layer neurons’ combined
output. There are three kinds of layers: the input layer at the beginning, the output
layer at the end and the hidden layers in between [89].

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 4.1: Structure of an artificial neuron. The input is multiplied with weights wi,
summed up with an additional bias b and a non-linear activation function f
is applied.
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Figure 4.2: Exemplary structure of a generic fully-connected neural network. Each circle
illustrates one neuron. The green layer on the left side is called the input
layer, the blue layers in the center are called the hidden layers and the red
layer on the right is called the output layer.

The input layer takes the input information and passes it to the first hidden layer. At
this stage it is possible to implement a preprocessing of the data which simplifies the
task of the neural network.
Each neuron of the first hidden layer calculates outputs according to Equation (4.1). The
weights are not assigned to a single neuron, but their magnitudes express the importance
of a connection between two neurons of consecutive layers (arrows in Figure 4.2). After
the first hidden layer, the calculated output is passed on to the next hidden layer and
so on. In simple neural networks, the hidden layers usually have more neurons per layer
than the input or output layer to guarantee that no input information is compressed in
the neural network itself. The number of neurons in one hidden layer will be called units.
The output layer requires the exact number of neurons to fit the dimension of the output,
the dimension of input and output do not have to agree. In addition, special activation
functions can be applied to the output layers in comparison to other layers to restrict
the output to a certain range of values.
At this point it is crucial to understand why a non-linear activation function is needed
if a non-linear distribution should be learned. If there was be no activation function at
all or if a linear activation function was chosen, Equation (4.1) would be a composition
of linear functions and thus linear itself. The consequence of this linearity would be that
all the hidden layers can be replaced by one single hidden layer. Therefore, in order
to construct a deep neural network which is able to learn non-linear distributions, non-
linear activation functions are needed. The Universal Approximation theorem [90] states
that an arbitrarily good representation of a distribution by a neural network is only
possible due to this non-linearity [88]. There are several types of activation functions.
An overview can be found in [91]. In the following, the activation functions important
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Figure 4.3: Two commonly used activation functions. The figure on the left shows the
nearly linear ReLU activation function. The figure on the right shows a
sigmoid activation function.

for this thesis are discussed. They are shown in Figure 4.3.
The ReLU activation function (Rectified Linear Unit) has been the most used activation
function since its proposal in 2010 [91]. It is defined by

ReLU(x) = max{0, x} =

{
x x > 0

0 x ≤ 0
. (4.2)

This nearly linear activation function is especially useful due to its simplicity. Because of
this, the computation is much faster compared to other activation functions. Problems
with this activation function can occur with "dying" neurons, i.e. the output of such a
neuron is constantly zero due to its weight configuration. To solve this problem, the
LeakyReLU activation function can be used, which introduces a small slope for x < 0.
The Sigmoid activation function is defined as

Sigmoid(x) =
1

1 + e−x
. (4.3)

It is often used in the output layer since it restricts the output to the interval [0, 1]. This
is a possibility to ensure that the network output is a probability [92].

4.2. Training
Training a neural network is a synonym for an advantageous optimization of the network
parameters (i.e. the weights and biases) that leads to the network learning the structure
of an input dataset. An example is the case where a mapping y = g(x) should be learned.
Doing this requires training data (x, ŷ) defining the relation g.
Prior to the optimization, all weights are initialised randomly, usually according to a
Gaussian distribution with mean µ = 0 and standard deviation σ = 1. The goal of the
training process is to adjust the weights of a neural network by applying it to the input
training samples x and comparing the resulting output y with the desired result ŷ. To
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do this, it is necessary to introduce a differential learning objective, the loss function,
which provides a feedback about the network performance.

The loss function is designed to increase for large differences between y and ŷ and to
decrease if they become very similar. One way to implement such a function is the mean
squared error [88]

LMSE =
1

n

n∑

i=1

(yi − ŷi)
2, (4.4)

with n being the number of samples to evaluate. The value of the loss function can only
be modified by changing the network parameters w. The goal of the network training is
hence to find the perfect parameter configuration w∞ which minimises the loss L to its
global minimum [88]:

w∞ = arg min
w

L(w). (4.5)

Gradient descent is used find this minimum numerically. After initialising the net-
work with random parameters w0, the network is applied to the training data to obtain a
prediction and calculate the loss L(w0). After this the network parameters are updated
as

w1 = w0 − α∇w0L(w0), (4.6)

with the learning rate α. The gradients of the loss function are calculated with back-
propagation, which is a repeated application of the chain rule to the loss function. More
information about backpropagation and its implementation can be found in [89].
This procedure of updating the network parameters is iteratively repeated to improve
the parameters towards their desired values w∞. The learning rate α quantifies the size
of the step. It is important to find a good value for α: if it is to low, the neural network
might get stuck in a local minimum. If it is to high, the network will never converge to
the global minimum. This behavior is shown in Figure 4.4.
The calculation of the loss function gradient faces another challenge: especially for large
datasets, it becomes impossible to compute the gradient. Instead, it is evaluated over
a small, randomly chosen subset of the training data. This method is called stochastic
gradient descent; the subsets of the training data are called minibatches or batches. The
stochastic noise introduced by these batches further stabilises the convergence of the
training process [93].
Since the loss function can have local minima, it needs to be ensured that the network
finds the global minimum. This task is called exploration. After finding this minimum,
the neural network needs to approach it in well chosen steps. This task is called exploita-
tion. Gradient descent is a good starting point to approach these challenges, but there
are several more techniques to optimize the training, for example learning rate schedulers
or optimizers.
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Figure 4.4: Learning process of a neural network with different learning rates. The learn-
ing rate is an externally adjustable hyperparameter of the network.

A learning rate scheduler can be used to change the learning rate continuously.
The networks presented in this thesis use a one-cycle learning rate [94], i.e. they start
the training with a learning rate value α0, increase it over several epochs to αmax and
finally decrease it to zero in the final epochs. The idea is to first locate the global
minimum with the enhanced learning rate and use the smaller learning rate afterwards
to converge. In addition to the changes in the learning rate an optimizer, which replaces
the standard gradient descent, can be used.

ADAM [95] is an optimizer which replaces the standard gradient descent. It adds an
additional term in the update of the parameters, called momentum [96]:

mt+1 = β1mt + (1− β1)∇wtL, (4.7)
wt+1 = wt − αmt+1. (4.8)

with β1 ∈ [0, 1] to add a continuous average of the previous update steps to the next
update. This additional term smooths out the updates, helps to prevent getting stuck
in local minima and is useful in areas in which there are big differences between the
gradients in several directions. In such a case, neural networks without momentum tend
to oscillate instead of going straight to the minimum.
The second concept implemented in ADAM is RMSProp ("root mean square radius prop-
agation") [97]. The idea is to implement an individual correction factor to the learning
rate applied to each batch, since the gradients may vary from layer to layer. For layers
with a continuously small gradient no progress is made, while layers with continuously
large updates might overstep the minimum. To prevent this one can introduce a correc-
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tion factor vt which is a moving average of the squared gradient updates:

vt+1 = β2vt + (1− β2)(∇wtL)
2, (4.9)

wt+1 = wt −
α√

vt+1 + ϵ
∇wtL, (4.10)

with a factor β2 ∈ [0, 1] as well as a regularization parameter ϵ to avoid divergences.
ADAM combines these two approaches. In addition, it introduces correction factors for
the momentum and the RMSProp, since they are biased towards the gradients of the
first batches. The full ADAM algorithm can be written as

mt+1 = β1mt + (1− β1)∇wtL, (4.11)

vt+1 = β2vt + (1− β2)(∇wtL)
2, (4.12)

m̂t+1 =
mt+1

1− βt1
, (4.13)

v̂t+1 =
vt+1

1− βt2
, (4.14)

wt+1 = wt −
α√

v̂t+1 + ϵ
m̂t+1, (4.15)

where βti is βi to the power of t. The values used for ADAM in this project are β1 = 0.9,
β2 = 0.999 and ϵ = 10−8.

Overfitting is a problem that can occur while training neural networks. Since the
training data is limited, several training iterations with the same data cannot be avoided.
This risks overspecialisation or overfitting [98], meaning that the neural network learns
details about the training data which are specific only to the training data. An example
for this is given in Figure 4.5. The network no longer learns an underlying structure, but
the exact distribution of the training data. Bigger networks with more parameters are
more likely to overfit. Nevertheless, some problems require big networks and therefore
need to deal with this problem explicitly.
One possibility to prevent overfitting is to implement a dropout of neurons [99]. The
idea is to omit each hidden neuron with a dropout probability, for example 0.25. In
this configuration the output of approximately one in four neurons is set to zero in an
epoch of training. This procedure can be seen as "a very efficient way of performing
model averaging with neural networks" [99], as there are different combinations of active
neurons in every training epoch, but all these "subnetworks" share the same weights.
These new combinations prevent the network from focusing too much on the training
data itself and shift its focus to the underlying nature of the data. An appropriate choice
of the dropout probability is crucial, since a balance between preventing overfitting and
still enabling an effective training procedure has to be ensured.
Another possibility to prevent overfitting is an early stopping of the learning process
[100]. During the training procedure, the loss of the training sample is continuously
evaluated. In addition, a loss of a so-called test sample is calculated, which is not used
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Overfitting
Desired fitting
Training data

Figure 4.5: Overfitting of a neural network shown in a graphic example. The underlying
structure is a sine function.

during training but follows the same underlying distribution. As soon as the loss of the
test sample starts to increase again, the network starts overfitting and the training is
stopped.

4.3. Discriminative Neural Networks
Neural networks can be used to approach classification problems. A well-known example
is the MNIST-problem: the data contains images of handwritten digits and their corre-
sponding labels. The task to recognize the number with a machine learning algorithm
was long used for benchmarking neural network performances. Modern neural network
architectures need more involved problems to distinguish performances [89]. Networks
that are designed to label data are in general called classifiers or discriminators.
In the context of this thesis it is suitable to consider a binary version of the MNIST prob-
lem, in which there are only pictures of zeros and ones. The easiest way to approach the
classification problem is to use a fully connected neural network. The number of input
neurons matches the number of pixels in each picture, the input values are the bright-
nesses of one pixel. The output layer contains only one single neuron with a sigmoid
activation function, to restrict the output values y to [0, 1]. Each picture of a zero and a
one in the training data is paired with its correct label ŷ ∈ {0, 1}. These (picture, label)
samples are given to the neural network to perform a training as described in Section
4.2. The used loss function is a binary cross entropy loss

LBCE = −
n∑

i=1

ŷi log(yi) + (1− ŷi) log(1− yi). (4.16)

Since ŷ ∈ {0, 1} for each training point, only one part of the sum, which sanctions the
deviations from the true label logarithmically, is relevant.
Since there is only limited training data available and the number of network parameters
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Figure 4.6: Example for a reweighting problem. The left image shows two distributions,
where p0 (blue) should be reweighted on an event-by-event basis to match
p1 (red). The right image shows the result of a trained classifier, where the
binned ratio p1/p0 (blue) is approximately equal to the ratio of the mean
probabilities assigned by the classifier to the events of each bin, y/(1 − y)
(red).

is limited, a perfect performance in which the classifier output is always exactly one
or zero will never be reached. Instead, a picture of a one is for example evaluated to
y = 0.95. This shows that the network concludes the picture is much more likely a one
than a zero. It can be shown that the network which converges to the minimum of the
binary cross entropy loss actually learns the probability ratio of a picture being a one
or a zero [93]. A picture which is equally close to a one as to a zero will thus return an
output which is close to 0.5.
This learning of probabilities can be used to reweight distributions towards each other
[101]. An example for a reweighting problem is given in Figure 4.6, left. The task is
to assign each event of the distribution p0 a weight such that the resulting reweighted
distribution is similar to distribution p1. It is possible to divide the two histograms bin
by bin, assigning each event the bin ratio p1/p0 of its respective bin as a weight.
Instead of introducing a binning, the machine learning reweighting algorithm takes an
event-by-event approach, i.e. each point of the distribution p0 is assigned an individual
weight. This can be achieved by a neural network which is trained to distinguish between
samples of the distributions. Hence, the training labels ŷ = 1 are assigned to the points
of the distribution p1 and ŷ = 0 to points of p0. As can be seen on the left of Figure 4.6.
the distributions are overlapping. In the region where p1 and p0 are of similar size, the
classifier output is again expected to be around y ≈ 0.5 since a clear assignment to either
p1 or p0 is not possible in this region. By design the neural network therefore learns the
underlying probability distributions. The likelihood ratio of the distributions is therefore
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well-approximated as

L[pT , p
′
T ] =

p1(pT )

p0(p′T )
≈ y

1− y
, (4.17)

with the classifier output y. Both ratios are calculated in a binned way. This relation
will not hold to arbitrary precision due to limited training statistics. Nevertheless, it
gives a good estimation if the classifier has learned to distinguish the distributions in
principal. A plot of these ratios for a trained network is given in Figure 4.6 on the right.
This concept of reweighting is used in the iterative unfolding algorithms introduced in
Section 5 and 7.

4.4. Generative Neural Networks
In general, discriminative models are designed to draw boundaries in data spaces, i.e.
they try to predict the correct labels for data. In contrast to this, generative models
model the distribution of the data itself. A trained generative model is able to sample
completely new data which behaves like the training data.
In this thesis a normalizing flow is used which learns a mapping between a simplistic
latent space and a complicated physical phase space density. In unfolding problems, it is
suitable to use conditional Invertible Neural Networks, a specialised version of Invertible
Neural Networks.

Normalizing Flows [102] are used to model complex densities precisely and sample
from them in a controlled manner. The basic idea is to connect events of a complicated
target distribution y ∼ pY (y) to a random variable z ∼ pZ(z)

gθ : z → y, (4.18)

using a bijective (and therefore invertible) mapping gθ which depends on network pa-
rameters θ. The concatenation of invertible mappings is invertible again. Therefore,
multiple bijective mappings can be combined to form a normalizing flow. The forward
evaluation of Equation (4.18) is the generative direction of the normalizing flow. The
inverted direction

gθ ≡ g−1
θ : y → z, (4.19)

normalizes the complicated target distribution. The latent density pZ(z) is connected to
the target density pY (y) as

pY (y) = pZ(z)

∣∣∣∣
∂gθ(z)

∂z

∣∣∣∣
−1

= pZ(gθ(y))

∣∣∣∣
∂gθ(y)

∂y

∣∣∣∣, (4.20)

with the Jacobian ∂gθ(z)/∂z.
Given a sample z from the latent distribution, a trained normalizing flow with mapping gθ
can be used to generate a sample of the target distribution. Alternatively, the density of
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a sample y can be computed using the inverse direction. This bijective mapping provides
a powerful generative pipeline to model complicated distributions. In order for this to
be an effective approach, the latent space distribution needs to be known and simple
enough to allow for an efficient sample generation. One possibility is to choose pZ(z)
to be a multivariate Gaussian with mean zero and an identity matrix as the covariance.
In addition, gθ is required to be flexible enough to learn a non-trivial transformation.
Furthermore its Jacobian determinant needs to be efficiently computable.

Invertible Neural Networks (INN) [103] are a special type of a normalizing flow
networks, which fulfill these requirements by providing a bijective mapping and an easily
calculatable Jacobian in both directions. The INN uses affine coupling layers as building
blocks [104, 105]. The input vector z is split in half, z = (z1, z2), which allows to compute
the output y = (y1, y2) of the layer as

(
y1
y2

)
=

(
z1 ⊙ es2(z2) + t2(z2)

z2 ⊙ es1(y1) + t1(y1)

)
⇔
(
z1
z2

)
=

(
(y1 − t2(z2))⊙ e−s2(z2)

(y2 − t1(z1))⊙ e−s1(y1)

)
, (4.21)

with arbitrary functions s1,2 and t1,2 and the element-wise product ⊙. This bijective
mapping works independent of the functional form of s1,2 and t1,2, i.e. these functions
can be chosen to be a fully connected neural network with several layers. A deep INN
is composed of a sequence of these building blocks. To increase the model capacity
it is advantageous to permute the dimensions between coupling blocks. This enhances
interaction among the individual variables [103, 106].
The vector notation in Equation (4.21) can be misleading as one coupling block contains
two concatenated layers. The first one calculates y1 from z1 and z2, the second one
calculates y2 from z2 and y1 [107, 108]. The Jacobian of this mapping is the product of
two triangular matrices

∂gθ(z)

∂z
=

(
1 0

finite diag es1(y1)

)
·
(
diag es2(z2) finite

0 1

)
, (4.22)

i.e. its determinant is the product of the diagonal entries
∣∣∣∣
∂gθ(z)

∂z

∣∣∣∣ =
∏

es2(z2)
∏

es1(y1). (4.23)

The network can be trained with a maximum likelihood loss. This relies on the assump-
tion that there is a dataset which encodes the complicated distribution pY (y). To fit a
model distribution pmodel(y, θ) via gθ, the log-likelihood loss needs to be minimised

LINN = −⟨log pmodel(y, θ)⟩y∼pY , (4.24)

where ⟨.⟩ implies the calculation of a mean value. Using Equation (4.20) this can be
rewritten as

LINN = −
〈
log pZ(gθ(y)) + log

∣∣∣∣
∂gθ(y)

∂y

∣∣∣∣
〉

y∼pY

. (4.25)
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The first term ensures that the latent representation remains Gaussian, while the second
term constructs the correct transformation to the complicated distribution. Both terms
can be computed efficiently. It is possible to derive this maximum likelihood approach by
minimizing a Kullback-Leibler-divergence [109] between the pY (y) and pmodel(y), further
details about this can be found in [93].
The INN provides a powerful generative model of an underlying data distribution. Ad-
ditionally, its invertible structure seems advantageous for unfolding. Nevertheless, it has
been shown that an INN is not the best network architecture to approach unfolding prob-
lems, because a naive INN implements a deterministic mapping between detector-level
and truth-level events. This contradicts the statistical nature of unfolding and does not
account for possible hidden degrees of freedom. Hence, it is advantageous to adapt a
conditional setup instead [5, 78].

conditional Invertible Neural Networks (cINN) [110] are a modified version of
the INNs discussed in the last paragraph. The main difference in the general setup is that
the previous fully connected neural networks s1,2 and t1,2 from Equation (4.21) are now
conditionalised, i.e. they obtain an external input. This structure is called a conditional
coupling block. The cINN models the mapping gθ between a complicated distribution
y ∼ pY and a Gaussian latent space z ∼ pZ under the condition x ∼ pX . Therefore only
z and y need to have the same dimension. It is again possible to sample from the latent
space for event generation after a successful training.
The cINN is trained with a loss function similar to Equation (4.24): the probability
distribution for the network weights θ conditional on x and y needs to be maximised.
The negative log-likelihood for the network parameters reads

LcINN = −⟨log pmodel(θ|x, y)⟩x∼pX ,y∼pY
. (4.26)

Bayes’ theorem can be used to turn the probability for θ into a likelihood with y as the
argument

LcINN = −
〈
log

pmodel(y|x, θ)pmodel(θ|x)
pmodel(x|y)

)

〉

x∼pX ,y∼pY

= −⟨log pmodel(y|x, θ)⟩x∼pX ,y∼pY
− log pmodel(θ) + const. (4.27)

Constant terms which are irrelevant for the normalization are dropped in the following.
It is again possible to apply the coordinate transformation of Equation (4.20) to obtain
a trainable Jacobian. In addition, a Gaussian prior for the weight distribution pmodel(θ)
with 1/2σ2θ := λ is assumed. Hence, the full loss function reads

LcINN = −
〈
log pZ(gθ(y|x)) + log

∣∣∣∣
∂gθ(y|x)
∂y

∣∣∣∣
〉

x∼pX ,y∼pY

− λ θ2. (4.28)

The last term is a weight regularization preventing the weights to become too large. It is
generally often referred to as a weight decay. The first two terms are the usual maximum
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likelihood loss, but conditional on reconstruction-level events and trained on event pairs.
At this point it becomes clear why a Gaussian latent space with mean zero and variance
one is chosen: up to a constant, the first term is easily computed as

log pZ(gθ(y|x)) = −∥ gθ(y|x) ∥22
2

. (4.29)
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5. Machine Learning in Unfolding
In recent years, machine learning tools have been applied to the unfolding problem de-
scribed in Section 3 [5, 77, 78]. The main advantage of the machine learning methods over
the "classic" matrix-based algorithms is their computational scaling behavior in higher
dimensions. The matrix-based algorithms introduce a binning and are based on a pseudo-
inversion of the response matrix. For a multidimensional unfolding the number of nec-
essary matrix cells scales exponentially. This scaling behavior makes a high-dimensional
unfolding computationally unfeasible. Most analysis which use a matrix-based algorithm
unfold only up to three dimensions simultaneously.
The fact that the matrix-based methods only unfold a limited amount of observables
poses several problems. First, the detector response might be sensitive to so-called hid-
den observables which are not unfolded themselves. Especially in complex modern par-
ticle detectors, this dependency on hidden observables is realistic. This problem can be
solved by unfolding the full phase space, i.e. every observable obtained from the detector
system. In addition, this full phase space unfolding would make it possible to construct
every other observable out of the unfolded ones. This is especially interesting for future
theories which might show only in exotic variables [111, 112].
Another limitation of matrix-based algorithms is the information loss associated with the
introduced binning itself, the exact position of the event inside the bin is lost. This is
even more pressing, as the size of the bin is very important: too broad bins may lose fine
structure resolved by the event distribution, too narrow bins introduce large bin-to-bin
correlations.
These problems do not appear when using machine learning methods, because they in-
troduce no binning and apply the training on an event-by-event basis. This unbinned
approach enables the unfolding of all detector observables simultaneously, i.e. avoiding
the problem of hidden observables entirely. In the following two popular machine learning
unfolding algorithms are discussed: OmniFold [77] and cINN unfolding [5].

5.1. OmniFold
OmniFold [77] is using an iterative reweighting algorithm to obtain an estimator for the
truth-level distribution of the data. One of the key concepts of OmniFold is the likelihood
ratio

L[(w,X), (w′, X ′)](x) =
p(w,X)(x)

p(w′,X′)(x)
, (5.1)

with p(w,X)(x) being the probability density of x estimated from samplesX with empirical
weights w. As already discussed in Section 4.3 it is possible to approximate this likelihood
ratio using a classifier to distinguish (w,X) from (w′, X ′). To include the training weights
ŵ ∈ {w,w′} into the training procedure of a classifier, the binary cross entropy loss from
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Equation (4.16) can be adjusted to

LBCE = −
n∑

i=1

ŵi

⟨ŵ⟩ (ŷi log(yi) + (1− ŷi) log(1− yi)) , (5.2)

where ⟨ŵ⟩ is the mean value of the weights which is introduced to avoid training instabil-
ities. The approach is equivalent to training on the unweighted distribution. This can be
shown explicitly in the case of Generative Adversarial Networks (GANs) and generalises
to this case [113, 114].
The OmniFold algorithm is visualised in Figure 5.1. As in Section 3, the samples of the
Monte Carlo simulation are labeled as t̃ for the truth- and r̃ for the detector-level distri-
bution, while the experimentally measured samples are labeled as r with their associated
ground truth t. Using Equation (5.1), the OmniFold iteration steps can be written down
as

1. wn(r̃) = νn−1(r̃)L[(1, r), (νn−1, r̃)], (5.3)
2. νn(t̃) = νn−1(t̃)L[(wn, t̃), (νn−1, t̃)], (5.4)

where wn and νn are weights in the respective iteration. The first step calculates weights
w1 to reweight the detector-level Monte Carlo distribution to look like the detector-level
data. The initial weights of the Monte Carlo simulation are usually set to ν0 = 1. The
Monte Carlo events are paired on detector- and truth-level, w1 can thus be pulled to
truth-level. The second step ensures that the pulled weight distribution is valid, i.e. the
truth-level Monte Carlo with weights ν0 is assigned new weights ν1 to match the new
weighted Monte Carlo with weights w1. This has the effect of smoothing out the weight
distribution. After this first iteration, ν1 is used as a new starting point for further
iterations. This algorithm will continuously reweight the Monte Carlo simulation until
a satisfying result is reached. As in the case of the classical unfolding algorithms, a bias
towards the Monte Carlo in the final result will always appear, but is reduced with more
iterations. Too many iterations on the other hand will increase the uncertainties. As
always for iterative unfolding algorithms, it is crucial to find a good balance between bias
and uncertainties.
The main challenge in the application of OmniFold is the choice of the phase space
covered in the Monte Carlo simulation. The whole algorithm is a continuous reweighting.
It is thus not easy to ensure that every structure present in the measured data will be
transferred to the Monte Carlo. One example is an observable which is only defined on
high jet multiplicities with more than ten jets. If there are ten-jet events in the data,
but not in the Monte Carlo simulation, this observable will not be unfolded correctly
bacause there is nothing to reweight the measured data to. The claim of OmniFold that
it "simultaneously unfolds all possible observables" [77] is therefore an overstatement.
Nevertheless, in a clean environment OmniFold is a strong unfolding tool. It has already
been applied to the experimental data of the H1 experiment, which took place at HERA
[115]. The number of observables unfolded in this analysis shows clearly the potential
of machine learning approaches over the classical matrix-based approaches. The data of
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Figure 5.1: An illustration of the OmniFold algorithm. As a first step, starting from
prior weights ν0, the detector-level Monte Carlo is reweighted to match the
detector-level measured data. The resulting weights w1 are pulled back to
induce weights on the truth-level Monte Carlo. As a second step, the initial
Monte Carlo is reweighted to match the new weighted Monte Carlo. The
resulting weights ν1 are pushed forward to induce a new simulation, and the
process is iterated. Source: [77].

the H1 detector is chosen because of the non-diverse possible final states and the overall
very clean environment, to avoid the problem of a misjudgement of the phase space. In
a fully involved ATLAS analysis this problem needs to be addressed in a more rigorous
way, because the larger center of mass energy results in a broader overall phase space for
the final states.

5.2. cINN Unfolding
Although OmniFold already offers a lot of possibilities in unfolding, it is not able to
unfold single events. In addition, the developement of different methods is desirable to
implement cross-checks. Hence, at this point it is suitable to introduce the cINN unfold-
ing [5], which will be the main method used throughout this thesis.
The basic structure of a cINN was introduced in Section 4.4. The latent space z again
follows a Gaussian distribution. Furthermore the detector-level data r serves as con-
ditions while the particle-level data t is the network output. This idea is visualised in
Figure 5.2.
During training, paired samples of detector- and particle-level events are passed through
the network to the latent space. The cINN is still invertible in the sense that it includes
a bi-directional training from Gaussian random numbers to truth-level events and back,
but the invertible nature is not used to invert the detector simulation [93]. Once the
training has converged, it is possible to sample from the latent space under the condition
of a specific detector-level event to generate a distribution of truth-level events. Without
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cINN

Latent Space Particle Level

Detector 
Level

Figure 5.2: Structure of the conditional INN. Random numbers {z} are mapped to truth-
level events {t} under the condition of a detector-level event {r}. The loss
L follows Equation (4.28). A hat indicates a cINN-generated event. The
training is performed in both directions [5].

the conditionality, the trained network would become an event generator which would
reproduce the underlying distribution of particle-level events in the training data set.
In contrast to OmniFold the cINN unfolding obtains a probabilistic unfolded distribution
for one single detector-level event, whereas Omnifold reweights only the distributions of
events. This contrast in the approaches is desirable for later experimental purposes, in
a sense that it motivates checking one with the other. An example of a successful cINN
unfolding can be found in [5]. This example already shows the potential of cINN unfold-
ing. To further check the validity of the cINN unfolding, it is interesting to observe its
performance while introducing large differences between the experimental data and the
Monte Carlo simulation, i.e. in a "worst-case" scenario. This idea is investigated further
in Section 7.1.

51



6. Matrix-based Unfolding of Single Events
The main difference between machine-learning-based and matrix-based unfolding algo-
rithms is the representation of the data: event-by-event or as a histogram with an intro-
duced binning. Up to this point it was not possible to validate the single event unfolded
distributions of the cINN unfolding. The goal of this section is to construct single event
unfolded distributions using the matrix-based algorithms, to obtain a benchmark for the
cINN single event unfolding.

6.1. Analytic Predictions
In the context of the toy model of Section 3.4 it can be analytically predicted how a single
event unfolded distribution should look like. The contribution to the data distribution
from a single measured event at rm can be expressed with a delta distribution

g(r) = δ(r − rm), (6.1)

on detector-level r. This distribution is unfolded to truth-level t by calculating

fu,1(t) =

∫
p(t|r)g(r)dr, (6.2)

where p(t|r) is still defined as the pseudo-inverted detector response function in Equation
(3.39). The result is again a Gaussian function with parameters

µsingle =
σ2sµt − σ2t (µs − rm)

σ2s + σ2t
, σ2single =

σ2sσ
2
t

σ2s + σ2t
, (6.3)

with the smearing parameters (µs, σs), and the parameters of the current prior (µt, σt).
This result can be derived directly from Equation (3.41) by modifying µM → rm and
σM → 0. According to Section 3.4, the prior parameters (µt, σt) can be updated itera-
tively. The result from above can therefore be used to predict a single event unfolded
distribution in each iteration by plugging in the corresponding updated prior. By insert-
ing the parameters of the truth-level data, µt = µTruth and σt = σTruth, it is possible to
derive a result for an infinite number of iterations. The iterative predictions are used for
IBU and IDS, whereas the exact result serves as a benchmark for SVD.

6.2. Weighting Approach
For matrix-based unfolding approaches, it is only possible to calculate one single event
unfolded distributions for each bin, i.e. it is still not possible to treat all the events
individually. This is due to the loss of the exact value of each event, which is connected
to the introduced binning. The bin size can be decreased only to a certain point until
large bin-to-bin correlations appear. Nevertheless, it is still advantageous to unfold one
single bin, especially for distributions with small gradients. In this section the Monte
Carlo simulation is again labeled as (t̃j , r̃i) and the experimental data is labeled as (tj , ri),
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6 Matrix-based Unfolding of Single Events

on truth-level t and detector-level r respectively. It is possible to unfold ri by using the
unfolding algorithms described in Section 3.
A naive way to obtain a single event distribution is the use of a small perturbation:
the unfolding procedure is performed once with the original distributions, once with a
slightly changed detector-level distribution ri. A single bin is of the measured distribution
is modified by multiplying it with a weighting factor w > 1. The single event unfolded
histogram ej(is) is defined as the normalized difference between the unfolded distributions

ej(is) =
1

w − 1

(
u′j − uj

)
, (6.4)

using the original unfolding result uj of the original detector-level distribution as well as
the unfolding result u′j derived from the reweighted detector-level data. This algorithm
can be applied to the analytic toy model.
The results are shown in Figure 6.1. The parameters for IDS were chosen as in Sec-
tion 3.4. Due to their conservative choice it is not surprising that IBU and IDS behave
approximately identically. In the first iteration the single event unfolded distribution
matches its analytic prediction. The single event distributions of the second and fourth
iteration do not match their analytic predictions, instead there is a small shift as well
as negative entries. This behavior can be explained by looking at the algorithms more
closely: the first iteration is the pseudo-inversion of the response matrix using Bayes’
theorem. This pseudo-inversion is based solely upon the Monte Carlo simulation, which
was unchanged in both the weighted and not weighted case. The pseudo-inverse, i.e.
the unfolding matrix, is therefore not impacted by the changed detector-level data and
the extracted single event unfolded distribution is exactly a column of this matrix. This
procedure seems to obtain nearly perfect results for both algorithms.
After this first iteration the unfolded (potentially weighted) detector-level data is set to
be the new prior for the pseudo-inversion which means the unfolding matrix is impacted
by the changed detector-level data distribution. In the examples of Figure 6.1 a factor
of w = 1.01 was used, thus the height of one bin of the detector-level data was increased
by one percent. To compensate this increase during the iterative unfolding, the values
of each column in the response matrix are slightly shifted towards the increased bin.
Since one column still needs to be normalized, the values of the other bins are slightly
decreased, which leads to negative entries after the calculation of the difference. Since
the distribution is still required to be smooth, the bins next to the reweighted one are
impacted stronger than bins far away.
There are two obvious problems with the single event distributions of the iterative ap-
proaches beyond the first iteration: their non-positivity as well as the strong shape differ-
ence to the analytic prediction. In addition, the sum of all the individual unfolded event
distributions is not perfectly equal to the full detector-level data distribution unfolded.
This mismatch is founded in the fact that this approach is only an approximation of the
single event distribution, which can be improved with w → 1. This behavior, as well as
the result of the first iteration, shows that it might be a better approach to extract a
particular column of the unfolding matrix after each iteration instead.
The single event distribution of the SVD algorithm is shown in the lower part of Figure
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6 Matrix-based Unfolding of Single Events

6.1. The dashed line is the true single event distribution, which was calculated analyt-
ically with Equation (6.3). It can be seen that the unfolded single event distribution is
far away from the analytic prediction and introduces asymmetric negative entries as well.
Since the SVD algorithm is not able to unfold the full toy spectrum (see Section 3.5), it
cannot be expected to obtain a proper single event unfolded distribution.
It can be concluded that the techniques presented in this project are not sufficient to
derive a single event unfolding for the SVD algorithm in this specific example. It is there-
fore decided to drop the SVD algorithm at this point, since the possibility of comparing
iterative machine learning algorithm to the iterative matrix-based algorithms remains.
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Figure 6.1: Single event unfolding using a weighting approach. In the upper left the
result for IBU is shown, on the upper right the result for IDS. The blue bin is
unfolded. The dashed lines (violet, black, green) are the analytic predictions
for each iteration, the solid lines (violet, black, green) are the unfolding results
of the single event distributions after each iteration. In the first iteration
the single event unfolded distributions match their analytic predictions. For
higher iterations, there is a significant bias. The lower plot shows the result
for SVD. The analytic prediction (dashed green) and the unfolding result
(solid green) do not agree. A weighting factor w = 1.01 is used for these
examples.
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6.3. True Single Event Distributions
As seen in the last section, the reweighting approach to obtaining single events unfolded
is not working perfectly, because the summed single event unfolded distributions differ
slightly from the full histogram unfolded distribution. In addition, the single event
distributions can contain negative entries and differ from their analytic predictions. As
explained in the last section, there is a better possibility for the iterative algorithms:

1. Perform all iterations with the original distributions.

2. Extract the final unfolding matrix (i.e. the current pseudo-inverted response matrix)
in the last step.

3. Apply the final unfolding matrix to a histogram with one single event as defined in
the unfolding algorithm.

This approach is based on the fact that the measured spectrum is multiplied with the
unfolding matrix. This is a linear operation, hence it should not make a difference
whether the measured events are summed up to the measured distribution before or
after this multiplication. Nevertheless, the unfolding matrix still needs to be derived
using the full histogram.
For IBU this method is implemented straight-forward by extracting the final unfolding
matrix and extracting one column. The IDS algorithm has a more involved way of
deriving the unfolded distribution as discussed in Section 3. This has to be represented
in the derivation of the single event unfolded distribution.
To get an event-by-event representation of the IDS algorithm, it is necessary to adjust
the final formula for the unfolded distribution derived in Section 3.1 as

uj =
ND

NMC
· t̃j

+
∑

i

[
f(|∆ri|, σ̂(ri), λU ) ·∆ri · R̃ji

+ (1− f(|∆ri|, σ̂(ri), λU ))∆riδij
]
, (6.5)

with the unfolded distribution uj , the Monte Carlo normalization factor ND/NMC, the
truth-level Monte Carlo t̃j , the unfolding matrix R̃ji, the regularization function f , the
regularization parameter λU , the norm-corrected difference between data and Monte
Carlo on detector level ∆ri and its uncertainty σ̂(ri). Using the fact that unfolding the
detector-level Monte Carlo r̃i with the unfolding matrix R̃ji yields the truth Monte Carlo
t̃j , Equation (6.5) can be re-written as

uj =
∑

i

[(
ND

NMC
· r̃i + f(|∆ri|, σ̂(ri), λU ) ·∆ri

)
R̃ji

+ (1− f(|∆ri|, σ̂(ri), λU ))∆riδij
]
, (6.6)
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Figure 6.2: True single event unfolding for the iterative matrix-based algorithms. The
bin of the single event is drawn in blue. The left plot shows the single event
unfolded distributions for IBU, the right one for IDS (violet, black, green;
solid lines). The analytic expectations (respective dashed lines) are always
matched.

with ri = ∆ri +
ND
NMC

r̃i. The summation
∑

i includes all bins in the detector-level data.
To get a proper single event distribution of a detector-level event the sum over bins i is
dropped and the fixed bin value is is used instead. In addition, the number of entries in
the detector-level bin is has to be accounted for.
First, the transformation of ND

NMC
· r̃is in Equation (6.6) should be normalized to one

by replacing it with ND
NMC

· r̃is/ris . Similarly, for the contribution of ∆ris the per-event
unfolded distributions should be normalized to ∆ris

ris
. An event in bin is of the detector-

level data is consequently unfolded to a single event distribution ej(is) calculated as

ej(is) =
ND

NMC
· r̃is
ris

· R̃jis

+
∆ris
ris

·
[
f(|∆ris |, σ̂(ris), λU ) · R̃jis

+ (1− f(|∆ris |, σ̂(ris), λU )) · δjis
]
. (6.7)

It can be shown that this distribution is normalized, i.e.
∑

j ej(is) = 1. In conclusion, it
is possible to obtain the single event unfolded distributions by performing a usual IDS
unfolding and extracting all necessary variables of Equation (6.7) to construct the single
event distribution for each event of the detector-level data.

The toy model results for the single event unfolded distributions for IBU and IDS after
each iteration are shown together with their analytic prediction in Figure 6.2. The
distributions show that there are no more negative entries. This is expected, because the
pseudo-inverse of the response matrix cannot contain negative entries, even for multiple
iterations. In addition, the distributions match the analytic predictions in the regions
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of high statistics, both for IBU and IDS. With this method, the individual single event
distributions sum up to the full unfolded distribution exactly.
It can be concluded that this way to calculate the single event unfolded distributions is
valid and does not suffer the inconsistencies of the weighting approach in the previous
section. It is therefore possible to compare the single event distributions with an iterative
machine learning unfolding algorithm which predicts single event unfolded distributions
as well. Since OmniFold is a data-driven reweighting, it cannot be compared to this
single event unfolding. In the next chapter a cINN-based, iterative unfolding algorithm
is introduced which allows comparisons with the above derived single event distributions
of matrix-based unfolding.

6.4. Single Event Uncertainties
The next step is to calculate the covariance matrices of the single event distributions.
For validation it needs to be possible to calculate the covariance matrix of the full un-
folded distribution by using the covariances of the single event unfolded distributions.
Bootstrapping, i.e. the Poissonian fluctuation of the response matrix or the detector-level
data is used to estimate the covariance matrix as explained in Section 3.3:

covkl =
1

Ntoys

Ntoys∑

n=1

(u
(n)
k − uk)(u

(n)
l − ul), (6.8)

with the bins of the unfolded distribution uj and the indices (k, l) in the range of the
truth-level bins. The index (n) shows that the current unfolded distribution depends on
the fluctuations of the current toy model, uj is the mean value of this bin entry for all
toys.
To derive the (rather technical) connection between the single event covariances and the
full distribution covariance the following notation is used:

• e(is) = truth-level distribution resulting from the unfolding of a single event in bin
is of the detector-level data,

• e(n)(is) = single event unfolded truth-level distribution, including Poissonian fluc-
tuations, indicated with the number of the toy (n),

• e
(n)
k (is) = k’th bin of the e(n)(is) distribution,

• ek(is) = mean value of e(n)k (is) over all toys,

• B(is) = number of events in bin is of the experimental detector-level data distri-
bution which is unfolded,

• covkl(e(i1), e(i2)) = covariance between two single event unfolded distributions. It
is neither necessary nor forbidden that i1 = i2.
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It is possible to calculate the covariance between two single event unfolded distributions
of the measurement:

covkl(e(i1), e(i2)) =
1

NToys

NToys∑

n=1

(
e
(n)
k (i1)− ek(i1)

)
·
(
e
(n)
l (i2)− el(i2)

)
. (6.9)

The uncertainties of a bin ej(is) of a single event unfolded distribution e(is) can be
calculated as

σj =
√

covjj(e(is), e(is)), (6.10)

while the correlations of the single event unfolded distribution e(is) are given as

corkl(e(is), e(is)) =
covkl(e(is), e(is))

σk · σl
. (6.11)

The full unfolded distribution u
(n)
j of one toy can be expressed in terms of the corre-

sponding bins of the single event unfolded distributions e(n)j (is) as

u
(n)
j =

Nbins∑

is=1

B(is) · e(n)j (is), (6.12)

with Nbins being the number of bins on detector-level. This equation originates in the
fact that every single event unfolded distribution can contribute to every bin of the full
unfolded distribution. Equation (6.12) can be plugged into Equation (6.8) to calculate
the covariance of the full distribution

covkl =
1

Ntoys

Ntoys∑

n=1

((Nbins∑

i1=1

B(i1) ·
(
e
(n)
k (i1)− ek(i1)

))(Nbins∑

i2=1

B(i2) ·
(
e
(n)
l (i2)− el(i2)

)))

=

Nbins∑

i1=1

Nbins∑

i2=1

1

Ntoys

Ntoys∑

n=1

B(i1)B(i2)
(
e
(n)
k (i1)− ek(i1)

)(
e
(n)
l (i2)− el(i2)

)
. (6.13)

The two different ways to apply the Poissonian fluctuations need to be treated differently
because of their impact on the number of entries in the detector-level measured distribu-
tion B(is).
If a fluctuation of the response matrix is applied, the entries of the detector-level data ri
and in consequence B(is) are constant. This makes it possible to move B(i1) and B(i2)
out of the sum over all toys in Equation (6.13) to obtain

covkl =

Nbins∑

i1=1

Nbins∑

i2=1

B(i1)B(i2)covkl(e(i1), e(i2)). (6.14)

This relation allows for a closure test. The interpretation of Equation (6.14) is straight-
forward: the sums

∑Nbins
is=1 B(is) give one contribution for each single event, while multiple
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events in the same bin deliver the same contribution. Equation (6.14) is thus only a sum-
mation of all possible combinations of covariances between two single event distributions.
This result is based on the fact that B(is) is not impacted by the Poissonian fluctuations
of the response matrix.
The second possibility is that the Poissonian fluctuation is applied to the detector-level
experimental data which needs to be unfolded. Per definition this leads to a variation of
B(is) and makes it dependent on the toy model index: B(is) = B(is)

(n). In consequence
it is impossible to move the factors B(i1)

(n) and B(i2)
(n) out of the summation over

the toys, thus the covariance of a single event covkl(e(i1), e(i2)) cannot be plugged in.
Nevertheless, it is possible to rewrite Equation (6.13) in analogy to Equation (6.14) as

covkl =

Nbins∑

i1=1

Nbins∑

i2=1

B(i1)B(i2) (6.15)

· 1

Ntoys

Ntoys∑

n=1

B(i1)
(n)

B(i1)

B(i2)
(n)

B(i2)

(
e
(n)
k (i1)− ek(i1)

)(
e
(n)
l (i2)− el(i2)

)
,

where B(is) without an index n is the unfluctuated number of entries. It is therefore
an option to rewrite this equation like Equation (6.14) by redefining the single event
covariance as the second part of the previous equation:

covkl(e(i1), e(i2)) =
1

Ntoys

Ntoys∑

n=1

B(i1)
(n)

B(i1)

B(i2)
(n)

B(i2)

·
(
e
(n)
k (i1)− ek(i1)

)(
e
(n)
l (i2)− el(i2)

)
. (6.16)

This formula introduces the correction factor B(is)
(n)/B(is) in the single event covari-

ance. Since B(is)
(n) is drawn from a Poissonian with expectation value B(is), the correc-

tion factor will have nearly no impact on the majority of the single event distributions,
as long as their corresponding detector-level bin contains enough events. The correction
factor effectively implements that toys with extremely low number of events in the re-
spective bin contain less information about the single event unfolded distributions of this
bin and are therefore considered less important. In the same way toys with fluctuations
towards a very high number of events in the respective bin are considered to contain
more information. An implementation of both approaches for the detector-level data
fluctuation (with and without the correction factor) in the considered examples showed,
that the result does not change significantly. Nevertheless, to obtain numerical closure
the correction factors are needed and are therefore used in the following.

As an example the covariances for the analytic toy model can be calculated. Since the
results of IBU and IDS are very similar, it would be repetitive to use both approaches.
Nevertheless, it is of course possible to implement it the same way for both of these
iterative algorithms. In the following, the IBU algorithm is employed.
Since the covariance matrices are not easily human-readable, it is instructive to plot the
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correlations and the square-root of the diagonal of the covariance, which are the uncer-
tainties. Figure 6.3 shows the correlations of the full distribution after one and after four
iterations, once for Poissonian fluctuations of the detector response and once for Pois-
sonian fluctuations of the detector-level data. In addition, the evolution of the relative
uncertainties over several iterations is shown. The number of events in the simulation is
set to 500 000, the number of toys is Ntoys = 1000.
The plots show a different behavior for the two kinds of fluctuations. The fluctuations of
the response matrix, i.e. the fluctuation of the Monte Carlo simulation, lead to a corre-
lation matrix which is nearly diagonal, showing that the bins are only weakly correlated.
In contrast to this, the fluctuation of the detector-level data component introduces cor-
relations with neighboring bins. This difference is due to the smearing of the detector
response, which was determined in Section 3.4 by σs = 3. Fluctuating the entries of the
response matrix only changes single bins in the final unfolding result, not multiple bins
in a correlated way. Contrary to this, a bin of the detector-level data is smeared out to
neighboring bins by the unfolding matrix. In consequence, a fluctuation of a detector-
level bin is smeared out in a correlated way as well, hence introducing strong correlations
to neighboring bins.
At this point it is interesting to look at the differences between the correlation matrix in
the first iteration and the correlation matrix of the fourth iteration: while there are anti-
correlations (=negative entries) after four iterations, the first iteration leads to purely
positive correlations, which has been verified numerically. This can be easily understood
remembering the fact that the first pseudo-inversion of the response matrix is unaffected
by the detector-level data fluctuations. If a bin is fluctuated up or down statistically,
this will induce the same upward or downward fluctuations in all the bins of the unfolded
distribution. During the second iteration, the fluctuations of the detector-level data also
impact the pseudo-inverted response matrix. This introduces anti-correlations, because
the number of events needs to be conserved during the unfolding. In consequence the
pseudo-inverted response matrix needs to be normalized along the truth-level axis. This
normalization causes every upward change of a bin to be connected to a downward change
of the other bins of the column, thus an anti-correlation is implemented. This behavior
is clearly visible in the correlation matrices in Figure 6.3.
The uncertainties can be calculated using the square-root of the diagonal of the covari-
ance matrix. As can be seen in the bottom panels of Figure 6.3, the expected behavior
is apparent: the more iterations, the higher the uncertainty. As explained previously,
the balance between bias and uncertainty is important while choosing the number of
iterations.

The covariance matrices of single events are calculated as stated earlier in this section.
The results are shown in Figure 6.4, again displayed as a combination of correlations
and uncertainties. The covariance matrix of the full distribution is numerically equal to
the sum of every single event covariance with every event (including itself) according to
Equations (6.14) and (6.16). The fluctuations of the response matrix are again expected:
as for the full distribution the correlation matrix of a single event is completely diagonal,
the argumentation is analogous.
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Figure 6.3: Representative graphs for the uncertainties of the full unfolded distribution
obtained for the analytic example using IBU. On the left hand side fluctu-
ations of the response matrix are implemented, on the right fluctuations of
the detector-level data. The top row shows the correlation matrices after one
iteration, the middle row after four iterations. The bottom row shows the
evolution of the relative uncertainties over several iterations.

61



6 Matrix-based Unfolding of Single Events

0 5 10 15 20

x

0

5

10

15

20
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

x

0

5

10

15

20

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

x

0

5

10

15

20

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

x

0

5

10

15

20

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10 15 20
x

10−5

10−4

10−3

A
b

so
lu

te
U

n
ce

rt
ai

nt
ie

s

IBU It. 1

IBU It. 2

IBU It. 3

IBU It. 4

−10 −5 0 5 10 15 20
x

10−7

10−6

10−5

10−4

10−3

A
b

so
lu

te
U

n
ce

rt
ai

nt
ie

s

IBU It. 1

IBU It. 2

IBU It. 3

IBU It. 4

Figure 6.4: Representative graphs for the uncertainties of a single event unfolded distri-
bution obtained for the analytic example using IBU. The single event is set
at rm = 5. On the left hand side fluctuations of the response matrix are im-
plemented, on the right fluctuations of the detector-level data. The top row
shows the correlation matrices after one iteration, the middle row after four
iterations. The bottom row shows the evolution of the absolute uncertainties
over several iterations.
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6 Matrix-based Unfolding of Single Events

The fluctuations of the detector-level data leads to much more interesting results: the
correlation matrix contains only values which are very close to one, especially in the first
iteration. This implies that there are very strong correlations between every bin of the
single event unfolded distribution. This is due to the fact that the unfolding matrix is
not impacted by the fluctuation of the detector-level data in the first iteration. Unfolding
a single fluctuated bin will therefore yield the output of the unfluctuated bin, multiplied
with a factor. Since this factor is equal for each bin of the single event unfolded distribu-
tion, there is a perfect correlation of one. With further iterations this effect is weakened
because the fluctuations affect the pseudo-inverted response matrix, exactly the same as
for the full distribution. The correlation matrix of the full distribution after the fluctua-
tion of the detector-level data is not as close to one as the single event correlations. This
is due to the fact that the full correlation matrix additionally contains contributions of
correlations between two events which are not in the same bin. It was made sure that
closure is achieved in each iteration.

The absolute uncertainties of the single event distribution are visualised in the bottom
panel of Figure 6.4. The uncertainties of the single event distribution are not increasing
significantly, instead they are shifted towards the right. This is due to the design of
the toy model, where each iteration introduces such a shift. It can clearly be seen,
that each event is impacting multiple bins on truth-level. In addition, to reconstruct
the uncertainty of the full distribution, the covariances of two events from different bins
again need to be added. The fact that there is no iterative increase of the uncertainty in
the single event distribution therefore does not pose a problem.
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7. Iterative cINN Unfolding
In this section the cINN unfolding is applied to the toy example introduced in Section
3.4. The main design choice for this toy example is to determine the cINN behavior
under the "extreme" conditions of a total mismodeling by the Monte Carlo simulation
as well as a large detector response. As it will turn out, an iterative approach for the
cINN unfolding is necessary to reduce the bias towards the Monte Carlo continuously.
This method will be called Iterative cINN unfolding (IcINN).

7.1. Limits of cINN Unfolding
To demonstrate the limitations of cINN unfolding, it is applied to the analytic toy model
introduced in Section 3.4. The detector-level information is used as a condition, while
the truth-level (pseudo-)data serves as an output. The input is once again given by a
Gaussian latent space, whose dimension matches the dimension of the truth-level data.
Since the cINN needs to split the input and output as described in Equation (4.21), a
second dimension has to be added which is trivial to the problem. This can be achieved
by using Gaussian noise, i.e. in the second dimension the cINN only has to learn an
identity mapping.
To further improve the performance of the cINN, a preprocessing is applied to the full
dataset. For each input, the mean µDist. and the standard deviation σDist. are calculated.
With these values each value x of each distribution is normalized to

x′ =
x− µDist.

σDist.
. (7.1)

After the transformation all values of the dataset have the same order of magnitude
which matches the order of magnitude of the initialised network parameters.
In addition to this preprocessing, a one-cyclic learning rate is implemented as well as an
ADAM optimizer, which is initialised with the standard values described in Section 4.2.
Weight decay is already implemented naturally in the cINN loss in Equation (4.28). The
result of the cINN unfolding and a table of the cINN parameters are given in Figure 7.1.
The cINN does not achieve a good unfolding result, there is a strong bias towards the
Monte Carlo simulation on which the cINN was trained. This problem can be understood
in the context of Bayes’ theorem, which can be used to calculate the pseudo-inverted
response function

p(t|r) = p(r|t) · p(t)
p(r)

, (7.2)

where p(r|t) is the detector response, p(t) and p(r) are the prior of the truth- and detector-
level distributions. The prior used in the cINN approach is the Monte Carlo simulation
on which the cINN is trained. If this prior can be improved to be closer to the data while
still keeping the same detector response, this will improve the final unfolding result. In
analogy to the matrix-based Iterative Bayesian Unfolding (see Section 3.1), an improved
Monte Carlo simulation is obtained by adapting an iterative setup.
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Figure 7.1: Result of the cINN unfolding applied to the toy example. The left image
shows the unfolded distribution (purple) which is biased towards the Monte
Carlo simulation (blue) and does not match the data truth (red). The table on
the right shows the hyperparameters of the cINN. It was made sure that the
performance of the cINN is stable for small changes of these hyperparameters.

7.2. Iterative cINN Unfolding
To iterate the cINN unfolding, a classifier is introduced to reweight the Monte Carlo
simulation. This update leads to an iterative reduction of the bias while simultaneously
increasing the uncertainties. The full Iterative cINN unfolding (IcINN) algorithm iterates
three distinct steps. They are visualised in Figure 7.2:

1. Train cINN: First the cINN is trained on the plain Monte Carlo simulation to
learn a pseudo-inverted detector response which has a bias towards the Monte
Carlo.

2. Predict: In this step the cINN is applied to the measured data to obtain an
unfolded distribution. This unfolding result will carry a bias towards the Monte
Carlo.

3. Reweight: The truth-level component of the Monte Carlo simulation is reweighted
to behave like the result of the unfolded distribution of the cINN unfolding. This
reweighting is done on an event-by-event basis using a classification neural network.
The calculated event weights on truth-level can be pulled to the detector-level
Monte Carlo simulation to obtain a full reweighting of the Monte Carlo simulation.

The first two steps are exactly the same cINN unfolding used before, the new idea appears
in step three: by reweighting the Monte Carlo simulation, a better starting point to
retrain the cINN is obtained. It has proven to be computationally more efficient, if the
cINN of the previous iteration is used as a new starting point. To train the cINN on
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Detector
Level

Particle
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Figure 7.2: Illustration of the Iterative cINN unfolding algorithm. In a first step, the
regular training of the cINN on the current Monte Carlo Data is performed.
As a second step, the cINN unfolds the experimentally measured distribu-
tion. In a third step, the Monte Carlo simulation is reweighted to match the
unfolded distribution on truth-level. This procedure is iterated, always with
a modified Monte Carlo Simulation.

the weighted Monte Carlo, the loss function of the cINN (Equation (4.28)) is modified
to account for the weights w. It can be constructed in analogy to Equation (5.2) as [116]

LcINN = − 1

⟨w⟩ ⟨w(x) · log pmodel(θ|x, y)⟩x∼pX ,y∼pY
. (7.3)

The number of iterations is set to obtain a good balance between the bias towards the
Monte Carlo and the uncertainties of the unfolded distribution.

7.3. Unfolding the Toy Example
In a next step the IcINN is applied to the analytic toy example introduced in Section
3.4. Since it is an iterative algorithm, it is possible to cross-check the unfolding result
after each iteration with the analytic prediction.
The classifier in this example is build as a fully connected neural network with a single
output neuron, which has a sigmoid activation function to restrict the classifier output
between zero and one. As explained in Section 4.3 it is possible to reweight distributions
towards another with such a classifier. To improve the classifier training, ADAM, a
one-cyclic learning rate scheduler as well as the preprocessing of Equation (7.1) are
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Figure 7.3: Iterative unfolding results for the 1D toy model. The left image shows the
iterative unfolding results for iterations 1, 2 and 4 (violet, black, green; solid
lines) together with the analytic prediction (respective dashed line). The MC
reweighting leads to an improvement towards the data truth. In the lower
part of the left plot the ratio of the unfolding results with the data truth is
shown. It is clearly visible that the bias towards the Monte Carlo simulation is
reduced with each iteration. On the right the hyperparametes of the classifier
are shown.

implemented. The unfolding result and the hyperparameters of the classifier are given
in Figure 7.3. The unfolded distribution of each iteration is very close to its analytic
prediction. It is clearly visible that the bias towards the Monte Carlo simulation is
iteratively reduced.
From this result it can be concluded that the algorithm is working properly. Nevertheless
there are several possibilities for closure-checks:

1. Comparing the reweighted truth-level Monte Carlo simulation to the unfolded dis-
tribution of the previous iteration. They should be close to each other in the region
of high statistics, because the classifier reweights the truth-level Monte Carlo to
match the unfolding result. This validates the performance of the classifier.

2. Applying the cINN to the (potentially weighted) detector-level Monte Carlo sim-
ulation and comparing the result to the (potentially weighted) truth-level Monte
Carlo. Since the cINN was trained on this Monte Carlo simulation it should be able
to predict the truth-level Monte Carlo very well. This validates the performance
of the cINN.

These closure checks have been performed. The results are given in the Appendix A.4.

In addition to the full distribution unfolding, it is possible to display the unfolded dis-
tribution of a single event. This is achieved by keeping the condition fixed and using a
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Figure 7.4: Unfolded distributions of a single event at x = 5 (blue). The single event
unfolded distributions after each iteration (violet, black, green; solid) are
very close to the analytic predictions (respective dashed lines).

batch of random numbers sampled from the latent space distribution. It is again possible
to calculate an analytic prediction for the single event unfolded distribution, as for the
Iterative Bayesian Unfolding in Section 6.1. The result is shown in Figure 7.4. It is very
close to the analytic prediction. In conclusion, the IcINN behaves in this toy example
very similar to the matrix-based Iterative Bayesian Unfolding.

7.4. Uncertainties
To estimate uncertainties of the unfolded distribution, the same techniques as for the
matrix-based unfolding algorithms are applied (see Section 3.3). The cINN unfolding
has a probabilistic nature by design. This is due to the fact that in order to generate the
events, the cINN needs to sample from a Gaussian latent space. In addition, there is a
dependency on the random initialisation of the network. These aspects already introduce
a systematic uncertainty which is purely intrinsic to the machine learning algorithm.
Additionally, there are again uncertainties originating from the Monte Carlo simulation
as well as the detector-level pseudo-data. Instead of fluctuating bins as before, each
event is assigned a weight according to a Poissonian of one. This is applied either to the
detector-level data or the Monte Carlo simulation. The final unfolding result changes for
each of these fluctuated toys.
The covariances and correlations can only be visualised by introducing a binning to dis-
play them as a matrix. It is again instructive to look at the correlation matrices as well
as the standard deviations instead of the covariance. Figure 7.5 and Figure 7.6 contain
the correlation matrices after one and three iterations for the intrinsic correlations, the
detector-level data fluctuations, the fluctuations of the Monte Carlo simulation as well
as the total correlation. In addition, Figure 7.6 shows in the last row the relative uncer-
tainties after one and three iterations.
The correlation matrices after one iteration show structures, which can be explained in
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a similar way as for the binned algorithms (see Section 6.4). Nevertheless, the previous
strict positivity for the detector-level data fluctuation correlations are affected by the
intrinsic fluctuations of the cINN. This is clearly visible in Figure 7.5, the data fluctua-
tion correlations are not purely positive anymore. In a similar manner the Monte Carlo
fluctuations do not lead to a purely diagonal correlation matrix. The correlation matrices
after three iterations show the expected behavior: more anti-correlations are introduced,
for the data fluctuations as well as for the Monte Carlo fluctuations.
The relative uncertainties are displayed in the third row of Figure 7.6. The uncertainties
are dominated by the Monte Carlo fluctuations in the middle of the distribution, the
edges are dominated by the data fluctuations. It is visible that the relative uncertainties
increase with more iterations, this is expected as well.
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Figure 7.5: Correlation matrices of the IcINN results with one iteration, i.e. a pure cINN
unfolding. There are the correlation matrices of the intrinsic fluctuation of
the IcINN (top left), of the fluctuation of the Monte Carlo simulation (top
right), of the fluctuation of the detector-level data (bottom left) and the
total correlation, i.e. the sum of the Monte Carlo and the detector-level data
fluctuation (bottom right). These matrices are calculated with Ntoys ≈ 400.
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Figure 7.6: Correlation matrices of the IcINN results with three iterations as well as
the uncertainties after one and three iterations. There are the correlation
matrices of the intrinsic fluctuations of the IcINN (top left), of the fluctuation
of the Monte Carlo simulation (top right), of the fluctuation of the detector-
level data (center left) and the total correlation, i.e. the sum of the Monte
Carlo and the detector-level data fluctuation (center right). In addition,
there are the relative uncertainties after one (bottom left) and three (bottom
right) iterations for each of these fluctuations. The expected increase of these
uncertainties for more than one iteration is clearly visible. These matrices
and uncertainties are calculated with Ntoys ≈ 400.
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8. Unfolding of EFT Pseudo-Data
The IcINN approach to unfolding was demonstrated in the last chapter. The next logical
step is to construct a more advanced example which involves a Standard Model cross-
section. Furthermore, it is necessary to demonstrate that multi-dimensional distributions
can be unfolded as well. The easiest way to do this is to replace the trivial Gaussian
dimension of the last section with a second observable. The reference process used in this
chapter is the production of Zγγ at a pp-collider measured with the ATLAS detector
and simulated with and without an EFT contribution. The "data" used in this section
is again simulated and not measured. In the following, the term "data" hence refers to
distributions containing an EFT-contribution.

8.1. Generation of Pseudo-Data
The process Zγγ was introduced in Section 2.2. As explained, it is possible to construct
an EFT contribution for this process which is significant. The necessary data for the
unfolding process is created by simulating the process

pp→ Zγγ, Z → µ+µ−. (8.1)

To generate the Monte Carlo simulation the pure Standard Model parametrisation is
used, while the experimental (pseudo-)data contains an additional EFT contribution.
The observables to unfold are the pT distributions of the muons and the antimuon.
These pT distributions are very sensitive to EFT contributions introduced by LT,8 [48].
The truth-level event generation is performed using MadGraph5 [8]. Pythia8.308 [9] is
used for the parton shower simulation. The necessary Wilson coefficient C(8)

T,8 as well as
the scale for new physics Λ are collectively set to

C
(8)
T,8

Λ4
=

2

TeV4 . (8.2)

This value has the same order of magnitude as current exclusion limits [6]. It is therefore
a realistic setting for an analysis. The detector simulation is performed using DELPHES
3.5.0 [10]. A standard ATLAS parameter-card is used. For simplicity and without loss of
generality, the rapidity-dependence of the muon momentum smearing is removed. This
modification is done in order to avoid hidden observables that have an impact on the
detector smearing, while not being explicitly used in the IcINN. In an application of this
algorithm to real data, the ultimate goal is to simultaneously unfold all observables mea-
sured by the detector, which will avoid this problem. The explicit momentum smearing
is given as

∆pT = pT ·
√
0.0252 + 3.5 · 10−8 ·

( pT
GeV

)2
. (8.3)

A plot of the momentum smearing is given in the Appendix A.5. A low-pT cut of the full
dataset is applied at 10GeV. In order to avoid covering too many orders of magnitude
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Figure 8.1: pT distributions of the muon (left) and the antimuon (right). The plots show
the experimental pseudo data (red) containing the EFT contibution as well
as the Monte Carlo simulation (blue) based on the pure Standard Model.
The detector-level distributions (dotted) were cut at 250GeV.

in the training data, an additional high-pT cut at 250GeV is implemented for the recon-
structed muons. Alternatively, it is possible to train several cINN’s for various different
pT -ranges. The full dataset containing the Monte Carlo and the pseudo-data are shown
in Figure 8.1, both on detector-level and on truth-level.
In addition to the distributions themselves, it is insightful to consider the response matrix
R, i.e. the migration matrix normalized along the detector-level axis. Since the detector
response is the same for the experimental data and the Monte Carlo simulation, they
should look the same up to statistical fluctuations. This can be seen in the upper part of
Figure 8.2. If the migration matrix is instead normalized along the truth-level axis (ac-
cording to Equation (3.15)), the result is the posterior pseudo-inverted detector response
matrix R̃. This matrix is based on a prior and carries not only information about the
detector response, but also about the shape of the represented distribution. It is therefore
not surprising that the differences between the two pseudo-inverses R̃ of the experimental
pseudo-data and the Monte Carlo simulation are more significant than the differences
between their response matrices. This can especially be seen in the high-pT -region of R̃
shown in the lower part of Figure 8.2.

8.2. Unfolding Zγγ

In this section, the IcINN is applied to the Zγγ data in order to unfold the experimental
detector-level pseudo-data containing the EFT contribution. As always the truth-level
EFT data is used to validate the unfolding result. It is possible to implement another
preprocessing which is applied previous to the resizing of Equation (7.1): the truth-level
Monte Carlo simulation t̃ is re-calculated according to

t̃′ = log

(
t̃− 10GeV

GeV

)
. (8.4)
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Figure 8.2: Migration matrices of the muon-pT with different normalization. The up-
per left plot shows the response matrix of the Monte Carlo simulation, the
upper right plot the response matrix of the experimental data. They are
equal up to statistical fluctuations. In the lower half, the pseudo-inverted
detector response matrices are shown for various distributions: the Monte
Carlo simulation on the left, the experimental data on the right. Since the
pseudo-inverted response matrices also depend on the shape of the repre-
sented distributions, the differences between them are more significant than
for the response matrix.
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This has the effect that it maps the distribution to look more like a Gaussian, which
simplifies the training procedure. The value 10GeV is chosen to match the low-pT cut
of the data. For different low-pT cuts it needs to be adjusted. In order to obtain proper
pT -values after the unfolding procedure, the predicted truth-level data t′unf is corrected
by using the inverse mapping

tunf =

(
10 + exp(t′unf)

)
GeV. (8.5)

The parameters of the IcINN unfolding are displayed in Table 2. Before displaying the
final unfolding result it is necessary to validate the cINN and the classifier separately. As
explained in Section 7.3, it is possible to check the classifier performance by comparing
the reweighted truth-level Monte Carlo simulation to the previous unfolding result of the
cINN. The distributions for various iterations are shown in Figure 8.3. A good agreement
is observed, validating the performance of the classifier.
In addition, it is possible to perform a similar check for the cINN: applying the cINN
to the (potentially weighted) detector-level Monte Carlo should result in a distribution
which is very close to the (potentially reweighted) truth-level Monte Carlo. The results
for this comparison are shown in Figure 8.4: the distributions agree in each iteration.
Furthermore, these plots contain the truth-level data distribution as well as the unfolded
detector-level data distribution. This comparison indicates an improvement with the
increasing number of iterations. The closure check for the Monte Carlo simulation shows
much smaller deviations than the one performed for the data distribution since only the
latter is impacted by the differences between data and Monte Carlo.
The first row of Figure 8.5 shows the unfolding result using a one-dimensional represen-
tation. It is visible that already after a single cINN training most of the distribution is
already unfolded correctly. Nevertheless, in the high-pT region starting at 220GeV the
iterative corrections are needed.
It is not sufficient that the one-dimensional projections are unfolded properly since this
projection to one axis loses information about the true distribution in a multi-dimensional
phase space. In this case it is therefore necessary to confirm that the two-dimensional
representation of the truth-level data is reobtained during the unfolding. The two-
dimensional unfolding result as well as the corresponding truth-level data are shown
in the second row of Figure 8.5. In order to obtain a more quantitative result, the
distributions

u

r
− 1 and

u

t
− 1, (8.6)

are calculated, with the unfolded distribution u, the detector-level data r and the truth-
level data t all given as two-dimensional matrices. The results of this equations are
visualised in the last row of Figure 8.5. These figures prove that the unfolded distribu-
tion is clearly closer to the truth-level data than the detector-level data, i.e. the algorithm
is validated as a proper unfolding. This is especially visible in the high-pT bins. To quan-
tify the improvement, the explicit values are given in the figures.
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8 Unfolding of EFT Pseudo-Data

Parameter cINN Classifier
Conditional coupling blocks 5 -
Layers (per block) 4 6
Units (per layer) 64 32
Epochs 100 100
Learning rate 10−4 10−3

Maximum learning rate 3 · 10−4 3 · 10−3

Weight decay 0.01 -
Batch size 4096 4096
Number of training events 1 500 000 1 500 000

Table 2: Hyperparameters of the cINN and the classifier used in the IcINN algorithm.
Both use the ADAM optimizer as well as a one-cyclic learning rate. The con-
ditional coupling blocks are only used in the cINN. It was made sure that the
performance is invariant under small changes of these parameters.
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Figure 8.3: Closure check for the classifier performance. The reweighted truth-level
Monte Carlo (blue) is compared to the unfolded distribution (red). The re-
sults are displayed for iteration 1/2 in the top/bottom row. In the left/right
column the pT distributions of the muon/anti-muon are shown. The distri-
butions agree, hence demonstrating technical closure for the classifier.
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Figure 8.4: Closure test for the cINN in the IcINN algorithm. The cINN is applied
to the (potentially weighted) detector-level Monte Carlo distribution and
the result (dashed blue) is compared to the (potentially weighted) truth-
level Monte Carlo distribution (solid blue). Since the cINN is trained on
the Monte Carlo-simulation, these distributions should agree very well. The
top/middle/bottom row show the first/second/third iteration. The left/right
column shows pT distribution of the muon/anti-muon. In addition, the truth-
level data (solid red) as well as the unfolded detector-level data (dashed red)
are shown. The continuous reduction of the bias towards the Monte Carlo
simulation in the unfolded distribution is clearly visible in the high-pT bins.
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Figure 8.5: Unfolding result of the EFT-dataset. The first row shows the one-dimensional
projection of the unfolded distributions after several iterations (blue, green,
orange) as well as the truth-level data (red) and the truth-level Monte Carlo
(black). A clear improvement in the high-pT bins is observed. In the second
row, the two-dimensional representation is shown for the unfolding result
(left), as well as the truth-level data (right). For a quantitative comparison,
the last row shows the matrix (unfolded distribution/detector-level data)-1
on the left and (unfolded distribution/truth-level data)-1 on the right. It is
clearly visible that the unfolding result is closer to the truth-level data, i.e.
there has been a real improvement during the unfolding process.
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At this point it can be concluded that the Iterative cINN unfolding has been a success
since it is clearly visible that a better unfolding result can be achieved if the classifier
reweighting is used at least once. A more extensive discussion on how and when to us
the IcINN unfolding is highly analysis dependent. This topic is covered in the conclusion
of this thesis. Nevertheless, the proof of principle has been accomplished.

8.3. Comparison to IBU
One possibility to further validate the performance of the IcINN is a direct comparison to
Iterative Bayesian Unfolding (IBU), which was introduced in Section 3. The application
of IBU to the Zγγ data is straight-forward. The unfolding result is shown in Figure
8.6. For simplicity, only one of the two muon momenta is unfolded. Since the muon-
and anti-muon-momentum are very similar, this will not be a problem. The unfolding
result shows some structures which are very similar to the IcINN performance: the first
iteration already predicts most of the truth-level data correctly. Nevertheless, further
iterations can improve the result in the high-pT region. It is again questionable if three
iterations are needed or if two are sufficient.
At this point it is possible to compare the unfolded distributions of a single measured
event. IBU derives the (one-dimensional) single event unfolded distributions as explained
in Section 6. For illustrative purposes, a low-pT event at 45GeV as well as a high-pt event
at 185GeV are chosen. Due to the binning, the IBU algorithm is restricted to unfold the
full bin of a single event.
The IcINN unfolding is still two-dimensional, i.e. to obtain a single event unfolded distri-
bution the (two-dimensional) event is fixed as the condition. The result after sampling
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Figure 8.6: Unfolding result for Iterative Bayesian Unfolding. Most of the distribution
is unfolded correctly after a single iteration (blue). The high-pT bins show a
similar behavior as for the IcINN unfolding, i.e. they require more than one
iteration (green, orange). In addition, the figure shows the truth-level data
(red) and the truth-level Monte Carlo (black).
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Figure 8.7: Single event unfolded distributions after several iterations (violet, black, or-
ange). The top row shows the 1D-projection of the single event unfolded
distribution for an event at 185GeV. The bottom row shows the same for
45GeV. The results for the IcINN are shown on the left; the results for IBU
are shown on the right.

from the latent space is a two-dimensional unfolded distribution of the single event. In
order to compare the single event unfolded distributions for IBU and IcINN, the two-
dimensional IcINN distribution needs to be integrated out to a one dimension. In addi-
tion, it is also possible to compensate for the fact that the IBU unfolds the full bin of the
event: the IcINN unfolds every event of the detector-level data which fulfills in the first
dimension p−T ∈ [40GeV, 50GeV] or p−T ∈ [180GeV, 190GeV], with the pT -value of the
muon p−T . The two-dimensional unfolded distribution is then projected on the p−T -axis.
This result is the natural reduction to one dimension and can be compared to the single
event unfolded distributions of IBU. The single event unfolded distributions are shown
in Figure 8.7.
The high-pT events look similar in the case of the IcINN and IBU. Most importantly,
they show the same iterative behavior: bins below 185GeV are reduced; bins above are
increased in size with every further iteration. This similarity in behavior, as well as the
overall similarity in the shapes shows a clear indication that the single event distributions
predicted by the IcINN are consistent with the matrix-based unfolding algorithms. The
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low-pT single event unfolded distribution is shown in Figure 8.7 as well. It is expected
that the single event unfolded distribution does not change significantly with more iter-
ations since this part of the distribution is already properly unfolded after one iteration.
The very narrow structure is expected because of the small detector response in this
region. Again the IcINN and IBU distributions match.
This comparison between the IBU and IcINN single event unfolded distributions already
shows that the single event unfolded distributions predicted by IcINN are in agreement
with the matrix-based unfolding algorithms. To further compare the IcINN unfolding
to the IBU unfolding, it is advantageous to implement a two-dimensional version of the
IBU unfolding.

80



9. Conclusion and Outlook
The aim of this thesis was to investigate iterative unfolding in matrix-based algorithms
as well as machine-learning-based algorithms. Throughout the project a fully Gaussian
analytic toy model was used, which turned out to be a valuable benchmark for the per-
formance of iterative unfolding algorithms.
A trained cINN is able to predict unfolded distributions even for a single measured event.
In order to be able to validate these single event unfolded distributions of the cINN, the
first part of the project was the implementation of a single event unfolding for matrix-
based unfolding algorithms. This was achieved for Iterative Bayesian Unfolding (IBU)
and Iterative Dynamic Stabilising (IDS). The implementation has been validated using
the analytic toy model.
In addition to the matrix-based unfolding, a cINN unfolding was implemented and ap-
plied to the analytic toy model. The result of the cINN unfolding showed a strong
model-dependency. This problem was solved by introducing the novel Iterative cINN
unfolding (IcINN). With the IcINN is was possible to unfold the analytic toy model
properly, reducing the bias to the prior assumptions iteratively. In addition to the un-
folding result itself, the covariances of the final unfolded distributions were derived.

In the next step of the project the single event unfolded distributions for the matrix-
based methods were compared to the single event predictions of the IcINN. In the case
of the toy model, it was possible to calculate an analytic prediction at truth-level, both
the IcINN as well as IBU and IDS were able to reproduce this analytic expectation. This
validates the iterative approach of the IcINN even further.
Finally, the derived algorithms were applied to pseudo-data with a pp→ Zγγ final state.
Applying IcINN and IBU to the full dataset yielded similar results for the full unfolded
distribution. Additionally, the single event unfolded distributions matched as well. This
is the first time that the single event unfolded distributions predicted by the IcINN have
been validated using matrix-based unfolding algorithms.

This project provides a powerful unfolding tool: the IcINN. In a next step the IcINN can
be applied to real experimental data. In addition, a direct comparison to other machine-
learning-based unfolding algorithms like OmniFold is interesting. The main difference
between the two algorithms is that the reweighting in the IcINN is applied on truth-level,
not on detector-level. This can be advantageous while choosing the phase space of the
Monte Carlo simulation. The construction of an example in which OmniFold breaks
down is an interesting case for the IcINN to further investigate its performance. It is
especially interesting, if an interpolation to regions of the phase space which are not
covered by the Monte Carlo simulation is possible.
Finally, the question arises if and how to use the iterated version of the cINN unfolding.
The application to the Zγγ dataset might give the impression that the training of a
single cINN is sufficient in all cases, while the reweighting is a small correction in regions
of low statistics. This is true at first glance, but the results for IBU showed a similar

81



9 Conclusion and Outlook

behavior. There are analyses in which IBU is applied and multiple iterations are needed.
In these cases the iterative improvement of the IcINN algorithm will become apparent
as well, since throughout this project the performance of IcINN and IBU was always
similar. Overall, the IcINN has strong potential for multiple applications in unfolding.
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A. Appendix
A.1. Feynman vertices of the Higgs and the electroweak

sector.
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Figure A.1: Several interaction vertices of the Higgs and the electroweak sector of the
Standard Model. In the first line there are the triple-Higgs and quartic-Higgs
self-interactions. The second line shows the possible interactions between
the Higgs and the massive gauge bosons of the electroweak sector. The third
and fourth line show the possible interactions among the electroweak gauge
bosons, including the massless photon. [20]
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A.2. Gauge Boson Interactions with Fermions
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Figure A.2: Interactions of gauge bosons and fermions in the Standard Model of Particle
Physics. In the first line there are interactions with the photon γ, in the
second and third lines there are interactions with the weak bosons W± and
Z, in the last line the interaction of the gluon g with quarks. Although only
interactions with generation-1-particles are displayed, all these interactions
are possible with their corresponding higher-generation particles as well. [20,
21]
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A.3. Convergence of the Toy Model

The analytic expectation after one iteration is calculated using Bayes’ theorem. In the
purely Gaussian toy model the paramters of the resulting Gaussian distribution are

µt,1 =
µMσ

2
t + µtσ

2
s − µsσ

2
t

σ2s + σ2t
, σt,1 =

√
σ2t σ

2
M + σ2t σ

2
s + σ4s

σ2s + σ2t
σt. (A.1)

Further iterations can be performed by plugging in the result {µt,1, σt1} instead of {µt, σt}
in the equation above. The iterative mean values and the iterative standard deviations
therefore define recursive sequences.
It is assumed that these sequences converge. Close to the limiting values, the recursive
iteration should not have an impact anymore:

µt,∞+1 = µt,∞, σt,∞+1 = σt,∞. (A.2)

From this, the limiting values can be derived. For the mean the equation

µt,∞ =
µMσ

2
t,∞ + µt,∞σ

2
s − µsσ

2
t,∞

σ2s + σ2t,∞
, (A.3)

has to hold, which implies

µt,∞ = µM − µs. (A.4)

This is exactly the expected value since it matches µTruth. For the standard deviation
the equation can be evaluated in the same way

σt,∞ =

√
σ2t,∞σ

2
M + σ2t,∞σ

2
s + σ4s

σ2s + σ2t,∞
σt,∞.

⇒ σ2t,∞σ
2
M + σ2t,∞σ

2
s + σ4s = (σ2s + σ2t,∞)2

⇒ σ2t,∞ = σ2M − σ2s . (A.5)

This matches the expectation as it coincides with the standard deviation of the truth
distribution σTruth.
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A.4. Closure Checks for the Toy IcINN Unfolding

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

on
s

×10−1

MC Truth reweighted It. 1

Data Reco unfolded It. 1

−10 −5 0 5 10 15 20

x

0.5
1.0
1.5

M
C

T
ru

th
rw
.

D
at

a
R

ec
o

u
n

f.

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

on
s

×10−1

MC Truth reweighted It. 2

Data Reco unfolded It. 2

−10 −5 0 5 10 15 20

x

0.5
1.0
1.5

M
C

T
ru

th
rw
.

D
at

a
R

ec
o

u
n

f.

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

on
s

×10−1

MC Truth reweighted It. 3

Data Reco unfolded It. 3

−10 −5 0 5 10 15 20

x

0.5
1.0
1.5

M
C

T
ru

th
rw
.

D
at

a
R

ec
o

u
n

f.

Figure A.3: Closure check for the classifier performance in the IcINN algorithm applied
to the analytic toy model. The reweighted truth-level Monte Carlo (blue)
is compared to the unfolded distribution of the current iteration (red). Dis-
played are the results for iteration one in the upper left, iteration two in the
upper right and iteration three in the lower plot. The distributions match
up and show that the classifier is working properly in the region of high
statistics.
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Figure A.4: Closure test for the cINN component of the IcINN algorithm applied to
the analytic toy model. The cINN is applied to the (potentially weighted)
detector-level Monte Carlo distribution and the result (dashed blue) is com-
pared to the (potentially weighted) truth-level Monte Carlo distribution
(solid blue). Since the cINN is trained on the Monte Carlo-simulation these
distributions should agree very well. The upper left and upper right show
these distributions for iterations one and two, the lower left and lower right
for iterations three and four. The distributions always agree with each other
in the region of high statistics. In addition, the truth-level data (solid red)
as well as the unfolded detector-level data (dashed red) are shown. The
closure check for the data component is shows larger deviations than the
closure check for the Monte Carlo distributions. This is expected, because
the former is impacted by differences between the data and the Monte Carlo
simulation. The reduction of the bias towards the Monte Carlo simulation
in the unfolded distribution is clearly visible throughout the iterations.
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A.5. Applied Momentum Smearing for Zγγ

The muon momentum smearing function used in the generation of the Zγγ data is

∆pT = pT ·
√
0.0252 + 3.5 · 10−8 ·

( pT
GeV

)2
. (A.6)

This function is plotted in Figure A.5.
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Figure A.5: Visualisation of the momentum smearing function for muons used in the
data generation for the Zγγ data. The full ATLAS momentum smearing
additionally contains a rapidity dependence.
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