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Abstract

Transmitting photons over long distances poses a significant challenge
due to attenuation. One effective strategy to address the rate-distance
trade-off is to utilize wavelength division multiplexing (WDM), which
combines light from multiple channels. Integrated photonics facilitates
the simultaneous use of many channels, thereby enabling exceptionally
high data rates. In this thesis the development progress of a multi-
plexer on a silicon nitride platform is presented, designed to combine
light from 20 lasers with wavelengths ranging from 1550 nm to 1569
nm, at a spacing of 1 nm, and later to be used in a quantum key dis-
tribution (QKD) system. While simpler multiplexing methods, such
as cascading structures, are available, they suffer from increased losses
with higher channel counts and lack scalability. Therefore, add-drop
ring resonators are selected as the primary multiplexing structure due
to their better scalability and efficiency. Add-drop ring resonators ef-
ficiently transmit light of a specific wavelength and are complemented
with bragg filters to achieve a large bandwith. Ring resonators with a
Free spectral range (FSR) of (5.13+0.12) nm an extinction ratio of 20
dB, and a transmission of 53% were realized, as well as Bragg filters
with a central wavelength accuracy of (0.5+0.4) nm and a bandwidth
of 4.12 nm.

Zusammenfassung

Die Ubertragung von Photonen iiber grofie Entfernungen stellt auf-
grund der Ubertragungsverluste eine grofie Herausforderung dar.
Eine wirksame Strategie zur Bewiltigung des Kompromisses zwi-
schen der Ubertragungsrate und der Entfernung ist das Wel-
lenléingenmultiplexing (WDM), bei dem Licht aus mehreren Kanélen
kombiniert wird. Integrierte Photonik erleichtert die gleichzeitige Nut-
zung vieler Kanile in einer Faser und ermoglicht so aulergewohnlich
hohe Datenraten. In dieser Arbeit wird der Entwicklungsfortschritt
eines Multiplexers auf einer Siliziumnitrid Plattform vorgestellt, der
das Licht von 20 Lasern mit Wellenldngen von 1550 nm bis 1569
nm und einer Schrittweite von 1 nm kombinieren soll, um spéter
in einem Quantenschliisselaustauschsystem (QKD) eingesetzt zu wer-
den. Zwar gibt es einfachere Multiplexing-Methoden, wie z.B. Kas-
kadenstrukturen, doch leiden diese unter zunehmenden Verlusten
bei hoherer Kanalanzahl und mangelnder Skalierbarkeit. Daher wer-
den Add-Drop-Ringresonatoren aufgrund ihrer besseren Skalierbar-
keit und Effizienz als primére Multiplexingstruktur ausgewéhlt. Add-
Drop-Ringresonatoren iibertragen effizient Licht einer bestimmten
Wellenlénge und werden mit Bragg-Filtern ergénzt, um eine grofle
Bandbreite zu erreichen. Es wurden Ringresonatoren mit einem freien
Spektralbereich von (5,13 + 0,12) nm, einem Extinktionsverhéltnis
von 20 dB und einer Transmission von 53% sowie Bragg-Filter mit
einer Genauigkeit der zentralen Wellenléngen von (0,5 +0,4) nm und
einer Bandbreite von 4, 12 nm realisiert.
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1 Introduction

Due to the constant increase in the computing power of conventional com-
puters and, in particular, the development of quantum computers, currently
widespread encryption systems will in the foreseeable future no longer be
secure [I]. As a result, new methods must be developed to address this prob-
lem. Mainly two approaches are being considered: The first one involves
developing new cryptographic algorithms, known as post-quantum cryptog-
raphy. These are very complex and yet fundamentally not secure against
being decrypted by computers with sufficient computing power [2]. Another
promising method is quantum cryptography, which uses quantum mechani-
cal effects to encrypt data. Within quantum cryptography, one technique is
quantum key distribution (QKD), in which a key known only to the sender
and receiver is exchanged. In contrast to computationally secure protocols,
which depend on unattainable amounts of resources to break the code, QKD
systems offer intrinsic information technological security. Thus, QKD sys-
tems ensure that, with flawless implementation, they cannot be decrypted
even by future, more powerful quantum computers [3].

To achieve high secret key rates in a QKD system, wavelength division mul-
tiplexing (WDM) can be utilized to enhance transmission speed. The goal
of this project is to create a quantum encryption system with a record-high
transmission rate. The transmission of photons over long distances is the
main challenge, as they are attenuated while they are being transmitted and
only relatively low data rates can be achieved even over short distances. One
approach to overcoming the rate-distance trade-off in QKD systems is to
bundle light from different channels, thereby enabling a very high data rate
[]. With a WDM system, precisely this is achieved, as light from differ-
ent lasers is combined and transferred through a common waveguide using
a device known as a multiplexer. The WDM system developed in this work
is implemented as an photonic integrated circuit (PIC), because it simpli-
fies the system by consolidating all optical functions into a single, compact
device. A silicon nitride platform is used for the chip due to its low losses
[5]. Managing twenty free-space channels, presents significant challenges and
inefficiencies, which are mitigated by using an integrated photonic circuit.
The aim of this bachelor’s thesis is to desgin and determine all the necessary
parameters for the multiplexer [4].



2 Theory

In the following chapter, the theory of the photonic chip and all its indi-
vidual components is described. First, the concept of wavelength-division
multiplexing (WDM) is introduced, as this is the key function of the chip.
Wavelength-division multiplexing refers to a system in which light from multi-
ple channels differentiable by wavelengths, is brought onto a common optical
carrier [4]. This has the advantage of enabling very high data rates on individ-
ual optical fibers, as information from several channels can be transmitted in
parallel. There are various approaches to implementing this technically, uti-
lizing several integated photonic components, as well as techniques using bulk
und fiber optics. To understand the multiplexer chip, we need to introduce
four main components of integrated photonics. The simplest structures are
waveguides, which are used to guide light on a photonic chip. Additionally,
directional couplers are employed to transfer light between two waveguides.
The two essential components for filtering light are ring resonators and Bragg
filters. The theory behind these components is explained in the following.

2.1 Waveguide

The most fundamental component of integrated photonic circuits are waveg-
uides. Generally, the function of waveguides is to transport light between
two points with minimal loss. Thus, waveguides are analogous to optical
fibers, which are commonly used in telecommunication. The basic structure
of a waveguide consists of a higher refractive index material surrounded by
a lower refractive index material [6]. There are various types of waveguides,
but the physical principles are the same. To physically describe waveguides,
one can use an approach based on ray optics or a description using Maxwell’s
equations. In figure[l] the previously described basic structure of a waveguide
is illustrated using a cross-sectional view [6].

2.1.1 Ray Optics Picture

Since the ray optics approach is the more intuitive method for the physical
description of light guidance within the waveguides, it will be discussed first.
To describe the ray optics approach, we consider a core material (f) that is
situated between a substrate (s) below and a cladding (c) above the core
material. The regarded structure is depicted in figure [2l This arrangement
is commonly referred to as a slab waveguide where the arrangement in the
y and z directions is extended infinitely. For the analysis in the ray optics
picture each material is characterized by its refractive index n;. Depending
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Figure 1: Cross sections of fundamental waveguide shapes. The propagation
direction of the light is out of- or into the plane. ncoe and ngaddging are
the refractive indices of the core and cladding, respectively. The circular
symmetry is utilized in optical fibers, figure adapted from [6], chap. 3, p. 32.

on the configuration of the refractive indices of the materials n; and the
incident angle 6, there are several possible outcomes. Therefore a beam in
the core material is initially considered. Total internal reflection (TIR) is said
to occur when this beam is completely reflected at the interface between the
core material and the cladding material as well as at the interface between the
core and the substrate material. Each time the beam reaches the interface, it
comes from within the core material. This case is desirable when constructing
waveguides, as it ensures that the light is guided inside the waveguide [0].

To mathematically describe TIR, we will first define the two critical angles,

0. = arcsin <E) (2.1)

L

g
in | — 2.2
arcsin <nf) (2.2)

that can be used to determine whether a beam is guided within the core
material or scattered out of it. Here, 6. is the angle between the normal to
the interface of the core material and the cladding material and the incident
beam, and 6 is the corresponding angle for the substrate material. The
refractive indices follow the relationship n. < n¢ and ng < ng. For the
condition of TIR to be fulfilled, and thus for the beam to be guided within
the core material, the incident angle ¢; must satisfy ¢; > 0. and 6; > 65 [6].
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Figure 2: A schematic representation of a slab waveguide consisting of a core
material (f), a substrate (s), and a cladding (c), figure taken from [6], chap.
3, p- 34.

2.1.2 Maxwell Equations Picture

In addition to describing the propagation of light using ray optics, light can
also be described as an electromagnetic wave using Maxwell’s equations. For
this, the wave equation is derived from Maxwell’s equations, and then the
propagating modes, are described. In the following description, a harmonic
time dependence of the wave propagating in the waveguide of the form e™*
is considered where 7 is the imaginary unit, w is the angular frequency, and
t is the time. The situation we want to describe here is again the one shown
in figure 2l Under the described conditions, the curl equations of Maxwell’s
equations for the E-field and the H-field are,

V x E = —iwpoH (2.3)
V x H = iwegn*E (2.4)
with the refractive index squared n? = < Where € is the permittivity of the
material, €y is the electric constant and g is the vacuum magnetic perme-

ability [6]. By applying V x to equation [2.3| and using the vacuum condition
V - E =0, the wave equation for the E-field,

V2E + K*n*E = 0 (2.5)

is obtained, with the wavenumber k = w,/€yfio [6]. Due to the chosen geome-
try in the example, the waveguide is infinitely extended in the z-direction, al-



lowing modes to propagate in this direction. For forward-propagating modes,
the z-dependence of the E-field is e~ with the propagation constant 3. Fur-
thermore, in the given geometry, the allowed modes have wave vectors in the
x and z directions, resulting in

k2 + 32 = n?k?, (2.6)

with k, being the wavenumber in z-direction, from which the properties of
the propagating modes can be determined [6].The effective wave velocity of
the mode in the z-direction

ck ¢

B Neft

(2.7)

v =

depends on the effective refractive index neg and the speed of light ¢ [6]. The
effective refractive index accounts for changes in the wave’s velocity that
result from the material and the geometry of the material. For the guided
modes,

Ne < Negg < Ng

Ng < Ner < Ny 2.9

holds true, with respect to the refractive indices of the cladding or the sub-
strate material and the core material [6].

To describe the modes guided in the waveguide, an initial approach is made
for the solutions of the E- and H-fields. Due to the considered symmetry
the polarization and amplitude remain constant along the longitudinal z
coordinate. Therefore,

E,,(F, t) = g;,(a:,y)eiﬁ”z_m (2.10)
]—?fl,(ﬁ, t) = ?-zy(x,y)ew”z_i“t (2.11)

applies, where v is the mode index and &,(7,t) and H,(F,t) are the field
distributions of the corresponding mode [7]. By applying the curl equations



of Maxwell’s equations, and using the two equations and we get

o€, . _ oH. . .

3y 18E, = wpoHy, 3y 1BH, = —iwe&,, (2.12)
, o€, . . 0H. .
Z/Bgz - a—x = Zw,uoHy, Zﬁ%x — % = —zweEy, (213)
o, 0& . oH, H, ,

- T et 2.14
(’}x ay Z("‘):u()r}_lza ﬁx ay ZWEEZ ( )

which can, in turn, be transformed into equations for the transverse electric
and magnetic fields,

(k* — B*E, = z‘ﬁaa‘iz + Wi a;;z (2.15)
(k* — BHE, = iﬁa;; — Wl a;f; (2.16)
(1 — 921, = 187 e (217)
(k* — BHH, = 'ﬁa;;z + iweaaiz (2.18)

where in this case k? = w?puge(z, y) with the permittivity e(z,y) [7].

In general, there are different solutions for guided modes, characterized by
the fact that certain components of the E- and H-fields become zero [7].
We will consider the transverse magnetic (TM) and transverse electric (TE)
modes. The distinction between these modes arises from the fact that in TE
modes, the E-field lies only in the plane parallel to the waveguide (&, =0),
whereas in TM modes, this is true for the H-field (H. = 0). From Maxwell’s
equations, it follows that these two modes are independent of each other. In
figure [3] the TE 0 mode is shown. Additionally, TM and TE modes differ
from simple plane waves in that they have a component in the direction of
propagation, for the TE mode, H, # 0, and for the TM mode, &, # 0 [0, [7].
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Figure 3: Simulation result for the distribution of the E-field for the cross
section of a waveguide of a SizN, waveguide on a Si;O substrate. The TE 0
mode is shown here.

2.2 Directional Coupler

After discussing the most fundamental components of PICs, namely waveg-
uides, this section will focus on directional couplers. These couplers will be
used in the construction of the multiplexer, and their basic operating prin-
ciple is also relevant for ring resonators and bragg gratings to be discussed
later. Directional couplers are important components in integrated optics
for splitting and combining light. They consist of two parallel waveguides in
close proximity, allowing for transfer of optical power between them [§]. In
figure [] the basic structure of a directional coupler is shown. The operation

Figure 4: Illustration of a directional coupler with a length of 30 ym, a gap
of 0.5 um, a waveguide width of 1.2 ym and a bend radius of 30 pum.

of directional couplers is based on evanescent coupling, where the optical
fields from each waveguide overlap and transfer power between them. The
coupling of light between the waveguides can be rigorously described using



Maxwell’s equations by solving them for the regions under consideration and
the boundary conditions. However, this approach can be quite complex and
computationally intensive. Therefore, we will use an approach called coupled
mode theory [§].

The next section on coupled mode theory follows [§]. In coupled mode theory,
the mode propagating in one of the two parallel waveguides is considered as
if the other waveguide were not present. Thus, the spatial distribution and
propagation constant of the mode remain unchanged, and only the amplitude
a;(z) of the mode propagating in each waveguide varies. For the amplitudes,

% = —icoy - exp(1ALz) - az(2) (2.19)
% = —ic1p - exp(tABz) - ai(2) (2.20)

applies. Here c; and c¢yo are the coupling coefficients and AfS is defined
as Af = [ — [B>. The equations and [2.20, as coupled second-order
differential equations, have the general solution
ai1(z) = A(z)a1(0) + B(z)as(0) (2.21)
as(z) = C(2)a1(0) + D(2)az(0) (2.22)

where the coefficients of the solution are given by

A(z) = D*(z) = exp (ZA252> {cos Yz — z?—f sinyz (2.23)
B(z) = % exp (iAQBZ) sin~yz (2.24)
C(z) = 3—172 exp (—iAQﬁZ) sinyz. (2.25)

These coefficients are the elements of a transfer matrix T. Furthermore,
and c are defined as

2 Aﬁ ? 2
v = T +c, c= m (226)

The power in each respective waveguide is proportional to the squared am-
plitude. Therefore, in the case where no light is initially emitted into the
second waveguide, the following equations for the power in the waveguides
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arise. It becomes apparent that the power P,(z) in the respective waveguides,

Pi(z) = Py(0) |cos® vz + (é—f)ZSmQ 'yz] (2.27)
Py(2) = P1(0) ["?2‘2 sin’ fyz] (2.28)

oscillates periodically between the two waveguides. If it is further assumed
that the waveguides are identical in all their properties that is, the refractive
indices n;, the propagation constants 3;, as well as the coupling coefficients ¢,
the equations simplify even further. Thereby showing the periodic transfer
of power,

Pi(z) = P1(0) - cos® cz (2.29)
Py(z) = P(0) - sin® cz (2.30)

between the waveguides clearly. With a directional coupler, it is thus possi-
ble to couple a certain portion of the optical power from one waveguide to
another, depending on the length of the coupling region of the directional
coupler [§]. In figure , the oscillation of the electric field within the coupling
region of a directional coupler is schematically illustrated.

X [um]

0 5 10 15 20 25 30 35 40
Propagation Direction [um]

Figure 5: Propagation of the E-field in a directional coupler, figure taken
from [9], chap. 4, p. 95.

In addition to the length of the coupling region, the gap between the two
waveguides is also crucial for the transfer of optical power. The gap influ-
ences the coupling coefficient, which decreases exponentially as the gap in-
creases [9]. To calculate the distance at which the optical power is completely
transferred from one waveguide to the other, the entire electric field Fyyq(7)
present in both waveguides must be considered. This field consists of two
different field components Fi(x,y) and Es(z,y) with different propagation

11



constants 5, and (5. Resulting in
Eiorar (1) = A(0) [E1 (z,9)e"™* + Fy(x, y)eiﬁ?z] ) (2.31)

These respective modes are called supermodes. When there is a phase shift of
7 between these two supermodes, the power transfer is maximal. In the case
of a symmetric directional coupler with identical waveguides, the supermodes
can be referred to as even Egyen and odd Eygq modes [7].

Lastly, it is interesting to examine how the power fraction coupled between
the two waveguides depends on the length of the directional coupler. The
fraction of power coupled from one waveguide to the other is denoted by &2,
while the fraction remaining in the original waveguide is denoted by t2. Here

k* = sin?*(C - L) (2.32)
t* = cos*(C - L) (2.33)
P+ k=1 (2.34)
apply, with C' = %, where An is the difference in the effective refractive

indices of the even and odd modes, and L is the length of the directional
coupler [9]. Using these formulas, we can now provide a general expression
for how long the directional coupler must be to couple a specific fraction of
power from one waveguide to the other. Leading to

arcsin(k)A

I —
TAn

(2.35)

The coupling length at which the total optical power is transferred from one
waveguide to the other one L. can be calculated as

™

ﬁeven - Bodd ’

with the propagation constants for the two different modes being determined
through simulations which will be described later on in more detail [7].

Le (2.36)

2.3 Ring Resonator

Ring resonators represent one of the two fundamental building blocks re-
quired for our multiplexer. These consist of a waveguide in a ring or racetrack
shape and, depending on the configuration, one or two straight waveguides.
The purpose of the used ring resonator for this application is to achieve a
wavelength selective transmission of light from one waveguide to another with

12



minimal loss, while being very precise with respect to the wavelength [9]. In
figure [0, the two most common types of ring resonators are depicted.

Figure 6: Illustration of two ring resonators. On the left, an all-pass ring
resonator, and on the right, an add-drop ring resonator. Both are racetrack
ring resonators with a horizontal and a vertical straight region. The dimen-
sions here are: waveguide width = 1.2 pm, resonator radius = 30 pym, gap =
0.5 pm, and straight length = 5 pm (horizontal and vertical).

The general operating principle of a ring resonator is based on the coupling
of light from a waveguide onto a ring. This happens in the region where
the ring and the waveguide come closest together, effectively creating a di-
rectional coupler. On the ring light circulates and undergoes constructive or
destructive interference depending on the wavelength, thus creating a reso-
nance condition [9]. For the light to constructively interfere with itself after
a round trip, the resonance condition is that the phase 6 acquired in one
round trip fulfills # = 27m, with m € N. Therefore, the optical length of the
ring must be a multiple of the resonant wavelength, for light to resonate on
the ring. This relationship is represented in,

Nefr L

Ares = (2.37)

m
where m € N and L is the length of the ring [10].

The most basic form of the ring resonator is the all-pass ring resonator, which
is shown on the left side of figure [0l The all-pass ring resonator consists of
a curved waveguide that forms the ring and a straight waveguide located
near this ring. At the mentioned region that forms a directional coupler,
light that meets the resonance condition can couple onto the ring. Figure
shows the coupling region of the all-pass ring resonator between the ring and
the waveguide. The cross-over coupling coefficient —x* describes how much
light is coupled into the ring, while the through coefficient ¢ represents how
much light remains in the straight waveguide. x describes how much light is

13



coupled out of the ring, and t* is the fraction of light that is not coupled out
and remains in the ring.

Figure 7: The coupling region of the all-pass filter, including all key param-
eters, figure taken from [11], p. 4.

The ring resonators that will be used for the multiplexer are called add-
drop ring resonators. As shown on the right side of figure [ these have an
additional waveguide near the ring resonator that is parallel to the existing
one. We will focus on this configuration in the following discussion, because
the resonance can be exploited to only transfer the resonant wavelength to
the multiplexer output, whereas in the all-pass ring resonator, the resonant
light reaches the through port with a weak intensity [10].

Figure [8| provides a schematic representation of a ring resonator in the add-
drop configuration, indicating all the properties used for mathematical ex-
planation. For the description of the amplitudes of light at the individual
ports of the ring resonator, the amplitude of the light at the input port is
initially set to F;; = 1. This yields

B g, RIS gt~ Bac? (2.38)

n="nh 1 —tit5a3 e 1 —tjt50e® |
—KF Koy jpe01/2

L (2.39)

1 — tHt3ae

for the amplitudes at the throughput port Ej and the drop port Ey [11].
Here, t1, t5, k1, and ko are the straight-through and cross-over coupling coeffi-
cients of the input and drop couplers with * denoting the complex conjugated
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Figure 8: Add-drop ring resonator including the key properties and labels
used for mathematical characterization, figure taken from [I1], p. 7.

values. Furthermore, o and /5 represent the remaining amplitude after a
round trip and after half a round trip, respectively. With an ideal ring having
zero loss a = 1.

0 = 4”2% is the phase accumulated over a round trip (with r being the
ringradius), and 6, is the phase accumulated over half a round trip. It
holds that o = (a/2)? and 6 = 26, [11].

In a symmetric and lossless ring resonator, i.e., one with t; = t5 and a = 1,

t—t*. 1.2

Ey = 1 g 0 with: meZ (2.40)

applies for the field at the throughput port at a resonance wavelength, with
6 = 2mm. This occurs because the transmission coefficients are equal to their
complex conjugates, resulting in the numerator being zero. Since the ring is
lossless in this scenario, the entire field amplitude would be measured at the
drop port. The spectrum would appear as in figure [J] in this case [I1].

Using the amplitude of the E-field at the respective port, the transmission
of the intensity of the F-field can also be determined by squaring the am-
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plitude and normalizing it by the squared amplitude of the input port. For
our application, the transmission at the drop port is particularly important.
Here, in combination with the resonance condition,

(1)1 - )

ity (2.41)

ﬂl,mam =

applies for the general case with different coefficients ¢ and ¢, for the maximal
transmission [10].

1 1 T T | T
0.9 \ : f \ P f
0.8 5 R .
0.7 : %
%’ 0.6 =
5 05
= 041
0.3
0.2
0.1 ;
0 ..J.oo"' ."0‘ ------ L eeceaa la o *
1.5506 1.551 1.5514 1.5518

Wavelength [pm]

Figure 9: Ideal spectrum for an add-drop ring resonator. The spectrum
measured at the throughput port is indicated by the solid line, and the
spectrum at the drop port is indicated by the dashed one, figure taken from
[11], p. 8.

In reality, the ring resonator is not lossless, so the spectrum shown is not
achieved. The optimal parameters for the ring will be determined in the
following chapters through experimental parameter sweeps based on simula-
tions and experimental data.
The key properties of a ring resonator that will later be characterized are
discussed in the following. One of the principal properties of ring resonators
is the Free Spectral Range (FSR). The FSR is the wavelength separation be-
tween the m-th and the m + 1-th resonance wavelengths, as given in equation
2.37
)\?GS
FSR = =, (2.42)

g

where A, is the resonance wavelength, ng is the group index, and L is the
circumference at the center of the waveguide of the ring [I1]. Another signif-
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icant property is the Full Width at Half Maximum (FWHM). The FWHM
specifies the bandwidth of the resonance peak at half its maximum intensity.

It is defined as | 22
— it
(L= tits)hies (2.43)
anL\/tthCY
This means that with a small FWHM, the peaks are very sharp, and con-
versely, with a larger FWHM, they are broader [10]. The Q-factor is a mea-
sure of the resonator’s efficiency. This indicates the number of round trips
the light completes in the ring before being lost due to internal attenuation.

Here

FWHM =

)\res
© = FwHM
applies. A higher Q-factor corresponds to a narrower FWHM, implying lower
losses and better performance. The Q-factor is defined as shown below [10].
A parameter that is closely related to the Q-factor is the finesse F', where

(2.44)

_ FSR
- FWHM

(2.45)

holds true. It is also a measure of the sharpness of the resonance peaks [L1].
The last important property of the ring resonator for us is the Extinction
Ratio (ER). At the drop port, the ER is defined as the peak transmission
versus the one at the drop port off-resonance, while at the through port,
it is measured as the depth of the dip versus the input signal. The ER is
calculated from the intensities at the different ports, which are the squares of
the E-field amplitude. For the extinction ratio of the drop port transmission

(]_ + t1t206>2

ER= ——F=
(1 — t1t206>2

(2.46)
applies [10].

2.4 Bragg Grating

Bragg Gratings are the second fundamental building block for the multi-
plexer. First, the operation of a single Bragg grating will be examined, fol-
lowed by the specific configuration of Bragg filters used in the construction
of the multiplexer [9]. In figure [L0| a bragg grating is shown. Characteristic
for this structure is that the effective refractive index is periodically varied.
Since the effective refractive index of a material is depends also on its geom-
etry [6], this can be achieved by varying the cross-sectional dimension of the
waveguide orthogonal to the direction of light propagation. Alternatively, the
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Figure 10: Illustration of a Bragg grating, where the periodic structure of
this grating can be clearly seen in the close-up view. The dimensions here
are periodicity = 0.5 um resonance width = 5 nm and gratings = 200.

material itself could be periodically altered, although this is more challenging
to fabricate. Within the Bragg grating, partial reflections of the light occur
at each interface. The relative phase of the reflected light depends on the
wavelength and the period of the grating. This leads to multiple reflections
within the grating, where the reflected signals only constructively interfere
within a specific wavelength range. For the remaining light, the reflections
interfere destructively, allowing this light to be transmitted through the fil-
ter. In figure [11] the structure of a Bragg grating is shown and in figure
the transmission and reflection spectra are depicted [9].

3@@@@@@@&%

neff 1 neffZ

Figure 11: Schematic representation of a Bragg grating with two effective
refractive indices neg; and the grating period A as well as the transmission
T and reflection R figure taken from [9], p. 118.

In the description of the Bragg gratings, two specific properties are partic-
ularly interesting for the construction of the multiplexer: the central wave-
length A\g and the bandwidth of the Bragg grating in which the wavelengths
are reflected AX. The central wavelength of the reflected range of the Bragg
grating,

)\B = 2Aneff (247)
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Figure 12: Simulations using the Transfer Matrix Method (TMM) and Cou-
pled Mode Theory (CMT) for the transmission and reflection spectrum for

a Bragg reflector with a center wavelength of 1529 nm, figure taken from [9],
p- 118.

can be calculated from the average effective refractive index n.g as well as
the grating period A [9]. For the band gap in transmission,

Py ) T\ 2

applies, where n, is the group index, s is the coupling coefficient indicating
the strength of reflection per unit length and L is the length of the Bragg
grating. Here, A\ is defined as the width between the first minima on the
left and right of the central wavelength. The central wavelength is primarily
influenced by the average effective refractive index and the periodicity. While
the periodicity can be set during the design phase, the effective index neg
depends on the material used and the precise geometry of the grating. The
bandwidth of the Bragg filter is determined by the group index, which is also
dependent on the material and geometry, as well as the wavelength [9].

2.4.1 Bragg Filter

The following section discusses the Bragg filters used in the multiplexer,
which consist of Bragg gratings and directional couplers. Functionally they
are also an add-drop structure, as they feature an input port, a drop port,
a through port, and an add port. However, they differ from add-drop-ring
resonators in the reflected spectra [12]. The structure is shown in figure .
In the arrangement shown in figure [I3], the signal to be filtered enters the
Bragg filter at the input port (Port 1). At Coupler 1, the signal is split in

19



IBG 1

Input 9,
_p» Portl  cCoupler1__€ e Coupler2__Port 3 ﬂ

Connecting Connecting

waveguides waveguides
Port 2

!

—

Reflection Transmission

IBG 2

Figure 13: Representation of the Bragg filters with their functionality. In
this case, the couplers are directional couplers with integrated Bragg gratings
(IBG) at their ends. Additionally, the phase of the light is indicated at the
waveguides, figure taken from [12], p. 16665.

a 50:50 ratio, directing half of the light towards IBG 1 and the other half
towards IBG 2. When the light is coupled in Directional Coupler 1 from the
upper waveguide to the lower waveguide, a phase shift occurs, denoted as
1Ay, in the figure, corresponding to a phase shift of 7/2. During propaga-
tion in the Bragg gratings, a specific wavelength range of the light is reflected,
while the rest is transmitted, as described. Since the light in the two identi-
cal IBGs accumulates an identical phase, the change in this phase, being the
same for the light in the upper and lower waveguides, does not need to be
examined in detail to understand the functionality of the Bragg-Filter [12].
The following explanation describes the path of light that undergoes con-
structive interference and the path of light that undergoes destructive inter-
ference.

First, we consider the path leading to constructive interference. The light re-
flected in IBG 1 propagates towards Coupler 1 from the right. Upon reaching
Coupler 1, the reflected light is split in a 50:50 ratio where the light coupled
towards Port 2, receives a phase shift of /2. Simultaneously, the light re-
flected from IBG 2 which after the splitting continues towards Port 2 has also
a phase shift of 7/2 by coupling from the input port into the lower waveg-
uide through the directional coupler. As a result, the light at Port 2 coming
from both IBGs is in phase and interferes constructively, leading to a strong
reflected signal at this port [12].

Next, we describe the constructive interference for the light transmitted
through the Bragg gratings. This light propagates towards Coupler 2, where
it is split evenly in a 50:50 ratio between the two waveguides. The light from
IBG 1, after being coupled through Coupler 2, continues towards Port 4 with
a phase shift of 7/2. Meanwhile, the light from IBG 2, which has not under-
gone further coupling in Coupler 2, also propagates towards Port 4 with the
phase shift of 7/2 which it got from the coupling in Coupler 1. Since both
light waves from IBG 1 and IBG 2 are in phase, constructive interference
occurs at Port 4 (the transmission port) [12].
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Conversely, for destructive interference, consider the light paths that lead
to Port 1 and Port 3. At Port 1, the light reflected from IBG 1 which has
undergone no phase shift interferes with the light reflected in IBG 2, which
has undergone a 7/2 phase shift when coupling from the upper to the lower
waveguide and an additional 7/2 phase shift when coupling back to the up-
per waveguide, resulting in a total phase shift of . Thus, at this port, light
with a 7 phase shift interferes with light that has no phase shift. As a result,
the two light waves interfere destructively, minimizing the signal at this port
[12].

Similarly, at Port 3 (the add port), the light from the upper waveguide, which
experiences no phase shift, interferes with the light from the lower waveg-
uide, which has undergone a 7 phase shift due to the coupling in Coupler 1
and in Coupler 2. This phase difference causes destructive interference and
thus minimal transmission. Despite this, Port 3 can still function as an add
port for wavelengths outside the reflected spectrum, allowing these signals
to reach Port 2 [I2]. The phase relationships of the light are summarized in

formulas 2.49 to .52k

Input-port (Port 1): ei®outt 4 gitoun +im/24im/2 _

( ):e (2.49)
Reflection-port (Port 2): ei¢euts +im/2  pidoun +im/2 4 ) (2.50)
Add_port (Port 3) 6i¢out + €i¢out+i7r/2+i7r/2 =0 ( )

( ):e (2.52)

Transmission-port (Port 4): ¢?®out+im/2 4 gidoutin/2 o

Here, ¢out, represents the phase of the light at port 1 and port 2. However,
this phase differs from the phase ¢ at ports 3 and 4, as the light travels a
different path. Compared to a simple Bragg grating, the Bragg filter offers
the advantage of having two additional ports, which broadens its application

potential. In a simple Bragg grating, the input port and the reflection port
are the same, and there is no add port like in the Bragg filter [12].
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3 Methods

In this section, a design proposal for the multiplexer is first discussed. Based
on this, the simulations necessary for determining the parameters for the
ring resonators and the Bragg Filters are examined, as well as the programs
required for these simulations. Finally, the measurement setup, where the
measurements are conducted, is discussed. In figure the platform on
which the simulations are conducted and upon which the chips are later built
and measured is shown. The figure depicts the simplest structure, namely
the cross-section of a waveguide. For our application, we use SigN, as the
material for the waveguides, as it has very low losses and fabrication steps
are well understood, with established recipes [13].

Air cladding

Figure 14: Cross-section of the used SizN, waveguide on SiOy with Air
cladding for the dimensions of the waveguide.

3.1 Multiplexer Design

This section presents a design proposal for a multiplexer, highlighting the
approach and required optimisation. An image of the entire multiplexer is
provided in figure [15]

The multiplexer chip is designed for a setup with 20 lasers ranging from
1550 nm to 1569 nm, while the lasers are spaced one nm apart in terms of
wavelength. Each laser has an associated ring resonator on the chip, whose
through port signal can be returned to photiodes on the sender chip for mon-
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Figure 15: Depiction of the whole multiplexer. The 20 parallel arrows at the
bottom of the image indicate where the light from the 20 lasers is coupled onto
the multiplexer. For the coupling, polymer lens couplers are used [14]. Two
paths for the laser light are illustrated as examples of how the multiplexer
operates, one in red and one in dark blue, both leading to the waveguide for
the multiplexed signal, shown in green.

itoring. The polymer lens couplers [14], which are later printed onto the chip,
are positioned to achieve optimal coupling from the output of the sender chip
onto the multiplexer chip.

A notable feature of the multiplexer is that it is modular, composed of in-
dividual cells, each consisting of four ring resonators and one Bragg filter.
This design allows the multiplexer to be scaled to any size with minor adjust-
ments, by adding or removing these modules as needed. A close-up image of
such a module is shown in figure [16] In the bottom row in figure light is
coupled in from the bottom-left polymer lens coupler into every second cou-
pler. The light of two adjacent lasers, differs in wavelength by one nm. The
directional couplers have a splitting ratio of 90:10, ensuring that 90% of the
light remains in the waveguide and is coupled to the ring, the 10% are used
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Figure 16: Illustration of a modular cell in the multiplexer, showing four
ring resonators and a Bragg filter. The four arrows indicate where the laser
light is coupled in and the path it takes through the ring resonators to the
common waveguide in blue towards the Bragg filter. The signal reflected by
the Bragg filter is shown also in blue on the left.

for calibrating and optimizing the rings to the right wavelength using silicon
implantation and thermal tuning [I3] before the polymer couplers are added.
The Bragg filter is designed to reflect light within the wavelength range of
the four ring resonators and transmit the rest. Thus, the light from the four
lasers propagates through the common upper waveguide. It then enters the
in port of the Bragg filter and is reflected to the drop port of the Bragg filter
directly to its left. Using the add port, which is diagonally opposite the drop
port, light from another module with four lasers having different wavelengths
than those in the current module can also be transferred to the drop port, as
the Bragg filter does not reflect light in that wavelength range. The upper
row of grating couplers in figure [16} are perfectly parallel to the vertical axis,
and will used to test and precisely characterize the ring resonators.

The design with four ring resonators was chosen because, due to the length
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of the ring resonators, their FSR cannot be larger than four to five nm. The
length of the rings must be sufficient to ensure good reproducibility, which
will be discussed in section [£.1.1] Furthermore, rings with too small bend-
ing radii experience very high losses and they need to include the straight
sections, visible in figure so that the rings can later be precisely doped
with silicon to a specific wavelength. The problem with building more than
four rings, each with a resonance wavelength separated by one nm, onto a
single waveguide with a four nm FSR would be that there is the risk that
the light which should be multiplexed, could be coupled back out of the
output waveguide by the other resonators. By using Bragg filters in the de-
sign, this issue can be avoided, as these filters reflect light within a specific
wavelength range and transmit all other wavelengths. Due to the design of
the multiplexer, when investigating the ring resonators and the Bragg filters,
the resonance wavelength and the FSR for the ring resonators, as well as
the Bragg wavelength and the bandwidth for the Bragg filters, are crucial to
determine precisely.

Since the sender chip for which the multiplexer is being designed does not yet
exist at the time of this work, the multiplexer was designed with parameters
that can still be adjusted for the final chip.

3.2 Simulations

It is necessary to precisely determine the FSR and the resonance wavelength
of the ring resonators. Additionally, the coupling between the ring and the
waveguide must also be accurately determined. The design also requires
that the central wavelength and bandwidth of the Bragg filters be correctly
specified. Therefore, we will first discuss two simulation methods that will be
used to conduct the simulations for the mentioned parameters. Subsequently,
the simulations for the various parameters are explained.

3.2.1 Eigenmode Solver

Using the eigenmode solver simulation software, the propagating modes can
be calculated for cross-sections with diverse geometries. This method is used
in the thesis to determine the mode profiles, effective indices, and propaga-
tion constants for various waveguide configurations [9].

The eigenmode solver calculates the mentioned parameters by solving the
time-invariant Maxwell equations in the frequency domain for the respective
geometry. Various computational algorithms are used for this purpose. In
our case, the simulation was performed using the computational algorithm
Finite-Difference Eigenmode (FDE) which is included in the softwaresuite
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Ansys Lumerical 2020 R2.4. The program allows the creation of the waveg-
uide structure to be examined on a graphical user interface and subsequently
enables the selection of the cross-section where the method should be applied.
With the FDE method, the cross-section of the waveguide structure is first
divided into equal-sized rectangular subsections using a spatial mesh. Then,
in each of the individual mesh cells, Maxwell’s equations are solved, formu-
lated as a matrix eigenvalue problem. This results in the mode profiles, the
modes, the effective indices and the group indizes of the waveguide structure.
The accuracy of the simulation depends on the size of the cells in the mesh:
the smaller the individual cells, the more precise the result. Although the
finer the mesh, the more computationally intensive the calculations become
for the computer [15].

3.2.2 Finite Difference Time Domain (FDTD)

One method for simulating the propagation of light in a medium is the Finite
Difference Time Domain (FDTD) method. This method solves Maxwell’s
equations in the time domain by formulating the equations as difference
equations, which can then be solved using numerical methods. The algorithm
for this is known as the Yee algorithm [I6]. The rotational equations of
Maxwell’s equations are first expanded, resulting in six equations for the
time derivatives of the E- and H-fields for each spatial component. These
are shown below [6].

0E, _1 <6HZ B é’Hy) 0H, 1 (@ B 6EZ> (3.1)
ot € \ 0y 0z ot to \ 0z oy '
0B, _1 <6Hx B 6HZ) JH, 1 <6EZ B 6EI) (3.2)
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As with the eigenmode solver, a grid is used here to partition space into
uniformly sized rectangular cuboid cells; similarly to the algorithm this grid
is refered to as the Yee grid. Starting from an initial field distribution within
the simulated area, the FDTD method computes the three vectors of the
E-field at each cell at that particular time. Subsequently, according to the
equations shown in to the H-field is calculated. This process is then
either continued for a specified period or halted when the field reaches a
certain minimal value, at which point the simulation is terminated. Using
this method, unlike solving the wave equation, the coupling of the electric
and magnetic fields can be taken into account directly [6].
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3.2.3 Free Spectral Range

The Free Spectral Range [2.42] indicates the spacing between the resonance
frequencies of the ring resonator. For the multiplexer designed in this thesis,
it is required that the ring resonators have a FSR of at least 4 nm. The
necessity of this requirement is due to to design of the multiplexer. The
parameter that must be determined for the calculation of the FSR according
to equation2.42]is the group index ng. This index depends on the wavelength,
the respective materials and the waveguide geometry. It can be calculated
using the eigenmode solver. The data for the material’s refractive index as a
function of wavelength is taken from [I7] and was used here and also for other
simulations. This was carried out using Lumerical’s eigenmode solver in the
wavelength range relevant for the multiplexer, i.e., in the range of 1550 nm
to 1570 nm. Here the E-field distributions across the waveguide cross-section
were simulated for different wavelengths, allowing for the determination of
both the effective refractive index and the group index.

3.2.4 Coupling Length and Gap

When determining the coupling length and gap of the ring resonator, the goal
is to achieve a precise resonance frequency and high transmission of light at
the desired resonance frequency. To describe the coupling of light between
the waveguides at the ring resonator and the ring itself, the coupling regions
at the top and bottom of the ring are first considered as directional couplers.
The coupling region of the ring resonator differs from the directional coupler
shown in figure [4]in that it is not a symmetrical component. The directional
coupler is formed by the ring coming very close to the waveguide at one
point, with high coupling between the waveguide and the ring also occurring
in the regions around this closest point. To determine the coupling between
the waveguide and the ring, is used. For this, the eigenmode solver is
also employed to simulate the effective refractive indices for the odd and even
modes. In figure , the E-field distribution in the eigenmode solver for two
parallel waveguides is shown. The propagation of light with varying coupling
strengths onto the ring was analyzed through FDTD simulations, enabling
the simulation of light transmission as a function of wavelength for different
gap sizes.

3.2.5 Resonance Wavelength

When determining the resonance wavelength, is used. However, the
effective refractive index of the ring resonator must first be determined. The
ring resonator used for the multiplexer essentially consists of three sections
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Figure 17: Example of the representation of a simulation result for the E-field
from the eigenmode solver for a cross-section of two parallel SizN, waveguides
on a SiyO substrate and air cladding with the dimensions shown in figure
The cross-section shows the mode profile for light with a wavelength of 1550
nm.

that have different refractive indices. These sections are shown in figure
The sections include, firstly, the curved parts of the ring resonator, secondly,
the straight waveguides on the side of the ring resonator, and thirdly, the
parts of the ring resonator in the coupling region. The sum of the respective
coupling, curved, or straight parts is subsequently denoted as Lyend, Lcoupling,
and Lggaight- 1o determine a theoretical value for the resonance wavelengths
of the ring resonator, the wavelength-dependent effective refractive indices
for the respective regions were again identified through simulations using
the eigenmode solver. Subsequently, an effective refractive index for the
entire ring was calculated, with the refractive indices of the individual regions
weighted according to their proportions of the total length L of the ring. The
formula used to calculate the refractive index of the ring is given below:

Lcoupling Lbend Lstraight
Neft = I Neff coupling + I Neff bend + I Neff straight

(3.4)

Using this effective refractive index of the entire ring resonator and the wave-
length, a value for the length of the ring resonator can be determined at which
it resonates at a specific wavelength.
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Figure 18: Sections for the calculation of the effective refractive index. The
respective lengths L; and the refractive indices neg, ; for the sections are
indicated.

3.2.6 Calculations for Bragg Filters

Of particular interest for the Bragg gratings that determine the transmission
and reflection of the Bragg filters in this case is the average effective refractive
index neg for the Bragg grating structure, as the periodicity of the grating
depends on it, which determines the central wavelength Ag. Since the average
width of the Bragg grating corresponds to the width of the straight waveg-
uides used, the refractive index of the straight waveguides was taken as the
best initial approximation for the average refractive index for the Bragg grat-
ings. In addition to the central wavelength, the bandwidth with which the
light is reflected by the grating is also crucial. This depends on the group
index ny and the coupling coefficient x, which is a measure of reflectivity
within the Bragg grating. The parameters needed for the exact calculation
of the bandgap were not determined within the scope of this thesis but were
carried out by Frank Briickerhoff-Pliickelmann who works in the same re-
search group. Using the simulations for the group index, a python program
was used by him in which the bandwidth can be entered as a predefined
input.

The results for the effective refractive index from the straight section of the
ring resonator which are used here as explained can be found in section [0]
listed in table [8] Using these effective indices and the formula [2.47] the pe-

riodicities of the Bragg gratings for the respective filters were subsequently
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determined. The periodicities for the Bragg filters with Ay = 1550 nm to
A = 1570 nm in 1 nm intervals were subsequently determined to test how
well the theoretical results match the experimental ones. Various values for
the bandgap were also tested on the test chip.

In addition to the parameters for the Bragg gratings, the length of the di-
rectional coupler, where the light is split 50:50, must also be determined.
Since directional couplers are among the most commonly used components
in PICs, measurements from the group can also be utilized here.

3.3 Measurement Techniques

b) . microscope
photodetector‘

polarization

control

... Xyz-stage tunable cw laser

fiber array

"\

Figure 19: a) Measurement setup used with the chip, the fiber array and
control mechanisms. b) Schematic representation of the measurement pro-
cess, figure taken form [I8] p. 20.

The principle according to which the measurements for the bachelor’s thesis
were recorded is described in the following. In figure the stage on which
the chip to be examined is placed is shown. The chip is then fixed, a with
vacuum pump to ensure it does not move during the measurement. Above
the table is the fiber holder, which holds the optical fibers and at its end is
the fiber array. The crucial property of the fiber array is that the channels
are spaced at a fixed distance of d = 127 ym. The accuracy in the spacing of
the channels in the fiber array is important, as all input and output grating
couplers [19] being measured are arranged vertically parallel to each other
with this same precise spacing. The grating couplers are components used
to couple light from free space into waveguides and vice versa. They thus
serve as the input and output ports for the light to the individual structures
being measured [9]. Additionally, the fiber array is positioned at an angle of
8° to the vertical axis which causes the light to propagate through the air
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at an angle of 11° this ensures, that the transmission into and out of the
grating couplers is maximized. By moving the chip using the stage, the fiber
array can be aligned with the grating couplers of the specific structure to be
measured within micrometer precision. A tunable laser covering the wave-
length range of interest is then connected to one channel of the fiber array,
and photodiodesﬂ are connected to the outputs of the fiber array that need
to be measured. Using a program that can control the laser’s wavelength and
synchronize the recorded data from the photodiodes, it is possible to perform
a wavelength sweep and observe how the structure behaves depending on the
wavelength. The data recorded by the photodiodes are saved as csv files and
can be analyzed subsequently. An example of an individual structure to be
measured, in the form of a ring resonator, is shown in the following figure.

ID=6012 lamb=1563 nm GAP bottom =450 nm GAP top = 450 nm

Figure 20: Image of a ring resonator. At the bottom of the image, the four
grating couplers are visible, through which light is coupled in and out. The
ring resonator to be measured is connected to these grating couplers via
waveguides.

'Optical Receiver, 900-1700 nm InGaAs Detector, 200 kHz Bandwidth, M4
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4 Results

In the course of this thesis, two photonic chips were designed and subse-
quently fabricated. In figures and are schematic illustrations of the
fabricated chips. The respective sections are numerated and will be consid-
ered and explained subsequently. Parameter sweeps for ring resonators and
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Figure 21: Illustration of the first chip, on which parameter sweeps were
conducted for ring resonators, Bragg filters, and directional couplers across
various sections, along with the construction of test multiplexer structures.
The different sections are labeled, and these labels are subsequently refer-
enced.

Bragg filters were performed on both chips to later investigate how the theo-
retical results differ from the experimental ones. Additionally, the fabrication
of two chips allowed for an estimation of the reproducibility of the results.
The fabricated chips were taken from the same wafer to minimize variations
between the chips. The structures on the first chip were examined after fabri-
cation, and the insights gained from these measurements were used to design
and meassure a second chip, on which the building block parameters were
altered based on the experimental findings. In addition, identical structures
were built on the chips to test reproducibility for very delicate components.
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Figure 22: Illustration of the second chip, containing sections where parame-
ter sweeps were performed for ring resonators and Bragg filters. The sections
are labeled, and these labels are subsequently referenced.

4.1 Ring Resonators
4.1.1 Free Spectral Range

As described in section the group index n, was simulated for the FSR.
The complete results for these simulated values can be found in table[7] The
simulated values ranged from n, = 2.09732 for A = 1550 nm to ny = 2.12123
for A = 1570 nm. Subsequently, the maximum lengths of the ring resonators
were calculated to ensure an FSR of 4 nm. Thus, the maximum length of the
ring resonators is in the range of approximately L = 286 um for A = 1550 nm
to L = 290 um for A = 1570 nm.

For the comparison of the theoretical FSR with the one measured on the
chip, section 2b is considered first. This section contains symmetric ring
resonators where the length L of the ring was swept in the vertical straight
section without changing the coupling region and the bends. Additionally
both gaps of the ring resonators were swept. The relevant parameters of the
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ring resonators in the section under consideration are given in the table
The minimum and maximum FSR are calculated using formula [2.42| with the
simulated group indices.

Table 1: Varied parameters of section 2b.

gap range [nm| L range [um]| FSRipeo range [nm)]

200 - 450 232.5 - 235.5 4.886 - 4.995

The measurements are conducted as described in section Light is in-
coupled into the input port, and the spectra of the drop and through ports
are measured. The recorded CSV files are then analyzed in Python, where
a Lorentzian function is fitted to the resonance peaks of the ring resonators,
and its center is determined. In figure [23| a typical recorded spectrum is
shown. The difference between each pair of consecutive peaks is then calcu-
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Figure 23: Measured spectrum of the through and drop ports of a ring res-
onator, with a plotted envelope for the through port spectrum. The Gaussian
shape of the spectrum, characteristic of the transmission of the grating cou-
plet, is clearly visible. Additionally, the FSR is marked in red between the
transmission peaks. The Lorentzian shape of the peaks in the drop port
spectrum is also recognizable.

lated, and the average of these differences is determined. Finally, the stan-

dard deviation of this mean value is computed. The wavelength dependency
of the FSR is not taken into account because, in the considered wavelength
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range, no such dependency is observed in combination with the accuracy of
the fitting function. The experimentally determined value, including errors
is provided below.

FSRexp = (5.13 £ 0.12) nm (4.1)

This results in a deviation of 1.130 to 2.030 between the theoretically calcu-
lated values and the experimentally measured ones. The absolute deviations
between the theoretical values in table [1| and the experimentally determined
value are ranging from 4.2% to 2.7%. The deviations can be attributed, on
the one hand, to the manufacturing of the wafer, which does not have a
perfectly smooth surface but can vary in height within the nanometer range
compared to the manufacturer’s specifications. On the other hand, the devi-
ations are due to the fabrication of the photonic circuits on the wafer.

4.1.2 Coupling Length and Gap

To find the optimal parameters for coupling, we first theoretically investigate
how different coupling parameters affect the transmission behavior of the ring
resonator at the drop port. In the following we are considering a symmetric
ring resonator with identical coupling regions at the input and waveguides,
the coupling constants x are also equal in both regions. The loss is denoted
by a. For the following considerations, figure 24| depicting the behavior of
an ideal ring resonator at a resonance frequency is used as the basis.

The simulation shown in figure represents the ideal case for light at a
resonant wavelength. The figure shows the intensity of the FE-field. The
source is placed at the input port in the upper waveguide on the left with an
intensity of I;; = 1, and we monitor the drop port in the lower waveguide,
also on the left. Additionally, it is interesting to note that the field in the
ring resonator is significantly increased due to the in section explained
constructive interference of the light with itself. It is also evident that the
intensity on the right side of the waveguide is higher than on the left side,
as light couples into the lower waveguide, causing the intensity there to be
lower than on the right half of the ring.

To determine the optimal parameters, it is first useful to examine how the
quantities of interest vary with the transmission coefficient ¢ used in [2.40} To
do this, we will examine how the maximum transmission at the drop port
Thax, the extinction ratio (ER), and the finesse (F) behave for a ring resonator
with symmetric coupling regions, given fixed values of the loss coefficient «.
First, an estimation of the loss coefficient « is provided. The losses for silicon
nitride are approximately 2 dB/m [5]. Given a ring length of 280 pm, the
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Figure 24: E-field intensity near a drop resonance, figure taken from [20].

value of « is calculated as follows:

—280-10 6 m.2dB

a=10" 1© " =0.999871 ~ 0.9999 (4.2)

For the calculated value of «, the variables of interest are now plotted for
resonant wavelengths.

Figure shows that the maximum transmission Tp.(t) [10] at the drop
port occurs at small values of ¢,

(1—1?)%

Tinax(t) = A= f2ay

(4.3)

corresponding to large coupling coefficients k. However, it also demonstrates
that with very low losses considered (a & 1), the transmission remains very
close to the maximum even for larger transmission coefficients ¢, and only
drops significantly at very high values of ¢. Intuitively, small values of ¢
indicate that all light is coupled into the ring and then directly coupled out.
Higher values of ¢ indicate that a smaller fraction of the resonant light is
coupled into the ring, undergoing more round trips inside the ring before
being coupled out.

In figures 26 and [27] it is evident that the ER and the finesse increase with
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Figure 25: Maximum transmission 7Ty,., at the drop port normalized
to an input of I;; = 1, as a function of the transmission coefficient ¢

for a symmetric ring resonator.
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Figure 26: Extinction ratio at the drop port between the minimum
and the maximum transmission as a function of the transmission
coefficient ¢ for a symmetric ring resonator. Additionally, the 20 dB
line is shown, along with the corresponding ¢ value.
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Figure 27: Finesse as a function of the transmission coefficient t for
a symietric ring resonator.

larger values of t. For the ring resonators of the multiplexer, achieving both
high transmission and a descent high ER and finesse requires finding an
optimum balance between these parameters. Due to the low theoretical losses
of the silicon nitride platform used for the PIC, the transmission remains very
close to its maximum even at relatively high values of ¢.

By aiming for an ER of 20 dB, we can now calculate the corresponding
transmission coefficient ¢ and from this, determine the coupling coefficient k
as well as the corresponding coupling length. In figure [26showing the ER, we
have the ratio of the maximum transmission to the minimum transmission
at the drop port. An ER of 20 dB corresponds to a ratio of 100 between the
maximum and minimum transmission. For ER = 100, ¢ ~ 0.905, allowing
us to calculate the coupling coefficient, which is crucial for determining the
coupling length. Using this information about the desired power fraction
to be coupled from one waveguide to the other to achieve an ER of 20 dB,
the effective refractive indices of the even and odd modes were determined
for a fixed gap of 300 nm between the waveguides. Subsequently, using the
formula the length of the directional coupler was calculated to get an
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estimate of how long the coupling region should be.

K> =1—1*=0.095 (4.4)

_ arcsin (1/0.095) 1.550 um
© m(1.559576 — 1.548026)

= 13.38 um (4.5)

To investigate the influence of the coupling length on the behavior of the ring
resonator experimentally, the coupling lengths of the ring resonators were
swept in section 5b while keeping the length of the rings constant. Here
symmetrical rings were fabricated, with the coupling length being varied.
The measurements in this section have two goals, the first one is determining
the coupling length at which an ER of 20 dB is reached, the second one is
investigating the transmission and the ER at the drop port as a function of
the coupling length. The varied parameters to this section are given in table

Table 2: Varied parameters of section 5b.

gap range [nm] Le [pm]
100 - 300 1,2, 3,5,10, 15, 20, 30, 35, 40, 45, 50, 55, 60, 65

The coupling lengths specified in the table cover a very large range. They
were chosen to achieve the two mentioned goals. First, rings with coupling
lengths were fabricated in the range where an ER of 20 dB is theoretically
expected. Thus, rings with coupling lengths of L. = 10, 15, 20 ym were built,
since these are within the range of the value calculated for the coupling
length in equation Second, rings with short coupling lengths starting at
L. = 1 pum which exhibit a coupling constant close to zero, and those with
L. = 65 pm, where almost one hundred percent of the light is coupled onto
the ring resonaor, were fabricated, using equation for the calculation of
the coupling constants. For rings with a small coupling length the ER should
be maximal and the transmission low according to the theory and for rings
with a large coupling length it should be the other way around. In addition
to varying the coupling lengths of the rings, the size of the gaps was also
adjusted. The focus is on determining how small the gaps can be made
while ensuring the results remain reproducible. Investigating small gaps is
valuable, as they enable shorter coupling lengths, resulting in more compact
ring resonators. This allows for a larger FSR, which is often desirable.

The measurements in this section were also conducted as described in section
[3.3] where the wavelengths were swept over the range from 1520 nm to 1580
nm. Similarly to the determination of the FSR, spectra were also recorded
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at both the through and drop ports. However, in this measurement, not
only the position of the resonance peaks, as in the determination of the
FSR, is relevant, but also the ratio of the transmission at the through and
drop ports. To obtain comparable results in the absolute transmission at
the drop and through ports, two transmission spectra were recorded for the
photodiodes used. For this purpose, two grating couplers on the chip were
used, which are directly connected by a waveguide. The output signal at the
second grating coupler was first recorded with one photodiode, and then the
second photodiode was connected to this output to record the spectrum with
it under otherwise unchanged settings. This allows the normalization of one
spectrum to the other which was necessary, as they record spectra of different
intensities even under the same settings. Furthermore, it should be noted
that the connections between fibers also represent a calibratable uncertainty.
Through the calibrations it was ensured that the transmission levels of the
spectra are comparable. For the measurements of the ring resonators, it
was found that with very small gaps, specifically those smaller than 200 nm,
meaningful measurement results are often not observed, since the spectra do
not exhibit characteristics of ring resonator spectra but only show noise. This
is attributed to frequent fabrication inaccuracies in such small structures.
Therefore, the rings with a 300 nm gap, as calculated in the theoretical
section, are considered. First, the rings with a coupling length of L. =
10,15,20 yum are examined. To ensure the accurate representation of the
data, since the grating couplers do not transmit all wavelengths equally well
but rather around an optimal wavelength in a Gaussian distribution, as seen
in figure 23] the plots had to be also normalized to this effect.

The plots for the ring resonators with the mentioned coupling lengths are
shown in figures [28] to [30] The ER shown in the plot is the experimentally
determined maximum ER between the minimum and maximum transmission
in the range from 1550 nm to 1570 nm for the drop port. The plots align
well with the expectations described in section [3.2.4]

There, in equation 4.5] it was calculated that an ER of 20 dB is achieved
at a coupling length of approximately 13.38 um for a gap of 300 nm. In
figure [28], it is seen that the ER of 20 dB is reached at a coupling length
of 10 um. The fact that the experimentally determined coupling length is
shorter than the theoretical one can be explained by the calculation not con-
sidering the region where the ring’s curves approach the waveguide near the
coupling length. This effect artificially extends the length of the coupling
region. Therefore, it becomes evident that it is crucial to perform parameter
sweeps on a test chip to assess how significantly this effect influences the re-
sults. The conducted sweeps have thus led to the conclusion that the desired
ER of 20 dB is achieved at a coupling length of 10 um, and that the trans-
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Figure 28: Spectra at the drop and through ports normalized
to the envelope of the transmission curve at the through port.
For a ring resonator with a gap of 300 nm and L. = 10 ym.
The transmission is T ~ 53%.
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Figure 29: Spectra at the drop and through ports normalized
to the envelope of the transmission curve at the through port.
For a ring resonator with a gap of 300 nm and L. = 15 um.
The transmission is T ~ 75%.

mission, from the envelope of the drop port to the envelope of the through
port, reaches approximately 7' ~ 53%.

The second goal is to examine how the ER behaves as a function of the
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Figure 30: Spectra at the drop and through ports normalized
to the envelope of the transmission curve at the through port.
For a ring resonator with a gap of 300 nm and L. = 20 ym.
The transmission is T ~ 85%.
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Figure 31: Spectra at the drop and through ports normalized
to the envelope of the transmission curve at the through port.
For a ring resonator with a gap of 300 nm and L. = 60 ym.
The transmission is 7'~ 100%.

transmission. Unlike the previous section, the focus here is not on finding a
specific ER, but rather on observing the general behavior. For this purpose,
figure |32] illustrates the relationship between the ER and the transmission.
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The measurements reflect the general relationship between the ER and the
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Figure 32: Shown are the experimental values for the ER as a function of the
theoretical value for the transmission ¢ for the respective coupling length.

transmission, as predicted by theory and shown in figure 26, Both plots are
presented in a double logarithmic scale, and the measurements reveal a qual-
itatively similar trend. With increasing transmission, the ER also increases
significantly.

In addition, figures [28|to 31| can be used for this purpose. Firstly, the predic-
tion that the ER decreases with increasing coupling length, thus with greater
coupling, is confirmed. Secondly, it is also evident that the transmission T
increases with increasing coupling length. In the extreme case, at almost the
maximum coupling length of 60 um, it is observed that the light couples to
the ring resonator independently of wavelength. This occurs because all the
light is coupled into the ring in the lower coupling region of the ring resonator
and immediately coupled out again at the top. As a result, the characteristics
of the ring namely constructive and destructive interference are lost. This
is clearly illustrated in Figure Here, the transmission is independent of
wavelength, and the ER is minimal. Additionally, the finesse decreases with
increasing coupling length until it approaches zero at a coupling length of
60 um. At this point, the wavelength dependence of the transmission, as
mentioned, is eliminated.

In figures [33]and [34] the finesse and the ratio of the envelope of the drop port
to envelope of the through port T" are shown. In the figure|33], a qualitatively
similar trend to the theoretical curve is observed, as shown in figure
Thus, it also holds that the finesse increases with greater transmission t. For
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Figure 33: Illustration of the experimental results for the finesse as a function
of the theoretical value for the transmission ¢ for the respective coupling
length.
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Figure 34: Illustration of T, the ratio of the envelope of the drop port to
envelope of the through port, as a function of the theoretical value for the
transmission ¢ for the respective coupling length.

the ratio of the envelope of the drop port to envelope of the through port
T, it is evident that for larger values of ¢, this ratio decreases. The three
closely spaced points in the lower right of figure [34] at high values of ¢, are
unexpected and likely due to fitting errors. In comparison with figures
to [27], it can qualitatively be confirmed that a higher T requires accepting a
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lower finesse and ER, and vice versa.

4.1.3 Resonance Wavelength

In the following section, we will examine the resonance wavelengths of the
ring resonators. The measurements have two main objectives: first, to in-
vestigate how the experimentally determined resonance wavelengths A, re-
spectively the effective refractive indices neg(A) of the ring resonators differ
from the theoretical values, and second, to assess the reproducibility of the
results. Ring resonators are extremely sensitive, and high accuracy in the
resonance wavelength is required for the multiplexer. Through these mea-
surements, it is possible to accurately determine the resonance wavelength
of the ring resonators, allowing for subsequent adjustments using methods
such as silicon implantation and temperature tuning to achieve the desired
wavelength. For the construction of the multiplexer, it is essential that the
resonance wavelength of each ring resonator is tuned to within one nanometer
of the desired wavelength. Otherwise, it will not be possible to correct this
with heat tuning and silicion implantation. These requirements place very
high demands on the fabrication of the ring resonators. To achieve the two
aforementioned goals, two rows of ring resonators with identical parameters
were constructed on each of the two chips. This allowed us to measure the
deviation of the resonance wavelengths and the effective refractive indices of
the ring resonators from the theoretical values twice, as well as to assess the
reproducibility of identical structures. The two mentioned rows are located
in sections 9a and 2b on the respective chips. In these sections, the length
of the symmetric ring resonators was varied in the horizontal direction, and
the gaps were varied in the vertical direction.

The measurements were also conducted as described in section [3.3] where the
spectra were recorded at both the drop and through ports. To determine the
resonance frequencies, Lorentzian curves were fitted to the resonance peaks
in the spectrum of the drop port, similar to the procedure used for determin-
ing the FSR. The center of each fit represents the identified resonance peaks.
As before the wavelengths were swept over the range from 1520 nm to 1580
nm.

The relevant parameters as well as the theoretical and the measured reso-
nance wavelengths for the ring resonators in the two rows that were compared
are listed in table[3. The number of ring resonators in a given row in sections
9a and 2b differs from the number indicated in table [3] because the recorded
data for two of the ring resonators proved to be invalid upon analysis. The
values given in the table for the theoretical wavelengths for each ring length
were calculated using the effective refractive index for the entire ring derived
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in section [3.2.5] and equation for m = 233. This value for m was chosen
because, at this value, the theoretical resonance wavelengths are closest to
the measured resonance wavelengths being considered. The value is therefore
the best estimate for the theoretically predicted resonance wavelength.

Table 3: Varied parameters and measurement results for the two rows in
sections 9a and 2b.
gaps [nm| Length [pm] Atheo [Dm]  Aexp [nm] (2b)  Aexp [nm] (9a)

300 232.65 1550.78 1549.13 1548.69
300 232.80 1551.53 1550.11 1549.61
300 232.95 1552.29 1550.88 1550.23
300 233.10 1553.04 1551.75 1551.03
300 233.40 1554.55 1553.12 1552.67
300 233.55 1555.31 1553.87 1553.58
300 233.70 1556.06 1554.55 1553.35
300 234.00 1557.57 1556.24 1555.25
300 234.15 1558.32 1557.00 1555.97
300 234.30 1559.07 1557.55 1556.62
300 234.45 1559.82 1558.46 1557.33
300 234.60 1560.58 1558.92 1558.81
300 234.75 1561.33 1559.18 1558.90

The values in table |3| are illustrated more clearly in figure [35 which also in-
cludes fitted lines and error bands. The error for the values from section 9a is
0.18 nm, while for those from section 2b it is 0.15 nm. This results in average
o-deviation for the measurement series in section 9a is about Ag, = 12.10,
while the average o-deviation for the measurement series in section 2b is
Ag, = 10.00.

It is evident from this that the simulated effective refractive indices, on which
the theoretically determined values for the resonance wavelengths are based,
exhibit a significant deviation from the actual values. Consequently, these
cannot be used to accurately predict the resonance wavelength of the ring
resonators after fabrication. Additionally, it has been observed that there
are significant deviations between the two series, particularly because they
do not fall within their respective error margins. Since the resonance wave-
length of the ring resonators can only be increased through the two methods
of heat tuning and silicon implantation, the minimum of the experimentally
determined effective refractive index, which is proportional to the resonance
wavelength, is used here. Table [J] in section [6] shows the experimentally de-
termined minimum refractive indices, assuming a linear relationship between
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Figure 35: Theoretical and experimental results for the resonance wave-
lengths A.es corresponding to the respective ring lengths L, as well as linear
fits and error bands for the experimental results. The width of the error
bands corresponds to the standard deviation between the trend line and the
values.

the resonant wavelengths or the refractive index and the ring length.

4.2 Bragg Filters
4.2.1 Bandwidth

When determining the bandwidth, there are two main goals. First, we
observe the deviation between the theoretical and the experimental values
across a range to determine the deviation in relation to the size of the band-
width. Second, assess the reproducibility of the bandwidth, by examining
Bragg filters with the same designed bandwidth across two chips. The neces-
sary simulations to determine the group index n, are not conducted as part
of this bachelor’s thesis, as previously mentioned. Instead, existing simula-
tions from the research group for the platform SisN,4 used in the multiplexer
are utilized. Here, measurements were conducted as described in section (3.3
where the spectra at the drop and through ports of the Bragg filter were
recorded. The recorded data is then plotted, and the reflected spectrum at
the drop port was fitted with an FWHM. The bandgap in equation dif-
fers from the experimentally determined one in that it considers the distance
between the first minima adjacent to the central wavelength. However, the
FWHM is more relevant for the multiplexer parameters, as we are design-
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ing multiple Bragg filters to cover the entire wavelength spectrum. Figures
and [37] show the recorded spectra of the Bragg filters for two different
bandwidths.
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Figure 36: Measured spectra of the through and drop ports of a Bragg filter
with a theoretical bandwidth of 3 nm and a periodicity of 500 nm. The
experimentally determined bandwidth is 4.12 nm.

To observe the changes in bandwidth, section 6a was considered, where the
bandwidth was swept over a larger range to evaluate potential deviations of
the bandwidth more comprehensively. The relevant parameters and results
for section 6a are presented in table []

Table 4: Varied parameters and results of section 6a.

bandwidthipeo [nm| bandwidthe,,[nm] deviation [nm]

2 3.35 1.35
3 4.12 1.12
4 4.89 0.89
6 6.67 0.67
7 7.99 0.99
8 8.53 0.53
9 9.31 0.31
10 10.05 0.05
11 10.80 -0.20

An average deviation of approximately 0.6 nm can be observed. It is notable
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Figure 37: Measured spectra of the through and drop ports of a Bragg
filter with a theoretical bandwidth of 6 nm and a periodicity of 500 nm. The
experimentally determined bandwidth is 6.67 nm.

that the deviations between the theoretical and experimental values decrease
towards larger bandwidths, reaching a minimum at 10 nm. In the range of 4
nm to 5 nm bandwidth, there is a deviation of about one nanometer between
theory and experiment.

To determine the reproducibility of a specific bandwidth, sections 4a and
4b are examined. In these sections, the periodicity of the Bragg gratings is
varied, resulting in different center wavelengths Ag. The filters in both sec-
tions all have a theoretical bandwidth of 5 nm. Thus, reproducibility can be
investigated in two aspects: first, how the bandwidth behaves with changes
in the Bragg wavelength A\g on a single chip, and second, the deviations be-
tween chips with the same bandwidth and a simular wavelength. The same
measurement and evaluation methods as those used in the previous section
are applied here, although the midpoint between the two FWHMs is addi-
tionally provided as the best estimate for the Bragg wavelength. Table
lists the parameters and results for the bandwidth for those filters where the
Bragg wavelengths of the filters are approximately equal. The averages and
standard deviations of the bandwidths listed in table [fl demonstrate that the
results within a measurement series are well reproducible, as the standard
deviations are each less than 0.1 nm. Furthermore, it is evident that the devi-
ations between the two chips are also very small, with an absolute deviation
of less than 0.1 nm and a sigma deviation of A = 0.650.
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Table 5: Comparison of the bandwidths of the Bragg filters from sections 4a
and 4b with theoretical bandwidths of 5 nm with similar wavelengths.

bandwidth, A\g [nm] (4a) bandwidth, Ag [nm] (4b)

6.30, 1551.1 6.26, 1550.8
6.25, 1552.4 6.31, 1552.0
6.23, 1553.7 6.30, 1553.5
6.17, 1554.4 6.11, 1555.1
6.34, 1555.6 6.41, 1555.5
6.16, 1556.7 6.32, 1556.9
6.19, 1557.8 6.38, 1557.7
6.25, 1558.1 6.36, 1558.3
6.30, 1559.8 6.37, 1559.4

@ = (6.24 + 0.06) nm @ = (6.31 £0.09) nm

4.2.2 Center Wavelength

The second important property of the Bragg filters that we want to consider
is the Bragg wavelength. To determine this, equation is used. The peri-
odicity corresponding to the wavelength Ag must be entered into the program
from which the Bragg gratings are created. To calculate the average effec-
tive refractive index of the Bragg gratings, as mentioned in section [3.2.6] the
effective refractive index of a waveguide made of the same material with the
same average width is used. From the average effective refractive index cor-
responding to the respective wavelength and the wavelength, the periodicity
is then determined. On the first chip, parameter sweeps are conducted in
section 4a, where filters with a simulated wavelength ranging from 1550 nm
to 1570 nm are built.

Subsequently, the sections are measured, and the central wavelength is deter-
mined again by fitting two FWHMSs and determining the center. There are
significant deviations between the theoretically expected Bragg wavelengths
and the actually measured ones. For the measured section 4a, an average
deviation of 10.5 nm is determined.

Thus, the simulated average effective refractive indices do not match the
real ones very well. To determine the real effective refractive indices, the
refractive index is calculated from the measured wavelengths and the corre-
sponding periodicity. Assuming a linear behavior of the refractive index in
the range from 1540 to 1570, the refractive indices for the larger wavelengths
were calculated. On the second fabricated chip, parameter sweeps for the
Bragg filters are performed again in section 3b, using the experimentally
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determined effective refractive indices from the first chip to determine the
periodicities. Table [0] presents a comparison between the theoretical values

and the experimental values.

Table 6: Comparison of theoretical and experimental Bragg wavelengths with

periodicities for sections 4a and 3b.

Atheo (NM]  Aexp, A [nm] (4a) Aexps A [nm] (3b)
1551 1539.94, 500.54 1550.82, 505.12
1552 1541.24, 500.97 1551.97, 505.55
1553 1542.69, 501.41 1553.48, 505.98
1554 1543.94, 501.85 1555.07, 506.42
1555 1544.50, 502.28 1555.53, 506.85
1556 1545.81, 502.72 1556.94, 507.29
1557 1546.61, 503.16 1557.72, 507.72
1558 1547.49, 503.61 1558.32, 508.15
1559 1548.54, 504.05 1559.42, 508.59
1560 1549.35, 504.49 1559.91, 509.02
1561 -, 004.94 -, 509.46
1562 1551.05, 505.38 1562.00, 509.89
1563 1552.41, 505.83 1563.03, 510.33
1564 1553.67, 506.27 1564.52, 510.76
1565 1554.44, 506.61 1564.89, 511.20
1566 1555.57, 507.06 1566.88, 511.63
1567 1556.74, 507.50 1567.93, 512.07
1568 1557.81, 507.95 1568.86, 512.51
1569 1558.09, 508.40 1569.49, 512.94
1570 1559.77, 508.85 1570.52, 513.38

- @ =(10.5+0.3) nm & = (0.5+0.4) nm

The average deviation of the measured wavelengths from the theoretically
calculated ones is given, as well as the standard deviation of this value. The
absolute deviation from the theoretical value on the first chip in section 4a is
more than 20 times greater than that on the second chip in section 3b. Thus,
a significant improvement in accuracy is achieved through the experimental
determination of the effective refractive index.
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5 Conclusion

5.1 Discussion

The following discussion will address what the experimental results obtained
in Chapter 4| imply for the design of the multiplexer.

The measured FSR results of the ring resonators show a good agreement,
within 0.24 nm, between the values based on the simulated group index n,
and the experimentally obtained ones, which can be calculated using equa-
tion [2.42] Therefore, these values are reliable for FSR calculation.

The evaluation of the experimental results for the coupling length and gap
shows that the prediction can be confirmed that, for ring resonators, the im-
portance of individual properties such as ER, transmission, or finesse must be
weighed against each other for the specific application. For instance, achiev-
ing a very high ER must be balanced with the fact that the transmission in
this ring will be lower compared to a ring with very high transmission but
very low ER. For the application in the multiplexer, achieving the highest
possible transmission is desired. However, an ER of at least 20 dB should
also be maintained. This extinction ratio was achieved at a coupling length
of L, =10 um and a gap of 300 nm. Consequently, we must accept that the
transmission in our case is only around 7' = 53%, which must be compen-
sated for by a higher input power from the laser. Nevertheless, this loss is
acceptable because it only occurs once and in parallel for 20 ring resonators,
in contrast to a network of cascaded directional couplers where a loss of 50%
occurs sequentially at each coupler. Here, the measurements can also be
considered successful, as they provide the necessary parameters for the mul-
tiplexer.

Concerning the resonance wavelength of the ring resonators we now have
a better understanding of the variability and offset in our measurements.
Specifically, we assume there is a constant offset relative to the theoretical
values, combined with variability due to fabrication differences. This again
highlights the sensitivity of the resonance wavelength of the ring resonators.
However, the objective of achieving reproducibility of the results within the
accuracy required for the fabrication of the ring resonators used in the mul-
tiplexer can be considered fulfilled, as the discrepancies between the two
measurement series are small enough to allow for future deviations to be
managed after fabrication. This will be further explained in section 5.3} For
the construction of the multiplexer, since the wavelength of the rings can
only be tuned upwards, the effective refractive index of the lower measure-
ment series will be used as a basis. The experimentally determined values
for these refractive indices are found in table 9l
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For the bandwidth of the Bragg-Filters, as shown by the bandwidth sweeps
in table |4 there is a notable discrepancy between the theoretical and ex-
perimental bandwidths, particularly at lower bandwidths, with a difference
of about one nanometer. However, it is also evident that, as shown in ta-
ble [, the bandwidths are reproducible across different chips. The results
demonstrate that the current calibration can be used to achieve the desired
outcomes.

Regarding the center wavelength of the Bragg-Filters, the average deviation
of the center wavelength at (0.5 +0.4) nm is still too large to rely solely on it
for constructing narrow Bragg filter wavelengths for the multiplexer. For the
final determination of the Bragg wavelength, it is necessary to use thermal
tuning or silicon implantation after the fabrication of the multiplexer chip
to accurately set the wavelength of the Bragg filters. This is because the
Bragg filters in the multiplexer should have an accuracy of less than 0.4 nm
to function optimally. However, achieving such accuracy is generally chal-
lenging because the period of these filters is in the range of 500 nm, and a
difference of 1 nm or less represents the difference between two adjacent laser
wavelengths.

5.2 Summary

The goal of this thesis has been to develop a WDM system with ring res-
onators and Bragg filters as its main components. The primary task has been
to approximate the necessary parameters for the system through simulations
and then precisely determine them through the construction of PICs and
their measurement. This multiplexer will be used to build the transmitter
side of a QKD system, aiming to achieve a record-high data transfer rate.

Starting from a description of the theoretical physical principles necessary for
the work, an initial concrete design proposal for the multiplexer was presented
and discussed. The functionality of this multiplexer served as the basis for
determining the parameters required. Subsequently, the methods required to
determine the parameters were described, along with the tools needed for this
purpose. Simulations were used to determine the initial parameters for all
necessary quantities, which were then swept across two chips designed during
the course of the work. The chips were subsequently measured in order to
test the simulated values and also check the reproducibility of the results.
The key parameters of particular interest were the resonance wavelength,
the FSR, coupling, and ER for the ring resonators. For the Bragg filters, the
focus was on investigating the bandwidth and resonance wavelength. The
comparison between the simulated parameters and the experimentally ob-
tained results revealed significant deviations within the required accuracy
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for constructing the WDM system. However, it was also observed that the
results are mostly sufficiently reproducible for practical use.

Overall, it can be concluded that within the scope of this work, the parame-
ters necessary for the multiplexer have been determined mostly with sufficient
accuracy.

5.3 Outlook

Following this bachelor thesis, three main tasks need to be addressed. Firstly,
once the sender chip with the lasers is completed, it will be essential to pre-
cisely characterize the lasers on the chip and determine their exact wavelength
ranges, as the lasers on this chip are expected to exhibit slight deviations
from the theoretical wavelengths. Secondly, once the transmitter chip has
been characterized, the design proposal for the multiplexer chip will need
to be fabricated with parameters that match those of the transmitter chip.
Finally, the individual components of the multiplexer chip, namely the ring
resonators and the Bragg filters, will need to be tuned. In particular, tuning
the chip through silicon implantation and temperature tuning will play a
significant role. Similar to the approach taken in the bachelor thesis, sim-
ulations for temperature tuning will be required, followed by experimental
verification of these simulations. For silicon implantation, existing knowledge
from the research group can be leveraged.
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6 Appendix

6.1 Simulations for Estimating the Group Index

Table 7: Simulation results for the group index.
Ares [pm] — ng

1.55000  2.09732
1.55104  2.09851
1.55208  2.09970
1.55312  2.10089
1.55417  2.10210
1.55521  2.10330
1.55626  2.10451
1.55731  2.10622
1.55836  2.10744
1.55941  2.10867
1.56046  2.10990
1.56152  2.11114
1.56257  2.11239
1.56363  2.11363
1.56469  2.11489
1.56575  2.11615
1.56681  2.11741
1.56787  2.11868
1.56893  2.11995
1.57000  2.12123
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6.2 Simulations for Estimating the Effective Index

Table 8: Simulation results for the effective index.
)\res [,U/m] Nefr

1.55000  1.54969
1.55100  1.54934
1.55200  1.54899
1.55301  1.54864
1.55401  1.54829
1.55501  1.54794
1.55602  1.54759
1.55703  1.54724
1.55804  1.54688
1.55905  1.54653
1.56006  1.54617
1.56108  1.54582
1.56209  1.54546
1.56311  1.54510
1.56412  1.54475
1.56489  1.54448
1.56591  1.54412
1.56693  1.54377
1.56795 1.54341
1.56897  1.54305
1.57000  1.54269
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6.3 Experimental Results for Refractive Indices and
Ring Lengths

Table 9: Experimental results of the minimum of the refractive indices and
ring lengths.

Aes [pm] L [pm]  neg

1550.00  232.897 1.55069
1551.00  233.103 1.55031
1552.00 233.310 1.54994
1553.00  233.516 1.54957
1554.00  233.722 1.54920
1555.00  233.929 1.54883
1556.00 234.135 1.54846
1557.00  234.342 1.54809
1558.00  234.548 1.54772
1559.00  234.754 1.54735
1560.00  234.961 1.54698
1561.00  235.167 1.54662
1562.00 235.374 1.54625
1563.00 235.580 1.54588
1564.00 235.786 1.54552
1565.00  235.993 1.54515
1566.00  236.199 1.54479
1567.00  236.405 1.54443
1568.00 236.612 1.54407
1569.00 236.818 1.54370
1570.00  237.025 1.54334
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