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Untersuchung unsichtbarer Higgs-Bosonzerfälle, die durch Vektor-
bosonenfusion erzeugt werden

Viele Modelle der Physik, die jenseits des Standardmodells liegen, beinhalten
die Kopplung des Higgs-Bosons an Dunkle Materie. Eine genaue Messung des
Verzweigungsverhältnisses der unsichtbaren Zerfälle des Higgs-Teilchens könnte
uns Einblicke in die Suche nach Neuer Physik gewähren. Das Signalmodell,
welches in dieser Masterarbeit untersucht wird, beinhaltet den unsichtbaren Zer-
fall eines mit Vektorbosonfusion erzeugten Higgs-Bosons. Der Untergrund wird
vom Zerfall des Z-Bosons in ein Neutrino und ein Antineutrino in Assoziation
mit zwei Jets dominiert. Da der letztere eine größere hadronische Aktivität in
der Rapiditätslücke aufgrund des Farbaustauschs aufweist, wird diese Eigenschaft
ausgenutzt, um den Untergrund im Vergleich zum Signal zu unterdrücken. Die
Strategie dieser Analyse basiert auf der Verwendung von ATLAS Kalorimeter-
und Trackerbildern anstatt der traditionellen kinematischen Variablen, wie die
Vierervektoren der Jets und die Anzahl der Jets in der Rapiditätslücke, um zu
bestimmen, ob die Signal-Hintergrund-Trennung verbessert werden kann. Dazu
wurde eine Analyse auf Basis von Autoencodern durchgeführt und die Wirkungs-
grade und Ausschussraten untersucht.

Study of invisible Higgs boson decays produced via vector-boson fusion

Various models of physics beyond the Standard Model include the coupling of the
Higgs boson to dark matter particles. A precise measurement of the branching
ratio of the invisible decay of the Higgs boson could reveal new insights in the
search for new physics. The signal model used in this thesis is the invisible
decay of the Higgs boson produced via vector-boson fusion. The background
is dominated by the Z boson decaying into a neutrino and an anti-neutrino in
association with two jets. Since the latter is expected to have a larger hadronic
activity in the rapidity gap due to colour exchange, this feature is exploited to
supress the background compared to the signal. The strategy of this analysis
is to use ATLAS calorimeter and ATLAS tracker images instead of traditional
kinematic variables, such as the jet four-vectors and number of jets in the rapidity
gap, to determine if the signal to background separation can be improved. For
that, an analysis based on autoencoders was implemented and the efficiencies and
rejection rates were studied.
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Introduction
The Standard Model of Particle Physics (SM) is the current most accurate description
of the known fundamental particles and the strong, weak and electromagnetic forces
between them. Despite its large success in describing many experimental measure-
ments, it is not the final theory of fundamental interactions because it leaves some
open questions, such as the neutrino masses or the nature of dark matter and dark
energy.

Several theories, such as supersymmetry or string theory, have been built to try
to give an explaination to these questions. They are called beyond the SM theories.
Some of them predict a bigger Higgs sector and different Yukawa couplings, although
the coplings could be very similar to the ones predicted by the SM. Therefore, it is
crucial to make precision measurements of the properties of the Higgs boson because
they could provide hints about the validity of these theories.

The process studied in this thesis is the decay of Higgs boson to particles that are
not detected in experiments, classified as invisible particles. The study of this process
is motivated by the fact that several beyond the SM theories predict that the Higgs
bosson couples to dark matter particles. If this was the case, the branching ratio of
invisible Higgs boson decays would be higher than the one predicted by the SM and
upper bounds on this ratio could provide information about the properties of dark
matter.

A common strategy to separate invisible Higgs decays from its background is to use
a boosted decision tree. However, the inputs of this method are traditional kinematic
variables and so, it relies on jet algorithms and there is no jet calibration below 17 GeV.
A powerful alternative to overcome this limitation and try to enhance Higgs bosons
decaying invisibly is to use an autoencoder since its inputs are images of topoclusters
and tracks.

This thesis is structured in the following way. The first chapter outlines the theory
of the SM and physics beyond the SM. The second one provides an introduction to
machine learning and the Toolkit for Multivariate Data Analysis. Next, the ATLAS
experiment is described in chapter three. Chapter four presents the reconstruction of
the objects used in this thesis. Finally, chapter five and six present the results of the
separation between a Higgs boson produced via vector-boson fusion decaying invisibly
and its main background, a Z boson decaying into two neutrinos, using boosted decision
trees and an autoencoder respectively in each chapter.
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1. Theoretical Background
This chapter contains two sections. Section 1.1 gives an overview of the particle con-
tent of the SM and the interactions that it describes. This overview is adapted from
references [1, 2, 3]. Section 2.2 discusses one of the phenomenons that the SM can not
explain: dark matter.

1.1 The Standard Model of Particle Physics
The SM is a gauge theory determined by the local SU(3)C x SU(2)L x U(1)Y symme-
try. It combines special relativity and quantum mechanics in a quantum field theory
which was developed in the 60s and early 70s. Among its many achievements are the
prediction of the weak neutral current and the prediction of particles, like the charm
quark or the tau neutrino, before they were experimentally observed.

The elementary particles of the SM are shown in Figure 1.1. The SM contains
twelve spin 1

2 fermions and their corresponding antiparticles. They are classified into
quarks and leptons, according to whether they interact via the strong force. Moreover,
they are separated into three generations which differ by their mass and their flavour
quantum number.

Figure 1.1: Particle content of the SM [4].

The quarks carry a color charge and therefore take part in the strong interaction.
There are six different quark flavours that are divided into three up-type quarks and
three down-type quarks, according to their electromagnetic charge. The former (the
up (u), charm (c) and top (t) quark) have a charge q = 2

3e and the latter (down (d),
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strange (s) and bottom (b) quark) have q = −1
3e. Therefore they interact via the

electromagnetic force. In addition, all quarks interact through the weak force.
The leptons are divided into three charged leptons: electron (e), muon (µ) and tau

(τ), and three electrically neutral neutrinos: electron neutrino (νe), muon neutrino (νµ)
and tau neutrino (ντ ). All leptons interact via the weak force and they do not take part
in the strong force. Also the charged leptons can interact via electromagnetic force.

The elementary fermions interact with each other via the exchange of spin 1 bosons
called gauge bosons. These bosons are one massless photon (γ), three massive bosons
(W +, W −, Z) and eight massless gluons (g). They mediate the electromagnetic, weak
and strong forces, respectively. Furthermore, some gauge bosons are able to self-
interact, as depicted in Figure 1.2. One example is the gluons which self-interact
because they are also color charged.

Figure 1.2: Diagram that shows the interactions described by the SM. The blue lines
represent not only the interactions between the fermions and bosons, but also the boson
self-interaction [4].

The last component of the SM is the Higgs boson. It is a spin 0 boson which has
neither electric nor color charge. It was discovered in 2012 by the ATLAS and CMS
experiments at the Large Hadron Collider (LHC) at CERN [5, 6]. A more detailed
description of its theoretical prediction and properties is given in Sections 1.1.2 and
1.1.3, correspondingly.

1.1.1 Electroweak Interaction
The electromagnetic and weak interactions were unified in the Glashow-Weinberg-
Salam (GWS) theory [7, 8, 9]. The underlying symmetry of this theory is SU(2)L x
U(1)Y which defines the properties of the interaction. The label L indicates that the
gauge fields W a

ν , with a = 1, 2, 3, of SU(2)L only couple to left-handed particles.
The GWS model replaces the electromagnetic U(1)EM group by U(1)Y where the

label Y is the hypercharge quantum number. For its lagrangian density to be invari-
ant under the electroweak symmetry, the derivative ∂µ is replaced by the covariant

8



derivative Dµ

Dµ = ∂µ − ig
σa

2 W a
µ + ig

′ σ3

2 Bµ, (1.1)

where σ represents the pauli matrices that are the generators of SU(2)L, g is the
SU(2)L coupling and g

′ is the coupling of U(1)Y .
The photon field Aν and the Z boson field Zν are identified as a mixture of the

gauge fields Bν of U(1)Y and W 3
ν through

Aν = cos θW Bν + sin θW W 3
ν , (1.2)

Zν = −sin θW Bν + cos θW W 3
ν , (1.3)

where θW is the weak mixing angle. This mixing arises naturally in the Higgs
mechanism explained in the next section.

The physical W ±
µ bosons are linear combinations of W 1

ν and W 2
ν

W ±
µ = 1√

2
(︂
W 1

µ ∓ iW 2
µ

)︂
. (1.4)

Since the W ± bosons are uniquely formed from the gauge fields of SU(2)L, only
left-handed particles take part in the weak charged interactions. Conversely, the Z
boson couples to left and right handed particles, but with different strength.

In addition, the GWS model relates the SU(2)L coupling g
′ , the U(1)Y coupling g

and the electromagnetic coupling e to

g
′
cos θW = g sin θW = e. (1.5)

1.1.2 Higgs Mechanism
One of the questions that arose when constructing the SM was how fundamental par-
ticles obtain their mass without breaking the required gauge symmetry of the theory.
Mass terms, such as −mΨ̄Ψ for fermions or −1

2m2AνAν for gauge bosons, are not
invariant under the electroweak symmetry SU(2)L x U(1)Y . As a consequence, the
unitarity of the SM is lost at the TeV scale if they are included in the lagrangian
density.

This difficulty was solved by the Higgs mechanism where the particles acquire mass
through the interaction with the Higgs field, a SU(2)L doublet of complex scalar fields

Φ =
(︄

ϕ+

ϕ0

)︄
. The lagrangian density of the Higgs field is

LHiggs = (DµΦ)† (DµΦ) − V (Φ), (1.6)

where V (Φ) = µ2Φ†Φ + λ
(︂
Φ†Φ

)︂2
and Dµ is the covariant derivative defined in

Equation 1.1.
For µ2 < 0 and λ > 0, the Higgs potential has the well known mexican hat shape.

The minima of the potential are at |Φ| ̸= 0 and the Higgs field acquires a non zero
vacuum expectation value |⟨Φ⟩| = v√

2 , with v = 246 GeV. The choice of a vacuum state
spontaneously breaks the electroweak symmetry, SU(2)L x U(1)Y → U(1)EM . This
process is called electroweak symmetry breaking.
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If LHiggs is expanded in perturbation theory around the vacuum state, it describes
one massive gauge boson and three massless scalar particles known as Goldstone bosons.
However, using the gauge freedom to choose the unitary gauge, in which the fields that
appear in the lagrangian density correspond to the physical particles, the Higgs field
acquires this form

Φ = 1√
2

(︄
0

v + H

)︄
, (1.7)

where H is the Higgs boson and the three Goldestone bosons have disappeared.
Regarding the mass of the gauge bosons, LHiggs contains the following quadratic

terms in the gauge fields after its expansion around the vacuum state in the unitary
gauge

LHiggs ⊃ v2 g2 + g′2

4 ZµZµ + v2 g2

4 W +µW −
µ , (1.8)

where Aµ, W ±
µ , Zµ are the mass eigenstates which correspond to the photon, the W ±

and Z bosons.
Their corresponding masses are:

mW = v
g

2 , mZ = v

√
g2 + g′2

2 , mA = 0.

The three Goldstone bosons have been “eaten” by three of the four electroweak
gauge bosons adding a longitudinal polarization which thus makes the electroweak
gauge bosons massive. This way of giving mass to the gauge bosons through sponta-
neous symmetry breaking is the Higgs mechanism.

Similarly, it is possible to construct mass terms for the fermions using the Higgs
field. These are called Yukawa terms

LY ukawa = −yf

(︂
ΨLΦΨR + ΨRΦ†ΨL

)︂
, (1.9)

where ΨL/R are the the left and right handed fermion spinors and yf is the Yukawa
coupling for the fermion f .

After expanding LY ukawa around the vacuum state, the masses of the fermions are
given by

mf = yfv√
2

. (1.10)

1.1.3 The Higgs Boson
The Higgs boson can be produced at the LHC by the four main mechanisms depicted
in Figure 1.3. The cross section of each of them depends on the mass of the Higgs
boson, which is mH = 125.38±0.14 GeV [10]. For this value of mH , gluon-gluon fusion
is the main production mechanism followed by vector-boson fusion.

Regarding its decay channels, since the coupling of the Higgs boson to a fundamental
particle is proportional to the mass of the particle, it decays preferably to the heaviest
particles which are kinematically allowed. Therefore, it does not interact directly with
the massless photons and gluons. However, it can decay to massless particles through
loops of virtual heavy fermions (mostly top quarks) and W bosons, similarly to gluon-
guon fusion. The main decay modes are listed in Figure 1.4.
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Figure 1.3: Feynman diagrams of the main production mechanisms for SM Higgs bosons at
the LHC [11, p.3].

The dominant decay channel is a Higgs boson decaying to a pair of b-quarks(bb).
Nevertheless, the huge QCD background (gg → bb) at the LHC made it extremely
difficult to observe this decay channel. This caused that the discovery channels were
those with smaller branching ratios but with clearer signals. They were a Higgs boson
decaying to two Z bosons H → ZZ∗ → l+l−l

′+l
′−, a Higgs boson decaying to two W

bosons H → WW ∗ → lνll
′
νl′ and a Higgs boson decaying to two photons H → γγ,

where the asterisk (*) indicates that it is a virtual particle since mH < 2mZ and
mH < 2mW .

Figure 1.4: The main branching ratios of the Higgs boson decay predicted by the SM, for
mH = 125 GeV [1, p.489].

Until now, the production mechanisms shown in Figure 1.3 and the following decays
H → ZZ* [13], WW* [14], γγ [15], τ+τ− [16] and bb [17] have been observed (see Figure
1.5). The last two decays were observed in 2018 and proof that the Higgs boson couples
to leptons and to quarks. So far, all these measurements are consistent with the SM
predictions within uncertainties.
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Figure 1.5: Measured cross section times branching ratio for the relevant production mecha-
nisms at the LHC in the main decays channels, normalized to the SM predictions. The black
bars and the blue, yellow and grey bands correspond to the total, systematic, statistical and
theory uncertainties, correspondingly. [12, p.13].

1.1.4 Quantum Chromodynamics
The strong interaction, described by the Quantum chromodynamics (QCD) theory, is
mediated by gluons which couple to colour-charged particles. There are three colour
charges and three colour anticharges. Since the gluons carry one colour charge and
one anticolour charge each, they are able to self-interact. This feature arises from the
non-abelian nature of the underlying SU(3) symmetry of the theory, that is, because
the generators of the SU(3) group do not commute.

The SU(3) symmetry requires eight gluon fields Ga
µ and the following covariant

12



derivative
Dµ = ∂µ + igS

λa

2 Ga
µ, (1.11)

where gs is the strong coupling constant and λa are the Gell-Mann matrices that
are the generators of SU(3).

The properties of QCD cause that quarks have not been observed isolated, but in
colourless bound states called hadrons. This fact is explained by the colour confinement
hypothesis. It states that only colourless objects can propagate freely. This is explained
by the fact that the strong force between two particles increases linearly with distance,
due to the gluon self-interactions. If two colour charged objects were to be separated
by an increasing distance, the energy stored in the strong field between them would
also increase. At some point, it is energetically preferable to form new quark-antiquark
pairs, thus forming color neutral objects. Hadrons can be further divided into mesons,
a quark-antiquark pair, and baryons that are formed by three quarks.

As a consequence of confinement, high-energy quarks and gluons give rise to colli-
mated groups of hadrons known as jets, which are observed at high-energy experiments.
The formation of jets occurs through a process called hadronisation. A qualitative ex-
ample is depicted in Figure 1.6. First, a quark and an antiquark start to separate,
interchanging virtual gluons. Since gluons interact with each other, the gluon field is
squeezed into a tube. The energy stored in the field increases with distance. Therefore,
at some point, the energy is large enough to create a quark and an antiquark pair out
of the vacuum, breaking the gluon field. This process is repeated until the energy is
low enough that the quarks and antiquaks combine into hadrons. Finally, two jets are
formed following the directions of the initial quark and antiquark. Furthermore, the
jets contain other particles, like photons or leptons, coming from the decays of some of
the hadrons within the jet.

Figure 1.6: Hadronisation of a quark and an antiquark. As a quark and antiquark
flight apart, the energy stored in the gluon field increases. At some point, the energy is
large enough and a quark and an antiquark pair is created out of the vacuum, breaking
the field. The process continues until the energy is low enough that the quarks and
antiquaks form hadrons. Eventually, two jets are formed following the directions of the
initial quark and antiquark. [1, p. 253].

Another feature of the strong interaction is that its strength decreases as the energy
of the interaction increases. This fact is known as asymptotic freedom and occurs due
to the gluon self-interactions. At energies around 1 GeV and below, αS α g2

s is of O(1).
and perturbation theory can not be used. At larger energies, the value of αS is low
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enough to use perturbation theory and quarks asymptotically behave as free particles.
The running of αS is related to the concept of renormalization which is beyond the
scope of this thesis.

1.2 Physics Beyond the Standard Model
A wide range of cosmological and astrophysical observations [18, 19] suggest the exis-
tence of vast amounts of massive matter which does not interact via the electromagnetic
force. Nevertheless, the SM does not provide an explanation for this special kind of
matter. Due to the fact that it does not interact electromagnetically, it is generally
referred to as dark matter.

1.2.1 Dark Matter
The most direct evidence for the existence of dark matter on galactic scales is the
velocity distributions of stars in spiral galaxies. In these galaxies, the central bulge
contains most of the luminous mass. Outside this region, the tangential velocity of a
star orbiting the center is

v ≈
√︄

GM(r)
r

, (1.12)

where G is the gravitational constant, M(r) is the mass inside a radius r, where
it has been assumed that the majority of the mass is located in the bulge. Thus, the
velocity of stars should fall as r−1/2. However, this theoretical prediction does not
agree with the observed velocity distributions, such as the one in Figure 1.7. These
observations imply that the mass distribution is given by M(r) α r. This indicates that
there is a large non-luminous component which contributes to the mass of the galaxies.

Another evidence comes from the measurements of the fluctuations of the cosmic
microwave background (CMB) performed by the PLANCK collaboration. As the uni-
verse expanded and cooled, particle species decoupled from the primordial plasma,
falling out of thermal equilibrium. The last ones to decouple were electrons, protons
and photons. When the electrons and protons combined to form neutral atoms, the
photons could travel freely through the universe for the first time. These primordial
photons carry the image of the plasma at that moment and constitute the CMB. The
CMB is mostly isotropic with small anisotropies which are related to matter density
fluctuations. The fluctuations of the barionic matter density alone can not explain
these anisotropies. Additional fluctuations of a dark matter density are needed to
account for them. According to the PLANCK data, the barionic matter density is
Ωbh

2 = 0.0224 ± 0.0001 and the dark matter density is Ωch
2 = 0.120 ± 0.001 [21].

During the expansion and cooling of the universe, the light particles, such as neutri-
nos, remain relativistic (hot) while heavier ones become non-relativistic (cold). They
have different effects on the formation of large structures in the universe. The hot
particles obstruct the clumping of matter while cold ones clump on small scales. In
the case of dark matter, large structure formation indicates that at least the majority
of dark matter is cold [22]. For the cold scenario, there are several candidates like
axions [23] or weakly interacting massive particles (WIMPs) [24]. The latter emerge
naturally in extensions of the SM like supersymmetry. In many supersymetric models,
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Figure 1.7: Rotation curve of the galaxy NGC 6503. The dashed and dotted curves
show the Newtonian rotation curves of the visible disk and the gaseous component. The
line depicted by ”halo” corresponds to the dark matter component needed to mach the
observed data, represented by the points with error bars [20, p. 3].

the lightest particle is a stable, neutral, weakly interacting particle with a mass in the
GeV-TeV range.

Currently, there are three main strategies to detect dark matter. These are: search-
ing dark matter scattering off nuclei (direct detection), looking for the decay products
of dark matter annihilation in galactic centers (indirect detection) or producing it in
SM particle collisions. Here, the third one is discussed.

Since the Higgs boson coupling strength increases with respect to the particle par-
ticipating in the interaction, the Higgs boson is thought to act as a portal between
the SM and dark matter, thus also allowing for Higgs boson decays into dark matter
[25]. Dark matter particles traverse the ATLAS detector at the LHC without being
directly detected. If the Higgs boson would couple to dark matter, the branching ratio
of invisible Higgs boson decays would be higher than the one predicted by the Standard
Model BSM(H → ZZ∗ → 4ν) = 1.06 · 10−3 [26]. Upper bounds on this ratio could
give hints about the properties of dark matter. The current most stringent upper limit
on this branching ratio is 0.13 at the 95% confidence level (CL) [27].

Although dark matter does not interact with the ATLAS detector, its presence
can be inferred from the momentum and energy conservation of the collision products.
Before the collision, the initial particles carry no momentum in the plane transverse to
the beam direction. Therefore, the sum of the transverse momenta pT of the final state
particles must be zero. If invisible particles are produced, there is a net momentum
in the transverse plane. The momentum needed to compensate this net momentum
is called the missing transverse momentum. Here, it is referred to missing transverse
energy E⃗

miss

T with absolute value Emiss
T . Through this, the missing transverse energy

can be related to the existence of dark matter.

15



2. Machine Learning and
Multivariate Data Analysis
Machine learning has become a crucial tool in high energy physics analysis in order to
extract the maximum possible information from the data available. In this chapter,
an overview to machine learning is presented in Section 2.1. Section 2.2 explains the
framework and algorithms used for the multivariate analysis described in Chapter five.

2.1 Machine Learning
In machine learning, a common task is to classify data into two classes, separating
out the classes by drawing a decision boundary. For this task, the machine learning
algorithm learns how to assign a class label to the data points. To tackle this problem,
the data set is usually split into two parts: training set and test set, which must follow
the same distribution. The model is first trained on the training set. The goal here
is to find a set of weights that minimize the loss function (defined below) using an
optimization technique such as gradient descent or stochastic gradient descent. With
the inferred weights, the accuracy of the fitted model is then evaluated using the test
set.

If instead of capturing only the underlying pattern, the model also captures the
random noise in the training data, this is called overfitting. On the other hand, if our
trained model fails to capture the relevant relations between the input and the output
features, this is named underfitting. Neither is satisfactory and a balance between the
two is important.

Figure 2.1: Representation of a model fitting too closely to the data points (overfitting),
fitting correctly (optimum) and fitting the data points unsuccessfully (underfitting) [28].

Another important aspect of machine learning is that it is usually impossible to
pass the entire data set directly, since machine learning algorithms need a lot of data.
Therefore, the data set must be divided in a number of batches. Then, the batch size is
defined as the number of training samples that there is in a single batch. Also, every
time that the entire data set is passed through the algorithm, it is said that one epoch
has elapsed.

Loss Functions

Loss functions are used to measure how different an estimated output value is from
its true value. The most common loss functions are mean squared error (mse), mean
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absolute error and binary crossentropy. The former is defined as

mse = 1
n

n∑︂
i=1

(yi − ŷi)2, (2.1)

where n are the number of pixels, yi are the observed values and ŷi are the predicted
ones.

2.1.1 Neural Networks
A neural network is a net of layers of fully-connected nodes that looks like Figure 2.2.
It consists of an input layer, one or more hidden layers and an output layer, where
the information travels from left to right. The outputs of the nodes of a given layer,
which become the input of the nodes of the next layer, are first weighted, summed
and passed through a non-linear activation function (Figure 2.3). Therefore, training
a neural network means learning the weights associated with each edge.

Figure 2.2: Representation of the input of each node [29].

It is also relevant to add that different neural networks are used depending on the
type of input data. As an example, convolutional neural networks are used for image
data, whereas for test series data, a recurrent neural network is the more common
choice.

Activation Functions

As explained in the above neural network section, the outputs from the nodes of the
previous layer (xi) are multiplied by weights (wi) and then summed. Mathematically,
y = ∑︁

i wixi. Note that this is a linear function. If the output of a node is just a linear
combination of the outputs of other nodes, then no matter how deep the neural network
is, the final output will be just a linear combination of the inputs and, thus, the model
will have limited capacity. Because of this limitation, the linear combination of the
outputs from nodes of the previous layer is also run through a non-linear activation
function. The commonly-used activation functions are ReLU (Rectified Linear Unit),
Sigmoid, Linear and Tanh. All these functions are depicted in Figure 2.4.
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Figure 2.3: Visual representation of how the outputs of a layer are weighted, summed
and passed through an activation function before becoming the input of the nodes of
the next layer [29].

Figure 2.4: Most common activation functions used for neural networks [30].

Convolutional Neural Networks

Convolutional neural networks are used to detect the relevant features of images
through the realization of series of convolution and pooling operations. The convolution
operation merges two sets of information, using a convolution filter and producing a
feature map. To do the operation the filter is slid over the input image. At each
location, an element-wise multiplication is performed and the result is summed. The
resulting number is then aggregated to the feature map, as depicted in Figure 2.5.
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At each layer of the neural network, multiple convolutions are performed indepen-
dently on an input, using different filters, resulting in different feature maps. These are
stacked along the depth dimension yielding a final output with the same height and
width as the input, but deeper (Figure 2.6). This output is then run through a ReLU
activation function, so that the result is not a linear combination of the input.

Figure 2.5: On the left, there is the convolution filter (green) and the input image
(blue). The filter is placed at every location of the image. At each location, the
numbers are multiplied element-wise and the result is summed up. The resulting scalar
is then collected in the feature map, shown on the right [32].

After the multiple convolutions, a pooling operation is usually performed. It down-
samples the feature maps while keeping the important information. This is achieved by
reducing the maps height and width while keeping their depth intact. This reduction
results in a shortening of the training time and the chances of overfitting are reduced.
The most usual type of pooling is max pooling which slides a window over the input
and takes the maximum value in the pooling window (Figure 2.7).

2.1.2 Autoencoder
An autoencoder is a type of neural network which learns how to compress and then
reconstruct the data back from its reduced representation named code. It consists
of three parts shown in Figure 2.8. The encoder, which is a fully-connected neural
network, compresses the input and creates the code. The code that is a single layer of
a neural network. Finally, the decoder, which usually has the reverse architecture than
the encoder, gets back the input but using only the code.

Before training the autoencoder, however, there is a series of hyperparameters that
must been set. These are: the code size (number of nodes in the code layer), the
number of layers of the neural network, the number of nodes per layer and the loss
function, which is used to compare the output with the input.

Anomaly Detection

Although autoencoders are mostly used for image recognition, they can be also
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Figure 2.6: Example of 10 convolution operations applied to a 32x32x3 image, using
5x5x3 filters. Each filter leads to a 32x32x1 feature map (red and green slices on the
right). These are stacked along the depth dimension resulting in the 32x32x10 output
represented by the right blue box [32].

Figure 2.7: Representation of the max pooling operation, where the input image is
reduced by sliding a 2x2 window and taking the maximum value of the window [32].

trained to find anomalies in the data set following this procedure. First, the mse of
each training sample is calculated. Then, the maximum mse is set as the threshold for
anomaly detection. Eventually, if a test sample has a mse > threshold, it is labeled as
an anomaly.

2.2 Toolkit for Multivariate Data Analysis
The Toolkit for Multivariate Data Analysis (TMVA) [33] is a ROOT-integrated analysis
framework which allows the processing, performance evaluation and application of
several multivariate classification and regression methods, which are based on machine
learning techniques. The analysis carried out by the TMVA is separated into a training
phase and an application one. In the first part, one or several methods are booked,
the input variables are preprocessed and preanalysed, and the chosen methods are
trained, tested and evaluated. In the last one, the selected methods are used to solve
the classification or regression problem of an unknown data set. The multivariate
classification methods used for this analysis are described below.
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Figure 2.8: Sketch of how an autoencoder functions [31].

Figure 2.9: Visualization of the structure of an autoencoder [31].

2.2.1 Rectangular Cut Classifier
The rectangular cut classifier is the simplest method that categorizes an event as a
signal or a background event. It places a rectangular cut on each variable separately,
that is, the cut on one variable does not depend on the cuts on the other variables. The
optimisation of these cuts maximises the background rejection at given signal efficiency
and it is performed for different signal efficiencies. Furthermore, the performance of the
classifier is strongly correlated to the shape of the signal and background distributions
since this method relies on the assumption that the signal is clustered in the variable
space. If this was not the case, the classifier would underperform.

The fitting method of the cut classifier can be selected using the FitMethod option.
The primary methods are Monte Carlo sampling [34], Genetic Algorithm [35], and
Simulated Annealing [36], being Genetic Algorithm the default one. Moreover, if a
simple cut is necessary instead of rectangular cuts, due to the distribution shape being
already known, the Varprop option should be set to FMax or Fmin. TMVA can also
detect which requirement must be removed by using the option FSmart.

2.2.2 Boosted Decision Trees
A decision tree is a tree-like structured algorithm, like the one depicted in Figure
2.10, which separates the data at each node into two subnodes, establishing a decision
requirement. Each requirement depends on one discrimination variable and the data
is split over and over until a stop criterion is satisfied. The nodes at the bottom of the
tree, called leaves, are labeled as signal or background, depending on the majority of
events that end up in that node. Finally, the depth of the tree, as well as the minimum
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Figure 2.10: Sketch of a decision tree. Beginning in the root node, the data is binary
split, using the discriminating variables, until some criteria is met. The leaves (the
circles labeled as ”B” or ”S”) are labeled as signal or background depending on the
majority of events that end up in that node [33, p.115].

percentage of training events required in each leaf node, can be fixed respectively using
the MaxDepth and MinNodeSize options.

The main advantage of a decision tree is its interpretability. This helps revealing
the interactions between different variables and their relative importance. However, a
decision tree is vulnerable to overfitting. In order to avoid this limitation, a technique
called boosting is included. From that moment on, the tree is referred to as a boosting
decision tree. It fits many trees to reweighted versions of the training set. The total
number of trees is set by NTrees and the boosting type by BoostType.
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3. The ATLAS Experiment
The ATLAS experiment is one of the four experiments at the LHC at CERN. It is de-
signed to make precise measurements of the SM parameters and to search for evidences
of physics beyond the SM. In this chapter, the main characteristics of the LHC and
the principal components of the ATLAS detector are described in Sections 3.1. and
3.2 correspondingly.

3.1 The Large Hadron Collider
The LHC [37] is the largest and most powerful collider that has been built. It has a
circumference of 27 km and is situated at the Large Electron–Positron Collider tunnel
at CERN. It is mainly characterized by two parameters: the center-of-mass energy

√
s

and the instantaneous luminosity L. The first parameter determines which particles
can be produced, whereas the second one regulates the event rate. The number of
events of a specific process is related to the luminosity by

N = σ
∫︂

L(t) dt, (3.1)

where σ is the production cross section, which is a measurement of the quantum
probability for an event to occur. L is integrated over the time that the collider is
functioning and it itself depends on the colliding beam parameters

L = N1N2f

A
, (3.2)

where N1 (N2) are the number of particles in the first (second) beam, f is the
revolving frequency and A is the effective cross section area.

The LHC collides primarily protons, but also heavy ions. During the first two data
taking periods, Run 1 (2009-2013) and Run 2 (2015-2018), proton-proton collisions with
center-of-mass energies up to 8 TeV and 13 TeV respectively were achieved. However,
it is expected to reach the designed center-of-mass energy of 14 TeV for proton-proton
collisions during Run 3. Regarding the instantaneous luminosity, the peak luminos-
ity supplied during Run 2 was 2.0 · 1034 cm−2 s−1 [38], exceeding the LHC designed
luminosity L = 1034 cm−2 s−1.

The protons for the LHC are extracted from the ionization of hydrogen gas. Before
being injected in the LHC, they are pre-accelerated by the linear accelerator LINAC
2 and the three synchrotron accelerators BOOSTER, Proton Synchrotron (PS) and
Super Proton Synchrotron (SPS). Once injected, they are further accelerated by radio
frequency cavities with a field strength of 2 MV/m to the final beam energy. The beams
are constituted by up to 2808 bunches which contain up to 1011 protons. The proton
beams are guided along the circular trajectory of the LHC by 1232 superconducting
dipole magnets. They produce a magnetic field up to 8.33 T. To maintain their coils’
niobium-titanium (NbTi) wires in a superconductive state, 120 tonnes of helium are
used to cool the magnets to 1.9 ◦K [39]. In addition to the dipole magnets, quadrupole
magnets focus the beams.

The four main detectors are positioned at the four interacting points. Two of them,
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Figure 3.1: Diagram of the acceleration complex at CERN [40].

ATLAS1 [41] and CMS2 [42], are general purpose detectors. The LHCb3 [43] detector
was built to make precision measurements of rare decays of B hadrons and CP violation,
while the ALICE4 [44] detector is designed to study heavy ion physics.

One of the challenges that generates the high luminosity of the LHC is that there
are multiple interactions per bunch crossing. The additional interactions to the most-
energetic hard scatter event are referred as pile-up and constitute a source of back-
ground. They can come from the same bunch crossing (in-time pile-up) or from the
preceding or following bunch crossing (out-of-time pile-up). The expected pile-up µ is
given by

µ = L σinelastic

fnb

, (3.3)

where σinelastic is the inelastic cross-section in proton-proton collision, f is the revolving
frequency and nb is the number of bunches. The mean number of interactions per bunch
crossing during Run 2 was 33.7 at an integrated luminosity L = 147 fb−1 [45]. Higher
pile-up is expected as the luminosity is increased.

3.2 The ATLAS Detector
The ATLAS detector is forward-backward symmetric with respect to the interaction
point, which is defined as the origin of the coordinate system. The z axis of the system
is defined by the beam direction, while the x and y axis point to the center of the LHC
and upwards correspondingly. The x-y plane is perpendicular to the beam line and is
refereed as the transverse plane. The transverse momentum and energy are defined in
this plane as pT = |p⃗| cos θ and ET = |E⃗| cos θ. The azimutal angle ϕ is measured
around the z axis and the polar angle θ from the z axis. The later is usually expressed
in terms of the pseudorapity η = −ln tan ( θ

2). Other important parameters are the
1A Toroidal LHC ApparatuS
2Compact Muon Solenoid
3Large Hadron Collider beauty
4A Large Ion Collider Experiment
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angular separation between two particles that is quantified by ∆R =
√

∆η2 + ∆ϕ2 and
the radial distance from the z axis r.

The structure of the detector is depicted in Figure 3.2. It is formed by several sub-
detectors that are concentrically arranged around the interaction point. These are the
inner detector, the calorimeters and the muon detector. In addition, a thin supercon-
ducting solenoid magnet embeds the inner detector and three large superconducting
toroids magnets are placed around the calorimeters.

Figure 3.2: Components of the ATLAS detector. Its dimensions are 44 meters in length
and 25 meters in diameter [41, p. 4].

3.2.1 Inner Detector
The inner detector (ID) is located the closest to the interaction point. It tracks charged
particles in the |η| < 2.5 region. The tracks, left by the ionization of the ID materials
by charged particles, are used for the calculation of their transverse momentum, vertex
reconstruction and particle identification. Since the ID is embedded in a 2 T solenoidal
magnetic field, the tracks are curved due to the Lorenz force and the transverse mo-
mentum can be extracted from the radius of curvature. The accurate measurements
of the tracks are possible due to the design of the three subsystems that form the
ID: the Pixel Detector (PD), the Silicon Microstrip Tracker (SCT) and the Transition
Radiation Tracker (TRT). All three consist of concentric cylindrical layers around the
beam axis in the barrel region and disks perpendicular to the beam axis in the end-cap
regions.

The PD is situated at the inner part and is made of three layers of silicon pixels in
the central region. The majority of the pixels have dimensions of 50 x 400 µm2 and
their intrinsic resolution is 10 µm in r-ϕ5 and 115 µm in z. The PD is surrounded by
the SCT which is composed of four layers of strips in the barrel region with dimensions

5r and ϕ are the cylindrical coordinates used in the transverse plane

25



of 12 cm x 80 µm. The intrinsic resolution of the microstrip sensors is 17 µm in r-ϕ
in the central region. For the LHC Run 2, a fourth layer called Insertable B-layer [46]
was installed between the beam pipe and the first pixel layer. The size of the IBL’s
pixels is 50 x 250 µm2 and they have an intrinsic resolution of 8 µm in r-ϕ and 40 µm
in z. This upgrade improved the reconstruction of tracks and vertices, and increased
the tracking robustness against higher luminosities.

At the outer part of the ID, there are many layers of drift tubes called straw tubes
interleaved with transition radiation material. These 4 mm diameter tubes are filled
with a gas mixture of xenon, carbon dioxide and oxygen. They constitute the TRT
and are arranged parallel to the beam line in the barrel region and radially in the
end-caps. The TRT extends up to |η| < 2.0 with a resolution of 130 µm in r-ϕ in the
barrel region and 130 µm in ϕ-z for the end-caps. Although its resolution is worse
than the one achieved in the silicon systems, it improves the momentum resolution in
the |η| < 2 range due to the approximate 36 additional hits per track. The resulting
relative momentum resolution of the ID was measured to be σpT

pT
= (4.83 ± 0.16) · 10−4

GeV−1 ·pT [47] using data of cosmic rays. Furthermore, the TRT is employed to identify
electrons. When a charged particle enters the TRT, transition radiation is realised.
Since electrons are much lighter than the other charged particles, their radiation can
be distinguished.

3.2.2 Calorimeters
The ATLAS calorimeters cover all ϕ and |η| < 4.9 range, and are symmetric in ϕ.
They are sampling detectors, that is, they are formed by layers of an active medium
interspersed with layers of an absorbing high-density material. Incident particles inter-
act with the absorber generating showers of secondary particles which create a signal
in the active material. This structure allows to perform energy as well as position
measurements of the absorbed particles. The calorimeter system is depicted in Figure
3.3. It consists of the electromagnetic calorimeter (ECAL), that is optimized for mea-
surements of showers produced by electrons and photons, and the hadronic calorimeter
(HCAL) for hadronic showers.

The ECAL is located outside the solenoidal magnet. It is constituted by lead
plates immersed in liquid argon (LAr) that serves as active medium. The lead plates
are interleaved with electrodes arranged in an accordion shape which allows the ECAL
to have multiple active layers in depth. Furthermore, the accordion shape provides full
coverage in ϕ and fast extraction of the signal.

The ECAL is divided into a LAr electromagnetic barrel, that expands up to |η| <
1.475, and two electromagnetic end-cap calorimeters (EMEC) in the 1.375 < |η| <
3.2 region. The electromagnetic barrel has three active layers at different radii. The
innermost one is finely segmented in η, providing high precision for position measure-
ments. The two EMEC are formed by two coaxial wheels covering the 1.375 < |η| < 2.5
and 2.5 < |η| < 3.2 regions correspondingly. Moreover, a measurement of the energy
lost before entering the electromagnetic calorimeters is performed by an instrumented
argon layer, called presamplers, that is placed in the 0 < |η| < 1.8 region.

Although it varies with η, the depth of the ECAL is approximately 20 radia-
tion lengths, ensuring that photons and electrons deposit almost all their energy
there. Hadrons leave part of their energy in the ECAL, but their hadronic show-
ers extend to the HCAL. The energy resolution of the LAr electromagnetic barrel
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Figure 3.3: The ATLAS calorimeter system [41, p. 8].

σE/E = 10.1%/
√︂

E(GeV )⊕ 0.17% [48] was determined using electron beams of known
energy.

In the barrel region of the HCAL, there is the tile hadronic calorimeter (TileCal) 0
< |η| < 1.7. It is situated behind the LAr electromagnetic calorimeter and its coarse
granularity is used for reconstructing jets and measuring Emiss

T . It is segmented into
a central barrel and two extended barrels. They rely on scintillator tiles as sampling
medium and steel as absorber. The scintillation light from the tiles is read out via
wavelength-shifting fibers and transmitted to photo-multiplier tubes.

In each end-cap of the HCAL, there is a Hadronic End-cap Calorimeter (HEC) 1.5
< |η| < 3.2 and a Forward Calorimeter (FCal) 3.1 < |η| < 4.9. The HEC, located
behind the EMEC, uses LAr as active medium and copper as absorber. The FCal
is placed near the beam line and also relies on LAr as active material. It consists
of three modules. The first one is closest to the interaction point. It is designed
for electromagnetic showers and is equipped with copper as absorber material. The
other two modules use tungsten as absorber and perform measurements of the hadronic
showers.

The high radial depth for the TileCal is 7.2 nuclear absorption lengths λ and
the HEC and FCal together provide a depth of approximately 10 λ. This config-
uration ensures that highly energetic jets are contained in the HCAL. The energy
resolution for hadrons of the TileCal, HEC and FCal were determined to be σE/E =
52.7%/

√︂
E(GeV ) ⊕ 5.7% [49], σE/E = 70.6%/

√︂
E(GeV ) ⊕ 5.8% [50] and σE/E =

94.2%/
√︂

E(GeV ) ⊕ 7.5% [51] respectively.

3.2.3 Muon Spectrometer
Although muons deposit a fraction of their energy in the ECAL, they exit the calorime-
try system without being absorbed. To identify them, the ATLAS detector contains a
muon spectrometer located outside the calorimeters. It makes accurate measurements
of their trajectory in the |η| < 2.7 range to determine their momentum. Moreover, it
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triggers on muon tracks for |η| < 2.4.
The muon spectrometer consists of large superconducting toroid magnets and muon

chambers. The magnets provide a magnetic field that is mostly perpendicular to the
muon trajectories and bends the muons into the chambers. In the barrel region |η| <
1.4, the field reaches 0.5 T, whereas in the end-caps region 1.4 < |η| < 2.7 it reaches
1 T. The chambers are arranged in three concentric cylindrical layers in the barrel at
radii of approximately 5 m, 7.5 m and 10 m, and four wheels in each end-cap.

For tracking the muons trajectories, two different types of chambers are used: the
Monitored Drift Tube Chambers (MDTs) and Cathode Strip Chambers (CSCs). MDTs
cover the |η| < 2.7 region and are formed by drift tubes placed perpendicular to the r-z
plane. The tubes are filled with a combination of argon and carbon dioxide mixture,
providing a resolution of 35 µm in the r-z plane. CSCs are installed in the innermost
layer of the end-caps, covering the 2 < |η| < 2.7 range. They are employed due to their
higher rate capability and time resolution. Furthermore, they are built as multi-wire
proportional chambers filled with an argon and carbon dioxide mixture. The resulting
resolution is 40 µm in the r-z plane and 5 mm in ϕ.

For triggering and bunch-crossing identification, Resistive-Plate Chambers (RPCs)
and Thin-Gap Chambers (TGCs) are used. RPCs extend up to |η| ¡ 1.05. They are
composed of parallel electrode plates separated by 2 mm with a 4.9 kV/mm electric
field applied between them. This configuration results in a time resolution of 1.5 ns,
and a hit location resolution of 10 µm in the r-z plane and 10 mm in ϕ. TGCs are
multi-wire proportional chambers employed in the 1.05 < |η| < 2.7 range. They are
filled with a mixture of carbon dioxide and n-pentane, achieving a time resolution of 4
ns. In addition, their hit resolution is 2-6 mm in the r-z plane and 3-7 mm in ϕ.

3.2.4 Trigger System
The LHC delivers a bunch spacing between collisions of 25 ns which corresponds to
collision rates up to 40 MHz. However, the ATLAS detector can only record events
at approximately 1 kHz due to its bandwidth and data storage limitations. Therefore,
the event rate must be reduced. This task is performed by the trigger system which
decides which events are interesting. In Run 2, the trigger system [52] was composed
of two levels. The hardware-based Level-1 (L1) trigger reduces the collision rate to 100
kHz. It uses reduced-granularity information from the TGC, RPC and the calorimeters
to reconstruct high energetic objects such as muons, jets, electrons, photons, τ leptons
or Emiss

T . The decision to keep or reject an event is mainly based on the energy of the
objects in the event and is taken within 2.5 µs. Moreover, the L1 trigger determines
the regions where possible trigger objects were identified referred as Regions-of-Interest
(RoIs) and send them to the High Level Trigger (HLT).

The HLT runs reconstruction algorithms, mainly over the RoIs selected by the
L1 trigger, using the full granularity detector information. As soon as the event is
sufficiently reconstructed, sophisticated selection algorithms are used, reducing the
acceptance rate of L1 trigger to approximately 1 kHz. This selection is done within
200 ms and the selected events are then stored.
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4. Object Reconstruction
The analysis of an event requires that the outputs of the detector must be converted
into physics objects. Section 4.1 provides an introduction to Monte Carlo simulations.
An overview of the reconstruction and calibration of the physics objects used in this
thesis is given in Sections 4.2-4.4. Section 4.5 and 4.6 detail the signal and background
processes, and the cuts applied to each event correspondingly.

4.1 Monte Carlo Simulations
Monte Carlo (MC) simulations are a tool used in high energy physics for a wide range
of purposes such as event selection, background estimation or detector optimization.
They emulate an event from its generation to its corresponding detector output. The
simulation software chain is divided into three steps: the generation of the event,
the simulation of the interactions between the the long-lived final state particles with
the detector, and the digitization of the energy deposited. Furthermore, in order to
compare the simulations to the measured data, they are integrated in the ATLAS
software framework ATHENA [53].

MC simulations use MC event generators to randomly generate the proton-proton
collisions of the LHC, exploiting the MC method [54]. In this step, the incoming and
outgoing particles of the hard scatter event, the initial- and final-state radiations and
the hadronisation process are simulated. Next, the toolkit GEANT 4 [55] is deployed
to simulate the geometry of the ATLAS subdetectors and the interactions of the long-
lived final state particles with them. Finally, the detector hits are digitalized and
transformed into measurable quantities.

4.2 Jet Reconstruction
As introduced in Section 1.1.4, an energetic quark or gluon gives rise to collimated
groups of hadrons (kaons, pions, ...), leptons and photons known as jets. The particles
that form the jet deposit their energy in the calorimeters. The corresponding cells that
have an energy greater than a noise threshold are clustered into topological clusters
known as topo-clusters [56]. They are formed from seed cell that contain more than 4σ
of energy, where σ is the average amount of noise expected in the cell, defined as the
sum of the expected pile-up and electronic noise. The adjacent cells to the seed cell
are added to it if they have at least 2σ of energy. This process ends when there are
no adjacents cells that satisfied that condition. At the end, all cells adjacent to the
topo-cluster are added regardless of their energy [57].

The topo-cluster energy is calibrated either at the electromagnetic (EM) scale,
determined using electons at test beams, or at the local cell weighting scale, which
adjust the average topo-cluster to the hadronic energy scale. Furthermore, the position
of each topo-cluster is rectified so that its four-momentum points to the hard-scatter
primary vertex rather than to the center of the ATLAS detector. This is referred to as
the origin correction.

According to the algorithm used to reconstruct the jet and the object used as input
to the algorithm, the definition of jet varies in collider experiments. At the ATLAS
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Figure 4.1: Stages of jet calibration [56, p.8].

collaboration, anti − kt [58] is the most common. The jets considered in this thesis
are reconstructed by the anti − kt algorithm using topo-clusters calibrated at the EM
scale, and have a radius parameter R = 0.4.

4.3 Jet Calibration
In order that the measured pT of the reconstructed jets coincide with those of the
particles that form them, they must be calibrated. The calibration consists of five
stages which are depicted in Figure 4.1. The first two remove the effect of pile-up on
the measured jet transverse momentum. First, the pile-up contribution is subtracted
using the average energy density (ρ) and the area of the jet (A). Secondly, the residual
dependence of the jet on the expected average number of interactions per bunch crossing
(µ) and the number of reconstructed primary vertices (NP V ) is removed, yielding

pT = preconstructed
T − ρA − α(NP V − 1) − βµ, (4.1)

where α and β are the correction coefficients which are determined performing linear
fits of the jet pT as a function of NP V and µ respectively.

Next, the jet energy scale and the jet direction are corrected to the particle-level
energy scale by comparing the data to the MC simulations. In this way, the difference
of the calorimeter energy response and the various calorimeter granularities are taken
into account. Then, the global sequential correction [59] uses properties of the jets, like
the portion of the jet energy measured in the first layer of the hadronic calorimeter or
the number of tracks of a jet, to account for the jet response dependence on the flavour
of the parton which initiated the jet. Finally, a residual in situ calibration measures
the jet response in data and MC simulation separately and uses the ratio to correct
the data. This final step accounts for differences between the jet response in data and
simulation, which are created by the imperfect simulation of the physics processes, the
detector materials and their interaction with the particles.
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4.4 Missing Transverse Energy
As mention in Section 1.2.1, missing transverse energy is a measure of the transverse
momentum imbalance of the detected particles in an event. It is defined as

Emiss
x(y) = −

∑︂
particles

px(y), Emiss
T =

√︂
(Emiss

x )2 + (Emiss
y )2, (4.2)

consisting of hard terms and a soft term. The first ones correspond to the missing
transverse energy associated to fully calibrated objects such as the photons, electrons,
muons, tau-leptons τ and jets, whereas the soft term accounts for the reconstructed
momentum not associated to any of the hard terms.

Emiss
T = Emiss

T,γ + Emiss
T,e + Emiss

T,µ + Emiss
T,τ + Emiss

T,jets + Emiss
T,soft term. (4.3)

The soft term is mostly reconstructed at ATLAS using the Track Soft Term algo-
rithm. It is based on tracks of the hard scattering vertex and so, it does not take into
account the contribution of neutral particles. Nevertheless, relying on tracks rather
than calorimeter depositions makes it very robust against changing the pile-up condi-
tion.

4.5 Signal and Background Processes
The signal process of this analysis is the invisible decay of a Higgs boson produced
via vector-boson fusion (VBF), which is depicted in Figure 4.2. Its dominant SM
background contribution is a Z boson decaying to a neutrino and anti-neutrino pair,
Z → νν̄, in association with two jets. Exemplary Feynman diagrams are shown in
Figure 4.3. This process yields a signature in the detector equal to the signal process,
turning Z → νν̄ in an irreducible background.

In this analysis, the signal and the background processes are evaluated by MC
samples. For the background, only diagrams where the Z boson is QCD-produced are
included.

Figure 4.2: Tree-level Feynman diagram of the invisible decay of a Higgs boson pro-
duced via VBF according to the SM (left) or decaying into dark matter particles (right)
[60, p.2].
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Figure 4.3: Examples of tree-level Feynman diagrams for the dominant SM background
in the invisible decay of a Higgs boson produced via VBF. The top left diagram is not
included in the MC background sample since only Feynman diagrams where the Z
boson is QCD-produced are considered. [61, p.4].

4.6 Event Selection
The selected events of the MC samples used for the analysis were required to fulfill the
following cuts. It was imposed that for each event there was

• more than one jet,

• a leading jet with pT > 80 GeV,

• a subleading jet with pT > 50 GeV,

• |η| < 4.5 for all jets,

• Emiss
T > 180 GeV.
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5. Higgs to Invisible Enhancement
Using Kinematic Variables
In order to achieve a good separation between Higgs bosons decaying invisibly and its
dominant backgound, Z → νν̄, this thesis engages in multivariate classification meth-
ods based on machine learning techniques. The strategy and workflow of the analysis
are described in Section 5.1. Section 5.2. displays the multivariate analysis results, for
which the data set was split into a training set (90%) and a test set (10%). Finally,
Section 5.3 shows the results of training an autoncoder using kinematic variables.

5.1 Strategy and Workflow of the Analysis
The Higgs boson can be a possible dark matter portal if dark matter particles couple
to it. If this is the case, the branching ratio of invisible Higgs boson decays will be
higher than the one predicted by the SM. However, it is very challenging to measure
Higgs bosons decaying invisibly due to the fact that the signal is around five orders
of magnitude lower than the background. To overcome this challenge, the strategy of
this analysis is to use detector images instead of kinematic variables to try to better
distinguish the invisible decay of a Higgs boson produced via VBF from its dominant
background, a Z boson decaying to a neutrino and an anti-neutrino in association with
two jets. There are two main differences between these process. The first one is the
width of the rapidity gap which is defined as the region between the two jets with the
highest pT (Figure 5.1). The second one is the hadronic activity inside the rapidity
gap since the Z to νν̄ process is expected to have more hadronic activity in this region
due to color exchange.

Figure 5.1: Sketch of the rapidity gap definition.

The workflow of the analysis will be the following. First, a multivariate analysis is
performed and used as a benchmark to compare to the autoencoder results. Then, as
a proof of principle, an autoencoder is trained on event-level variables, such as mjj, in
order to see if it can reproduce high-level quantities. Finally, an autoencoder is trained
using detector images (Chapter 6).
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5.2 Multivariate Analysis Results
The choice of the classification model is decisive for a good signal-background separa-
tion. Here, the performance of a BDT and the rectangular cut classifier using the same
data set are compared. The configuration of their settings is a bit different from the
default one specified in the TMVA users guide [33]. The optimized values are shown
in Table 5.1. In order to avoid a very complex model and overtraining, the maximal
depth of the BDT is set to 3.

Table 5.1: Optimized setting values for the cut classifier and the BDT.

cut classifier BDT
VarTransform = None VarTransform = None
VarProp = FSmart MaxDepth = 3

NTrees = 1000
nCuts = 10
MinNodeSize = 3

The kinematic variables passed as input to the models are: the pT , η and Φ of the
leading and subleading jets, mjj, Emiss

T , |∆η| and the number of jets in the rapidity gap.
The input distributions are displayed in Figure 5.2 and Figure 5.3. The variables with
highest discrimination power are the η of the jets and so, |∆η|. The number of jets in the
rapidity gap also provides a good signal-background separation because more jets are
expected in the rapidity gap in the Z → νν̄ process due to color exchange. Furthermore,
since the jets of dijets events are uniformly distributed in Φ, the Φ distributions is flat
for both events and Φ has no discrimination power.

Figure 5.4 represents the result of the training processes as ROC curves for the
trained models. The closer the curve is to the right corner, the better is the signal-
background separation because the (x,y) = (1,1) point of the graph corresponds to
the case where all background is rejected, while all signal is kept. As it can be seen,
the cut-based classifier performs worse than the BDT since it places a cut on each
variable separately. It is therefore not able to provide a good separation since it does
not take into account correlations between the variables. The BDT yields a very good
separation of signal and background events.

5.3 Input Regeneration Using An Autoencoder
As explained in Section 2.1.2, an autoencoder is able to regenerate the input. The goal
of this test is to exploit this feature in order to reconstruct the MC distributions of the
following kinematic variables: the pT and η of the leading and subleading jets, mjj,
Emiss

T , |∆η| and the number of jets in the rapidity gap. The input is structured in a
”image”, like the one depicted in Figure 5.5, which contains eight pixels, each for one
of the input kinematic variables.

Before the autoencoder is trained, each pixel value is normalized in the following
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Figure 5.2: pT , η and Φ distributions for the leading and subleading jets used as input
for the MVA. The blue distribution corresponds to H → invisible and the red one to Z
→ νν̄.

way

normalized pixel value = x − min(x)
max(x) − min(x) . (5.1)

The data is separated into a training set (90%) and a test set (10%). The training
set is further split into data the model is trained on (80%) and a validation set (20%).
This helps in reducing the chances of overfitting, as the model is being validated on
data that it has not seen before.

The architecture and hyperparameters of the convolutional autoencoder are based
on the ones described in the Datacamp tutorial [62]. The latter are shown in Table 5.2.
Its architecture consists of six convolutional layers interspersed with four max-pooling
layers, converting the input from wide (1 x 8 image) and thin (a single channel) to small
(1 x 2 image at the code layer) and thick (128 channels). The encoder architecture is
made up of three convolutional layers with 32, 64 and 128 filters correspondingly of
size 3x3. The first two layers are followed each one by a downsampling max-pooling
layer which halves the length of the “images”. The decoder has a similar structure
as the encoder. Its convolutional layers are followed by upsampling layers and the
convolutional layers have 128, 64 and 1 filters respectively.

Figure 5.6 and Figure 5.7 show the |∆η| and mjj input MC distributions (blue)
as well as the ones regenerated by the autoencoder (red). The autoencoder is able to
reconstruct the MC distributions of the input kinematic variables in such a way that
no significant deviation is visible.

In order to validate the output of the autoencoder, distributions of variables which
are not part of the training process are investigated. Therefore, the autoencoder net-
work is trained with a different set of eight variables. Instead of using the mjj and
|∆η| variables, the masses of the jets (m1 and m2) are part of the input ”image”.
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Figure 5.3: mjj, Emiss
T , |∆η| and number of jets in the rapidity gap distributions used

as input for the MVA. The blue distribution corresponds to H → invisible and the red
one to Z → νν̄.

Table 5.2: Parameters of the convolutional autoencoder.

Parameters
Batch size = 128
Epochs = 50
loss function = mean squared error
optimizer = RMSprop

The autoencoder architecture and hyperparameters are chosen just as in the autocoder
training described above.

The input invariant mass distribution is compared to the reconstructed distribution
by the autoencoder in Figure 5.8. Although the invariant mass itself is not part of the
input ”image”, the autoencoder is able to reproduce the mjj MC distribution. This
implies that the network is learning the underlying properties for the signal events.
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Figure 5.4: Plot showing the background rejection as a function of the signal efficiency
for the BDT (red) and the cut classifier (black).

Figure 5.5: Example of an input ”image” where each pixel contains the value of one of
the eight kinematic variables of an event.
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Figure 5.6: Comparison of the |∆η| MC distribution (blue) with the |∆η| distribution
predicted by the autoencoder (red), for H→invisible using |∆η| as the input variable.
The lower plot represents the ratio of the input and predicted distributions.

Figure 5.7: Comparison of the mjj MC distribution (blue) with the mjj distribution
predicted by the autoencoder (red), for H→invisible using mjj as the input variable.
The lower plot represents the ratio of the input and predicted distributions.
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Figure 5.8: Comparison of the mjj MC distribution (blue) with the mjj distribution
predicted by the autoencoder (red), for H→invisible where mjj is not an input variable.
The lower plot represents the ratio of the input and predicted distributions.
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6. Higgs to Invisible Separation
Using Images
To determine if the signal to background separation can be improved, an autoencoder is
trained using detector images. Section 6.1 describes the detector images, while Section
6.2 presents the results obtained.

6.1 Detector Images
Instead of kinematic event variables, topocluster energy η x Φ maps (calorimeter im-
ages) or tracks pT η x Φ maps (tracker images), like the ones of Figure 6.1 and 6.2, can
be used as input. One advantage of it is that these images do not rely on a jet algo-
rithm. Therefore, it is possible to go below 17 GeV where there is no jet calibration.
Another benefit is that a description of the new physics that are being looking for is not
needed. Furthermore, images contain more information. However, jet algorithms have
pile-up subtraction. Another disadvantage is that there could be differences between
the data and the MC simulation because the fact that they agree at jet level does not
mean that they agree at cluster level.

It is difficult for neural networks to reconstruct images with many empty pixels.
To make it easier for the autoencoder, so that it does not have to learn the rotational
symmetry of the detector, the detector images were rotated so that the ϕ of the highest
pT jet in the rapidity gap lies at ϕ = 0. Also, the granularity of the tracker images,
∆Φ = ∆η = 0.3, was chosen to be bigger than the ATLAS tracker one so that the
images did not contain that many empty pixels. The granularity of the calorimeter
images is the same as the Level-1 trigger one,

• ∆Φ = ∆η = 0.1 for |η| ≤ 2.5

• ∆Φ = ∆η = 0.2 for 2.5 < |η| ≤ 3.1

• ∆Φ = 0.2 ∆η = 0.1 for 3.1 < |η| ≤ 3.2

• ∆Φ = ∆η = 0.4 for |η| > 3.2

6.2 Autoencoder Results
Regarding its architecture, the autoencoder used for the calorimeter images contains
seven layers with 512, 64, 64, 16, 64, 64, 512 nodes respectively in each layer. These
numbers were chosen trying different configurations, taking into account the size of
the input images. The architecture of the autoencoder used for the tracker images has
the same structure as the one used for calorimeter images, with the difference that the
number of nodes in each layer is different. This is because the tracker and calorimeter
images have different number of pixels. The former are 20 x 20 images, while the latter
are 66 x 64 images. The number of nodes in each layer is 512, 64, 64, 16, 64, 64, 512
respectively. Unlike the autoencoder used for the results display in Section 5.3, these
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Figure 6.1: Example of the calorimeter image of an event where the topo cluster energy
(GeV) is represented.

Figure 6.2: Example of the tracker image of an event where the pT is represented.

are not convolutional autoencoders. Hence, the images are flattened (compressed into
1 x number of pixels images) before entering the autoencoder.

As explained in Section 2.1.2, an autoencoder is able to regenerate the input. How-
ever, in this case, the autoencoder does not reproduce the pixel energy and pT distri-
butions (Figure 6.3). This is due to the fact that there are many empty pixels in the
image. The autoencoder tends to not produce totally empty pixels, but rather fills very
low energies into each. Therefore, all the pixels are triggered (E > 0 or pT > 0) for the
regenerated images (Figure 6.4). Nevertheless, when the detector images are averaged,
the images regenerated by the autoencoder are very similar to the input ones (Figure
6.5). So, the autoencoder regenerates the total energy and pT per image (Figure 6.6).

In order to determine if the autoencoder can yield a better signal-background sep-
aration, the anomaly detection technique is used (Section 2.1.2). First, the data is
separated into a training and test set following the same procedure as in Section 5.3.
Then, the autoencoder is trained with detector images of either H→invisible or Z→ νν̄
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events. In the end, it is tested with H→invisible and Z→ νν̄ events.
Figure 6.7 represents the results obtained as ROC curves. Compared to Figure

5.4, the autoencoders yields a worse signal-background separation than the boosted
decision trees, since there is lower background rejection for same signal efficiency. This
may be because for the training of the boosted decision trees, both processes are used
as input, whereas here only one is employed at a time. Also, the autoencoder performs
worse when it uses tracker images.

Figure 6.3: Energy distributions of the calorimeter (top) and transverse momentum
distributions of the tracker (bottom), in the cases where the autoencoder is trained on
H→invisible data (left) or on Z→ νν̄ data (right).
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Figure 6.4: Number of pixels triggered per image for the calorimeter (top) and the
tracker (bottom) in the cases where the autoencoder is trained on H→invisible data
(left) or on Z→ νν̄ data (right). In the top graphs, all the pixels are triggered for the
regenerated images. In the bottom graphs, that is not the case because a lower limit
has been placed to consider that a pixel is triggered.
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Figure 6.5: H→invisible averaged images for the calorimeter (top) and Z→ νν̄ averaged
images for the tracker (bottom), in the cases where the input images are averaged (left)
and where the reconstructed images are averaged.
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Figure 6.6: Energy per image distributions of the calorimeter (top) and transverse
momentum per image distributions of the tracker (bottom) in the cases where the
autoencoder is trained on H→invisible data (left) or on Z→ νν̄ data (right).
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Figure 6.7: ROC curves for the calorimeter (top) and the tracker (bottom) in the cases
where the autoencoder is trained on H→invisible data (left) or on Z→ νν̄ data (right).
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Conclusion
Autoencoders provide the opportunity to classify images by learning their features. In
this study, an autoencoder for anomaly detection was implemented to investigate if it
was able to better distinguish invisible Higgs boson decays where the Higgs boson is
produced via vector-boson fusion, from its dominant background, Z bosons decaying
into a neutrino and an anti-neutrino in association with two jets. Although the au-
toencoder could regenerate the total energy and pT of the events, it yielded a worst
separation between the two processes than boosted decision trees. These results were
obtained by studying the efficiencies and rejection rates of both algorithms.

In order to extract features and recognize patterns, machine learning algorithms
need a lot of data. If more events where used for the autoencoder during the training
phase, the potential of the autoencoder in the Higgs to invisible enhancement would be
bigger. This is important because, unlike for the boosted decision trees, autoencoders
can only use Higgs or Z events, but not both at the same time, in the training process.
Furthermore, the signal-background separation obtained using the ATLAS tracker im-
ages, which is worse than the one obtained using the ATLAS calorimeter images, could
be improved with a further optimization of the autoencoder architecture, since that
would allow to use a smaller granularity for these images.
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