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Abstract

In this thesis the non-equilibrium dynamics of a three-component, ultracold Bose gas
in one spatial dimension is numerically and analytically studied. Thereby two types
of initial conditions are investigated. In the first case the system is prepared in the
polar phase in which the magnetic-field-dependent components are initially empty.
To compare the influence of vacuum fluctuations with the influence of real particles
we prepare the system in the second case in a state where the side components
are initially weekly occupied. In both cases an external magnetic field is applied
which drives the system out of equilibrium. At early times a primary mode grows
exponentially. Subsequently the particles of this mode interact with the remaining
condensate and with each other and secondary modes get excited. We can calculate
the momenta of these modes analytically and in the case of high densities we can
also determine their growth rates. We compare our results with experiments with
87Rb and find a high agreement between numerical and experimental data. In the
parameter regime of the experiment the primary and the first secondary mode can be
observed in the autocorrelation functions of the densities. At late times topological
defects dominate the system and the spectrum falls off exponentially. The system
stays for long times in a quasi-stationary state.

Zusammenfassung

In dieser Arbeit wird die Nicht-Gleichgewichts-Dynamik eines drei-komponentigen,
ultrakalten Bose-Gases in einer Raumdimension numerisch und analytisch unter-
sucht. Dabei werden zwei Arten von Anfangszuständen verglichen. In einem Fall
wird das System in der polaren Phase präpariert, in der die magnetfeldabhängigen
Komponenten anfangs unbesetzt sind. Um den Einfluss von Vakuumfluktuationen
mit dem Einfluss von realen Teilchen zu vergleichen, wird das System im zweiten
Fall in einen Zustand präpariert, in dem die Seitenkomponenten anfangs schwach
besetzt sind. In beiden Fällen wird das System durch ein äußeres Magnetfeld aus
dem Gleichgewicht gebracht. In der Anfangsphase kann die Anregung einer primären
Mode beobachtet werden. Anschließend wechselwirken die Teilchen dieser Mode
mit dem restlichen Kondensat und mit sich selbst und es werden sekundäre Moden
angeregt. Die Positionen der Peaks können analytisch berechnet werden und im
Falle von hoher Dichte können auch ihre Wachstumsraten bestimmt werden. Es
kann eine große Übereinstimmung der numerischen Daten mit Ergebnissen von
Experimenten mit 87Rb gefunden werden. Mit den Parametern, die im Experiment
genutzt werden, kann die primäre Mode und die erste sekundäre Mode in den Auto-
korrelationsfunktionen der Dichten beobachtet werden. Zu späten Zeiten wird das
System von topologischen Defekten dominiert und das Spektrum fällt exponentiell
ab. Das System bleibt für lange Zeiten in einem quasi-stationären Zustand.
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1

Introduction

In modern physics all fundamental particles can be divided into two categories:
bosons with integer spin (0, 1, 2, · · · ) and fermions with odd half-integer spin
(1/2, 3/2, · · · ). Presumably the most important difference between them is
that fermions can occupy each quantum state only once, while bosons can
have any number of particles in a single quantum state. This led Satyendra
Nath Bose and Albert Einstein already in 1924 to the prediction of a new
state of matter for bosons [1, 2] in which a single quantum state of a system is
occupied by a macroscopic number of particles. Nowadays this state is called
Bose-Einstein condensate (BEC) and can be reached by cooling a gas of bosons
to temperature close to absolute zero. In this case, a large fraction of particles
occupy the state with the lowest energy.

The first time a BEC was created in laboratory was in 1995 [3]. 87Rb atoms
were captured in a magnetic trap and subsequently evaporatively cooled down
below the critical temperature. This systems have the disadvantage that
interactions, which change the hyperfine state of the atoms, lead to untrapped
states. One can remove this limitation by using only optical traps. This was
first achieved in 1998 using 23N atoms [4]. Bose gases with several hyperfine
states can be described in a spin basis and are therefore called spinor BEC.
Above the critical temperature the condensate has a SO(3) × U(1) symmetry,
which is spontaneously broken at lower temperatures. The number of ground
states depends on the number of hyperfine states and can be further increased
by an external magnetic field, which changes the energy of the hyperfine states.
The occupation number of each magnetic sublevel can change during the time
evolution via spin-changing collisions.

Today BECs are a great tool to study strongly isolated, many particle quantum
systems. A high controllability gives the possibility to prepare the systems in
a wide range of initial conditions and drive it subsequently out of equilibrium.
This allows the study of many different non-equilibrium phenomena. They
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Chapter 1 Introduction

can be used to investigate phase transitions [5, 6], prethermalised states [7, 8]
and so called non-thermal fixed points (NTFP) [9–11]. Also the formation of
topological defects such as solitons [12, 13], vortices [14] and domains [15, 16]
can be observed. The defects can play an important role in the time evolution
of the condensate [17]. It was shown that universal behavior can occur at
NTFPs [11, 13, 17–19]. During the non-equilibrium dynamics many physical
observables behave almost identical for a wide range of initial conditions. They
only depend on the dimension of the system and the symmetry of the order
parameter.

In this thesis, we concentrate on the spin-1 system in one spatial dimension.
The order parameter is a vectorial quantity, whose components are given
by the hyperfine states of the Bose gas. The number of hyperfine states is
given by 2F + 1 = 3, where F = 1 is the spin of the atoms. Without an
external magnetic field this system has two different ground states [20, 21]:
the anti-ferromagnetic state, in which the spin of the system vanishes, and
the ferromagnetic phase, in which the spin is fully polarized and point into
an arbitrary direction. If the spin of the system is conserved this can lead to
domain formation [22]. A magnetic field breaks the SO(3) symmetry of the
system to SO(2) ⋊ Z2

1 and increases the number of phases in the equilibrium
phase diagram to four [23].

The high number of degrees of freedom make spinor Bose gases to a very
interesting system. The high amount of equilibrium ground states allow the
study of various phase transitions of different order [24, 25]. Another interesting
possibility is the investigation of spin turbulence [26–28]. Thereby the system
can create a large number of topological defects [14] which can not occur
in scalar systems such as fractional vortices [23, 29, 30]. The possibility to
describe the state of the condensate using a spin basis allows the comparison
with condensed matter physics [31].

In this work, we use analytic and numerical tools to study the non-equilibrium
dynamics of 87Rb atoms after a quench. The initial conditions and the param-
eters are motivated by experiments of the group of Prof. Markus Oberthaler
[32]. In the experiment 87Rb atoms in F = 2 are captured in an optical trap.
High magnetic fields are used to shift the energy levels of the m = ±2 states
far away from the rest of the system. For short times this modes decouple
from the system and no occupation can be observed. Hence the experiment
can be described effectively by a three component system. For the parameter
of the effective description the system can have two different ground states
depending on the external magnetic field: the polar phase, in which all particles

1The symbol ⋊ indicates the semi-direct product. It denotes that the two symmetries are
not independent, but the elements of Z2 have an influence on the elements of SO(2).
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are in m = 0 and the paramagnetic phase, in which all particles are equally
distributed in the side modes.

In the experiment two different initial conditions are used. In the first case the
particles are prepared in the polar phase, in which only the m = 0 hyperfine
state is occupied. The side modes are initially empty and there are only
vacuum fluctuations present. In the second case the system is first prepared in
the polar phase and subsequently a radio-frequency-pulse is used to transfer
some particles into the side modes. This corresponds in spin space to a rotation
around the x-axis. In this work, we call this seeded initial conditions, while
the first case is called unseeded. The idea of these two preparations is to study
the differences between a classical seed with real particles and a quantum seed
in which only vacuum fluctuations are present. Where possible, we compare
the results of the simulations and the experiment.

The evolution of early times can be described by Bogoliubov theory [33, 34].
It can be used to calculate the infrared modes of the Bose gas. If the system
is driven out of equilibrium, some of these get unstable and start to grow
exponentially. This can be observed in the occupation spectra n(k) of the
Bose gas.

This thesis starts with Hamiltonian description of a Bose gas in the F = 1 and
F = 2 states (Chap. 2). The different terms and their physical meaning are
discussed. This leads to the phase diagram and the ground states of the different
phases. In the end we discuss how to describe the F = 2 system with three
components. Chap. 3 gives a short description of the experimental setup and
the used parameters. Also the numerical methods and their implementation
are discussed.

In Chap. 4 we take a detailed look at Bogoliubov theory for F = 1. After a
general discussion we focus on the Bogoliubov modes of the polar phase. We
find that some of them get unstable for certain magnetic fields. Thereby the
momentum region of unstable modes depend on the strength of the magnetic
field. In the end we compare the theory of F = 1 and F = 2 and see that they
predict the same results in the early time evolution.

The numerical results for the quench from the polar phase is discussed in
Chap. 5. One can observe pattern formation and the excitation of the Bogoli-
ubov modes. This mode interact with the remaining condensate and with each
other and create secondary modes, which are not predicted by Bogoliubov.
These modes can grow even faster than the primary modes. Such secondary
excitations can also be found studying parametric resonances in quantum field
theory [35–37]. Parametric resonances can be used to describe the preheating
process of the universe after inflation [38–40] or the non-equilibrium time
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Chapter 1 Introduction

evolution of heavy ion collisions [41, 42]. We compare both the position and
the growth rates of the modes with theory. Thereby we find that the latter
depends on the density on the condensate. At later times the time evolu-
tion of the system slows down. The occupation numbers of the modes stay
almost constant. The occupation spectra of all modes fall off exponentially
n(k) ∼ exp(−k−1). The system is dominated by topological defects and one
can observe soliton-like excitations. In the end we compare the density-density
correlations calculated in the simulations with results of the experiment. We
find a high agreement between the data, if we use slightly different parameters
as calculated for the experiment.

The time evolution of the seeded initial conditions shows new phenomena and
is discussed in Chap. 6. In the beginning large particle oscillations between the
m = 0 component and the two side components can be observed. They can be
described in a single mode approximation, which is solved by complete elliptical
integrals of the first kind [43]. The oscillation can also be seen in the experiment,
where they have very similar frequencies. At later times this approximation
breaks down and excitations comparable to the unseeded case can be observed.
The excitations appear at later times and have slightly higher momenta. There
are also new excitations, which can be explained by interactions of the small,
initial condensate in the side modes with the excitations already known from
the unseeded case. The comparison of the density-density correlations with
results of the experiment show a high agreement, if we use the same parameters,
which we used to reproduce the data in the unseeded case. In the last chapter
(Chap 7) we summarize our results.
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2

The System

The aim of this work is to get a better understanding of the non-equilibrium
dynamics of 87Rb atoms in the hyperfine states of F = 2 after a quench.
Initially and during early states of the time evolution the m = 2 and m = −2
components are unoccupied. They decouple from the rest of the system. Hence
an effective description as a spin-1 Bose-Einstein condensate with only three
hyperfine states m = −1, 0, 1 is possible. In this chapter, we investigate both
at the Hamiltonian of the F = 1 and F = 2 system and discuss the effective
description of the F = 2 system. This leads us to the phase diagram in F = 1.
Throughout this thesis we work in units where ℏ = 1.

2.1 Hamiltonian

Weakly interacting Bose-Einstein condensates are well described by non-
relativistic scalar field theories. Each component of the condensate corresponds
to one component of the field ψ̂i(t,x). The fields fulfill the usual anticom-
mutator relation of bosons: [ψ̂i(t,x), ψ̂j(t′,y)] = iδi,jδ(t − t′)δ(x − y). In
this work, we want to describe the F = 2 system, which has five hyperfine
states, by a system with only three components. Both the Hamiltonian of the
five-component and of the three-component system can be divided in three
parts

Ĥ = Ĥ0 + ĤI + ĤZ . (2.1)

Ĥ0 is the free Hamiltonian of a non-interacting particle. It consists of the
kinetic term and the external potential U(r). It is given by

Ĥ0 =
∫

dr
F∑

m=−F
ψ̂†
m

[
− ∇2

2M + U(r)
]
ψ̂m , (2.2)
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Chapter 2 The System

where M is the mass of an atom. ĤI is the interaction part. It can be divided
in the different spin channels with total spin Fc. There are 2F channels and
the magnetization M of each channel can take values between −Fc and Fc:

ĤI =
2F∑
Fc=0

gFc

2

Fc∑
M=−Fc

⟨FmFm′|FcM⟩ ⟨FcM |FµFµ′⟩∫
dr ψ̂†

m(r)ψ̂†
m′(r)ψ̂†

µ(r)ψ̂†
µ′(r) . (2.3)

The Glebsch-Gordon coefficients ⟨FmFm′|FcM⟩ ⟨FcM |FµFµ′⟩ are needed.
ĤZ describes the Zeeman energy of the system with the linear Zeeman effect p
and the quadratic Zeeman effect q,

ĤZ =
∫

dr
F∑

m=−F
ψ̂†
m

[
−pm+ qm2

]
ψ̂m . (2.4)

Here we rotate the coordinate system such that the magnetic field points in
z-direction.

2.1.1 Interactions

The interaction part Eq. (2.3) is divided into spin channels with total spin
Fc. The corresponding coupling strength is gFc = 4πaFc/M , where aFc is the
s-wave scattering length of the spin channel with total spin Fc. Since we
consider only s-wave scattering, all channels with odd Fc vanish. Hence we
only have the case Fc ∈ {0, 2} in F = 1 and Fc = {0, 2, 4} in F = 2. It is
possible to rearrange the terms to make the expression more simple. In the
F = 1 system we obtain one term that is proportional to the square of the
total density and one term that is proportional to the square of the spin of
the system:

ĤF=1
I = 1

2

∫
dr

[
c0 : ρ̂(r)ρ̂(r) : +c1

∑
µ=x,y,z

: F̂µ(r)F̂µ(r) :
]
, (2.5)

where ρ̂(r) = ∑
i ψ̂

†
i (r)ψ̂i(r) and : : denotes normal ordering. This means that

all creation operators in this expression are on the left and all annihilation
operators are on the right. We introduce the spin-independent and spin-
dependent coupling constants:

c0 = g0 + 2g2

3 c1 = g2 − g0

3 (2.6)
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The spin vector is given by F̂µ = ψ̂†
mfµψ̂m, where fµ are the spin-matrices

(µ = x, y, z). They full fill the spin angular momentum algebra su(2): [fµ, fν ] =
iϵµ,ν,λfλ. In F = 1 they are given by

fx = 1√
2

0 1 0
1 0 1
0 1 0

 , fy = i√
2

0 −1 0
1 0 −1
0 1 0

 , fz =

1 0 0
0 0 0
0 0 −1

 (2.7)

Therefore the spins are given by

F̂x = 1√
2
(
ψ̂†

0(ψ̂1 + ψ̂−1) + (ψ̂†
1 + ψ̂†

−1)ψ̂0
)
, (2.8)

F̂y = i√
2
(
ψ̂†

0(ψ̂1 − ψ̂−1) − (ψ̂†
1 − ψ̂†

−1)ψ̂0
)
, (2.9)

F̂z = ψ̂†
1ψ̂1 − ψ̂−1ψ̂

†
−1 . (2.10)

All interactions, which are included in the c0 term, do not change the hyperfine
states of the particles. On the other hand there are both spin-changing and
spin-preserving interactions in the c1 term. To see them we write down the
second expression in brackets of Eq. (2.5)) explicitly:

c1 :
[
2ψ̂†

0ψ̂
†
0ψ̂1ψ̂−1 + 2ψ̂†

1ψ̂
†
−1ψ̂0ψ̂0 + ρ̂0(ρ̂1 + ρ̂−1) + (ρ̂1 − ρ̂−1)2

]
: . (2.11)

The first two terms describe spin-changing collisions. There are only interac-
tions allowed which preserve the total angular momentum of the system. Two
atoms in the m = 0 state can interact so that one of them goes into the m = 1
and the other in the m = −1 state, and vice versa. In the F = 2 system
more spin-changing interactions are possible. The last two terms describe
interactions, where the hyperfine states do not change, but they also can have
a strong influence on the system. The last term for example can cause the
formation of spin-z domains if c1 < 0.
The spin of the system depends both on the occupation and on the phases
of the three modes. To get a better understanding, we look at a general
normalized state (|ψ|2 = 1). We can take out one global phase

ψ = (√ρ1e
iφ′

1 ,
√
ρ0e

iφ0 ,
√
ρ−1e

iφ′
−1)

= eiφ0(√ρ1e
iφ1 ,

√
ρ0,

√
ρ−1e

iφ−1) , (2.12)

with (φ1 = φ′
1 −φ0, φ−1 = φ′

−1 −φ0 and ρm ∈ R). Inserting this into Eqs. (2.8))
– (2.10) results in

Fx =
√

2√
ρ0

√
ρ−1 cos (φ−1) +

√
2√

ρ0
√
ρ1 cos (φ1) , (2.13)

Fy =
√

2√
ρ0

√
ρ−1 sin (φ−1) −

√
2√

ρ0
√
ρ1 sin (φ1) , (2.14)

Fz = ρ1 − ρ−1 . (2.15)
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m = 0

m = 1
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q > 0
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Figure 2.1: Energy levels and spin-changing interactions in F = 1 hyperfine
splitting. The energy difference between the three hyperfine states depends on the
Zeeman effect. The linear part lowers the energy of m = −1 by p and increases the
energy of m = −1 by the same amount. It has no influence on the spin-changing
collisions. The quadratic part q shifts energy of both side modes in the same
direction. For q < 0 one atom in each side component has a lower Zeeman energy
than two atoms in the m = 0 component. For q > 0 it is the other way around.

In contrast to the two component system, where the absolute value of the spin
is always 1/2 and only the direction can change, here it is possible to have
spin zero. This is for example the case for φ1 = 0, φ−1 = π and ψ1 = ψ−1 or
for the state, in which all atoms are in the m = 0 component.

The states with fully polarized spin in x-,y- and z-direction are given by

ψFx=1 =

0.5√
2

0.5

 , ψFy=1 =

 0.5
i
√

2
−0.5

 , ψFz=1 =

1
0
0

 . (2.16)

For F = 2 an additional term is needed to describe all interactions:

ĤF=2
I = ĤF=1

I + 1
2

∫
dr

[
c2Â

†
00(r)Â00(r)

]
. (2.17)

There Â00 = ∑F
m=−F (−1)F−mψ̂−mψ̂m is the singlet-pair operator proportional

to a third coupling constant c2. The coupling constants in F = 2 are given by

c0 = 4g2 + 3g4

7 , c1 = g4 − g2

7 , c2 = 7g0 − 10g2 + 3g4

35 . (2.18)

There is also a different convention, where a factor 1/5 from the coupling c2 is
already included in the definition Â00(r).
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2.1 Hamiltonian

2.1.2 Zeeman Effect

For a suitable description of our system we have to consider the Zeeman effect
up to second order. The linear effect lowers the energy of the m = −1 state
by p = −gFµBB and increase the energy of the m = 1 state by the same
amount. B is the magnetic field, gF the Landé g-factor, µB = e/2me the Bohr
magneton, e the elementary charge and me the mass of the electron. Since the
total spin in z-direction is conserved in our system, also the energy given by
the linear Zeeman effect stays constant. The only effect of the linear Zeeman
shift is a rotation of the spin vector around the magnetic field with the Larmor
frequency ωL = p. By transforming into the rotating frame of reference we can
neglect p. On the other hand the quadratic Zeeman-effect q = (gFµBB)2/∆Ehf
plays an important role. Here ∆Ehf is the hyperfine splitting energy. In F = 1
it shifts the energy of both side modes in the same direction. This is illustrated
in Figure 2.1. A negative q lowers the energy of the side modes with respect
to m = 0. This means that two particles in the m = 0 component can lower
their Zeeman energy by a spin-changing collision into the side components.
For positive q it is the other way around. Therefore q plays an important role
for the ground state of the system (see Section 2.2).
The full Hamiltonian in F = 1 is given by

Ĥ =
∫

dr
1∑

m=−1
ψ̂†
m

[
− ∇2

2m + U(r) − pm+ qm2
]
ψ̂m

+ c0

2 : ρ̂(r)ρ̂(r) : +c1

2
∑

µ=x,y,z
: F̂µ(r)F̂µ(r) : . (2.19)

In the following we want to consider the case where we have no external
potential U(r) = 0. Then the equations of motions for the three components,
which are also called Gross-Pitaevskii equations, are given by:

i
∂ψ1

∂t
=
(

− ∇2

2M + c0ρ+ c1Fz − p+ q

)
ψ1 + c1√

2
(Fx − iFy)ψ0 , (2.20)

i
∂ψ0

∂t
=
(

− ∇2

2M + c0ρ

)
ψ0 + c1√

2
((Fx + iFy)ψ1 + (Fx − iFy)ψ−1) , (2.21)

i
∂ψ−1

∂t
=
(

− ∇2

2M + c0ρ+ c1Fz + p+ q

)
ψ−1 + c1√

2
(Fx + iFy)ψ0 . (2.22)

2.1.3 Effective Description of the F = 2 System

As already mentioned, we want to describe the early stage of the time evolution
of the F = 2 system with only three components. Since the occupation numbers
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Chapter 2 The System

Paramagnetic Ψ ∼

 1
0
1



Ferromagnetic Ψ ∼

 1
0
0



Polar Ψ ∼

 0
1
0



Broken
Axisymmetry

ΨBA ∼
(

sin(Θ)√
2 , cos(Θ), sin(Θ)√

2

)
with Θ =

√
1
2 + q

4nc1

q = −2c1ρ

Quadratic
Zeeman shift q

Spin-coupling constant c1

Figure 2.2: Phase diagram for the ground state in F = 1 without linear Zeeman
effect p = 0, positive spin independent coupling c0 > 0 and a vanishing total
magnetization in z-direction

∫
dV FZ = 0. The ground state depends on the spin-

coupling constant c1 and the quadratic Zeeman-effect q. There are four different
phases. The phase transition between the polar phase and the broken axisymmetric
phase is of second order. All other transitions are of first order.

of the m± 2 sublevels vanishes, we can neglect all terms including ψ±2. The
remaining terms can also be found in the Hamiltonian of F = 1. We can find
effective coupling constants by comparing the prefactors of these terms:

cF=1
0,eff. = cF=2

0 + cF=2
2 = 7g0 + 10g2 + 18g4

35 , (2.23)

cF=1
1,eff. = 3cF=2

1 − cF=2
2 = 12(g4 − g2) + 7(g2 − g0)

35 . (2.24)

2.2 Phase Diagram

In this section, we discuss the phase diagram for the F = 1 system. We only
consider the case where the spin independent coupling constant c0 is positive
and the total longitudinal magnetization vanishes ⟨Fz⟩ = 1/V

∫
dV Fz = 0.

Since the magnetization in z-direction is conserved, the ground state depends
on the initial value of ⟨Fz⟩. In this work, we study initial conditions with
⟨Fz⟩ = 0. This ensures that the total number of atoms in the side components
is always equal.

If there is no external field, the system has two ground states: the ferro-
magnetic state for c1 < 0 and the anti-ferromagnetic state for c1 > 0. In the
ferromagnetic ground state the spin is fully polarized and points in an arbitrary
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2.2 Phase Diagram

direction. The ground state spontaneously breaks the SO(3) symmetry. In
the anti-ferromagnetic case the spin vanishes and the symmetry is preserved.

If an external magnetic field is applied the SO(3) symmetry is explicitly broken
to SO(2) ⋊ Z2. Here Z2 ∼= {1, exp(−ifxπ)} and ⋊ is the semi-direct product.
The system has four phases and the ground state depends on c1 and q. For
q < 0 the spin-changing interactions into the side modes decrease the Zeeman
energy of the system and for q > 0 the Zeeman energy is lowered by a high
occupation of m = 0. For c1 < 0 the formation of a spin in the system is
energetically preferred. For c1 > 0 the ground state has no spin. Therefore
the occupation of both side modes is identical. Figure 2.2 shows the phase
diagram for F = 1.

We now want to discuss the equilibrium ground states, if an external magnetic
field is applied. First we look at the case q > 0 and c1 < 0. In the ground
state all particles are in the m = 0. This is called the polar state

ΨPolar = √
ρ

 0
eiϕ0

0

 , (2.25)

which has no magnetization. If we keep c1 positive and go to negative q the
ground state has again no spin but this time all particles are in the side modes.
This is the paramagnetic phase

ΨParamagnetic =
√
ρ

2

 eiϕ1

0
eiϕ−1

 . (2.26)

For q < 0 and c1 < 0 also all particles are in the side mode, but a spin in the
system is preferred. Hence the system creates domains, where the spin points
in positive and negative z-direction. It is the ferromagnetic phase:

ΨFerro, ↑ = √
ρ

 eiϕ1

0
0

 ΨFerro, ↓ = √
ρ

 0
0

eiϕ−1

 (2.27)

The last case is q > 0 and c1 < 0. Here are two conflicting effects. Because of
the negative Zeeman effect the m = 0 mode is energetically preferred. On the
other hand the state with all particles in m = 0 has no spin. Therefore the
system stays in the polar phase for large negative Zeeman effect q > −2c1ρ.
For small values 0 > q > −2c1ρ the ground state of the system has a spin
in the x-y-plane. The spin can point in any direction in this plane. Hence
the SO(2) symmetry of the system is spontaneously broken. This phase is

11



Chapter 2 The System

therefore called broken-axisymmetry phase

ΨBA = √
ρeiϕ0


sin(Θ)√

2 e−iϕz

cos(Θ)
sin(Θ)√

2 eiϕz

 , (2.28)

where Θ =
√

1
2 + q

4nc1 . ϕz determines the direction of the spin. The length of
the spin is given by

|Fµ|2 = 1 −
(

q

2c1ρ

)2

. (2.29)

There is a second order phase transition between the polar phase and the
broken-axisymmetry phase. All other transitions are of first order.

For 87Rb in F = 1 the spin-dependent coupling c1 is negative. Hence its phases
are described by the lower part of the diagram in Figure 2.2. On the other
hand c1 is positive in the effective description of 87Rb in F = 2 (Eqs. (2.23)
and (2.24)). Hence the ground states are described by the upper part of the
diagram. In this work, we study the phase transition from the polar phase to
the paramagnetic phase in detail.

12
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Method

3.1 Experimental Setup and Parameters

One part of this work is the comparison of the simulations with experiments
performed by the group of Prof. Markus Oberthaler [32]. In the experiments
87Rb atoms in F = 2 are captured in a longitudinal, cigar-shaped trap. The
trap frequencies in radial direction are both ω⊥ = 130 Hz and the one in
longitudinal direction is ω∥ = 2.2 Hz. The radial radius of the condensate is of
the order of the healing length and most excitations in these directions are
frozen out (more details in Sec. 3.1.1). Therefore we can describe the Bose gas in
a one dimensional framework. The density of the condensate is approximately
described by a Thomas-Fermi distribution. In this approximation one assumes
that all particles have zero momentum. For one dimensional system the time
independent state is given by

(U(x) + c0ρ(x) − µ)ψ(x) = 0 , (3.1)

where U(x) = M
2 x

2ω2
∥, µ is the chemical potential and we neglect the c1 term,

which is zero for our initial conditions. We get the density by setting the terms
in brackets to zero

ρ(x) = 1
c0

(
µ− M

2 x2ω2
∥

)
. (3.2)

The roots of the density correspond to the radius of the condensate

RTF =
√√√√ 2µ
Mω2

∥
. (3.3)

If the number of particles N in the condensate is known one can use the
condition ∫ RTF

0
dx ρ(x) = N

2 (3.4)

13
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to calculate the chemical potential µTF

µTF =
(

3
4
√

2
√
Mc0ω∥N

) 2
3

. (3.5)

In the experiment the total length of the trap is ∼ 250 µm. To minimize the
effects of the trap, all analyses in the experiment use only the central 125 µm.
In the TF approximation the density varies by 25% in this region.
There are four parameters in the Hamiltonian Eq. (2.19), which have to be
determined: The density ρ, the magnetic Zeeman effect q, the spin-independent
coupling c0 and the spin dependent-coupling c1. The number of particles in
the central area of the trap can be tuned. Typically values between 20000
– 35000 are used. There are particle losses in the experiment. The number
of particle decreases by approximately 10% – 20% in 100 ms. If not stated
otherwise we use in our simulations a homogeneous density corresponding
to 25000 particles, which evaluates to a linear density of 200 · 106 m−1. We
compare our results mainly with experiments using a similar density.
To calculate the q value, which we use in the simulation, we have to consider
not only the quadratic Zeeman effect qB described in Sec. 2.1.2, but also an
additional effect qEM induced by a linearly polarized microwave field. The
quadratic Zeeman effect shifts the energies of m = ±1 by qB and the energies
of m = ±2 by 4qB with qB = (gFµBB)2/∆Ehf. For F = 2 we have gF = 1/2
and Ehf = −6.8 GHz. In the experiment high magnetic fields are used to
shift the m = ±2 modes far away from the rest of the system. These modes
effectively decouple from the system in the early time evolution. But it also
results in high energy differences between the remaining three modes. To
reduce them the additional linearly polarized microwave field is used. This
field shifts the energy of the m = 0 state and is used to reduce the energy
differences between m = 0 and m = ±1. It is calculated by qEM = −Ω2/(4δ).
Ω is the Rabi frequency and δ the detuning. In the experiment δ is used to
change q = qB + qEM. Typical values for q are between 0 and 30 Hz.
The coupling constants of 87Rb in F = 2 can be calculated using Eq. (2.18).
For F = 2 the scattering lengths are: a0 = 87.4 ± 1.0 aB, a2 = 92.4 ± 1.0 aB
and a4 = 100.5 ± 1.0 aB [25]. Here aB = 5.29 · 10−11 m is the Bohr radius. We
use these values for the calculation of c0. To get c1 and c2, the difference of
the scattering lengths are needed. Thereby the errors, which are on the order
of 1% for the scattering lengths, add up and get very large. To calculate c1
and c2 we use therefore direct measurements of (a2 − a0) = 3.51 ± 0.31 aB and
(a4 − a2) = 6.95 ± 0.35 aB performed by Widera et al. [44].
The coupling constants in F = 2 can then be used to calculate effective
coupling constants in F = 1 as described in Eqs. (2.23) and (2.24). Finally
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87Rb c0 c1 c2
F = 1 8.451 0.030 -
F = 2 8.033 0.083 -0.009

F = 2 eff. 8.024 0.258 -

Table 3.1: Coupling constants for 87Rb in one dimensional trap with radial trap
frequencies ω⊥ = 126 Hz in units of ℏ/(µm). The couplings for F = 1, F = 2
and the effective description of the F = 2 system are given. The values are taken
from [25, 44]. For F = 1 we used: a0 = 101.8 ± 0.2 aB, a2 = 100.4 ± 0.1 aB and
a2 − a0 = −1.07 ± 0.07 aB. The values for F = 2 are given in the text.

one has to convert these 3D couplings into 1D couplings

c(1D) = c(3D)
2πr2

∥
, (3.6)

where the radius of the condensate in vertical direction r∥ = (Mω⊥)−0.5 is
needed. The values can be found in Table 3.1. The healing length of the system
depends on the density. For a density of 200 · 106 m−1 the healing length is
ζ = 1/

√
2Mρ0c0 = 0.48 µm and the spin healing length ζS = 1/

√
2Mρ0c1 =

2.66 µm.

3.1.1 Validity of the 1D Description

The 1D approximation is only valid, if the condensate is confined in the vertical
directions strongly enough. This requires that the chemical potential is smaller
than the trap frequency

Nasr⊥

r2
∥

≪ 1 , (3.7)

r⊥ =
√

1
Mω⊥

= 0.96 µm , (3.8)

r∥ =
√

1
Mω∥

= 7.32 µm , (3.9)

where as is the s-wave scattering length. It is as = 95.6 aB for the spin-
independent and as ∼ 3.7 aB for the spin-dependent scattering length. For
25000 particles we get

Nasr⊥

r2
∥

= 2.27 , (3.10)

Nasr⊥

r2
∥

= 0.088 . (3.11)
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Initial states :
Coherent

Wigner-distributed

x

t

Time evolution:
Gross-Pitaevskii equations

Average over
final states

gives observables

Figure 3.1: Illustration of the truncated Wigner method: The time evolution of
a large sample of initial states, given by the Wigner distribution, is calculated by
the Gross-Pitaevskii equation. Physical quantities are obtained by averaging over
all trajectories.

Spin excitations have larger length scales than density excitations. The
former are frozen out in the radial directions. However, the approximation
fails for density fluctuations. We will see in Chap. 4 that the dominant
excitations in our parameter regime are spin fluctuations. Some phenomena
show small quantitative deviations between the experiment and the simulations.
Presumably the agreement can be improved, if the finite radial extension of
the trap is taken into account.

3.2 Truncated Wigner Method

In this work we simulate the time evolution of an ultracold Bose gas. Thereby
we are interested in the low-momentum region of the gas where the occupation
numbers of the momentum modes are high. It was shown that the time
evolution of this region is very well described by classical fields [45–48]. In
our simulations we use the truncated Wigner approximation (TWA) [45, 49]
which is a quasi-classical, statistical approach where quantum fluctuations are
included into the initial conditions but the propagation of the fields is entirely
classical. The method approximates the time evolution of the Wigner function
which is a unique phase space representation of the density matrix. It can
be found for each density matrix by a Weyl transformation. In the limit of
small temperatures the infrared modes of an ultracold Bose gas are strongly
occupied and the gas is well described by a coherent state which has a positive
definite Wigner function. In this case the Wigner function is a probability
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distribution. Because of the uncertainty principle the Wigner function always
has a finite width in phase space which corresponds to quantum fluctuations.
Therefore the TWA goes beyond mean field calculations and takes a wide
range of quantum effects into account. In the TWA the time evolution of
the Wigner function is decomposed into the evolution of a sample of classical
fields, which evolve according to the Gross-Pitaevskii equations Eqs. (2.20) –
(2.22). Thereby the Wigner function gives the probability distribution of the
initial states of the fields. Physical quantities are obtained by averaging over
the whole sample. The described procedure is sketched in Figure 3.1.

To implement the initial states we expand the field in a series of mode func-
tions M

ψm(ri) =
∑
i

Mi,m(ri)αi,m , (3.12)

where α2
i are the coefficients of the modes. They include both the initial

occupations of the modes and the quantum fluctuations. In this work we
expand the field in Fourier modes to implement the initial state. We start with
a perfect Bose condensate in which only the modes M0,m corresponding to the
k = 0 modes are initially occupied. We have to set quantum fluctuations in
all other modes Mj,m (j > 0). Therefore we set in the coefficients αj,m (j > 0)
Gaussian distributed, uncorrelated noise

⟨αi,m⟩ = 0 , (3.13)

⟨αj,nαi,m⟩ = 1
2δn,mδi,j . (3.14)

The average occupation corresponds to half a particle per mode.

3.3 Numerical Implementation

In this work, we solve the equations of motion (2.20) – (2.22) for the three
condensates numerically. A one dimensional grid consisting of either NS =
16384 or Ns = 8192 grid points and periodic boundary conditions is used. The
distance between two grid points has to be smaller than the condensate healing
length, which is the smallest physical length scale of the system. The number
of grid points corresponding to the healing length varies in this work but we
use at least ξ ≈ 8 grid points.

To simulate the time evolution we use the split step method, which keeps the
energy and the particle number of the system numerically conserved to double
precision. This method takes advantage of the fact that the kinetic part of
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the Hamiltonian is diagonal in momentum space, while the potential energy
part is diagonal in position space. The Hamiltonian is divided into two parts:
H = T + V . T is the kinetic energy

Ti,j = δi,j
∆2

2M (3.15)

and V includes the Zeeman effect, the interactions and, if present, the trap
U(r):

V =


c0ρ+ q + c1Fz + U(r) c1√

2(Fx − iFy) 0
c1√

2(Fx + iFy) c0ρ+ U(r) c1√
2(Fx − iFy)

0 c1√
2(Fx + iFy) c0ρ+ q − c1Fz + U(r)

 .

(3.16)

Using the Baker-Campbell-Hausdorff formula we can approximate the time
evolution as follows:

ψi(r, t+ ∆t) = e−iHi,j∆tψj(r, t)
= e−iTi,k∆t/2e−iVk,l∆te−iTl,j∆t/2ψj(r, t) + O(∆t)3) . (3.17)

The two exponential parts including T can be easily calculated in Fourier
space, where we simply have T = k2/(2M). Here we can use the very effective
"Fast Fourier Transformation" (FFT) [50] to switch between real and Fourier
space. This algorithm stays very fast for large grids. The time needed to
transform a grid with n grid points scales as O(n log(n)). The algorithm for
the multiplication with exp (−iV∆t) is more complicated. Here we sketch it
only briefly: In each time step the eigenvalues of V are calculated using a
numerical stable expression taken from McKelvey [51, 52]. Then one can use
Putzer algorithm [53], which gives an explicit expression for all nine matrix
elements (e−iV∆t)i,j. More details to this method can be found in the work
of S. Heupts [54], who implemented a large extend of the used code. Since
each time step begins and ends with the multiplication of e−iTl,j∆t/2 one can
combine the end of one time step with the beginning of the next. Hence only
two Fourier transformations and two matrix multiplications are needed for
each time step.

It turns out that the ratio of the number of real particles N0 to the number of
particles added to simulation through the quantum noise NNoise,

R = N0

NNoise
, (3.18)

is an important quantity. For small values of R the quantum noise is more
important. Mean field descriptions break down at earlier times and the system
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is more chaotic. Also excitation of modes can be seen earlier. On the other
hand for large R the quantum noise is less important and the system gets more
classical. The system stays very regular for long times and all phenomena
can be seen more clearly. There are several different methods to set the noise
and also to simulate the influence of the noise on the real particles. A good
overview can be found in [45]. In the method described in Eqs. (3.13) and
(3.14) for each mode on average half a particle is added to the system. During
the simulation this particles are treated like real particles and thus add energy
to the system. To improve the simulation we can introduce a cutoff and
therefore reduce the number of particles implemented through the noise. This
is possible, because high momentum modes have no influence on the time
evolution in the infrared. We choose a resolution independent cutoff and only
occupy modes up to twice the inverse of the healing length.

Using this method and the density of the experiment the value of R ≈ 15 is
quiet small. Here we want to point out that this should not be a prediction
for the importance of the noise in the experiment. The modes in the trap
are different from the modes used in the simulations. In addition there are
also other factors in experiments which play an important role like the finite
temperature of the condensate and effects of the trap or from external fields.
They are not included in the simulation. It turns out that simulations with
R ≈ 15 agree quite well with the results in the experiment. To study the
influence of the quantum noise on our results, we repeat our simulations
with higher densities. Thereby we lower the coupling constants such that the
healing length ζ ∼ ciρ stays the same. For large R most phenomena are more
pronounced. It is easier to compare them with analytic approximations. We
can therefore use this method to get a better understanding of the physics
happening in the system. On the other hand the results of simulations with
small R are closer at the experimental results.
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4

Bogoliubov theory

In this chapter, we describe the Bogoliubov method [33, 55, 56]. It can be
used to calculate the lowest lying modes of a weakly interacting, ultracold
Bose gas. If the system is driven out of equilibrium, the eigenvalues of the
energy of some of the modes become imaginary. These modes start to grow
exponentially. The method is based on a mean field approximation and is only
true for short times.

4.1 Bogoliubov Approximation in F = 1

We start the calculation with the Hamiltonian (2.19) and only consider the
homogeneous case U(r) = 0. We expand the field operators in terms of
annihilation âk,m and creation operators â†

k,m in the momentum basis of the
three condensates. They are given by

ψ̂m(r) = 1√
V

∑
k

âk,me
ik·x , (4.1)

ψ̂†
m(r) = 1√

V

∑
k

â†
k,me

−ik·x . (4.2)

The ladder operator fulfill the bosonic commutator relations [âk,d, â
†
k′,d′ ] =

δd,d′δ(k′ − k). Inserting this into the Hamiltonian gives:

Ĥ =
∑

k

(ϵk − pm+ qm2)â†
k,mâk,m

+ c0

2V
∑

p,k,q

â†
p,mâ

†
k,m′ âk−q,mâk+q,m′

+ c1

2V
∑

p,k,q

fm,m′fµ,µ′ â†
p,mâ

†
k,µâk−q,m′ âk+q,µ′ , (4.3)
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where we introduced ϵk = k2/2M . The integration over dr is already per-
formed, where we used

∫
V dr exp(i(k′ − k)r) = V δk′,k. The Kronecker delta

removes one summation in each term. We can now use the fact that the k = 0
mode is macroscopically occupied in an ultracold Bose gas. We can replace
â0,m and â†

0,m by C-numbers
√
N0ζm, where |ζm|2 = 1 and N0 is the number

of particles with k = 0. The total number of particles N is given by

N = N0 +
∑
k ̸=0,m

n̂k,m , (4.4)

where n̂k,m = â†
k,mâk,m. The next approximation is to keep only terms up

to second order in the remaining ladder-operators. Because the interactions
are weak and the occupation number of modes with k ̸= 0 is small, terms of
higher order can be neglected. After these approximations the Hamiltonian is
not diagonal anymore in the âk,m, â†

k,m basis and includes terms â†
k,mâ

†
k,m and

âk,mâk,m:

Ĥeff = V n2

2

(
c0 + c1 ⟨F ⟩2 − pN ⟨Fz⟩ + qN

〈
F 2
z

〉)
+
∑
k ̸=0

[(
ϵk − nc1 ⟨F ⟩2 − p(m− ⟨Fz⟩) + q(m2 −

〈
F 2
z

〉
)
)
â†

k,mâk,m

+nc1 ⟨F ⟩ Fm,m′ â†
k,mâk,m′

+nc0

2 (2D̂†
kD̂k + D̂kD̂−k + D̂†

kD̂
†
−k)

+nc1

2 (2F̂
†
kF̂k + F̂kF̂−k + F̂

†
kF̂

†
−k)

]
, (4.5)

where we introduced new quantities to simplify the expression:

⟨F ⟩ = fm,m′ζ∗
mζm′ , (4.6)

D̂k = ζ∗
mâk,m , (4.7)

F̂k = fm,m′ζ∗
mâk,m′ , (4.8)

n = N

V
. (4.9)

D̂k describes density fluctuations and F̂k spin fluctuations. We now have
to find a new basis b̂k,d, b̂

†
k,d, in which the Hamiltonian is diagonal. The

operators of the new basis also have to satisfy the commutation relation
[b̂k,d, b̂

†
k′,d′ ] = δd,d′δ(k′ − k). Therefore the transformation has to be symplectic.

The eigenvectors of this basis are called Bogoliubov modes and describe the
excitations of the ground state. The change of basis is called a Bogoliubov
transformation.
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4.2 Bogoliubov Modes in the Polar Phase

4.2 Bogoliubov Modes in the Polar Phase

The Hamiltonian (4.5) gets much simpler, if one looks at a specific ground
state. In this work, we are interested in the Bogoliubov modes of the polar
phase in F = 1. Hence we can set ζ = (0, 1, 0). The polar ground state has no
spin and ⟨f⟩ = 0. We can also neglect p = 0 by transforming to the rotating
frame of reference. This results in

Ĥpolar-phase
eff =V n

2c0

2 +
∑
k ̸=0

[
(ϵk + nc0) â†

k,0âk,0 + nc0

2 (âk,0â−k,0 + â†
k,0â

†
−k.0)

+ (ϵk + q + nc1) (â†
k,fx

âk,fx + â†
k,fy

âk,fy)

+nc1

2 (â†
k,fx

â†
−k,fx

+ â†
k,fy

â†
−k,fy

+ âk,fx â−k,fx + âk,fy â−k,fy)
]
,

(4.10)

where we introduced two new operators, which describe Fx and Fy excitations:

âk,fx = 1√
2

(âk,1 + âk,−1) , (4.11)

âk,fy = i√
2

(âk,1 − âk,−1) . (4.12)

We can diagonalize the Hamiltonian by a Bogoliubov transformation into the
following basis:

b̂k,0 =
√
ϵk + nc0 + ωk,0

2ωk,0
âk,0 +

√
ϵk + nc0 − ωk,0

2ωk,0
â†

−k,0 , (4.13)

b̂k,j =
√
ϵk + q + nc1 + ωk,f

2ωk,f

âk,j +
√
ϵk + q + nc1 − ωk,f

2ωk,f

â†
−k,j , (4.14)

with j ∈ {fx, fy}. These operators fulfill the commutator relations. There are
three different modes. The first mode is massless, because the ground state
spontaneously breaks the U(1) gauge symmetry of the system. It describes
density fluctuations in the m = 0 component. The two other modes are
degenerated and describe spin fluctuations. They are massive, if q ≠ 0. The
magnetic field breaks the rotational symmetry around the x- and y-axis. The
eigenenergies ωi of the modes are given by

ω2
0(k) = ϵk (ϵk + 2nc0) , (4.15)

ω2
f (k, q) = (ϵk + q) (ϵk + q + 2nc1) . (4.16)

ω2
0(k) does not depend on q and is in our case always positive. However, ω2

f (k, q)
becomes negative for some k if q < 0. The eigenenergies of the modes with
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Figure 4.1: Eigenenergies of the Bogoliubov modes of the polar phase for the four
different regimes: q > 0 (upper left), 0 < −q < nc1 (upper right), nc1 < −q < 2nc1
(lower left) and 2nc1 < −q (lower right). The labeled momenta are given by:
k1 =

√
−2M(q + 2nc1), k2 =

√
−2M(q + nc1) and k3 =

√
−2Mq. Solid lines

show the square of the eigenenergies for the density fluctuations (blue) and the
degenerated pair of spin fluctuations (red). For q < 0 the spin fluctuations have
an unstable region where the eigenenergies are imaginary. In the early stages of
the time evolution these modes grow exponentially with a growth rate of 2 Im(ω)
(dashed line). For 0 < −q < nc1 the most unstable mode is at k2

m.u. = 0 and for
−q > nc1 it is at k2

m.u. = −2M(q + nc1). For 2nc1 < −q the region of unstable
modes does not include k = 0 anymore. In this case, we can see the Bogoliubov
modes as clear peaks in the spectra.

the corresponding momenta become imaginary. The time evolution operator
of the modes is given by U(t, t0) = ∑

n exp (−iEn(t− t0)) |n⟩ ⟨n|. This means
that the modes with imaginary eigenvalues grow exponentially. This is only
valid in the early stage of the time evolution. The approximation breaks down,
if non-linear effects become important.

We now further analyze Eq. (4.16): In the effective description of 87Rb in F = 2
we have positive c1. The ground state of the polar phase is stable for positive
q. For negative q the spin modes become unstable. The minimum of ω2

f (k, q)
corresponds to the most unstable mode. For the region 0 < −q < nc1 the most
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4.3 Comparison with Bogoliubov in F=2

unstable mode is at km.u. = 0. For higher magnetic fields the minimum is at:

k2
m.u. = −2M(q + nc1) (4.17)

In this case, the kinetic energy of the most unstable mode corresponds to the
energy, which a single pair of atoms would get by scattering from m = 0 to
the side components and thereby creating a spin excitation. Each atom gets
the Zeeman energy −q and needs the energy nc1 for the creation of the spin.
Therefore we have

k2

2M = −q − nc1 . (4.18)

The region of unstable modes can be found by calculating the roots of ω2
f (k, q).

One can distinguish between two cases:[
0,
√

−2Mq
]
, for 0 < −q < 2nc1 , (4.19)[√

−2M(q + 2nc1),
√

−2Mq
]
, for 2nc1 < −q . (4.20)

In our simulations we do not only see the growth of the Bogoliubov modes,
but also of further modes. These excitations are generated by interactions
of the Bogoliubov modes with the remaining condensate. To see secondary
excitations clearly it is of advantage to have a small region of non-trivial
Bogoliubov modes. Hence k2 − k1 =

√
2M(

√
q + 2nc1 − √

q) has to be small.
This is the case for small nc1 and for large q.

The Bogoliubov method do not only predict the momenta of the modes, but
also their growth rates. They given by two times the imaginary part of the
eigenenergy. The growth rate of the most unstable mode km.u. is

τ−1
Bog = 2 Im(ω(km.u.)) = 2 Im

(√
q2 + 2nc1q

)
, for 0 < −q < nc1 ,

(4.21)
τ−1

Bog = 2 Im(ω(km.u.)) = 2nc1 , for nc1 < −q . (4.22)

It depends on q and nc1. We can compare this value with our numerical results
and we can also use to predict the growth rate of secondary excitations.

4.3 Comparison with Bogoliubov in F=2

The state, in which all particles are in m = 0 is also a ground state of the
F = 2 system. It is called the uniaxial nematic phase. We now compare the
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Chapter 4 Bogoliubov theory

Bogoliubov modes of the polar phase with the modes of the uniaxial nematic
phase. One can find five modes with the energies

(ωF=2
0 )2(k) = ϵk

(
ϵk + 2n(cF=2

0 + cF=2
2 )

)
, (4.23)

(ωF=2
f )2(k, q) = (ϵk + q)

(
ϵk + q + 2n(3cF=2

1 − cF=2
2 )

)
, (4.24)

ω2
±(k, q) = (ϵk + 4q) (ϵk + 4q − 2nc2) . (4.25)

If one introduces the effective coupling constants: Eqs. (2.23) and (2.24), the
first three eigenenergies are identical to the energies of the three modes in the
F = 1 system and also the eigenvectors are the same. The last two modes
are degenerated and cannot be found in the F = 1 system. They describe
excitations into the m = ±2 components. The corresponding eigenvectors are
given by

b̂k,± =
√
ϵk + 4q − nc2 + ωk,±

ωk,±
âk,± −

√
ϵk + 4q − nc2 − ωk,±

ωk,±
â†

−k,± , (4.26)

where we introduced the operators

âk,± = 1√
2

(âk,2 ± âk,−2) . (4.27)

In our case c2 is negative and there is a region of unstable modes for −nc2/4 <
−q. The growth rate of the most unstable mode (k2

m.u. = 2nc2 − 8q) is

τ−1
Bog = 2 Im(ω±(km.u.)) = 2nc2 (4.28)

In 87Rb we have c1 ≈ 30|c2|. This means that the growth rate of the b̂k,± modes
is very small in comparison with the growth rate of the of the spin excitations
in the m = ±1 modes. It explains why the occupation of the m = ±2 hyperfine
states is negligible during the early stage of the time evolution and why an
effective description, in which only the m = −1, 0, 1 modes are considered, is
sufficient.

26



5

Unseeded Initial Conditions

In this chapter, we study the quench from the polar state into the paramagnetic
regime. Initially all particles are prepared in the m = 0 component. In the
experiment this can be achieved by a Stern-Gerlach splitting which removes
all particles in the hyperfine states m = ±1. The system is then driven out of
equilibrium by an instantaneous quench, which lowers the energy of the side
components by q through the quadratic Zeeman effect. The new ground state
of the system is the paramagnetic state, in which half of the particles are in
m = 1 and the other half in m = −1:

ψ̂g.s. = √
ρ

 0
eiϕ0

0

 quench−−−−→
q<0

ψ̂g.s. =
√
ρ

2

 eiϕ1

0
eiϕ−1

 .

We are particularly interested in the non equilibrium time evolution of the
system. A sensible quantity to observe the behavior of the system after the
quench is the occupation number

n(m)(k, t) =
∫
dd−1Ωd(k) ⟨Ψ∗

m(k, t)Ψm(k, t)⟩ensemble (5.1)

of the different momentum modes k, where k = |k| is the radial momentum
and Ωd(k) denotes the phase space volume of mode k. In one dimension this
reduces to the summation over the two modes k and −k. Here one has to keep
in mind that on the finite grid the momenta in Fourier space are not linear
distributed. There are more details in Appendix A.2.
In the experiments the momentum distributions of the three components
cannot be measured directly. Instead the components can be separated by a
Stern-Gerlach splitting. After this the density distribution can be measured.
We therefore also calculate the Fourier transformation of the density

G(m)
ρ,ρ (k, t) =

∫
dd−1Ωd(k) ⟨ρ∗

m(k, t)ρm(k, t)⟩ensemble . (5.2)
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Figure 5.1: Numerical results of a single realization in position space for the
unseeded initial conditions. The parameters are: ρ = 200 · 106 m−1, Ns = 8192,
L = 252.2 µm, q = −25 Hz = −3.04 ·nc1, c0 and c1 are given in Tab. 3.1. The first
three plots show the density of the three components m = 1 (top), m = 0 (middle)
and m = −1 (bottom). The last three plots show Fx (top) Fy (middle) and Fz

(bottom). After ≈ 50 ms a pattern with a wavelength given by the Bogoliubov
modes starts to appear. Particles from the m = 0 component scatter into the
side components creating thereby a spin in x- and y-direction. They are most
pronounced at t ≈ 100 ms. Shortly after this also a pattern in Fz is visible. In
addition to the Bogoliubov modes there are also long-wave excitations in Fz
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5.1 Evolution of a Single Realization in Real Space

In the previous chapter, we have found the modes, which get excited after the
quench. These modes can be seen as peaks in n(m)(k, t). Although the density
is just the absolute square of the wave function ρ(r) = ψ∗(r)ψ(r) the Fourier
spectra of both quantities can look very different. This is important, when we
want to make prediction for the form of G(m)

ρ,ρ (k, t). Therefore we have a closer
look at the relation between wave function and density in the Appendix A.1.

Another interesting quantity is the spin of the condensate Eqs. (2.8) – (2.10).
As we have seen in Sec. 4.2, we expect spin excitations in the system. Their
momenta can be seen in the Fourier transformation of the spin. Another
observable, which can be used to describe the system, are the quadrupole
moments

Qi,j = ψ̂†
m(fifj + fjfi − 4

3δi,j)m,nψ̂n . (5.3)

We start our analysis with the parameters given in experiment but we also
analyze simulations with higher densities, in which some phenomena are more
pronounced.

5.1 Evolution of a Single Realization in Real
Space

At first we take a look at the real space evolution of a single realization.
Figure 5.1 shows the density of all three components and the spin at each
lattice site. The spatial volume is L ≈ 250 µm, which is roughly the longitudinal
width of the trap in experiment. We use q = 25 Hz to be in a regime where we
expect the excitations with momenta k ̸= 0. One can see that in the beginning
most particles stay in m = 0 and the system has no spin. After ≈ 50 ms
first excitations are visible. Particles in m = 0 scatter into pairs of atoms in
m = 1 and m = −1. Thereby the excited modes have characteristic momenta,
which are visible in the plots as regular patterns with a certain wavelength. As
we will see in the occupation spectra the corresponding momenta agree very
well with the momenta of the of most unstable mode in Bogoliubov theory
Eq. (4.17). One can see that the modes are spin excitations. The same pattern
as in the density appears in Fx and Fy. Shortly afterwards it is also visible
in Fz. There is also an additional length scale in Fz: one can observe large
region of roughly 50 µm where Fz has a preferred direction. This phenomenon
is not included in Bogoliubov theory and needs further study.

At later times the system gets more chaotic. In the density plots lines are
visible, at which the density of one component drops down. That indicates
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Figure 5.2: Scaled up region of Figure 5.1. Both plots in the top row show the
m = 0 component. On the left side the phase is plotted and on the right side
we see the density. In the phase plot we subtracted 1.1 · c0ρ to remove temporal
oscillations. After the system gets more irregular, solitonic excitations can be seen.
The density drops down and the phase of the wave function jumps. In the bottom
row the density of the side components m = 1 (left) and m = −1 (middle) and the
total density (right) are plotted for comparison.
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5.1 Evolution of a Single Realization in Real Space

...

0

.

50

.

100

.

150

.

200

.

250

.
Position x [µm]

.

100

.

250

.

400

.

Ti
m

e
t

[m
s]

.

0

.

80

.

160

.

240

.

D
en

sit
y

ρ
[1

06
/µ

m
]

Figure 5.3: Total density in position space for the same realization as in Figure 5.1.
After ≈ 100 ms lines appear along which the density drops down. The positions of
the density dips move in time. This indicates the formation of gray solitons with
finite velocity.

the formation of solitons. They are one dimensional solutions of the wave
functions [57, 58]. For simplicity we give the solution for a one component
condensate:

ψ(x, t) = √
ρ

ivs

cs
+

√√√√1 − v2
s
c2

s
tanh


√√√√1 − v2

s
c2

s

x− (x0 + vst)√
2ζ

 eiµt , (5.4)

where µ is the chemical potential cs =
√
ng/M the speed of sound and vs the

speed of the soliton. The solutions for the spin-1 system are more complicated,
because the density drop down in one component can be countered by a higher
density in another component. Solutions of the wave function in one dimension
are discussed in [59] for the case without an external magnetic field and in
[60] with an external field. Solitons are quasi-topological defects, which are
characterised by a phase jump of the wave function and a drop down of the
density. For the time independent solution vs = 0 the phase changes by π and
the density drops to zero. These are called black solitons. Solitons which show
only weaker phase jumps and density dips, are called gray. Figure 5.2 shows a
scaled up region of Figure 5.1, in which the phase and the density of the m = 0
is plotted. For comparison also the density of the side components and the
total density are shown. The structures in the density look similar in all three
hyperfine states. In the plots of m = 0 one can see that the density dips, which
have a size of 1 – 2 µm, are accompanied by lines in the phase plot, along
which the phase jumps in spacial direction. Most solitons are moving vs ≠ 0
indicating the formation of gray solitons. The whole system looks very chaotic.
It is not easy to identify a single soliton. In the phase plot the lines of phase
jumps cross very often what indicates interactions of the solitonic excitations.
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Figure 5.4: Time evolution of the relative occupation number of all magnetic
sublevel (top) and of the spatially averaged, normalized spins (bottom) for the
unseeded case. Parameters are the same as in Figure 5.1. The values are averaged
over 1000 runs. The number of particles in the side modes is always identical. Fx

and Fy are degenerated and in the bottom plot the blue and green line coincide.
Initially all particles start in m = 0 with a small seed in the side components. In the
beginning the number of particles in the side components grows exponentially. This
is accompanied by the creation of a spin in x- and y-direction. Shortly afterwards
also Fz starts to grow. After ≈ 120 ms the occupation numbers and the spins
change only slowly.

In Figure 5.3 the total density of the whole simulation is shown and also in the
total density solitonlike excitations can be seen. Here it is easier to follow the
time evolution of a single topological defect. One can observe lines along which
the density drops down. The mean density along these lines is not constant,
but varies in time. There are no excitations during the very early stage of the
time evolution. During this time, which is not shown in the phase plot, the
phase is spatial very homogeneous and there are no phase jumps. The first
jumps start to appear at t ≈ 130 – 150 ms.

In Figure 5.4 the time evolution of the total occupation number of the three
components and of the normalized spin is plotted. In the beginning all particles
start in the m = 0 magnetic sublevel. The side modes have a small occupation
through the quantum noise. This induces also a small initial spin in x- and
y-direction. At early times the occupation number of the side modes grows
exponentially. This is accompanied by a similar growth of Fx and Fy as it is
predicted from Bogoliubov theory. Also a spin in z-direction is created with a
delay of roughly 20 – 30 ms. This is only possible in spatial extended traps
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5.2 Spectra and Density-Density Correlations
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Figure 5.5: Quadrupole moments in position space for the same realization as in
Figure 5.1. The plot of the quadrupole moment Qx,z (top) looks very similar to
the plots of Fx and Fy. At early times one can observe pattern formation with a
wavelength given by Bogoliubov theory. At later times the structures are smaller
and less regular. The plot of Qx,y (bottom) shows new phenomena. Besides the
length scale given by Bogoliubov, there is a second, much larger scale. It has a
similar size as the scale in Fz, but the regions are stable for longer times and the
total quadrupole moment is not conserved.

and cannot be seen in point like experiments. The exponential growth stops
at t ≈ 100 – 120 ms and all quantities change only very slowly.

Lastly we take a look at the quadrupole moments Eq. (5.3) in real space. The
diagonal elements Qi,i are proportional to the square of the spin and give no
new information. Because Fx and Fy are degenerated, it is sufficient to look
at Qx,z and Qx,y. They are plotted in Figure 5.5. The excitations of Qx,z are
similar to those of Fx and Fy. At early times a pattern with a wavelength
given by Bogoliubov theory emerges. Later the system gets more chaotic and
the scales become smaller. This is different for Qx,y, which shows similarities
to Fz. In addition to the Bogoliubov length scale, a new, larger scale is visible,
but the regions are longer stable than in Fz. One can also see that Qx,y is not
a conserved quantity. For the shown realization, regions with positive values
dominate.
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Figure 5.6: Occupation number n(m)(k) and density-density correlations G
(m)
ρ,ρ (k)

for the components m = 0 and m = 1 for three different times. The same parameters
as in Figure 5.1 are used. The quantities are averaged over 1000 runs. For
orientation the position of the most unstable Bogoliubov mode km.u. = 0.085 µm−1

and multiples of it are marked as dashed lines. 70 ms after the quench there is
a peak around km.u. in n(1)(k). At later times peaks at 2km.u. in n(0)(k) and at
3km.u. in the side modes appear. G

(m)
ρ,ρ (k) looks very similar for all components:

in the beginning peaks at 2km.u and k = 0 appear. At later times there is an
additional, smaller peak at 4km.u.. At late times the peaks vanish and the spectra
fall off exponentially.

5.2 Spectra and Density-Density Correlations

In this section, we look at the spectrum n(m)(k) of the three components, of the
spins and of the quadrupole moments. We also examine the density-density
correlations G(m)

ρ,ρ (k). In the following k is always given in the convention
k = 1/λ, which is also used in the experimental data. To compare the following
results with the theoretic predictions, one has to keep in mind that in previous
chapters the convention k = 2π/λ is used. Figure 5.6 shows n(m)(k) andG(m)

ρ,ρ (k)
for m = 0 and m = 1. We plot only one of the side components because the
other one looks almost identical and gives no new information. The first visible
excitation appears in the side component as a peak at a momentum which
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5.2 Spectra and Density-Density Correlations

agrees very well with the most unstable Bogoliubov mode km.u. = 0.085 µm−1

Eq. (4.17). The excited momentum region coincides with the predicted unstable
region from Bogoliubov theory Eq. (4.20): [0.061 µm−1, 0.104 µm−1].

At later times secondary modes get excited, which are created by Bogoliubov
modes interacting with each other or with the remaining condensate. To
make the description and analysis more simple we denote in the following
momenta around the most unstable Bogoliubov mode km.u. with k′. These
excitations can be best observed in the spectra if −q > 2nc1. In this case, the
excited Bogoliubov modes have all momenta k > 0 and are clearly visible as
isolated peaks. The first non-Bogoliubov excitation appears in m = 0 with
momenta around 2k′. Shortly after this a mode with 3k′ in the side modes
gets excited. In the m = 0 spectrum there is an additional peak at k = 0. It
can be explained by the occupation of the stable Bogoliubov modes in m = 0
Eq. (4.15). Interestingly this peak has some finite value at t ≈ 100 ms. This
is confirmed by simulations with a large volume of L = 4040 µm and hence a
better resolution in this momentum region. Its position is at k ≈ 0.015 µm.
The reason for the finite value needs further study. In contrast to n(m)(k) the
density-density correlations G(m)

ρ,ρ (k) look very similar for all components. In
the beginning peaks at k = 0 and 2k′ appear. Later an additional peak at 4k′

starts to grow. The reason that they look almost identical is the high value
of c0. This keeps the density of the whole condensate very flat. Hence every
density pattern in one component needs a counter part in the other components.
This gives a qualitative explanation for the creation of the secondary mode at
2k′.

In the beginning the Bogoliubov modes with momentum k′ are excited. If we
assume that only this mode is occupied in the side modes, the wave functions
can be written as: ψ±1(x) = A cos(k′x) + iB cos(k′x+ϕ). The density is given
by the square of the wave function

ρ̂±1(x) =ψ̂†(x)ψ̂(x)

=A
2

2 (cos (2k′x) + 1)

+ B2

2 (cos (2k′x+ 2ϕ) + 1) . (5.5)

Here we can see two important changes from the wave function to the density:
First, each mode in the wave function gives a constant contribution to the
density (A2 +B2)/2. The reason is that the density can only be positive, while
the wave function is complex. Every particle increases the mean value of the
density function. In Fourier space this value is described by the k = 0 mode.
Hence every particle gives a contribution to this mode and the number of total
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particles is proportional to the square of Gρ,ρ(k = 0). The second difference is
that there is no peak at k′ in the density-density correlation, but at 2k′. The
reason is that we square a function, which oscillates around zero. This results
in a function oscillating with the double frequency around half of the square
of the initial amplitude. This explains why G(1)

ρ,ρ(k) has a peak at 2k′ and not
at k′ like n(1)(k).

The patterns which are created in both side components are in the begin-
ning spatial identical, but the system prefers a flat density because the spin-
independent coupling constant c0 is large. Hence, there has to be also pattern
formation in the m = 0 component. The wave function of m = 0 differs from
the other ones in the condensate mode k = 0. If a counter mode kc is excited
the wave function is given by ψ0(x) = A0 + A′ cos(kcx) + iB′ cos(2kcx + ϕ)
with B′, A′ ≪ A0 and the dominant parts of the density are

ρ̂0(x) ≈ A2
0 + 2A0A

′ cos(kcx) . (5.6)

To have patterns with the same wavelength in all three components, we need
kc = 2k′. That coincides with the results of our simulations. The important
result of this derivation is that the excitation of two different modes k′ and 2k′

in n(m)(k) can look very similar in G(m)
ρ,ρ (k). The occupation of the condensate

mode in the wave function has a huge influence on the density in Fourier space.
There is also a more mathematical derivation for the excitation of the 2k′

mode in the next section (Eq. (5.8)).

We now take a closer look at G(m)
ρ,ρ (k). In the beginning the height differs

between G(0)
ρ,ρ(k) and G(1)

ρ,ρ(k). At the calculation of G(m)
ρ,ρ (k) each mode in the

wave function is multiplied with each other mode. Hence the height of all
Fourier modes depends on the total occupation of the component. In the side
modes the height of the unoccupied modes is very low in the beginning and
increases over time. As discussed above, the first excitation in each mode
creates a peak at 2k′ in G(m)

ρ,ρ (k). But there is an additional peak around zero.
It comes from the fact that the multiplication of two modes k1 and k2 gives
not only a contribution to the sum of both modes k1 + k2, as in Eq. (5.5), but
also to their difference k1 − k2 (see Appendix A.1). Hence the peak around
k = 0 comes from the finite width of the peaks in wave function. There is also
a small peak at 4k′ in all components. In G(0)

ρ,ρ(k) this peak comes from the
mode at 2k′ in n(0)(k) and in G(1)

ρ,ρ(k) the two peaks at k′ and 3k′ in the wave
function can give a contribution to k′ + 3k′.

In Figure 5.7 the spectra of the Fy, Fz and of the quadrupole moments Qx,y

and Qx,z are plotted. The spectrum of Fx is similar to the spectrum of Fy
and gives no additional information. The Bogoliubov excitations are spin
excitations and the same peaks as in n(1)(k) can also be seen in Fx and Fy.
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Figure 5.7: Spin and quadrupole spectra for the same runs as in Figure 5.6. The
spectra of Fy (upper left), Fz (lower left), Qx,y (upper right) and Qx,z (lower right)
are shown. For orientation the position of the most unstable Bogoliubov mode
km.u. = 0.085 µm−1 and multiples of it are marked as dashed lines. The spectra of
Fy and Qx,z look almost identical. They show the same peaks as the spectra of
the m = 1 component, but they are more pronounced. The spectrum of Fz has
a peak at 2km.u. and a small peak at 4km.u.. At early times there is also a small
peak at k ≈ 0.015 µm−1 visible. Also the spectrum of Qx,y has peaks at 2km.u.
and 4km.u.. An additional peak at k = 0 becomes very large at later times.

The peaks are even slightly more pronounced. The spectrum of Qx,z looks
almost identical to that of Fx and gives also no new information. The spectrum
of Fz has peaks at 2k′, 4k′ and at k ≈ 0.015 µm. The position of the last peak
is confirmed by simulations with L = 4040 µm, which have a better resolution,
and coincides with the peak which is shortly visible in n(0)(k). It corresponds
to the large scale pattern observed in Figure 5.1. In the spectrum of Qx,z

peaks at 2k′, 4k′ and a large peak at k = 0 are visible. The last peak keeps
growing at later times. It corresponds to the large regions in Qx,z, which are
stable for long times.
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Figure 5.8: Position of the peaks of n(m)(k) (left) and G
(m)
ρ,ρ (k) (right) for different

values of the quadratic Zeeman effect q at t ≈ 190 ms. The parameters are:
Ns = 16384, L = 754.9 µm, couplings are given in Tab. 3.1 and the density is
increased to R = 50000 as described in Sec. 3.3. The spectra are averaged over
200 runs before the peaks are detected. For orientation the position of the most
unstable Bogoliubov mode Eq. (4.17) and multiples of it are plotted (even multiples:
red solid lines, odd multiples: blue solid lines). The peaks in n(1)(k) (blue) are near
odd multiplies and the peaks in n(0)(k) (red) are near even multiplies of the most
unstable mode. G

(m)
ρ,ρ (k) shows in all components peaks only at even multiplies of

the most unstable Bogoliubov momentum.

5.3 Analysis of secondary excitations

In this section, we take a closer look at the secondary excitations. Their exact
position and their growth rates are examined. We find that the latter depends
on the density in the system. We compare simulations with different values of
R Eq. (3.18). We can find explanations for the positions of the peaks and in
the limit of large R also for the growth rates.

At first we study the position of the peaks. Therefore we use high densities.
In this case, the occupation numbers of the peaks are higher and the quan-
tum fluctuations have a smaller influence on the dynamics. The number of
excitations increases. Their position for different values of q and R = 50000
are shown in Figure 5.8. For k′ > 0 they always show the same pattern. All
peaks in n(1)(k) are at odd multiples of k′ and all peaks in n(0)(k), G0

ρ,ρ(k) and
G1
ρ,ρ(k) are at even multiples of k′. The number of excitations is largest for

values around q = 30 Hz. If q is small, we are in the regime, where the region
of unstable modes also includes k = 0. Hence the peaks are smeared out. The
algorithm finds no peaks for q = 10 Hz and misses some peaks at q = 15 Hz.

Interestingly, the highest peak in G(m)
ρ,ρ (k) is identical with the highest peak in
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Figure 5.9: Momentum conservation of Bogoliubov and secondary excitations. In
early time evolution Bogoliubov modes with momentum km.u are excited (solid
green and red arrows). The Bogoliubov modes can interact with the condensate
and create new modes with momenta 2km.u in the m = 0 mode (one possible
interaction in solid blue). There are a number of different ways to excite even
higher modes (examples: dashed red, blue and green arrows).

n(0)(k) and there are no peaks at larger momenta. This can also be seen in
Figure 5.6: Although there is a peak at 3k′ in n(1)(k), there is no peak at 6k′

in G(1)
ρ,ρ(k). The reason for this is that the wave function is a complex quantity.

Therefore the phase plays an important role and can lead to cancellation of
certain terms in G(m)

ρ,ρ (k). This can already be seen in Eq. (5.5). For ϕ = π/2
and A2 = B2 the two cosine terms cancel each other and only the constant
term remains. This is also shown for a more general case in the Appendix A.1.

We take now a closer look at the excitations of the higher modes and consider
momentum conservation. Some possible processes, that show the creation
of the k′, 2k′ and 3k′ mode, are shown in Figure 5.9. In the beginning
the Bogoliubov modes are excited. If q > nc1 the particles get energy and
transform it into kinetic energy Eq. (4.18). Particles with momenta k′ and
−k′ are created. One possible explanation for the excitation of the 2k′ mode
could be that two particles each with momenta k′, one from m = −1 and
one from m = 1, interact and create two particles in m = 0 with momenta,
one with k = 0 and one with 2k′. But this process is energetically strongly
suppressed, because each particle loses the energy q in this process. Hence the
main contribution comes from a second possible process: One particle of one
of the side components with momentum k′ interacts with one of the remaining
particles in the condensate (m = 0 and k = 0). Thereby the particle from
the side component changes its momentum to −k′ and the particle in m = 0
to 2k′. In the Hamiltonian both interaction terms (the c0 and the c1 term)
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include this process:

H = c0â
†
2k′,0â

†
−k′,±1â0,0âk′,±1 + c1â

†
2k′,0â

†
−k′,±1â0,0âk′,±1 + · · · . (5.7)

That this term is also included in the c1 part can be seen in the explicit
expression Eq. (2.11). In 87Rb the main contribution comes from the c0 term,
because c0 ≈ 30c1. The 2k′ mode can grow even faster than the primary mode.
We can see this using a simple approximation. If we neglect the c1 term and
assume that only the condensate mode and the most unstable mode k′ is
occupied, the time evolution of the secondary mode is given by

iψ̇2k′,0 =
[
ω2k′ + c0(4n(s)(k′) + n(0)(0))

]
ψ2k′,0 + 2c0ψ−k′,sψ

∗
k′,sψ0,0 , (5.8)

with ω2k′ = ϵ2k′ +mq, s stands for the two side modes m = ±1 and we assume
that the occupation of these modes is the same. The first term gives just a
phase rotation. Only the last term contributes to the growth of the mode. We
know from Bogoliubov theory that n(s)(k′) grows exponentially:

ψk′,s =
√
n(s)(k′, t = 0)e(|ωf |−iωk′ )t , (5.9)

where ωf is the eigenenergy of the Bogoliubov mode Eq. (4.16). The condensate
mode is macroscopically occupied and stays during early stages of the time
evolution approximately constant: ψ0,0(t = 0) = √

ρ0, where ρ0 is the density
of the condensate at t = 0. Then the time evolution of the secondary mode
ψ2k′(t) ≈ η(t) exp (i(ω2k′ + c0n)t), with n = 4n(s)(k′) + n(0)(0), is given by

η̇(t) = −i2c0
√
ρ0n

(s)(k′, t = 0)e2|ωfµ |te−iδωt , (5.10)

η(t) =
2c0

√
ρ0n

(s)(k′, t = 0)
δω + i2|ωfµ|

(e(2|ωfµ |−iδω)t − 1) + η(0) , (5.11)

where δω = −ω−k + ωk + ω2k − ω0 = ω2k. The occupation number is given by
|η(t)|2. After a time t ≈ (2ωf)−1 ≈ 10 ms the −1 can be neglected and the
first term grows exponentially η(t) ∼ exp(2|ωf |t) with twice the rate of the
primary mode.

In Figure 5.10 the time evolution of the occupation numbers at the positions of
the peaks is plotted. Since the evolution depends on the density, we compare
two cases: In the left plot the density of the experiment is used with R ≈ 15
and in the right one we use R = 500000. Bogoliubov theory predicts a growth
rate of τ−1

Bog = 0.103 ms−1 Eq. (4.22) for the first peak and we expect twice this
rate for the second peak. We see that this agrees very well with the results of
the high density case. If we use the density of the experiment, the growth rates
are smaller. Because of the low density, quantum noise plays an important role.
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Figure 5.10: Time evolution of the occupation numbers of the peaks at k′ and
multiples thereof. A fit to the exponential growth is added. Note the different
scales on the y-axis. On the left side values averaged over 1000 runs with the
parameters given in Figure 5.1 (R ≈ 15) are plotted. The parameters for the right
plot are the same except for: R = 500000 as described in Sec. 3.3, L = 754.9 µm
and Ns = 16384. Here 200 runs are averaged. In the right plot one can see an
exponential growth of all modes. The Bogoliubov mode grows from the beginning.
The next mode starts at t ≈ 100 ms and grows roughly with the double rate. The
larger the momenta of a mode, the later and faster it grows. In the left plot only
the first two modes show exponential growth. At early times noise dominates the
time evolution of the Bogoliubov mode. The second mode starts to grow earlier
than in the case of high densities, but with a smaller rate.

To simulate the quantum noise, each mode is initially occupied. The ratio of
their occupation in comparison with the occupation of the condensate mode
is larger in the low density case. Hence, the relative importancy of all terms
in the Hamiltonian, which do not include the condensate mode, increases.
The approximation we used in Eq. (5.8) to predict the growth rate of the
second peak is not valid anymore. The system shows even small derivations
from Bogoliubov theory. The growth rate of the first peak τ−1 = 0.098 ms−1

is slightly smaller than in the high density case. For R = 500000 the time
evolution of higher excitation shows some interesting phenomena. The higher
the momenta of the mode the faster the mode grows. They also start to grow
later. The maximum value of all excitations decreases exponentially with k
and all modes reach their maximum almost at the same time.

The growth rates of the excitations in the spectra of the components and the
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Figure 5.11: Exponential growth rates τ−1 of the peaks in the spectra of the
components (top) and the spin (bottom) for different R. The remaining parameters
are: Ns = 16384, L = 754.9 µm, q = −25 Hz = −3.04 · nc1, couplings are given
in Tab. 3.1. For orientation the expected growth rate from Bogoliubov theory
τ−1

Bog Eq. (4.22) and multiples thereof are plotted (dashed black lines). The growth
rates increase for larger R until they approach their final value, which is always a
multiple of τ−1

Bog. Peaks at high momenta appear only at high values of R. The
growth rates of the peaks in the spin spectra reach their maximal growth rate
already at lower R than the corresponding rates in the spectra of the components.

spins for different values of R are plotted in Figure 5.11. There are more
excitations for large R. Their growth rates increase with R and approach a final
value, which is always a multiple of the expected growth rate of Bogoliubov
theory τ−1

Bog Eq. (4.22). The approached rate of a peak at n · k′ is always given
by n · τ−1

Bog with n ∈ N. This gives an indication for the dominant processes,
which excite the modes. We have already given an explanation for the growth
rate of the peak at 2k′. The peak at 3k′ has a growth rate of 3τ−1

Bog. There
are several possible processes, which predict this rate. One of them is, that
two particles in the side components both with momentum k′ interact without
changing the hyperfine level and produce two particles with −k′ and 3k′,
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respectively:

iψ̇3k′,s ∼ c0ψk′,s’ψ
∗
−k′,s’ψk′,s . (5.12)

All three wave functions on the right hand side grow with τ−1
Bog/2. Hence

this process predicts the observed rate for the occupation number n(s)(3k′) ∼
exp(3τ−1

Bog). It is shown in Figure 5.9 with blue dashed lines. Another process,
in which two particles in m = 0 with 2k′ undergo spin-changing collisions,
would even predict a growth rate of 4τ−1

Bog. However, this process is proportional
to c1 and therefore sub-dominant.

For higher excitations the number of possible processes increases. Thereby
the processes, in which the participating modes have the highest occupation
numbers, are most important. We now try to find the growth rate for the
excitation of a new peak at n · k′ in component m. Without loss of generality
we take n > 0. We focus on the dominant c0 term. This means that the
particle, which gets excited is initially also in component m. We assume that
this particle comes from an arbitrary peak in m and has momentum l · k′ with
l ∈ [−(n− 2),−(n− 4), · · · , n− 2]. The second particle in component m′ has
to transfer the momenta (n− l) · k′. All possible processes are given by

iψ̇n·k′,m ∼ c0ψq·k′,m′ψ∗
(q+n−l)·k′,m′ψl·k′,m . (5.13)

The occupation numbers of peaks at low momenta are higher. Hence |q|
and |q + n − l| have to be small. This means that q has to be negative
q ∈ [−(n − l),−(n − l) + 2, · · · 0]. If we assume that all existing peaks with
momenta j · k′ grow with j · τ−1

Bog, the growth rate for the new peak is given by

τ−1(n · k′) = (|q| + |q + n− l| + l) · τ−1
Bog . (5.14)

It gives n · τ−1
Bog for l ≥ 0 and (n + 2l) · τ−1

Bog for l < 0, but the latter case is
suppressed. The same process with l′ = −l > 0 is dominant, because (n− l′)
is smaller and hence the occupation of the peaks in m′ is larger. In conclusion,
all processes, which describe the scattering of a particle with momenta l · k′ to
momenta n · k′ predict either a growth rate of n · τ−1

Bog or are suppressed.

5.4 Dynamics at late times

We take now a look at the late time evolution. At times t > 200 ms n(m)(k)
and G(m)

ρ,ρ (k) are very similar for all hyperfine states and change only slowly in
time. They are plotted for m = 0 and the parameters of the experiment at
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Figure 5.12: Occupation number n(k) (left) and density-density correlations
Gρ,ρ(k) (right) of the m = 0 component at late times. The parameters are:
ρ = 200 · 106 m−1, Ns = 8192, L = 252.2 µm, q = −25 Hz = −3.04 · nc1, couplings
are given in Tab. 3.1. The quantities are averaged over 1000 runs. At late times
both n(k) and Gρ,ρ(k) change only slowly. They fall off exponentially and the
decay length is fitted. It decreases slowly in time.

three different times in Figure 5.12. The spectrum n(0)(k) falls of exponentially.
This is expected at high k, if excitations, which are similar to solitons, are
created. In the case of solitons the decay length ξn(k) depends on their width.
At t = 220 ms the decay length is ξn(k) = 4.27 µm. It decreases in time and at
t = 440 ms we have ξn(k) = 3.60 µm. Also Gρ,ρ(k) falls of exponentially, but
with a smaller constant. During the observed time it drops from ξG(k) = 2.62 µm
at t = 220 ms to ξG(k) = 2.35 µm at t = 440 ms.

Figure 5.13 shows decay length ξn(k) at different times. We compare different
values of q for the parameters of the experiment and for R = 50000. The
decay lengths take values between 2.5 µm and 6 µm and are slightly larger for
the high density case. They depend strongly on the strength of the quench q
and are smaller for high q. They seem to reach a final value at high q around
ξn(k) ≈ 2.7 µm for the low density and around ξn(k) ≈ 3.1 µm for the high
density. These values are similar to the spin healing length ζS = 2.66 µm. One
possible explanation for the q dependency is that the energy that is put into
the system through the quench depends on q. For high q values the domains,
which are formed during the time evolution, are smaller and their number is
higher. This can have an influence on the spectra. It is also possible that
the number of topological defects depend on q. As we saw in the position
space plots in Figure 5.2, not all structures can be explained by solitons and
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Figure 5.13: The decay length ξn(k) at different times for the density of the
experiment (top), where R ≈ 15 and a higher density with R = 50000 (bottom).
Quenches with different values of q are compared. For the high (low) density case
the same parameters as in Figure 5.11 (Figure 5.1) are used. The decay length
drops slowly to lower values over time. For high negative values of q the decay
lengths are smaller. In the case of high density they are larger for the same values
of q.

maybe the soliton model is not sufficient to explain the spectra. The strong q
dependency of the spectra needs further study.

5.5 Density-Density Correlations in the Exper-
iment

In this section, we compare the density-density correlations measured in the
experiment [32] with numerical data. In the experiment two different magnetic
fields are used: B = 1.213 G and B = 2.03 G. The effective value of q can be
changed by the detuning δ (see Sec. 3.1). The high magnetic field in the second
case increases the energy distance to the m = ±2 hyperfine states and should
improve the three-component description. Here we compare numerical results
with experiments, in which B = 1.213 G is used and the calculated values
for q are q = −30 Hz, q = −33 Hz and q = −36 Hz. The G(−1)

ρ,ρ (k) function
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for these cases are plotted in Figure 5.14. It turns out that we find a better
agreement with the experimental results, if we use smaller q values in the
simulation. In Figure 5.14 we use q = −10 Hz, q = −15 Hz and q = −20 Hz
for comparison. For these values the behavior of G(−1)

ρ,ρ (k) is very similar in the
simulation and in the experiment. For both cases one can observe the growth
of a peak around k = 0 and a second peak at higher k. The position of the
second peak increases with larger values of q. At later times the peaks vanish
and G(1)

ρ,ρ(k) falls of exponentially with k. Also the timescales of experiment
and simulation agree very well. The peaks start to grow almost at the same
time, but the growth stops a little bit earlier in the experiment.

For the high q values, which we have calculated for the experimental setups,
we would expect the peaks at higher momenta. One possible explanation is
that the actual values of q are smaller in the experiment. Here one has to keep
in mind that q is the difference of two large numbers of the order of 100 Hz
(see Sec.3.1). Hence the uncertainty of q is much larger than the uncertainty
for one of these numbers. However, there are also other possible reasons for
the differences between the numerical and experimental results. There is a
finite temperature in the experiment. This means that not all particles are in
the condensate mode, but also low momentum modes are initially occupied.
This can be an explanation for the smaller k value of the second peak. The
Bogoliubov modes grow exponentially. If the modes with small k are initially
higher occupied, they will grow faster and the peak is shifted to smaller k.
Another important point can be the high uncertainty of the spin-dependent
coupling c1. We will see in Sec. 6.2 that other phenomena in the experiment
show better agreement with theory for higher values of c1ρ. On the one hand
this would also shift the position of the most unstable mode. One can see
in Eq. (4.17) that a higher value of c1ρ corresponds to a smaller position of
the second peak. On the other hand a larger value of c1ρ would also predict
a faster time evolution, which can not be seen in the experiment. Another
difference is that the condensate is trapped in the experiment. Therefore
the density is not homogeneous. The growth rate of the Bogoliubov modes
depends on the density. In the experiment the density is smaller at the sides
of the trap and hence the excitation of the modes is slower. That effect can
be seen, if one studies the time evolution in position space. This may explain
why the second peak is less pronounced in the experiment.

As in the simulation G(0)
ρ,ρ(k) looks very similar to G(−1)

ρ,ρ (k) in the experiment.
A peak at the same position can be seen. This indicates the excitation of a
secondary mode at 2k′ in m = 0. This is not predicted by Bogoliubov theory
and shows non-linear effects in the experiment.
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Figure 5.14: Experimental (top) and numerical results (bottom) for Gρ,ρ(k) in
m = −1 in comparison. The experimental results are from [32] and the k = 0 value
is set to zero. The Zeeman shifts calculated for the experiments are q = −30 Hz
(left), q = −33 Hz (middle) and q = −36 Hz (right). The results agree better, if
smaller values are used in the simulations. Here we show the results for q = −10 Hz
(left), q = −15 Hz (middle) and q = −20 Hz (right). The numerical results are
averaged over 1000 runs. The parameters are: ρ = 200 · 106 m−1, Ns = 8192,
L = 252.2 µm, couplings are given in Tab. 3.1. In both cases a peak around k = 0
and a second peak at finite k starts to grow at t ≈ 40 ms. The position of the
peak in the simulation is roughly at twice the momentum of the most unstable
Bogoliubov mode k′ Eq. (4.17). For the shifted q value the position of the peaks
agree very well. The peaks are most pronounced at 80 ms (experiment) and 100
ms (numeric), respectively.

47





6

Seeded Initial Conditions

In this chapter, we study the seeded initial conditions. Most particles start
again in the m = 0 component but a small part of the particles are initially
transferred to the side modes. We will call this transferred particles seed. The
idea behind this preparation is to compare the effects of a real particles with
the case in which initially only quantum noise is present in the side modes. To
compare our results with experiment we need to know the exact preparation
of the initial state. Initially all particles are again prepared in m = 0. After
this a radio-frequency-pulse (RF-pulse) is used to transfer particles in the side
modes. In spin space the pulse acts as a rotation around the x-axis and can
be described by the fx matrix

ψ̂(t = 0) ∼ eiθfx

0
1
0

 , (6.1)

where θ is the rotation angle. To calculate the state after the rotation one can
use that f 3

x = fx and f 4
x = f 2

x . This simplifies the exponential to exp (iθfx) =
f 2
x cos θ + ifx sin θ. Subsequently the system is again driven out of equilibrium

by an external magnetic field to negative q values and the new ground state is
in the paramagnetic phase

ψ̂unseeded ∼

0
1
0

 RF-pulse−−−−−→ ψ̂seeded ∼


i sin θ√

2
cos θ
i sin θ√

2

 quench−−−−→
q<0

ψ̂para. ∼ 1√
2

1
0
1

 .

The rotation does not change the spin of the system, which stays zero as can
easily be seen by inserting ψ̂seeded into Eqs. (2.13) – (2.15).

In the experiments the number of seeded particles varies between 3% to 10 %.
In this work, we use a large seed in which 9.3% of the particles are initially
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Chapter 6 Seeded Initial Conditions

transferred to the side components, when not stated otherwise. The large
seed has the advantage that the differences to the unseeded case are more
pronounced, although they are also present with a small seed.

6.1 Evolution of a Single Realization in Real
Space

We start with the study of a single realization in real space. The density and
the spin is plotted for q = −25 Hz in Figure 6.1. One can see several differences
to the unseeded case. The most prominent is a large, temporal oscillation of
the particles between the m = 0 and the side components. The oscillation is
spatially homogeneous and has a spin orientation in x-direction. A second
difference is that the pattern formation starts at later times. We discuss the
reason for this when we look at the spectra. The temporal oscillations can
also be seen in Fz and interfere with the spatial oscillations. Firstly, we take a
closer look at the oscillations.

The oscillation creates always a spin in x-direction and not in y-direction. If
one uses initial condition in which the seed in the side modes is created by a
rotation around the y-axis instead of the x-axis the oscillation creates a spin in
y-direction. This shows that Fx and Fy are not degenerated anymore. This is
only possible because the preparation of the initial state breaks the symmetry
between the x- and y-direction. Although the expectation value of the spin is
zero in both initial states, the fluctuations of the spin differ. One possibility
to plot this in the spin basis is shown in Figure 6.2. The unseeded case can
be seen as a flat disc in the x-y-plane. Fz is completely known and is zero.
Because of the Heisenberg uncertainty this cannot be the case for Fx and Fy.
This can also be seen in the numerical implementation. The initial fluctuations
in z-direction are proportional to the square of the noise η2, which we put in
the system, while the fluctuations in the two other directions are proportional
to ρ0η. This changes through the rotation around the x-axis. Now Fz is not
completely known anymore. The uncertainty of Fx stays the same, but the
uncertainty of Fy becomes smaller and the x-y-symmetry is broken.

To gain a better understanding of the oscillations a single mode approximation
(SMA) is helpful. The oscillations are spatially flat and symmetric in the side
components ψ±1 = ψside. Thus we can neglect the kinetic term, the Fz term and
the interaction proportional to the density. In this approximation the phase of
both side components stays the same and thus also Fy can be neglected. This
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Figure 6.1: Numerical results of a single realization in position space for the
seeded initial conditions. The parameters are: ρ = 200 · 106 m−1, Ns = 8192,
L = 252.2 µm, q = −25 Hz = −3.04 · nc1, couplings are given in Tab. 3.1, initially
9.3% of the particles are in the side modes. The first three plots show the density
of the three components m = 1 (top), m = 0 (middle) and m = −1 (bottom). The
last three plots show Fx (top) Fy (middle) and Fz (bottom). Particles oscillate
between m = 0 and the side components at early times. This oscillation creates
a spin in x-direction and there is also pattern formation in z-direction. At later
times a pattern with a wavelength given by the Bogoliubov modes appears and the
oscillation stops. The pattern is most pronounced at t ∼ 150 ms. At later times
the system gets irregular and one can observe solitonic defects.
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Fy

Fx

FzAll atoms
in m = 0

Short low-power RF pulse
→ Rotation around x-axis

Small occupation
of the side

components

Fy

Fx

Fz

Figure 6.2: Symmetry breaking in the preparation of the seeded initial state.
On the left side the unseeded initial state and on the right side the seeded initial
state is shown in the spin basis. In the unseeded case Fz is exactly known and
the uncertainty of Fx and Fy is equalt. The rotation around the x-axis lowers the
uncertainty of Fy, but keeps the uncertainty of Fx. This breaks the symmetry
between the x- and y-direction.

simplifies the time evolution of the three components Eqs. (2.20) – (2.22) to

i
∂ψs

∂t
= qψs + c1(ψ∗

sψ0 + ψ∗
0ψs)ψ0 , (6.2)

i
∂ψ0

∂t
= 2c1(ψ∗

sψ0 + ψ∗
0ψs)ψs . (6.3)

These are non-linear, coupled differential equations. The numerical solution is
plotted in Figure 6.3 together with the results of the simulation of the spatial
extended system. One can see that the solution is periodic in time. In the early
stages of the time evolution the simulation is well described by the SMA. The
largest differences can be seen in the calculation of Fx, which never drops down
to zero in the in the case of the spatial simulations. This can be explained by
the quantum fluctuations which are not included in the SMA and always keep
the value of Fx finite. At later times the influence of the spatial modes gets
larger and the oscillations get smaller. The system cannot be longer described
by the SMA.
It is possible to find a physical picture which explains the observed oscillation:
Initially the system starts in a state where the phase difference between ψside
and ψ0 is π/2. The spin of this state is zero and hence there is no coupling
between the three components (compare Eqs. (6.2) and (6.3)). The side
components have a energy which is lowered by an amount of q. Therefore their
phases evolve slower in time and the phase difference between ψside and ψ0
changes. This creates a spin in x-direction. It is maximal at a phase difference
of 0 and π. The modes couple until Fx vanishes again. During the coupling
the occupation of the components changes. This has also an influence on the
value of Fx and is the reason why the process is not described by a harmonic
oscillation.
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Figure 6.3: Comparison of particle numbers in each mode of the whole spatial
simulation with the single mode approximation Eqs. (6.2) and (6.3). In addition
the absolute value of the spatially averaged, normalized spin in x-direction is shown.
In the upper plot q ∼ −0.54 · c1ρ and in the lower plot q ∼ −2.70 · c1ρ. The
oscillation amplitude and frequency strongly depends on q. For early times the
spatial simulations are well described by the SMA. At later times spatial modes
are excited and the single mode approximation breaks down. This happens earlier
for large values of q.

We can also solve Eqs. (6.2) and (6.3) analytically. For that we use an approach
from [43]. First we split the wave functions into their amplitudes and their
phases:

ψ0 = √
ρ0e

−iθ0 , (6.4)
ψs = √

ρse
−iθs . (6.5)

The total density is given by ρ0 + 2ρs = ρ. Using these equations, Eqs. (6.2)
and (6.3) can be written as

i
ρ̇s

ρs
+ θ̇s = q + c1ρ0(eiθ + 1) , (6.6)

i
ρ̇0

ρ0
+ θ̇0 = 2c1ρs(e−iθ + 1) , (6.7)
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where we used θ = 2θs − 2θ0. ρj and θj are real quantities and we can therefore
split both equations in their real and imaginary parts. The imaginary parts
give the time evolution of the densities and the real parts the time evolution
of the phases

ρ̇s = c1ρsρ0 sin(θ) , (6.8)
ρ̇0 = −2c1ρsρ0 sin(θ) , (6.9)
θ̇s = q + c1ρ0(cos(θ) + 1) , (6.10)
θ̇0 = 2c1ρs(cos(θ) + 1) , (6.11)
θ̇ = 2q + 2c1(ρ0 − 2ρs)(cos(θ) + 1) . (6.12)

The first two equations are consistent with 2ρs + ρ0 = ρ. The energy of the
system in the SMA is given by

E = q(ρ− ρ0) + c1ρ0(ρ− ρ0)(1 + cos(θ)) . (6.13)

Eventually, the purpose of this calculations to yield an expression for the time
of one period to compare it with experiment and simulation. Therefore we
calculate the square of the time derivative Eq. (6.9) of ρ0

(ρ̇0)2 = 4[E − q(ρ− ρ0)][(2c1ρ0 + q)(ρ− ρ0) − E] . (6.14)

which depends on the energy E, but is independent of θ. ρ0 is a real quantity
and thus only positive values on the right hand side have a physical meaning.
To find the regime in which the function is positive we calculate their roots xi

xj = ρ0

ρ
, (6.15)

xk,l =
2c1ρ− q ±

√
(2c1ρ− q)2 − 8c1ρ(q − E)

4c1ρ
. (6.16)

In the following we use x1 = min(xj, xk, xl) and x3 = max(xj, xk, xl). Using
the roots one can write the square of the time derivative as

(ρ̇0)2 = −8c1ρq(ρ0 − x1)(ρ0 − x2)(ρ0 − x3) . (6.17)

To find the duration of one period we take a closer look at this function. Since
ρ0 is a real quantity only positive values for ρ̇0 are physical. In our case c1ρ < 0.
Hence the function goes to −∞ for ρ0 → −∞ and to ∞ for ρ0 → ∞. This
means the function is positive for ρ0 ∈ [x1, x2] and for ρ0 > 0, but the latter
case is unstable. The stable solution is the oscillation of ρ0 between x1 and x2.
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The duration of one period is given by the time which the density needs to
change from one of these values to the other:

T =
∮ 1
ρ̇0

dρ0

=
√

1
2|c1ρq|

∫ x2

x1

dρ0√
[ρ0 − x1][ρ0 − x2][ρ0 − x3]

. (6.18)

Such equations can be solved by complete elliptic integrals of the first kind

K(k) =
∫ 1

0
dt√

(1 − t2)(1 − k2t2)
. (6.19)

To bring Eq. (6.18) in this form one first needs to shift the integration parameter
by x1: ρ0 → ρ0 + x1 and then rescale it by (x2 − x1): ρ0 → (x2 − x1)ρ0. This
results in

T =
√

1
2|c1ρq|

∫ 1

0
(x2 − x1)dρ′

0√
(x2 − x1)3ρ′

0[ρ′
0 − 1][ρ′

0 − x3−x1
x2−x1

]

=
√

1
2|c1ρq|(x3 − x1)

∫ 1

0
dρ′

0√
ρ′

0[1 − ρ′
0][1 − x2−x1

x3−x1
ρ′

0]
. (6.20)

The last step is the substitution ρ0 = t2 → dρ0 = 2t dt. We get

T =
√

2
|c1ρq|(x3 − x1)

∫ 1

0
dt√

[1 − t2][1 − x2−x1
x3−x1

t2]

=
√

2
|c1ρq|(x3 − x1)

K

(√
x2 − x1

x3 − x1

)
. (6.21)

The oscillation period is therefore a complicated function which depends on
the coupling strength c1, the Zeeman effect q and the total density ρ. Through
the roots xi it also depends on the energy of the system E and hence on the
strength of the seed.

6.2 Oscillations in the Experiment

The oscillation described in the previous section can also be measured in the
experiment. It is clearly visible at early times and stops 80 – 110 ms after
the quench. Depending on the frequency, one can see up to four periods. In
this section, we compare frequencies measured in the experiment [32] with the
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analytic predictions of the SMA, see Eq. (6.21) and with numerical results.
They are plotted in Figure 6.4 for three different seed strengths. One can
observe that the frequencies increase with q and with the strength of the seed.
The SMA and the numerical results show a very high agreement in all three
cases. The results of the experiments are also well described by the SMA,
but the deviations are larger. The experimental results agree best with the
theoretic predictions in the case of the largest seed. The frequencies can be
measured quite exact in the experiment and can be used to fit the parameters
of the experiment. If the ratio of the total density ρ to the initial density of
the m = 0 component is fixed, the SMA only depends on the product c1ρ
and not on c1 and ρ on its own. In Figure 6.4 the predictions of the SMA
for a larger value of c1ρ are shown, which show a better agreement with the
experimental results.

6.3 Spectra and Density-Density Correlation

In this section, we examine the spectrum of the three hyperfine states, of the
spins and of the quadrupole moments. We also take a look at the density-
density correlation G(m)

ρ,ρ (k). Most phenomena which we identified in the
unseeded case are also present in the seeded case, but are slightly different.
We focus here on the differences and the new phenomena. The mentioned
quantities are plotted in Figure 6.5. We also plot the spectra of Fx because Fx
and Fy are not degenerated anymore. In all spectra we can find more peaks as
in the unseeded case and also their temporal behavior is different. The most
pronounced peaks of the unseeded case can also be observed with the seed,
but they are at slightly higher momenta. The highest peaks are again created
by particles from the m = 0 component scattering into the side component
with a phase corresponding to a spin in the x-y plane, but this process gives in
the seeded case more energy. For simplicity we consider the creation of a spin
in x-direction of a particle changing its hyperfine state from m = 0 to m = 1.
The Zeeman energy of the particles changes by q. The energy of Fx is given
by c1ρ0ρ1, see Eqs. (2.13) and (2.19). If one assumes ρ0 ≫ ρ1 and that the
densities of the components are so high, that the scattering of a single pair of
atoms does not change them, the change of energy through the spin creation
is c1(ρ0 − ρ1). This energy is converted into kinetic energy

k2

2M = −q − c1(ρ0 − ρ1) . (6.22)

During the early stages of the time evolution the density in the components
changes due to the particle oscillation. This changes also the energy which is
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Figure 6.4: Comparison of oscillation frequencies in the experiment [32] (green
dots), simulations (blue crosses) and the SMA Eq. (6.21) (dashed lines) for different
values of q. Three different seed strengths are compared, in which 3 % (top), 8 %
(middle) and 19 % (bottom) are initially in the side components. The parameters
of the simulations are: ρ = 180 · 106 m−1, Ns = 8192, L = 252.2 µm. The results
are averaged over 100 runs. The SMA is given for the values of the simulations
(blue) and for an increased value of the product c1ρ (green), which gives a better
agreement with the results of the experiment.

needed for the creation of the spin. It turns out that the above approximation
improves if one takes the oscillations into account by averaging the density
over the first oscillation period:

k2
sd

2M = −q − c1(⟨ρ0⟩1. period − ⟨ρ1⟩1. period) . (6.23)

where we use ksd in the following to describe the position of excitations with
the corresponding energy. If we insert the initial values of the unseeded case,
ρ0 = ρ and ρ1 = 0, in this equation, we get the momentum of the most unstable
Bogoliubov mode Eq. (4.17). For the seeded case the momenta are larger.
They are marked in Figure 6.5 as dotted lines. One can see that the position
of many excitations can be explained by this approximation. At early times
there is a high peak at ksd in n(1)(k). Similar to the unseeded case, the particle
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Figure 6.5: Spectra of the hyperfine states, the spins and of the quadrupole
moments and the density-density correlations G

(m)
ρ,ρ (k) for three different times.

The same parameters as in Figure 6.1 are used. The quantities are averaged over
1000 runs. For orientation the position of the most unstable Bogoliubov mode
km.u. = 0.085 µm−1 of the unseeded case and multiples thereof (dashed lines) are
marked. In addition we plot the position of the momentum of an approximation
Eq. 6.23 which considers the initial seed and multiples thereof (pointed lines).
90 ms after the quench first excitations are visible as peaks. The number of peaks
increases over time. At late times the peaks smear out and the spectra fall off
exponentially.
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6.3 Spectra and Density-Density Correlation

of this mode interact with the condensate and peaks at multiples of ksd emerge.
In addition there are also new excitations. For example there are small peaks
at ksd in n(0)(k) and at 2ksd in n(1)(k) that are not there in the unseeded case.
They can be created by interactions where particles of the seed (k = 0 and
m = ±1) take part. A possible process which scatters particles into the ksd
mode in n(0)(k) is given by

iψ̇ksd,0 ∼ c0ψksd,sψ
∗
0,sψ0,0 , (6.24)

and a process which excites particles into the 2ksd mode in n(1)(k) is

iψ̇2ksd,s ∼ c0ψksd,s’ψ
∗
0,s’ψksd,s . (6.25)

Another difference is that the height of the peaks oscillates. Small oscillations
can be seen in all functions, but they are very large in G(m)

ρ,ρ (k) and Fz. The
oscillations in G(m)

ρ,ρ (k) can be explained by the particle oscillation between
m = 0 and the side components. This changes the number of particles in the
condensate mode of the components. Using Eq. (5.6) one can see that this
changes also the height of the peaks in G(m)

ρ,ρ (k). The oscillation in Fz has the
same frequency and can be seen in the position space plots in Figure 6.1.

There are further new peaks at k ≈ 0.05 µm. They are clearly visible in G(m)
ρ,ρ (k)

and can be seen as small oscillating peaks in n(m)(k). There is no corresponding
excitation in the unseeded case and the origin of these excitations needs further
study.

In Figure 6.6 the positions of the peaks in n(m)(k) and G(m)
ρ,ρ (k) at t ≈ 240 ms

are shown. Most peaks can be again explained by the creation of a primary peak
at ksd and subsequently scattering of particles with ksd to higher frequencies.
These peaks can be found in both components, because of the new condensate
mode in the side components. As already discussed the condensate mode is
also the reason that there are now peaks at all multiples of ks in G(m)

ρ,ρ (k). The
temporal oscillations of the peaks make the detection of small peaks more
difficult and the algorithm misses some of them. One can see in the plot that
sometimes a peak is found for some q values by not for others.

Figure 6.7 shows the time evolution of the occupation numbers at the position
of the peaks for two different densities. Similar to the unseeded case in the
beginning a primary mode starts to grow exponentially and secondary modes
grow at later times with even higher growth rates. A difference to the unseeded
case are oscillations in the growth rates. These oscillations can be seen in
all modes and they are most pronounced at the new peak at k ≈ 0.04 µm
and for the peak at 2ksd. They are caused by the large particle oscillation
between m = 0 and the side components. The primary peak is created by
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Figure 6.6: Position of the peaks of n(m)(k) (left) and G
(m)
ρ,ρ (k) (right) for different

values of the quadratic Zeeman effect q at t ≈ 240 ms. The parameters are:
Ns = 16384, L = 754.9 µm, couplings are given in Tab. 3.1 and the density is
increased to R = 50000 as described in Sec. 3.3. The spectra are averaged over 200
runs before the peaks are detected. For orientation the position of ks Eq. (6.23)
for ⟨ρ0⟩ = 0.7ρ and ⟨ρ1⟩ = 0.15ρ and multiples of it are plotted (even multiples:
red solid lines, odd multiples: blue solid lines). There are excitations at ks and
multiples of it, but also excitations which cannot be described by interactions with
this mode.

interactions of particles in m = 0. Through the oscillations the number of
particles in m = 0 drops down periodically. During this time the excitation
of the ksd mode is suppressed. The peak at 2ksd is created by interactions of
particles in the condensate with particles in ksd mode. This explains that the
oscillations of the particles in the condensate also influence the growth rates
of the 2ksd mode. It also has an influence on higher modes. Presumably the
oscillations are the main reason for the slower time evolution in the seeded
case in comparison to the unseeded case. The growth of the primary and
secondary excitations is slowed down. Hence the formation of pattern and also
the subsequent creation of solitonic excitations starts at later times.

We now take a look at the system at times where the peaks have smeared out.
Similar to the unseeded case one can observe an exponential decay in n(m)(k)
and G(m)

ρ,ρ (k) in all three components. In Figure 6.8 the decay lengths ξ for the
seeded and unseeded case at t ≈ 450 ms are shown. We do not compare the
decay lengths for the corresponding values of q directly. Instead we calculate
the energy which we put into the system through the quench. We assign each
atom which is initially in the m = 0 mode an energy of q and then calculate a
mean energy for all atoms. Thereby also the particles which are put into the
system through the noise are taken into account. One can observe that the
decay rates depend mainly on the energy added to the system through the
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Figure 6.7: Time evolution of the occupation numbers of the Peaks at ksd and
multiples thereof. Note the different scales on the y-axis. On the left side averaged
values over 1000 runs with the parameters given in Figure 5.1 are plotted. The
parameters for the right plot are the same except for: R = 50000 as described in
Sec. 3.3, L = 754.9 µm and Ns = 16384. Here 200 runs are averaged. In the right
plot also k = 0.34 µm is shown. One can see exponential growth of the modes
similar to the unseeded case, but an additional oscillation of the occupation number
can be observed. The primary mode grows from the beginning and secondary
modes start to grow at later times.

quench and not directly on the values of q. The details of the initial conditions
are not important for this stage of the time evolution but the state of the
system depends mainly on the value of a few conserved quantities like the total
energy of the system and the number of particles. This is an important feature
of the process of thermalization. In the thermal equilibrium the system has no
memory about the details of the initial conditions. However, our system has
not reached the thermal equilibrium yet. The number of particles in the three
hyperfine states are still changing slowly (see Figure 5.4) and also the decay
lengths have not reached a fixed value yet (see Figure 5.13). This can indicate
that the system has reached a so called prethermalized state [7]. A system is
called prethermalized if it is in a state where some observables have already
reached their thermal equilibrium while other quantities still differ from their
equilibrium value. For example, the occupation numbers of the momentum
modes of the system can be far away from the equilibrium distribution but the
kinetic energy has already reached its final value. This value can be used to
determine the equilibrium temperature of the system. Thereby the time scales
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at which the observables reach their equilibrium value can be very different and
the system can stay for long times in a quasi-stationary, prethermalized state.
It was shown this phenomena can also occur in Bose gases [8, 61]. It needs
further study to clarify if the quasi-steady state which our system reaches at
late times is prethermalized.

6.4 Density-Density Correlations in the Exper-
iment

In this section, we compare the density-density correlations measured in the
experiment [32] with numerical data. The experimental measurements are
again with B = 1.213 G and q = −30 Hz, q = −33 Hz and q = −36 Hz.
In Figure 6.9 we compare the results with numerical data for q = −10 Hz,
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q = −15 Hz and q = −20 Hz. In the experiment one can see one peak around
k = 0.5 µm clearly and a smaller second peak at twice the momentum. For
larger q the second peak is more pronounced and the positions of the peaks
shift to higher momenta. Also the effect of the oscillations is visible. Depending
on the q values there are times between t = 20 ms and t = 70 ms, where the
height of the peak stays almost the same and times, where it increases very
fast. For example for q = 36 Hz the height of the peak makes two large jumps
between t = 20 – 30 ms and t = 60 – 70 ms, while it stays almost the same
and even slightly decreases in the intermediate time. This phenomenon was
not visible in the experimental results of the unseeded case. Another difference
to the unseeded case is the time interval in which the peaks are visible. In the
case with seed the peaks get smeared out at t ≈ 140 ms, while in the unseeded
case the peaks vanish at t ≈ 100 ms.

The numerical data show a good agreement with the experimental results.
As in the experiment the peaks are visible for longer times. The positions of
the peaks are very similar, but presumably one can find q values where the
agreement is higher. One difference is that the second peak is more pronounced
in the numerical data and in the case of q = −20 Hz even a third peak is
visible. As discussed in Sec 5.5 there are several explanations for the differences
between numerical and experimental data.
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Figure 6.9: Experimental (top) and numerical results (bottom) for Gρ,ρ(k) in
m = −1 in comparison. The experimental results are from [32] and the k = 0 value
is set to zero. The Zeeman shifts calculated for the experiments are q = −30 Hz
(left), q = −33 Hz (middle) and q = −36 Hz (right). Initially ≈ 3% of the particles
are transferred into the side components. The results agree better, if smaller
values are used in the simulations. Here we show the results for q = −10 Hz (left),
q = −15 Hz (middle) and q = −20 Hz (right). The numerical results are averaged
over 400 runs. The parameters are: ρ = 240 · 106 m−1, Ns = 8192, L = 252.2 µm,
couplings are given in Tab. 3.1. The same seed as in the experiment is used.
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7

Conclusion

In this thesis, we studied the non-equilibrium dynamics of a spin-1 Bose gas in
one spatial dimension numerically and analytically. We investigated the time
evolution of the BEC after a quench for two different initial conditions. First,
we studied the unseeded case where the system is prepared in the polar phase.
The side components are initially empty and one has to take only quantum
fluctuations into account. One part of this work was to compare the influence
of the quantum fluctuations with the influence of real particles. Therefore we
prepared the system in the seeded case in a state in which initially the side
components are weakly occupied. In both cases the system is driven out of
equilibrium by an external magnetic field which lowers the energy of the side
components by the quadratic Zeeman shift q. We compared the numerical
and analytic results with experiments of the Group of Prof. M. Oberthaler
[32] where 87Rb in the F = 2 hyperfine manifold are studied. We showed that
for the described initial conditions the early stages of the time evolution of
the five-component F = 2 system in the experiment can be well described by
an effective three-component system for which we determined the effective
coupling constants.

First, we investigated the unseeded case. In the early stages of the time
evolution we observed spin excitations, which can be described by Bogoliubov
theory. We used the Bogoliubov approximation to calculate the primary modes,
which become unstable, if a condensate in the polar phase is quenched into the
paramagnetic regime. The momentum region of unstable modes depends on
the strength of the quench. For small external fields the most unstable modes
have zero momentum and the excitations can be seen as a peak around k = 0
in the occupation spectra of the side components. For larger negative values
of q the momentum of the most unstable mode km.u. becomes finite. In this
case, we observed the excitation of secondary modes with momenta, which are
multiples of km.u.. We explained this by interactions of particles of the primary
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mode with particles in the condensate. Such rescattering processes are not
described by mean-field-type approximations and show that nonlinear effects
play an important role in the system. Using momentum conservation we could
explain why we find secondary modes with odd multiples of km.u. in the side
components and at even multiples in the m = 0 component. We saw that the
number of secondary modes depends on the density in the system. For small
densities quantum fluctuations have more influence on the system. The system
is more chaotic and the excitation of secondary modes is suppressed.

Bogoliubov theory proposes an exponential growth of the unstable modes and
also predicts the corresponding growth rates τ−1

Bog. The growth rates of the
Bogoliubov excitations measured in the simulations agree very well with this
predictions. We found that also the secondary excitations grow exponentially.
Thereby their growth rates depend on the density of the system. They increase
for high densities and approach a constant value. Thereby the highest growth
rate measured for a mode with momentum n · km.u. is given by n · τ−1

Bog. It is
possible to predict the approached values if one uses an approximation where
only the modes at the positions of the peaks are considered. We found similar
excitations in the spectra of the spins. They show the same relation between
the position of the peaks and their growth rates. The excitation of secondary
modes was also found in the study of parametric resonances in a relativistic
field theory in three spatial dimensions from J. Berges and J. Serreau [35]. In
this work a primary mode which is excited by the parametric resonance grows
exponentially with a rate γ. At later times a broad range of longitudinal modes
starts to grow with a rate 2γ and transverse mode grows with 3γ. The growth
rates of these modes can be explained using the formalism of the two-particle
irreducible effective action [62]. On the one hand the excitations of secondaries
found in this work show some common features. We also found that at first
longitudinal modes are excited with 2τ−1

Bog and then transverse modes with
3τ−1

Bog. On the other hand there are also some differences. The primary mode
is not excited by a parametric resonance, but a region of unstable modes
is created by changing the ground state of the system. In our simulations,
which consider only one spatial dimension, the momentum range of secondary
excitations is small and modes are visible as isolated peaks in the spectra. We
also found growth rates, which are higher than three times the growth rate of
the primary mode. This can be explained by interactions in which particles
of secondary modes take part. This demonstrated that our system provides
a great opportunity to study nonlinear effects of a quantum field theory in a
very controlled manner. It can be used to get a better understanding for other
processes in which similar effects play an important role like the preheating of
the universe after inflation [38–40] or heavy ion collision [41, 42].

To compare the numerical results with the experiment we calculated the
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density-density correlations. In the experiment the wave function of the
three hyperfine states is not measured directly. Instead the components are
separated by a Stern-Gerlach splitting and their densities are measured. We
demonstrated that the relation between the spectra of the wave function and
the Fourier transformation of the density is not trivial. The phases of the wave
functions and the occupations of the condensate modes play an important role.
It was possible to explain why the density-density correlations of the three
components look very similar, while their spectra are very different. We found
the best agreement between the numerical and experimental data, if we used
smaller values for the quadratic Zeeman than calculated for the parameters of
the experiment. For these values we found very similar excitations and also
the time scales agree very well. Thereby the parameters of the experiment are
in a regime where both in the simulations and in the experiment only the first
secondary excitation is visible. The primary excitation can be seen as a peak
at 2km.u. in the density-density correlations of the side components and the
secondary modes are visible as a peak at same position in the corresponding
function of the m = 0 component.

In the second part of this work we investigated the seeded initial conditions.
In this case we observed new phenomena but also similar excitations as in
the unseeded case. It turns out that the phase differences between the wave
functions of the modes play an important role. Through the preparation of
the seeded case the initial phase difference between the three components is
fixed, while this is not the case without seed. The fixed phase differences
cause large particle oscillations between the m = 0 component and the side
components. The oscillation create a spin excitation in x-direction, but not
in y-direction. This is possible because the preparation of the seeded initial
conditions breaks the SO(2) symmetry in the x-y plane, which the system
possesses in the unseeded case. The early stages of the oscillation are well
described by a single mode approximation (SMA) [43, 63]. Such oscillations
have been recently used to study non-equilibrium dynamics of 87Rb in tightly
confined optical traps [64].

The predicted frequencies of the SMA agree very well the simulation, while there
are small deviations in the experimental results. The oscillation frequencies
can be measured very exactly in the experiment which presumably can be
used to fit some parameters of the experiment. The oscillations also have
a large influence on the excitations of the modes. As in the unseeded case
one can observe the excitation of a primary mode and of secondary modes.
Thereby the momenta of the modes are slightly higher. The reason for this is
that particles scattering from the m = 0 mode into the side modes create a
smaller spin and thus the kinetic energy after the scattering is larger. There
are more excitations observable than in the unseeded case. One reason is that
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particles of the primary mode can scatter with the seeded particles. This
creates excitations which can not be seen without the initial condensate in
the side modes. However, there are also new excitations at low momenta
in all three components, which need further study. We demonstrated that
the oscillation has also influence on the time evolution of the excited modes.
The occupation number of the excited modes oscillates and the whole time
evolution is slowed down. The formation of a pattern starts at later times and
the peaks in the spectrum are visible for longer times. This can also be seen
in experimental results. If one uses the same smaller values for q as in the
unseeded case, the density-density correlations of the simulations agree very
well with experimental results.

For both initial conditions the peaks smear out at late times. One can observe
that the occupation numbers of all three components fall off exponentially
with k. This can also be seen in the density-density correlations both of the
experiment and the simulation. We showed in position space plots that the
system is dominated by topological defects and we could observe solition-like
excitations. It needs further study to determine the exact types of the defects
and their influence on the time evolution. We found that the system has
lost the memory of the initial conditions. For both initial conditions the
decay lengths in the spectra depend mainly on the energy that was added
to the system through the quench. The system stays for long times in this
quasi-steady state and all observables change only slowly. To determine if the
system has reached a prethermalized state needs further study.

Finally, we want to mention that recently new experimental measurements
were performed in which also the spectrum of the spin in y-direction was
determined. Here one can observe new phenomena. The unstable modes
predicted from Bogoliubov theory are only excited for certain values of q. It
seems that the trap used in the experiment has an influence on the possible
excitations. These observations are not yet completely understood and need
further study. Presumably the implementation of the trap in the simulation
can help to understand the new results. In this work, we showed that semi-
classical simulations in homogeneous space can describe many observations
of the experiment and can be used to get a better understanding of the
phenomenology in the system. We got a good understanding of the early
stages of the time evolution after the quench. For most phenomena we found
both physical and analytic explanations. However, there are still interesting
open questions. Especially the state of the system at late times where the
time evolution slows down and the system is dominated by topological defects
needs further investigations.
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Appendix

A.1 Density and Wave Function in Fourier Space

In the experiments described in Sec. 3.1 it is not possible to measure the wave
function directly. Instead the accessible quantity is the density. In this section
we calculate the density for a wave function with one, respectively two strongly
occupied modes. At first we want to assume the most general case in which
one mode k1 in the wave function is excited

ψ(x) = AR1 cos(k1x+ ϕR1) + iAI1 cos(k1x+ ϕI1) , (A.1)
with AR1, AI1 ∈ R. We shift the wave such that ϕR1 = 0. In this case the
density is given by

ρ(x) = |AR1 cos(k1x) + iAI1 cos(k1x+ ϕ1)|2

= A2
R1
2 (cos 2k1x+ 1) + A2

I1
2 (cos (2k1x+ 2ϕ1) + 1) , (A.2)

where ϕ1 = ϕI1 − ϕR1. The crossterms cancel and one gets a real quantity.
Here one can see two important points. First, every mode in the wave function
gives a contribution to the k = 0 mode of the density. The reason is that
the density can only have positive values. The k = 0 mode depends on the
mean-density of the field. Second, a highly occupied mode k1 in the wave
function corresponds to a k-vector of 2k1 in the density. However, there can
be an additional effect: If the phase difference is ϕ1 = π/2 there is no peak at
2k1 in the density distribution. The density is flat and only the k = 0 mode is
occupied.
Now we take a look at the case where two modes are occupied. In this case
we can write the wave function as

ψ(x) = AR1 cos(k1x+ ϕR1) + iAI1 cos(k1x+ ϕI1)
+ AR2 cos(k2x+ ϕR2) + iAI2 cos(k2x+ ϕI2) (A.3)
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and the density is given by

ρ(x) = |ψ(x)|2

= A2
R1
2 (cos 2k1x+ 2ϕR1 + 1) + A2

I1
2 (cos (2k1x+ 2ϕI1) + 1)

+ A2
R2
2 (cos 2k2x+ 2ϕR2 + 1) + A2

I2
2 (cos (2k2x+ 2ϕR2) + 1)

+ AR1AR2 (cos (k1 + k2)(ϕR1 + ϕR2) + cos (k1 − k2)(ϕR1 − ϕR2))
+ AI1AI2 (cos (k1 + k2)(ϕI1 + ϕI2) + cos (k1 − k2)(ϕI1 − ϕI2)) . (A.4)

The first two lines correspond again to the occupation of the k = 0 mode
and the 2k1 and 2k2 modes in the density. However, the bottom two lines
show new effects. It is possible that one observes modes in the density with
k+ = k1 + k2 or k− = k1 − k2, but it is also possible that the terms cancel out.
The mode k− explains why we see in the density-density correlations always
a peak around k = 0. The excited modes in the wave function have a finite
momentum range and hence their are contribution where k− is almost zero.

A.2 Grid momentum

In our simulations both a part of the time evolution and a part of the calculation
of the observable are carried out in Fourier space. In this work, we use grid
momenta which are not distributed linearly in Fourier space. One can derive
them if one calculates the discrete, second order spatial derivative of the wave
function:

d2

dx2ψ(xj) =
d

dxψ(xj+1) − d
dxψ(xj)

xj+1 − xj

=

(
ψ(xj+1)−ψ(xj)

xj+1−xj

)
−
(
ψ(xj)−ψ(xj−1)

xj−xj−1

)
xj+1 − xj

= ψ(xj+1) − 2ψ(xj) + ψ(xj−1)
(∆x)2 . (A.5)
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where xj+1 − xj = xj − xj−1 = ∆x was used. After a transformation into
Fourier space ψ(xj) = 1/N ∑

k ψ(k) exp (−i2πkj/N) one gets

d2

dx2ψ(xj) = 1
N(∆x)2

∑
k

ψ(k)
(
e−i2πk(j+1)/N − 2e−i2πkj/N + e−i2πk(j−1)/N

)
= 1
N(∆x)2

∑
k

ψ(k)e−i2πkj/N
(
e−i2πk/N − 2 + ei2πk/N

)
= − 4

(∆x)2 sin2
(
πn

N

)
ψ(xj) != −k2ψ(xj) (A.6)

In Fourier space the momentum is given by

kn = 2
∆x sin

(
πn

N

)
(A.7)

with n ∈ [−N/2, N/2 − 1]. For small n the sin-function is almost linear and
the momenta are equally spaced. For high momenta the spacing is denser.
The highest momentum is 2/∆x and not π/∆x as in the linear case.
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