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Dynamik der Ising-Kette in einem transversen Feld nach einem plötz-
lichen Quench:

Wir betrachten die Dynamik der longitudinalen Spin-Korrelationsfunktion nach
einem plötzlichen Quench in der Ising-Spin-Kette in einem transversen Feld. Es
wird eine detaillierte Herleitung des Spektrums des Modells präsentiert, indem
gezeigt wird, dass der Hamilton-Operator des Systems sich als ein Hamilton-
Operator nicht-wechselwirkender Fermionen schreiben lässt. Dadurch ist man im
Stande durch die Anwendung des Wick’schen Theorems die longitudinale Spin-
Korrelationsfunktion für Systeme beliebiger (aber endlicher) Größe zu bestimmen.
Des Weiteren wird beobachtet, dass im thermodynamischen Limes die Dynamik
nach asymptotisch langen Zeiten nach dem plötzlichen Quench zu stationären
Werten führt, die sich durch ein geeignetes verallgemeinertes Gibbs’sches Ensem-
ble beschreiben lassen. Insbesondere konzentrieren wir uns auf die Dynamik des
longitudinalen Korrelators nach einem plötzlichen Quench von einem anfangs
großen externen Feld in die Nähe des quanten-kritischen Punktes innerhalb der
paramagnetischen Phase. Basierend auf asymptotischen Ausdrücken in [Calabrese
et al., 2012a] wird eine verbesserte Formel vorgeschlagen und diese wird mit
numerischen Rechnungen verglichen. Dabei wird beobachtet, dass der Zerfall der
Korrelationfunktion durch zwei Korrelationslängen charakterisiert ist. Insbesonde-
re wird festgestellt, dass die Korrelationsfunktion ihre stationären Werte bereits
auf sehr kurzen Distanzen annimmt.

Dynamics of the Transverse Field Ising Chain after a Sudden Quench:

We study the dynamics of the longitudinal spin correlation function after sudden
quenches in the Ising chain in a transverse field. We give a detailed derivation
of the spectrum of the model by showing that the Hamiltonian of the system
can be expressed as a Hamiltonian of non-interacting fermions. This enables
us to determine the longitudinal spin correlation function for chains of any
(finite) size by using Wick’s therorem. We find that, in the thermodynamic
limit, the dynamics leads to stationary values given by an appropriately defined
generalized Gibbs ensemble for asymptotically large times after the sudden quench.
In particular, we concentrate on the dynamics of the longitudinal correlator after
sudden quenches from initially large external fields to the vicinity of the quantum
critical point within the paramagnetic phase. Based on asymptotic expressions
given in [Calabrese et al., 2012a], we conjecture a new formula and compare it to
our numerical calculations. With that, we find that the decay of the correlation
function is characterized by two correlation lengths. In particular, we observe that
the correlation function attains its stationary values already at short distances.
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1 Introduction

Nowadays, experimental advances in the preparation and control of ultra-cold atomic
gases allow to observe the behaviour of isolated quantum systems out of equilibrium
for long timescales [Kinoshita et al., 2006, Greiner et al., 2002, Trotzky et al., 2012].
These systems are weakly coupled to their environment and, thus, the thermalization
due to dissipation is minimal. Therefore, they provide an ideal testing ground for
theoretical ideas regarding unitary non-equilibrium dynamics.
In these systems, one is interested in the time dependence of observables. In

particular, it is important to understand whether the non-equilibrium dynamics can
lead to stationary values for the observables and, if it does, whether these values
can be described by an appropriately chosen ensemble. So-called sudden quenches
are the most common way to probe an isolated quantum system for this question
in experiment. A sudden quench is an abrupt change of the parameters of the
Hamiltonian describing the dynamics of the isolated quantum system.
In [Rigol et al., 2007], it has been conjectured that, for sudden quenches in

integrable quantum systems, the observables attain stationary values which can be
described by a so-called generalized Gibbs ensemble [Jaynes, 1957a,b]. A generalized
Gibbs ensemble is a generalization of the usual (thermal) Gibbs ensemble which is
obtained by maximizing the von Neumann entropy under the constraint that there
are other conservation laws besides the one for the energy. In fact, generalized Gibbs
ensemble are not only a theoretical concept but have been observed experimentally
in [Langen et al., 2015].
The conjecture put forward in [Rigol et al., 2007] has been analysed for some

integrable quantum systems. The authors themselves considered the dynamics of
hard-core bosons numerically and confirmed their conjecture.

Among those integrable quantum systems is the transverse field Ising chain. This
model describes spin-1/2 systems where the spins in the x-direction interact with
their nearest-neighbours and with an external field in the z-direction. A distinguishing
feature of this model is that it admits a quantum phase transition, which is considered
to be a phase transition at zero temperature. The system has a quantum critical
point which separates a ferromagnetic phase from a paramagnetic phase.

The transverse field Ising chain is a special case of the more general XY model in
which also the spins in y-direction interact with their nearest-neighbours. The spec-
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trum of the XY chain without an external transverse field and the spin correlations
in the ground state have been first determined in [Lieb et al., 1961] by introducing
fermionic degrees of freedom. Based on this work, the XY chain in a transverse
external field has been diagonalized in [Katsura, 1962] and its thermodynamical
quantities have been analysed in [Barouch et al., 1970, Barouch and McCoy, 1971a,b,
McCoy et al., 1971]. Since the transverse field Ising chain is a special case of the XY
chain, corresponding calculations can be performed using the same methods. In fact,
the transverse field Ising chain has been directly diagonalized in [Pfeuty, 1970].

Sudden quenches of the external field in the transverse field Ising chain have been
considered in [Calabrese et al., 2012a,b], among other works. In [Calabrese et al.,
2012b], the authors found that the system approaches a stationary state and that
the stationary properties are, in fact, given by an appropriately defined generalized
Gibbs ensemble. Moreover, in [Calabrese et al., 2012a], the time dependence of the
longitudinal correlation function after a sudden quench for asymptotically large
values of the time passed after the quench and for the relative separation of spins
has been determined analytically for quenches within the ferromagnetic and within
the paramagnetic phases.

The objective of this work is to analyse the dynamics of the transverse field Ising
chain after a sudden quench. Our considerations are based on the results provided
in [Calabrese et al., 2012a,b]. In particular, we are interested in the non-equlibrium
dynamics after a sudden quench from a large intial value of the external field to
the vicinity of the quantum critical point within the paramagnetic phase. We will
investigate the longitudinal correlation function after a sudden quench and compare
numerical calculations to the asymptotic expressions provided in the aforementioned
works. Based on comparisons to our numerical calculations, we conjecture a refinement
of a result given in [Calabrese et al., 2012a] for this correlation function. Our improved
formula then implies that the behaviour of the correlator is characterized by two
correlation lengths, one of which is the one obtained from a generalized Gibbs
ensemble. Further, we also find that the correlator attains its stationary value rather
quickly over short distances, which is an interesting observation with regard to
experiments since it allows to detect stationary behaviour already at experimentally
accessible regimes.
This work is organized as follows. In the first chapter, we will discuss in detail

how to determine the spectrum of the transverse field Ising chain and examine the
structure of the ground state of the model. In particular, we demonstrate see that
the system exhibits a quantum phase transition in the thermodynamic limit. This
detailed derivation is important as the solutions provided in the literature often
assume simplifications and, thus, fail to correctly describe the system when these
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assumptions are dropped. In the second chapter, we consider the spin correlation
functions with respect to the ground state of the transverse field Ising chain. In
particular, we will examine the behaviour of the longitudinal correlator for large
relative separations of the spins. These calculations will help us to understand the
calculations of the longitudinal correlation function after a sudden quench of the
transverse external field, which is treated in the third chapter. There, we will describe
how to determine the longitudinal correlator and compare numerical calculations
of this correlator with results provided in [Calabrese et al., 2012a]. Based on these
comparisons, we conjecture an improved formula for the description of the time
dependence of the longitudinal correlation function after a sudden quench.
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2 The Spectrum of the Transverse Ising
Chain

LetH be the Hilbert space of a single spin-1/2 system. That is,H is a two-dimensional
complex linear space equipped with an inner product. Further, let I denote the identity
and let X, Y , and Z be the Pauli operators on H. Then, the Hilbert space of N
such spin-1/2 systems, where N is a positive integer, is given by HN := H⊗N , and
has the dimension 2N . We can define Pauli operators on this Hilbert space of the
composite system by

Xj := I⊗(j−1) ⊗X ⊗ I⊗(N−j) , (2.1)
Yj := I⊗(j−1) ⊗ Y ⊗ I⊗(N−j) , (2.2)
Zj := I⊗(j−1) ⊗ Z ⊗ I⊗(N−j) , (2.3)

for all j ∈ {0, 1, . . . , N − 1}. We will interpret the compound system as a chain of N
sites. Each of these sites constitutes a spin-1/2 system and is labeled by an index
j ∈ {0, 1, . . . , N − 1}. The Hamiltonian given by

H = −g
N−1∑
j=0

XjXj+1 mod N − h
N−1∑
j=0

Zj , (2.4)

where g and h are non-zero real numbers, together with the Hilbert space HN , defines
the Ising chain in a transverse field with periodic boundary conditions. We will refer
to this model as the transverse Ising chain for short.

The Hamiltonian given by expression (2.4) consists of two parts, which are given
by the two different sums. The first sum describes the interactions between the spins
and corresponds to the Hamiltonian of the simple Ising model. The interactions are
restricted to the nearest-neighbours and the coupling energy between the spins, g, is
constant. The sign of the first part is chosen such that the system has ferromagnetic
behaviour for positive values of g. The second part, that is, the second sum, describes
a perturbation of the simple Ising chain by a transverse external field. The number
h is an energy scale which is proportional to the field strength of the external field.
Thus, we will call h simply the external field strength. The sign of this part is chosen
such that the spins tend to align along the direction of the external field for increasing
positive values of h.
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A key feature of the transverse Ising chain is that the spectrum of the Hamiltonian
has been constructed exactly. Shigetoshi Katsura determined the spectrum of the
XY chain in a transverse field in [Katsura, 1962], of which the transverse Ising chain
is a special case. Pierre Pfeuty later diagonalized the transverse Ising chain directly
in [Pfeuty, 1970]. Both of them used a method employed by Elliott Lieb, Theodore
Schultz, and Daniel Mattis to solve the simple XY chain without any external field
by expressing the Hamiltonian of the model in terms of a particular set of fermionic
operators, called the Jordan-Wigner operators [Lieb et al., 1961].
Another distinguishing property of the transverse Ising chain is that it is the

simplest model to exhibit a quantum phase transition. A quantum phase transition
is considered to be a phase transition at zero temperature and it takes place at a
quantum critical point. A quantum critical point is, as defined in Subir Sachdev’s
book [Sachdev, 2011] on the subject, a point of non-analycity of the energy density
of the ground state in the thermodynamic limit, N →∞. Since the spectrum of the
transverse Ising chain can be constructed explicitly, the ground state energy density
in the thermodynamic limit can be obtained straightforwardly and it is possible to
pinpoint the quantum critical point.
The purpose of this chapter is to outline the diagonalization of the Hamiltonian

(2.4) of the transverse Ising chain. We begin by expressing the Hamiltonian in
terms of the fermionic Jordan-Wigner operators. This leads to the observation that
the Hamiltonian of the system can be expressed as the orthogonal sum of two
Hermitian operators. Each of these two operators will be diagonalized separately
by performing a Fourier transformation, followed by the introduction of fermionic
Bogoliubov operators. The eigenvalues and eigenvectors of the Hamiltonian can then
be constructed from the eigenvalues and eigenvectors of these two operators. We will
consider the ground state and the ground state energy of the transverse Ising chain
in more detail. In particular, we will show that the system has a quantum critical
point at h = g in the thermodynamic limit.

2.1 Fermionization of the Hamiltonian
For all j ∈ {0, 1, . . . , N − 1}, we define the operators

σj := 1
2(Xj + iYj) . (2.5)

These are the spin-raising operators associated with each site of the circular chain.
Their Hermitian conjugates,

σ†j = 1
2(Xj − iYj) , (2.6)
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are the corresponding spin-lowering operators. We define the Jordan-Wigner operators,
aj, in terms of these raising and lowering operators by

aj := exp
iπ

j−1∑
k=0

σ†kσk

σj . (2.7)

The Jordan-Wigner operators are fermionic which means that they satisfy the
canonical anticommutation relations

ajak + akaj = 0 , (2.8)
aja
†
k + a†kaj = δjk , (2.9)

for all j, k ∈ {0, 1, . . . , N − 1}. A proof of this statement is given in the Appendix A.
Let j ∈ {0, 1, . . . , N − 1}. It follows immediately from the definition of the Jordan-

Wigner operators that
a†jaj = σ†jσj . (2.10)

Using this last identity in conjunction with the definition of the Jordan-Wigner
operators gives

σj = exp
−iπ

j−1∑
k=0

a†kak

 aj . (2.11)

With this, we have expressed the spin-raising and, thus, also the spin-lowering
operators solely in terms of the Jordan-Wigner operators.
For any j ∈ {0, 1, . . . , N − 1}, we have that

Xj = σ†j + σj , (2.12)

Yj = i
(
σ†j − σj

)
, (2.13)

Zj = I − 2σ†jσj . (2.14)

The identities for Xj and Yj follow directly by substituting the expressions for σj
and σ†j , which are given in (2.5) and (2.6). The last identity for Zj is obtained by,
additionally, using the commutation relation XjYj − YjXj = 2iZj. These identities
allow us to rewrite the Pauli operators in terms of the Jordan-Wigner operators by
using (2.11), which, ultimately, allows us to express the Hamiltonian, H, solely in
terms of the Jordan-Wigner operators.

Before we derive expressions for the Pauli operators in terms of the Jordan-Wigner
operators, we analyse the operator

exp
iπ

j−1∑
k=0

a†kak

 ,
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in more detail. It follows from the canonical anticommutation relations for the
Jordan-Wigner operators, which are given in (2.8) and (2.9), that the operators a†kak,
k ∈ {0, 1, . . . , N − 1}, mutually commute. Therefore, we can factorize the expression

exp
iπ

j−1∑
k=0

a†kak

 =
j−1∏
k=0

exp
(
iπa†kak

)
(2.15)

for all j ∈ {0, 1, . . . , N − 1}. This implies that it is sufficient to examine the operator
exp

(
iπa†jaj

)
for j ∈ {0, 1, . . . , N − 1} in more detail.

At this point, it is convenient to introduce the Fock basis vectors of the Jordan-
Wigner operators. These will be denoted by ϕn, where n = (n0, n1, . . . , nN−1) ∈
{0, 1}N , and they satisfy a†jajϕn = njϕn for any j ∈ {0, 1, . . . , N − 1}.

By considering the action of exp
(
iπa†jaj

)
on a Fock basis vector ϕn for n ∈ {0, 1}N

and for j ∈ {0, 1, . . . , N − 1}, we obtain the identities

exp
(
iπa†jaj

)
= exp

(
−iπa†jaj

)
, (2.16)

and
exp

(
iπa†jaj

)
= I − 2a†jaj . (2.17)

Additionally, using the canonical anticommutation relations for the Jordan-Wigner
operators given in (2.8) and (2.9), we obtain that

I − 2a†jaj =
(
a†j + aj

) (
a†j − aj

)
, (2.18)

for all j ∈ {0, 1, . . . , N − 1}.
Let us now express the Pauli operators in terms of the fermionic Jordan-Wigner

operators. Let j ∈ {0, 1, . . . , N − 1}. We begin with Xj, for which we can use the
equations (2.11) and (2.12) to obtain that

Xj = a†j exp
iπ

j−1∑
k=0

a†kak

+ exp
−iπ

j−1∑
k=0

a†kak

 aj .
This expression can be further simplified by using (2.16) and by observing that ak,
as well as a†k, commutes with a†lal if k 6= l. We obtain that

Xj = exp
iπ

j−1∑
k=0

a†kak

(a†j + aj
)
. (2.19)

We can perform an analogous derivation for Yj by starting from (2.11) and (2.13),
which yields

Yj = i exp
iπ

j−1∑
k=0

a†kak

(a†j − aj) . (2.20)
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For Zj, we use (2.10) and (2.14) to obtain that

Zj = I − 2a†jaj . (2.21)

In principle, we are in a position to express the Hamiltonian of the transverse
Ising chain solely in terms of the fermionic Jordan-Wigner operators. We only need
to substitute the expressions (2.19) and (2.21) into the expression (2.4) for the
Hamiltonian. However, the Hamiltonian involves products of the Pauli operators Xj ,
which we consider separately.

For all j ∈ {0, 1, . . . , N − 1}, we define the operators

Aj := a†j + aj , (2.22)
Bj := a†j − aj . (2.23)

These operators satisfy the anticommutation relations

AjAk + AkAj = 2δjk , (2.24)
BjBk +BkBj = −2δjk , (2.25)
AjBk +BkAj = 0 , (2.26)

for all j, k ∈ {0, 1, . . . , N − 1}. In particular, the anticommutation relations given in
(2.24) and (2.25) imply that A2

j = I and that B2
j = −I for all j ∈ {0, 1, . . . , N − 1}.

Furthermore, we can use (2.17) and (2.18) to write

exp
(
iπa†jaj

)
= AjBj , (2.27)

for all j ∈ {0, 1, . . . , N − 1}.
Let j ∈ {0, 1, . . . , N − 2}. By using (2.19), we obtain that

XjXj+1 =
(
a†j + aj

)
exp

(
iπa†jaj

) (
a†j+1 + aj+1

)
.

Expressing this identity in terms of the operators Aj and Bj using (2.22) and (2.27),
we obtain that

XjXj+1 = AjAjBjAj+1 = BjAj+1 .

Rewritting this identity in terms of the Jordan-Wigner operators gives that

XjXj+1 =
(
a†j − aj

) (
a†j+1 + aj+1

)
. (2.28)

It remains to determine XN−1X0. Again, using (2.19), we obtain that

XN−1X0 =
(
a†N−1 + aN−1

)
exp

(
iπ

N−2∑
k=0

a†kak

)(
a†0 + a0

)
.
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This can be rewritten in terms of the operators Aj and Bj to give

XN−1X0 = AN−1A0B0A1B1 · · ·AN−2BN−2A0

= −AN−1B0A1B1 · · ·AN−2BN−2

= B0A1B1 · · ·AN−2BN−2AN−1

= −B0A1B1 · · ·AN−2BN−2AN−1B
2
N−1

= −BN−1A0A0B0A1B1 · · ·AN−1BN−1 .

Expressing this identity in terms of the Jordan-Wigner operators gives

XN−1X0 = −
(
a†N−1 − aN−1

) (
a†0 + a0

)
exp

(
iπ

N−1∑
k=0

a†kak

)
. (2.29)

Finally, we are in a position to express the Hamiltonian, H, given in (2.4) solely in
terms of the Jordan-Wigner operators. By using (2.21), (2.28), and (2.29), we obtain
that

H =
N−1∑
j=0

[
2ha†jaj − g

(
a†j − aj

) (
a†j+1 mod N + aj+1 mod N

)]
− hN

+ g
(
a†N−1 − aN−1

) (
a†0 + a0

) [
I + exp

(
iπ

N−1∑
k=0

a†kak

)]
. (2.30)

2.2 The Even and the Odd Subspaces
In this section, we will show by using (2.30) that the Hamiltonian, H, can be
expressed as the direct sum of two mutually orthogonal Hermitian operators. Each of
these operators will act on two subspaces of the Hilbert space, HN , which are given
by orthogonal projections. This will allow us to reduce the diagonalization of the
Hamiltonian of the transverse Ising chain to the diagonalization of two Hermitian
operators which are quadratic in the Jordan-Wigner operators.
Let us introduce the operator

P := 1
2

I + exp
iπ

N−1∑
j=0

a†jaj

 . (2.31)

The operator P is Hermitian, P = P †, and idempotent, P 2 = P . Therefore, it
is an orthogonal projection operator. The complementary projection operator is
Q := I − P , which can be explicitly written as

Q = 1
2

I − exp
iπ

N−1∑
j=0

a†jaj

 . (2.32)
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The Hilbert space of the compound system, HN , is the direct sum of the two
orthogonal subspaces P (HN) and Q(HN). That is, we can write

HN = P (HN)⊕Q(HN) . (2.33)

We can use the Fock basis vectors, ϕn with n ∈ {0, 1}N , in order to characterize
these two subspaces. Consider the action of P and Q on ϕn. When |n| := ∑N−1

j=0 |nj|,
we find that

Pϕn = 1
2
(
1 + eiπ|n|

)
ϕn , (2.34)

and
Qϕn = 1

2
(
1− eiπ|n|

)
ϕn . (2.35)

Therefore, depending on whether the number |n| is even or odd, we obtain that

Pϕn =

ϕn if |n| is even,
0 otherwise,

(2.36)

and

Qϕn =

0 if |n| is even,
ϕn otherwise.

(2.37)

That is, we can characterize the two subspaces as

P (HN) = Span
{
ϕn
∣∣∣n ∈ {0, 1}N and |n| is even

}
, (2.38)

and
Q(HN) = Span

{
ϕn
∣∣∣n ∈ {0, 1}N and |n| is odd

}
. (2.39)

Accordingly, we will call P (HN) the even subspace and Q(HN) the odd subspace.
There is another, physically more illustrative, way of characterizing the even and

the odd subspaces in terms of the eigenvectors of the Pauli operators Zj. Let ζ0 and
ζ1 in H be the two normalized eigenvectors of the Pauli operator Z, with respective
eigenvalues +1 and −1. We will call the states represented by these two vectors
the spin-up and the spin-down state, respectively. Since Z is Hermitian, these two
vectors form an orthonormal basis of H. Using these basis vectors, we can construct
an orthonormal basis of HN by setting

χs := ζs0 ⊗ ζs1 ⊗ · · · ⊗ ζsN−1 , (2.40)

for all s ∈ {0, 1}N . Since we also have

Zjχs = (−1)sjχs , (2.41)
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for all j ∈ {0, 1, . . . , N − 1}, these vectors are also the eigenvectors of the Pauli
operators Zj with corresponding eigenvalues (−1)sj . Further, we can use (2.15),
(2.17), and (2.21) to obtain that

exp
iπ

N−1∑
j=0

a†jaj

 =
N−1∏
j=0

Zj , (2.42)

which allows us to express the projection operators P and Q in terms of the Pauli
operators Zj. This implies that

Pχs = 1
2
(
1 + (−1)|s|

)
χs , (2.43)

and
Qχs = 1

2
(
1− (−1)|s|

)
χs . (2.44)

Thus, we obtain

P (HN) = Span
{
χs
∣∣∣ s ∈ {0, 1}N and |s| is even

}
, (2.45)

and
Q(HN) = Span

{
χs
∣∣∣ s ∈ {0, 1}N and |s| is odd

}
. (2.46)

The number |s| = ∑N−1
j=0 |sj| is the number of vectors representing the spin-down

state in χs. Therefore, the even subspace, P (HN), is spanned by all those basis
vectors χs which represent an even number of spin-down states. Correspondingly,
the odd subspace, Q(HN), is spanned by all those basis vectors χs which represent
an odd number of spin-down states.
Let us define on HN the operators

HP :=
N−1∑
j=0

[
2ha†jaj − g

(
a†j − aj

) (
a†j+1 mod N + aj+1 mod N

)]
− hN

+ 2g
(
a†N−1 − aN−1

) (
a†0 + a0

)
, (2.47)

and

HQ :=
N−1∑
j=0

[
2ha†jaj − g

(
a†j − aj

) (
a†j+1 mod N + aj+1 mod N

)]
− hN . (2.48)

It follows from the canonical anticommutation relations given in (2.8) and (2.9) that
HP and HQ are Hermitian operators. In addition, the expression (2.30) implies that
Hψ = HPψ for ψ ∈ P (HN) and that Hψ = HQψ for ψ ∈ Q(HN). Therefore, by
using that P +Q = I, we obtain that

Hψ = H(P +Q)ψ = (HP +HQ)ψ = (HPP +HQQ)ψ
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for any ψ ∈ HN . That is, we have that

H = HPP +HQQ . (2.49)

The operators HP and HQ are quadratic in the fermionic Jordan-Wigner operators.
Any operator which is quadratic in the Jordan-Wigner operators leaves the even
and the odd subspace invariant. This can be seen by using the characterizations of
both subspaces in terms of the Fock basis vectors. For any j, k ∈ {0, 1, . . . , N − 1},
consider the action of any of the operators ajak, a†ja

†
k, a

†
jak, and aja

†
k on a Fock basis

vector ϕn with some n ∈ {0, 1}N . The resulting vector is either zero or another Fock
basis vector ϕm with an index m ∈ {0, 1}N such that either |m| and |n| are equal or
they differ by two. If the result is ϕm, then we see that |m| and |n| have the same
parity.

Since HP and HQ leave P (HN) and Q(HN) invariant, they commute with P and
Q. Therefore, the operators HPP and HQQ are Hermitian and mutually orthogonal.
Thus, we decomposed the Hamiltonian of the transverse Ising chain, H, into a direct
sum of two mutually orthogonal Hermitian operators as can be seen in (2.49). As an
immediate consequence, HPP on P (HN) and HQQ on Q(HN) can be diagonalized
separately in order to diagonalize H.
If ψ ∈ HN is an eigenvector of HP with the corresponding eigenvalue λ and if

Pψ 6= 0, then Pψ is an eigenvector of HPP with the same eigenvalue λ since HP and
P commute. Analogously, if ψ ∈ HN is an eigenvector of HQ with the corresponding
eigenvalue λ and if Qψ 6= 0, then Qψ is an eigenvector of HQQ with the same
eigenvalue λ since HQ and Q commute. Therefore, it is sufficient to diagonalize HP

and HQ on HN and, then, construct a basis of P (HN) of those eigenvectors of HP

which have a non-zero projection onto P (HN), and construct a basis of Q(HN) of
those eigenvectors of HQ which have a non-zero projection onto Q(HN).

2.3 The Discrete Fourier Transformation
The first step towards the diagonalization of the operators HP and HQ is the
introduction of momentum degrees of freedom for the Jordan-Wigner fermions. To
this end, we introduce the discrete Fourier transforms of the Jordan-Wigner operators.
Namely, for all p ∈ π

N
Z, define

bp := 1√
N

N−1∑
j=0

aje
−ipj . (2.50)

These operators have periodicity 2π, which means that bp+2π = bp for all p ∈ π
N
Z.

Further, the Fourier transforms satisfy canonical anticommutation relations in the

12



following sense: for all p, q ∈ π
N
Z, we have that

bpbq + bqbp = 0 , (2.51)
bpb
†
q + b†qbp = δp−q=0 mod 2π . (2.52)

Note that if A denotes a condition, then δA will denote the indicator function of that
condition, which is given by

δA =

1 if the condition A is true,
0 otherwise.

Our aim is to express HP and HQ in terms of these Fourier transformed operators.
Let us first consider HP . We introduce the set

PN :=


2π
N

{
−N − 1

2 ,−N − 3
2 , . . . ,

N − 1
2

}
if N is even,

2π
N

{
−N2 ,−

N

2 + 1, . . . , N2 − 1
}

if N is odd.
(2.53)

For all j ∈ Z, we define
ãj := 1√

N

∑
p∈PN

bpe
ipj . (2.54)

These operators satisfy ãj+N = −ãj for all j ∈ Z, which means that they are
antiperiodic. Furthermore, for all j ∈ {0, 1, . . . , N − 1}, we have that ãj = aj.
Therefore, the operators ãj are the antiperiodic extension of the fermionic Jordan-
Wigner operators to all integers. This, in turn, allows us to rewrite the operator HP

in the form

HP =
N−1∑
j=0

[
2hã†j ãj − g

(
ã†j − ãj

) (
ã†j+1 + ãj+1

)]
− hN . (2.55)

Substituting the definitions of the operators ãj in terms of the Fourier transforms
and simplifying the resulting expression, the operator HP takes the form

HP =
∑
p∈PN

[
2(h− g cos p)

(
b†pbp −

1
2

)
− geipb†pb

†
−p + ge−ipbpb−p

]
. (2.56)

The last expression for HP can be further simplified. To this end, we need to
differentiate between the cases where N is even and where N is odd. We start by
assuming that N is even. Then, the set over which the summation in (2.56) is taken
contains pairs of positive and corresponding negative values, namely

±2π
N

1
2 ,±

2π
N

3
2 , . . . ,±

2π
N

N − 1
2 .

13



This allows us to split the sum into two parts, one in which we take the sum over the
positive summation indices and one in which we take the sum over the corresponding
negative summation indices. Subsequently, we rewrite the sum over the negative
summation indices in terms of the positive summation indices and combine the terms.
Using matrices, the resulting expression reads

HP =
∑
p∈P+

N

[
b†p b−p

] 2(h− g cos p) −2ig sin p
2ig sin p −2(h− g cos p)

 bp
b†−p

 , (2.57)

where P+
N is the set of the positive elements in PN .

Now, assume that N is odd. Again, the set over which the summation in (2.56) is
performed contains pairs of positive and corresponding negative values, namely

±2π
N

1
2 ,±

2π
N

3
2 , . . . ,±

2π
N

(
N

2 − 1
)
,

but, in contrast to the even N case, there is no corresponding positive number for
−π in PN . Again, splitting the sum into a sum over negative and a sum over positive
summation indices, rewriting the negative summation indices in terms of positive
ones where possible, and combining terms, we obtain

HP = 2(h+ g)
(
b†−πb−π −

1
2

)

+
∑
p∈P+

N

[
b†p b−p

] 2(h− g cos p) −2ig sin p
2ig sin p −2(h− g cos p)

 bp
b†−p

 . (2.58)

Next, we consider the operator HQ. We introduce the set

QN :=


2π
N

{
−N2 ,−

N

2 + 1, . . . , N2 − 1
}

if N is even,

2π
N

{
−N − 1

2 ,−N − 3
2 , . . . ,

N − 1
2

}
if N is odd.

(2.59)

For all j ∈ Z, we define
âj := 1√

N

∑
p∈QN

bpe
ipj . (2.60)

These operators satisfy âj+N = âj for all j ∈ Z, which means that they are periodic.
Furthermore, for all j ∈ {0, 1, . . . , N − 1}, we have âj = aj . Therefore, the operators
âj are the periodic extension of the fermionic Jordan-Wigner operators to all integers.
This, in turn, allows us to rewrite the operator HQ in the form

HQ =
N−1∑
j=0

[
2hâ†j âj − g

(
â†j − âj

) (
â†j+1 + âj+1

)]
− hN . (2.61)
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Substituting the definitions of the operators âj in terms of the Fourier transforms
gives that

HQ =
∑
p∈QN

[
2(h− g cos p)

(
b†pbp −

1
2

)
− geipb†pb

†
−p + ge−ipbpb−p

]
. (2.62)

In complete analogy to our calculations for HP , introducing the set Q+
N of positive

elements in QN and differentiating between the cases where N is even and where N
is odd, we obtain that

HQ = 2(h+ g)
(
b†−πb−π −

1
2

)
+ 2(h− g)

(
b†0b0 −

1
2

)

+
∑
p∈Q+

N

[
b†p b−p

] 2(h− g cos p) −2ig sin p
2ig sin p −2(h− g cos p)

  bp
b†−p

 , (2.63)

if N is even and

HQ = 2(h− g)
(
b†0b0 −

1
2

)

+
∑
p∈Q+

N

[
b†p b−p

] 2(h− g cos p) −2ig sin p
2ig sin p −2(h− g cos p)

  bp
b†−p

 , (2.64)

if N is odd.

2.4 The Bogoliubov Transformation
In the preceding section, we expressed HP and HQ in terms of Fourier tranformed
Jordan-Wigner operators. The resulting expressions for HP are given in (2.57) and
(2.58), and the ones for HQ are given in (2.63) and (2.64). In any case, we can assign
the terms in these equations to one of the following three types. The first one is

S1(p) := 2(h− g)
(
b†pbp −

1
2

)
, (2.65)

where p ∈ 2πZ. The second type is

S2(p) := 2(h+ g)
(
b†pbp −

1
2

)
, (2.66)

where p ∈ 2π
(
Z + 1

2

)
. The third and last type is given by

S3(p) :=
[
b†p b−p

] 2(h− g cos p) −2ig sin p
2ig sin p −2(h− g cos p)

 bp
b†−p

 , (2.67)
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where p ∈ π
N
Z but p /∈ πZ.

Let us start by considering the third type involving the matrix. The matrix in
(2.67) is Hermitian and, thus, can be diagonalized by a unitary transformation. This
unitary matrix is not unique and it will transform the Fourier transforms of the
Jordan-Wigner operators accordingly. By choosing the unitary matrix appropriately,
we will obtain a new kind of fermions in terms of which S3(p) will become diagonal.

We consider a more general matrix than given in (2.67). Namely, we will allow p

to be real-valued. To this end, for all p ∈ R, let

αp := 2(h− g cos p) , (2.68)
βp := −2ig sin p , (2.69)

and let Mp be the two by two matrix given by

Mp :=
 αp βp

−βp −αp

 . (2.70)

For all p ∈ R, the matrix Mp is Hermitian and, thus, it can be diagonalized. The
characteristic equation for the eigenvalues λ of Mp reads

λ2 − |αp|2 − |βp|2 = 0 .

The solutions are given by λ = ωp and λ = −ωp, where

ωp := 2
√
g2 + h2 − 2gh cos p . (2.71)

We note that the matrix Mp is already diagonal for all p ∈ πZ since, for such p,
we have that βp = 0. However, the terms of third type do not involve any such p.
Thus, we can restrict our considerations to the case where p ∈ R but p /∈ πZ.

Let p ∈ R with p /∈ πZ. Then, we have that ωp 6= −ωp. Since Mp is Hermitian, this
means that the eigenspaces ofMp for the eigenvalues ωp and −ωp are one-dimensional
and mutually orthogonal.

The structure of Mp allows us to make statements about the eigenvectors without
explicitly determining them. For any p ∈ R with p /∈ πZ, let [u∗p v∗p]T denote a
normalized eigenvector of Mp with the corresponding eigenvalue ωp. That is, we have
that |up|2 + |vp|2 = 1 and

ωp

u∗p
v∗p

 =
 αp βp

−βp −αp

 u∗p
v∗p

 =
 αpu∗p + βpv

∗
p

−βpu∗p − αpv∗p

 . (2.72)
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In particular, since Mp is 2π-periodic, we can choose up and vp such that they are
2π-periodic, too. Equation (2.72) implies that [v∗p u∗p]T is a normalized eigenvector
of Mp with the eigenvalue −ωp since αp βp

−βp −αp

v∗p
u∗p

 =
 αpv∗p + βpu

∗
p

−βpv∗p − αpu∗p

 = −ωp

v∗p
u∗p

 . (2.73)

Additionally, since the eigenspaces of Mp are mutually orthogonal for p ∈ R with
p /∈ πZ, we have that [u∗p v∗p]T and [v∗p u∗p]T are mutually orthogonal. That is, we
have that upv∗p + vpu

∗
p = 0.

For p ∈ R with p /∈ πZ, consider the eigenvalue equation αp βp

−βp −αp

u∗p
v∗p

 = ωp

u∗p
v∗p


once again. Taking the complex conjugate of both sides of the equation and using
that αp = α−p = α∗p, βp = −β−p = −β∗p , and ωp = ω−p = ω∗p, we obtain that α−p β−p

−β−p −α−p

up
vp

 = ω−p

up
vp

 .
This is the eigenvalue equation ofM−p for the eigenvalue ω−p. Since the corresponding
eigenspace is one-dimensional and since [up vp]T and [u∗−p v∗−p]T are normalized to
one, we obtain that [up vp]T and [u∗−p v∗−p]T can only differ by a complex factor
of modulus one. This means that there is a φp ∈ [−π, π[ such that up = eiφpu∗−p
and vp = eiφpv∗−p. Therefore, the identity upv∗p + vpu

∗
p = 0 can be cast into the form

upv−p + vpu−p = 0.
For p ∈ R with p /∈ πZ, we choose

up := αp + ωp√
2ωp(αp + ωp)

, (2.74)

vp := βp√
2ωp(αp + ωp)

. (2.75)

This choice is special since we have that up = u∗−p and vp = v∗−p for this particular
choice. For the expression (2.67), we obtain that

[
b†p b−p

]  αp βp

−βp −αp

 bp
b†−p


=
[
b†p b−p

] u∗p v∗p

v∗p u∗p

up vp

vp up

  αp βp

−βp −αp

u∗p v∗p

v∗p u∗p

up vp

vp up

 bp
b†−p

 .
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We have that up vp

vp up

 αp βp

−βp −αp

 u∗p v∗p

v∗p u∗p

 =
ωp 0

0 −ωp

 ,
and that up vp

vp up

 bp
b†−p

 =
upbp + vpb

†
−p

vpbp + upb
†
−p

 (2.76)

We introduce the operators
cp := upbp + vpb

†
−p ,

where p ∈ π
N
Z with p /∈ πZ. Since up = u∗−p and vp = v∗−p, we have that

vpbp + upb
†
−p = v∗−pbp + u∗−pb

†
−p = c†−p .

Therefore, we obtain for S3(p) the following result

S3(p) =
[
b†p b−p

]  αp βp

−βp −αp

 bp
b†−p

 = ωp
(
c†pcp − c−pc

†
−p

)
.

It remains to consider the expressions (2.65) and (2.66). We study the expression
(2.65) first. This operator has already the form of a fermionic quantum harmonic
oscillator. However, the corresponding dispersion 2(h− g) can be negative. In order
to make sure that the dispersion is always positive, we set for all p ∈ 2πZ, cp := bp if
h− g ≥ 0 and cp := −ib†−p = −ib†p otherwise. Then, the expression (2.65) takes the
form

S1(p) = 2(h− g)
(
b†pbp −

1
2

)
= ωp

(
c†pcp −

1
2

)
for all p ∈ 2πZ. We treat the expression (2.66) in the same manner and set, for all
p ∈ 2π

(
Z + 1

2

)
, cp := bp if h + g ≥ 0 and cp := −ib†−p = −ib†p otherwise. Then, the

expression (2.66) takes the form

S2(p) = 2(h+ g)
(
b†pbp −

1
2

)
= ωp

(
c†pcp −

1
2

)

for all p ∈ 2π
(
Z + 1

2

)
.

To unify the notation, we define

up :=

1 if g ≤ h,

0 otherwise,
(2.77)

vp :=

0 if g ≤ h,

−i otherwise
(2.78)
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for all p ∈ 2πZ and

up :=

1 if g ≥ −h,
0 otherwise,

(2.79)

vp :=

0 if g ≥ −h,
−i otherwise

(2.80)

for all p ∈ 2π
(
Z + 1

2

)
. Then, we have that

cp = upbp + vpb
†
−p (2.81)

for all p ∈ π
N
Z. The identities |up|2 + |vp|2 = 1 and upv−p + vpu−p = 0 imply that

these operators satisfy the canonical anticommutation relations

cpcq + cqcp = 0 , (2.82)
cpc
†
q + c†qcp = δp−q=0 mod 2π , (2.83)

for all p, q ∈ π
N
Z, meaning that the operators are fermionic. They are called the

Bogoliubov transformed operators. We will call them Bogoliubov operators for short.
Rewriting the expressions (2.65), (2.66), and (2.67) in terms of these Bogoliubov

operators, we obtain
HP =

∑
p∈PN

ωp

(
c†pcp −

1
2

)
, (2.84)

and
HQ =

∑
p∈QN

ωp

(
c†pcp −

1
2

)
. (2.85)

That is, HP and HQ take the form of fermionic harmonic oscillators and the eigen-
states of these two operators are the corresponding Fock states of the Bogoliubov
fermions, which can be considered as the elementary excitations of the system and
are identified with fermionic quasiparticles. The function ωp gives the dispersion of
the Bogoliubov fermions, examples of which are shown in Figure 2.1 for different
parameter choices h/g.

2.5 The Ground State and the Quantum Critical
Point

In this section, we derive expressions for the ground states of the Hamiltonians HP

and HQ in terms of the vacuum state of the Jordan-Wigner operators. We will then
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Figure 2.1: The dispersion of the Bogoliubov fermions in units of g. The dispersion is
depicted for three different ratios of h/g. The dispersion has a gap at p = 0,
which vanishes for h/g = 1. This indicates that there is a change in the system
at h/g = 1.
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construct the ground state of the Hamiltonian of the transverse Ising chain, H, using
these expressions for the ground states of HP and HQ. This will allow us to make
statements on the structure of the ground state and, in particular, find that, in
the thermodynamic limit, there is a spontaneous symmetry breaking. We will also
determine the ground state energy density in the thermodynamic limit and identify
the quantum critical point at which a quantum phase transition occurs.
Since the dispersion of the Bogoliubov fermions, ωp, is non-negative, Equations

(2.84) and (2.85) imply that the ground states of HP and HQ are the vacuum states
of the fermionic Bogoliubov operators cp for p ∈ PN and p ∈ QN , respectively.

The vacuum state of the Jordan-Wigner operators is also the vacuum state of their
Fourier transforms. This statement follows directly from the definition of the Fourier
transforms in (2.50). Furthermore, from the inversions of the Fourier transforms
given in (2.54) and (2.60), it follows that

N−1∑
j=0

a†jaj =
∑
p∈PN

b†pbp =
∑
p∈QN

b†pbp ,

which, in turn, implies that

P = 1
2

I + exp
iπ

∑
p∈PN

b†pbp

 = 1
2

I + exp
iπ

∑
p∈QN

b†pbp

 .
Therefore, the subspaces P (HN ) and Q(HN ) can be characterized by the Fock states
of the Fourier transformed Jordan-Wigner operators in the same manner as we
did characterize them in Section 2.2 using the Fock states of the Jordan-Wigner
operators.
First, consider the ground state of HP , represented by the normalized vector Ω̃.

We differentiate between the cases where N is even and where N is odd.
Let N be even. Then, we have that

Ω̃ ∝
[ ∏
p∈P+

N

cpc−p

]
ϕ0 , (2.86)

where ϕ0 represents the vacuum of the Jordan-Wigner operators. We will keep overall
normalization constants unspecified. That the right hand side represents, in fact, the
ground state of HP can be seen as follows. The canonical anticommutation relations
for the Bogoliubov operators, which are given in (2.82) and (2.83), imply that

cp

[ ∏
q∈P+

N

cqc−q

]
ϕ0 = 0
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for all p ∈ PN . This is because we can anticommute cp as long as q 6= p and when
q = p, and there is exactly one such q in the product, we obtain the above identity
due to c2

p = 0. Furthermore, we can rewrite the right hand side of (2.86) as[ ∏
p∈P+

N

cpc−p

]
ϕ0 ∝

[ ∏
p∈P+

N

(
1− vp

up
b†pb
†
−p

)]
ϕ0 = exp

(
−

∑
p∈P+

N

vp
up
b†pb
†
−p

)
ϕ0

Thus, the right hand side is non-zero and, alltogether, it represents the vacuum state
of cp for p ∈ PN , which is also the ground state of HP . So, we have that

Ω̃ ∝ exp
(
−

∑
p∈P+

N

vp
up
b†pb
†
−p

)
ϕ0 . (2.87)

Since this expression involves only quadratic operators in b†p, it follows that Ω̃ is in
the even subspace, that is,

P Ω̃ = Ω̃ . (2.88)

For N being odd, there is the mode p = −π in PN which we need to treat separately
since there is no corresponding positive value in PN . All other modes come in positive
and corresponding negative pairs and, thus, can be treated as in the even N case. The
Bogoliubov operator c−π depends on the relation between g and h, as can be seen
using (2.79), (2.80), and (2.81). If g ≥ −h, we have that c−π = b−π and, therefore,
we can take

Ω̃ ∝ exp
(
−

∑
p∈P+

N

vp
up
b†pb
†
−p

)
ϕ0

since b−π anticommutes with all the operators in this expression and annihilates the
Jordan-Wigner vacuum. If, however, g < −h, then c−π = −ib†−π and we can take

Ω̃ ∝ b†−π exp
(
−

∑
p∈P+

N

vp
up
b†pb
†
−p

)
ϕ0

since
(
b†−π

)2
= 0. In summary, we can represent the ground state of HP by

Ω̃ ∝



exp
(
−

∑
p∈P+

N

vp
up
b†pb
†
−p

)
ϕ0 if g ≥ −h,

b†−π exp
(
−

∑
p∈P+

N

vp
up
b†pb
†
−p

)
ϕ0 otherwise,

(2.89)

where we again leave normalization factors unspecified. We have that

P Ω̃ =

Ω̃ if g ≥ −h,
0 otherwise.

(2.90)
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Irrespective of whether N is even or odd, the energy of the ground state of the
Hamiltonian HP is

E
(P )
0 = −1

2
∑
p∈PN

ωp . (2.91)

Let us now consider the ground state of the Hamiltonian HQ. For even N , the
ground state is represented by

Ω̂ ∝



exp
(
−

∑
p∈Q+

N

vp
up
b†pb
†
−p

)
ϕ0 if g ≤ h and g ≥ −h,

b†0 exp
(
−

∑
p∈Q+

N

vp
up
b†pb
†
−p

)
ϕ0 if g > h and g ≥ −h,

b†−π exp
(
−

∑
p∈Q+

N

vp
up
b†pb
†
−p

)
ϕ0 if g ≤ h and g < −h,

b†−πb
†
0 exp

(
−

∑
p∈Q+

N

vp
up
b†pb
†
−p

)
ϕ0 if g > h and g < −h.

(2.92)

The projection of this vector onto the odd subspace gives

QΩ̂ =



0 if g ≤ h and g ≥ −h,
Ω̂ if g > h and g ≥ −h,
Ω̂ if g ≤ h and g < −h,
0 if g > h and g < −h.

(2.93)

Similarly, for odd N , the ground state of HQ is given by

Ω̂ ∝



exp
(
−

∑
p∈Q+

N

vp
up
b†pb
†
−p

)
ϕ0 if g ≤ h,

b†0 exp
(
−

∑
p∈Q+

N

vp
up
b†pb
†
−p

)
ϕ0 otherwise,

(2.94)

and the projection onto the odd subspace is

QΩ̂ =

0 if g ≤ h,

Ω̂ otherwise.
(2.95)

Again, irrespective of N being even or odd, the energy of the ground state of the
Hamiltonian HQ can be expressed as

E
(Q)
0 = −1

2
∑
p∈QN

ωp . (2.96)
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For the rest of this section, we will restrict our attention to the case where g > 0
and h > 0. Under this assumption, the identities in (2.88), (2.90), (2.93), and (2.95)
for the projections of the ground states of HP and HQ reduce to

P Ω̃ = Ω̃ , (2.97)

QΩ̂ =

0 if g ≤ h,

Ω̂ otherwise,
(2.98)

and, therefore, become independent of N .
For any N , the energy of the ground state of HP is smaller than the energy of the

ground state of HQ. Additionally, the projection of the ground state of HP onto the
even subspace is non-zero. In particular, we have observed that P Ω̃ = Ω̃. Therefore,
according to our considerations at the end of Section 2.2, the ground state of the
transverse Ising chain, Ω, equals to Ω̃ and the energy of the ground state, E0, is
given by the ground state energy E(P )

0 of HP . The ground state is non-degenerate. 1

For any finite N , the ground state energy density of HP ,

E
(P )
0
N

= − 1
N

∑
p∈PN

√
g2 + h2 − 2gh cos p , (2.99)

is the middle Riemann sum, and the ground state energy density of HQ,

E
(Q)
0
N

= − 1
N

∑
p∈QN

√
g2 + h2 − 2gh cos p , (2.100)

is the left Riemann sum of the integral of the function

[−π, π] −→ R, p 7→ − 1
2π

√
g2 + h2 − 2gh cos p . (2.101)

Therefore, the thermodynamic limit, N →∞, of the ground state energy densities
exists and they converge to the same value

ε0 := − 1
2π

∫ π

−π

√
g2 + h2 − 2gh cos p dp . (2.102)

But then, the identities in (2.97) and (2.98) together with the consideration at the
end of the Section 2.2 imply that, in the thermodynamic limit, whereas for h ≥ g the
ground state of the transverse field Ising chain is still non-degenerate and given by

1 We could not prove that the ground state energy of HP is always smaller than the ground state
energy of HQ for any N . However, numerical results suggest that this claim holds. Additionally,
in [Calabrese et al., 2012a], it is stated that the ground state of the transverse Ising chain is
given by the ground state of HP , though, the authors do not provide a proof of this claim.
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Ω̃, for 0 < h < g, the ground state is represented by a linear combination of Ω̃ and
Ω̂ and is, thus, degenerate. While P commutes with the Hamiltonian and leaves the
ground state invariant for any finite N , this is no longer true in the thermodynamic
limit for 0 < h < g. Then, the ground state is given by a superposition of Ω̃ and Ω̂
and, thus, is no longer invariant under P . The symmetry is spontaneously broken.
This already indicates that at h = g there is a quantum critical point.

A quantum critical point is a point of non-analycity of the ground state energy
density in the thermodynamic limit, which is for the transverse field Ising chain
given by the expression (2.102). For fixed g > 0 we consider the ground state energy
density as a function of h > 0. If

E(k) =
∫ π

2

0

√
1− k2 sin2(p) dp

denotes the complete elliptic integral of second kind, then the ground state energy
density in the thermodynamic limit can be expressed as

ε0(h) = − 2
π

(g + h)E
(√

4gh
(g + h)2

)
. (2.103)

This function has a point of non-analycity for g = h. Therefore, the trasverse Ising
chain has a quantum critical point at g = h and exhibits a quantum phase transition.
For h < g, the system is ferromagnetic, whereas for h > g it is paramagnetic. The
order parameter is given by the expectation values of the operators Xj with respect
to the ground state of the transverse Ising chain, which are independent of the site
on the chain due to the periodic boundary condition. We will call the operator Xj

itself the order parameter from now on. In the thermodynamic limit, it is non-zero
in the ferromagnetic phase due to the spontaneous symmetry breaking.
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3 Ground State Correlation Functions

Our objective in this chapter is to determine the correlation functions of the Pauli
operators on the compound Hilbert space, HN , with respect to the ground state of the
transverse Ising chain. These correlation functions are explicitly given by 〈Ω|XjXkΩ〉,
〈Ω|YjYkΩ〉, and 〈Ω|ZjZkΩ〉 for any j, k ∈ {0, 1, . . . , N − 1}, where Ω is the ground
state of the transverse Ising chain, which we have determined in Section 2.5. We will
call them the ground state correlators for short. In calculating these ground state
correlators, we will rely on a method which has been applied by Lieb, Schultz, and
Mattis in [Lieb et al., 1961] to obtain the ground state correlation functions for the
simple XY model. The result will be that the ground state correlators are given by
determinants of Toeplitz matrices.
For determinants of a particular type of Toeplitz matrices, there are theorems

which can be used to obtain the behaviour of the determinant for large sizes of the
matrix analytically. We will use theorems proven in [Böttcher and Widom, 2006] by
Albrecht Böttcher and Harold Widom, and which we summarized in the Appendix B,
to obtain analytic expressions for the correlation function of the order parameter,
Xj, in the thermodynamic limit, N →∞.
There are two reasons for us to consider the ground state correlators. The first

reason is that we can understand the properties of the ground state in more detail. In
particular, we will be able to determine the magnetization in the ferromagnetic phase,
which is the order parameter of the quantum phase transition. The second reason is
that in the calculations of these correlators, we will introduce methods which will
be used later to determine correlations after sudden quenches. We introduce these
methods here because the calculations are simpler, which allows us to clearly lay out
the logic.
For the remainder of this chapter, we take g and h to be positive.

3.1 Finite Size Systems
We begin our considerations by determining the ground state correlators for a finite
and fixed value of N . We found in Section 2.5 that Ω can be chosen to be Ω̃, where Ω̃
represents the ground state of HP and the vacuum state of the Bogoliubov operators
cp for p ∈ PN . Therefore, we use Ω = Ω̃.
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Since Ω represents the vacuum state of the fermionic Bogoliubov operators cp for
p ∈ PN , we can use the following implication of Wick’s theorem: Let Ψ1,Ψ2, . . . ,Ψ2n

be mutually anticommuting operators and let S2n denote the symmetric group of
degree 2n. Then, we have that

〈Ω|Ψ1Ψ2 · · ·Ψ2nΩ〉 = 1
2nn!

∑
σ∈S2n

sign σ
n∏
j=1

〈
Ω
∣∣∣Ψσ(2j−1)Ψσ(2j)Ω

〉
. (3.1)

This expression is the Pfaffian, pf C, of the antisymmetric contraction matrix, C,
which is given by

Clm :=

〈Ω|ΨlΨmΩ〉 if l 6= m,

0 otherwise,
(3.2)

for all l,m ∈ {1, 2, . . . , 2n}. Therefore, the idea is to express XjXk, YjYk, and ZjZk
as a product of mutually anticommuting operators and use Wick’s theorem to express
the ground state correlators as functions of two-point correlation functions.
We only need to consider XjXk, YjYk, and ZjZk for j, k ∈ {0, 1, . . . , N − 1} with

j < k. For j = k, the products reduce to squares of the Pauli operators, which are the
identity operator. For j > k, we can commute the Pauli operators and interchange
the labels j and k, which reduces this case to the first one.
Let j, k ∈ {0, 1, . . . , N − 1} with j < k. Using the expressions for the Pauli

operators in terms of the Jordan-Wigner operators given in (2.19), (2.20), and (2.21),
we obtain that

XjXk =
(
a†j + aj

)
exp

iπ
k−1∑
l=j

a†lal

(a†k + ak
)
,

YjYk = −
(
a†j − aj

)
exp

iπ
k−1∑
l=j

a†lal

(a†k − ak) ,
ZjZk =

(
I − 2a†jaj

) (
I − 2a†kak

)
.

We can rewrite these expressions in terms of the operators Al and Bl introduced
in (2.22) and (2.23). To this end, we use (2.17) and (2.27) in conjunction with the
anticommutation relations for Al and Bl, which are given in (2.24), (2.25), and (2.26),
to obtain that

XjXk = (−1)r(r−1)/2BjBj+1 · · ·Bk−1Aj+1Aj+2 · · ·Ak , (3.3)
YjYk = (−1)r(r−1)/2Bj+1Bj+2 · · ·BkAjAj+1 · · ·Ak−1 , (3.4)
ZjZk = −BjBkAjAk . (3.5)

We find that these expressions for XjXk, YjYk, and ZjZk involve only products of
mutually anticommuting operators. Therefore, we can use the Equation (3.1) to
determine the ground state correlators.
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For any j, k ∈ {0, 1, . . . , N − 1}, let

Gjk := 〈Ω|BjAkΩ〉 , (3.6)
Qjk := 〈Ω|AjAkΩ〉 , (3.7)
Sjk := 〈Ω|BjBkΩ〉 . (3.8)

Since we are considering periodic boundary conditions, the system is translationally
invariant. Therefore, the expressions Gjk, Qjk, and Sjk can only depend on the
relative distance on the chain. Consequently, there are expressions gm, qm, and sm
for m ∈ Z such that

Gjk = gk−j , (3.9)
Qjk = qk−j , (3.10)
Sjk = sk−j . (3.11)

Thus, combining (3.3) and (3.4) with (3.1), we obtain with the above definitions that

〈Ω|X0XrΩ〉 = (−1)r(r−1)/2 pf



0 s1 s2 · · · sr−1 g1 g2 · · · gr

0 s1 · · · sr−2 g0 g1 · · · gr−1
. . . . . . ... ... ... ...

0 s1 g−r+3 g−r+4 · · · g2

0 g−r+2 g−r+3 · · · g1

0 q1 · · · qr−1
. . . . . . ...

0 q1

0



,

(3.12)

〈Ω|Y0YrΩ〉 = (−1)r(r−1)/2 pf



0 s1 s2 · · · sr−1 g−1 g0 · · · gr−2

0 s1 · · · sr−2 g−2 g−1 · · · gr−3
. . . . . . ... ... ... ...

0 s1 g−r+1 g−r+2 · · · g0

0 g−r g−r+1 · · · g−1

0 q1 · · · qr−1
. . . . . . ...

0 q1

0



,

(3.13)
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for any r ∈ {1, . . . , N − 1}, where we only have written the upper triangular parts of
the antisymmetric matrices since the lower triangular parts are the negatives of the
transposes of the corresponding upper triangular parts1. The last correlator can be
evaluated directly from (3.5), which gives

〈Ω|Z0ZrΩ〉 = g2
0 − grg−r − srqr . (3.14)

In order to determine gm, qm, and sm for m ∈ Z, we need to calculate Gjk, Qjk, and
Sjk for any j, k ∈ {0, 1, . . . , N − 1}. To do so, we need to express the Jordan-Wigner
operators, which are given by (2.7), in terms of the fermionic Bogoliubov operators
cp and c†p where p ∈ PN .
Using the inversions of the Fourier and Bogoliubov transformations, we obtain

aj = 1√
N

∑
p∈PN

bpe
ipj = 1√

N

∑
p∈PN

(
u∗pcp + v∗pc

†
−p

)
eipj .

If N is even, we have that

PN = 2π
N

{
−N − 1

2 ,−N − 3
2 , . . . ,

N − 1
2

}
.

Thus, we obtain that ∑
p∈PN

v∗pe
ipjc†−p =

∑
p∈PN

v∗−pe
−ipjc†p .

If N is odd, we have that

PN = 2π
N

{
−N2 ,−

N

2 + 1, . . . , N2 − 1
}
.

In this case, we need to consider v∗peipjc†−p for p = −π separately. We can use the
2π-periodicity of the invoved terms to obtain that

v∗−πe
iπjc†π = v∗−π+2πe

i(π−2π)jc†π−2π = v∗πe
−iπjc†−π .

Therefore, we, again, obtain that∑
p∈PN

v∗pe
ipjc†−p =

∑
p∈PN

v∗−pe
−ipjc†p .

In summary, we can rewrite aj in terms of the fermionic Bogoliubov operators as

aj =
∑
p∈PN

(
u∗pjcp + vpjc

†
p

)
, (3.15)

1 The correlator 〈Ω|X0XrΩ〉 has been also calculated in [Barouch and McCoy, 1971a]. However,
there, the factor (−1)r(r−1)/2 is missing in the result.
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with

upj := 1√
N
upe
−ipj , (3.16)

vpj := 1√
N
v∗−pe

−ipj . (3.17)

We use this expression for aj to write the operators Aj = a†j + aj and Bj = a†j − aj
in terms of the fermionic Bogoliubov operators as

Aj =
∑
p∈PN

(
(upj + vpj)c†p + (u∗pj + v∗pj)cp

)
, (3.18)

Bj =
∑
p∈PN

(
(upj − vpj)c†p − (u∗pj − v∗pj)cp

)
. (3.19)

Since cpΩ = 0 for all p ∈ PN , we obtain that

Gjk =
∑
p∈PN

(v∗pj − u∗pj)(upk + vpk) ,

Qjk =
∑
p∈PN

(v∗pj + u∗pj)(upk + vpk) ,

Sjk =
∑
p∈PN

(v∗pj − u∗pj)(upk − vpk) .

for all j, k ∈ {0, 1, . . . , N − 1}. By using the expressions for upj and vpj given in
(3.16) and (3.17), and simplifying the resulting expressions, we obtain that

Gjk = − 1
N

∑
p∈PN

(
|up|2 − |vp|2 − 2i Im(upv−p)

)
e−ip(k−j) ,

and that
Qjk = δjk = −Sjk .

Therefore, we have that

gm := − 1
N

∑
p∈PN

(
|up|2 − |vp|2 − 2i Im(upv−p)

)
e−ipm , (3.20)

and

qm := δm=0 mod N , (3.21)
sm := −δm=0 mod N , (3.22)

for all m ∈ Z.
As an immediate consequence, the blocks in the Pfaffian expressions in (3.12) and

(3.13) involving qm and sm vanish. This allows us to simplify these correlators since
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the Pfaffian has the following property: Let M denote an arbitrary n by n matrix
for some positive integer n. Then, we have that

pf
 0 M

−MT 0

 = (−1)n(n−1)/2 detM . (3.23)

With that, we arrive at the final result for the correlation functions,

〈Ω|X0XrΩ〉 = det



g1 g2 · · · gr

g0 g1 · · · gr−1
... ... ...

g−r+3 g−r+4 · · · g2

g−r+2 g−r+3 · · · g1


, (3.24)

and

〈Ω|Y0YrΩ〉 = det



g−1 g0 · · · gr−2

g−2 g−1 · · · gr−3
... ... ...

g−r+1 g−r+2 · · · g0

g−r g−r+1 · · · g−1


, (3.25)

and for the last correlator, we obtain that

〈Ω|Z0ZrΩ〉 = g2
0 − grg−r + δr=0 mod N (3.26)

for any r ∈ {1, 2, . . . , N − 1}.
This completes the calculation of the ground state correlation functions of the Pauli

operators. We observe that the ground state correlators of the Xj and Yj operators
are given by determinants of Toeplitz matrices. This will allow us to consider the
asymptotic behaviour for large relative separations, r, in the thermodynamic limit
and allows also an efficient numerical evaluation for finite chains.

3.2 The Thermodynamic Limit
We will now consider the thermodynamic limit, N →∞. We will restrict ourselves
only to the correlation function of the order parameter Xj since the same reasoning
will apply for the other correlators. Let Cr denote the correlation function of the
order parameter with respect to the ground state of the transverse Ising chain in the
thermodynamic limit.

31



To analyze the thermodynamic limit, we make the dependencies on the chain size,
N , explicit. The even and odd parts of the Hamiltonian, HP and HQ, depend on
N and their respective ground states depend on N as well. We will denote their
representatives by Ω̃N and Ω̂N , respectively.
As we will see, we need to calculate

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
and

〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
for any

r ∈ {1, 2, . . . , N − 1}. The first one of them,
〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
, has been calculated in

the preceding section. However, in order to keep the notations unified, we rewrite
the result to make the dependence on N explicit. To this end, for any m ∈ Z, let

g̃N,m := − 1
N

∑
p∈PN

(
|up|2 − |vp|2 − 2i Im(upv−p)

)
e−ipm . (3.27)

Then, we have that

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
= det



g̃N,1 g̃N,2 · · · g̃N,r

g̃N,0 g̃N,1 · · · g̃N,r−1
... ... ...

g̃N,−r+3 g̃N,−r+4 · · · g̃N,2

g̃N,−r+2 g̃N,−r+3 · · · g̃N,1


. (3.28)

The correlation function
〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
can be obtained using Wick’s theorem as

well since Ω̂N represents the vacuum state of the fermionic Bogoliubov operators cp
for p ∈ QN . Introducing

ĝN,m := − 1
N

∑
p∈QN

(
|up|2 − |vp|2 − 2i Im(upv−p)

)
e−ipm . (3.29)

for any m ∈ Z, we obtain that

〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
= det



ĝN,1 ĝN,2 · · · ĝN,r

ĝN,0 ĝN,1 · · · ĝN,r−1
... ... ...

ĝN,−r+3 ĝN,−r+4 · · · ĝN,2

ĝN,−r+2 ĝN,−r+3 · · · ĝN,1


. (3.30)

The deriviation is in complete analogy to Section 3.1. In fact, the only difference is
the choice of momenta in the sum (3.29).
In the paramagnetic phase and at the quantum critical point, where h ≥ g,

the ground state of the transverse Ising chain remains non-degenerate even in the
thermodynamic limit, as we observed in the Section 2.5. Therefore, we obtain that

Cr = lim
N→∞

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
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for h ≥ g.
In the ferromagnetic phase, where h < g, the ground state of the transverse Ising

chain is degenerate. It is represented by any superposition of the ground states of the
even and the odd parts of the Hamiltonian, as we saw in the Section 2.5. In order
to obtain the correlator of the order parameter with respect to the ground state in
the thermodynamic limit within the ferromagnetic phase, we need to determine the
correlation function with respect to the state represented by αΩ̃N + βΩ̂N , where
α and β are complex numbers for which |α|2 + |β|2 = 1 and, then, take the limit
N →∞ of the resulting expression. We obtain that
〈
αΩ̃N + βΩ̂N

∣∣∣X0Xr

(
αΩ̃N + βΩ̂N

)〉
= |α|2

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
+ α∗β

〈
Ω̃N

∣∣∣X0XrΩ̂N

〉
+ β∗α

〈
Ω̂N

∣∣∣X0XrΩ̃N

〉
+ |β|2

〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
. (3.31)

Since Ω̃N ∈ P (HN) and Ω̂N ∈ Q(HN), we have that X0XrΩ̃N ∈ P (HN) and
X0XrΩ̂N ∈ Q(HN ). This can be seen by using the characterizations of the even and
the odd subspaces in terms of the eigenvectors of the Pauli operators Zj, χs with
s ∈ {0, 1}N which are given in (2.40), as we described in Section 2.2. There, we saw
that elements in P (HN ) and elements in Q(HN ) are linear combinations of χs which
represent an even and, respectively, odd number of spin-down states. The claim
follows from the observation that the operators X0Xr flip spins at two sites. Since
P (HN) and Q(HN) are mutually orthogonal, we obtain that

〈
Ω̃N

∣∣∣X0XrΩ̂N

〉
= 0 =〈

Ω̂N

∣∣∣X0XrΩ̃N

〉
. What remains is the expression

〈
αΩ̃N + βΩ̂N

∣∣∣X0Xr

(
αΩ̃N + βΩ̂N

)〉
= |α|2

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
+ |β|2

〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
. (3.32)

We need to determine the limits of
〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
and

〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
as N →∞.

For this purpose, note that, for any m ∈ Z, g̃N,m and ĝN,m are Riemann sums of the
integral of the function

[−π, π] −→ C, p 7→ − 1
2π

(
|up|2 − |vp|2 − 2i Im(upv−p)

)
e−ipm .

Therefore, we have that
lim
N→∞

g̃N,m = lim
N→∞

ĝN,m .

Since the determinant is a continuous function of the entries of the matrix, this
implies that

lim
N→∞

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
= lim

N→∞

〈
Ω̂N

∣∣∣X0XrΩ̂N

〉
.
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Since |α|2 + |β|2 = 1, this, in turn, gives that

Cr = lim
N→∞

〈
Ω̃N

∣∣∣X0XrΩ̃N

〉
.

After this formal treatment of the different phases, we are now in the position
to derive the thermodynamic limit of the correlation function. For any m ∈ Z, let
gm := limN→∞ g̃N,m. Since g̃N,m converges to gm for all m ∈ Z, any subsequence of
g̃N,m converges to gm as well. Therefore, we consider g̃N,m only for even N . In that
case, by using the definitions of up and vp given in (2.74) and (2.75), we obtain that

g̃N,m = 1
N

∑
p∈PN

eip − λ√
1 + λ2 − 2λ cos p

e−ipm ,

where we introduced λ := h/g. Thus, we have for the limit that

gm = 1
2π

∫ π

−π

eip − λ√
1 + λ2 − 2λ cos p

e−ipm dp , (3.33)

for all m ∈ Z.
We can now express Cr as a determinant of a r by r Toeplitz matrix whose entries

are given by gm. However, to rewrite the Toeplitz matrix in a conventional form and
in order to match the notation used in the Appendix B, we define fm := g1−m for all
m ∈ Z. For all m ∈ Z,

fm = 1
2π

∫ π

−π

1− λeip
√

1 + λ2 − 2λ cos p
e−ipm dp . (3.34)

We see that the fm are given by a Fourier transform. To make this point more explicit,
we define on the complex unit circle, S1 = {z ∈ C | |z| = 1}, the function

f : S1 −→ C, z 7→ f(z) := 1− λz√
1 + λ2 − λ

(
z + 1

z

) .
Then, we obtain that

fm = 1
2π

∫ π

−π
f(eip)e−ipm dp ,

for all m ∈ Z. For any positive integer r, we can write Cr as the determinant of the
r by r Toeplitz matrix generated by f , namely

Cr = det



f0 f−1 · · · f−r+1

f1 f0 · · · f−r+2
... ... ...

fr−2 fr−3 · · · f−1

fr−1 fr−2 · · · f0


. (3.35)
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3.3 Asymptotics of the Order Parameter Correlator
To determine the asymptotic behaviour of the order parameter ground state correlator
in the thermodynamic limit, Cr, for large values of the relative separation, r, we
will use the theorems summarized in the Appendix B. First, we need to analyse the
function f . Namely, we need to show that the function f is a continuous function
which is nowhere zero and that f is in Cβ for some β > 1/2 and β /∈ N, which
means that f has bβc continuous derivatives and that the bβcth derivative is Hölder
continuous with the exponent β−bβc. Whether we need Theorem B.1 or Theorem B.2
will depend on the winding number of f about zero.

For λ 6= 1, the function f is continuous and nowhere zero on S1. This can be seen
as follows. Let λ 6= 1. The functions given by 1− λz and

√
1 + λ2 − λ(z + 1/z) are

continuous on the unit circle, S1. For any z ∈ S1, there is a p ∈ [−π, π[ such that
z = eip. Therefore, we obtain that√

1 + λ2 − λ
(
z + 1

z

)
=
√

1 + λ2 − 2λ cos p .

Furthermore, we have that 1 + λ2 − 2λ cos p > 0 since (1 − λ)2 > 0 is equivalent
to 1 + λ2 > 2λ and since −1 ≤ cos p ≤ 1, we obtain that 1 + λ2 > 2λ cos p. Thus,√

1 + λ2 − λ(z + 1/z) > 0 for all z ∈ S1. Therefore, we obtain that f is continuous.
Since we also have |λz| = λ 6= 1 for all z ∈ S1, f is also nowhere zero on S1.
For λ = 1, the function f takes the form

f(z) = 1− z√
2−

(
z + 1

z

)
for all z ∈ S1. The functions is non-zero and continuous if z 6= 1. However, it is not
continuous at z = 1. This can be seen as follows. We can write f(eip) as

f(eip) = 1√
2

(
1− cos p√
1− cos p − i sin p√

1− cos p

)
,

for p ∈ [−π, π[ and p 6= 0. For 0 < p < π, sin p is non-negative and we obtain that

Im f(eip) = − 1√
2

sin p√
1− cos p = − 1√

2

√√√√ sin2 p

1− cos p = −
√

1 + cos p
2 .

For −π ≤ p < 0, sin p is non-positive and we obtain that

Im f(eip) = − 1√
2

sin p√
1− cos p = 1√

2

√√√√ sin2 p

1− cos p =
√

1 + cos p
2 .
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Therefore, we have that

lim
p→0

0<p<π

Im f(eip) = − lim
p→0

0<p<π

√
1 + cos p

2 = −1 ,

lim
p→0
−π≤p<0

Im f(eip) = lim
p→0
−π≤p<0

√
1 + cos p

2 = 1 .

Thus, f is not continuous at z = 1. However, in order to be able to use the
Theorems B.1 and B.2, which are given in the Appendix B, we need f to be
continuous and nowhere zero. Therefore, we restrict ourselves to λ 6= 1.

As already stated above, whether we can use Theorem B.1 or Theorem B.2 depends
on the winding number of f about the origin. Therefore, before we check whether
there is a β > 1/2 with β /∈ N such that f is in Cβ, let us determine this winding
number. Let γ denote the winding number of f about the origin. We have that

γ = 1
2πi

∫
f(S1)

dz
z

To determine the winding number, we parametrize the curve f(S1) by

ϕ : [−π, π] −→ f(S1), p 7→ ϕ(p) := f(eip)

Then, we obtain

γ = 1
2πi

∫ π

−π

ϕ′(p)
ϕ(p) dp = 1

2πi

∫ π

−π

(
− iλeip

1− λeip −
λ sin p

1 + λ2 − 2λ cos p

)
dp .

The function
[−π, π] −→ R, p 7→ λ sin p

1 + λ2 − 2λ cos p

is an odd function. Therefore, its integral over the intervall [−π, π] vanishes, which
reduces γ to

γ = 1
2π

∫ π

−π

λeip

λeip − 1 dp .

We rewrite this expression as a countour integral, which gives that

γ = 1
2πi

∫
S1

λ

λz − 1 dz . (3.36)

From this point on, we need to differentiate between the cases λ < 1 and λ > 1.
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3.3.1 Asymptotics in the Ferromagnetic Phase
Assume that λ < 1, that is, consider the ferromagnetic phase. For all z ∈ S1, we
have that |λz| = λ < 1. Therefore, we can use the geometric series to expand the
integrand in (3.36). We obtain that

γ = − λ

2πi

∫
S1

1
1− λz dz = − λ

2πi

∞∑
n=0

λn
∫
S1
zn dz = 0

since, for any non-negative integer n, the complex function z 7→ zn is holomorphic
and, thus, Cauchy’s integral theorem gives that

∫
S1 zn dz = 0. Therefore, we can

apply Theorem B.1, given that f is in Cβ for a β > 1/2 and β /∈ N.
The function ϕ is smooth, that is, it has derivatives of all orders. This can be

seen using the quotient rule. A continuously differentiable function over a compact
intervall is Lipschitz continuous, which, in turn, implies that the function is Hölder
continuous for any exponent in ]0, 1[. Since ϕ is smooth, ϕ itself and any of its
derivatives are Hölder continuous for any exponent in ]0, 1[. This implies that for
any β > 1/2 with β /∈ N, ϕ has bβc continuous derivatives and the bβcth derivative
satisfies a Hölder condition with the exponent β − bβc. This means that f is in Cβ

for any β > 1/2 with β /∈ N.
The above statements allow us to use Szegö’s strong limit theorem, which is

Theorem B.1 in the Appendix B. There, we can see that we need to calculate the
Fourier coefficients of log f in order to determine the asymptotic behaviour of Cr.
We determine the Fourier coefficients of log f . For any p ∈ [−π, π[, we have, for

the principal logarithm, that

log f(eip) = log(1− λeip)− 1
2 log(1 + λ2 − 2λ cos p) .

We can write
1 + λ2 − 2λ cos p = (1− λeip)(1− λe−ip) .

Since the principal arguments of 1− λeip and (1− λeip)∗ = 1− λe−ip add to zero, we
obtain that

log((1− λeip)(1− λe−ip)) = log(1− λeip) + log(1− λe−ip) .

Therefore, we obtain that

log f(eip) = 1
2 log(1− λeip)− 1

2 log(1− λe−ip) .

For any w ∈ C with |w| < 1, we have that

log(1− w) = −
∞∑
n=1

1
n
wn .
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Since |λz| = λ < 1 for any z ∈ S1, we obtain that

log f(eip) = −1
2

∞∑
n=1

λn

n
einp + 1

2

∞∑
n=1

λn

n
e−inp

By comparing this identity with the Fourier expansion

log f(eip) =
∞∑

n=−∞
(log f)neinp , (3.37)

we obtain that

(log f)n =



− 1
2nλ

n if n ≥ 1 ,

0 if n = 0 ,

− 1
2nλ

−n if n ≤ −1 .

(3.38)

Using these Fourier coefficients of log f , we get that
∞∑
n=1

n(log f)−n(log f)n = −1
4

∞∑
n=1

1
n
λ2n = 1

4 log
(
1− λ2

)
.

By applying Szegö’s strong limit theorem (Theorem B.1), we obtain that

Cr =
(
1− λ2

)1/4 (
1 +O

(
r1−2β

))
, (3.39)

for all positive integers r and for any β > 1/2 with β /∈ N. This result allows us to
determine the magnetization in the thermodynamic limit within the ferromagnetic
phase. Namely, the cluster decomposition principle relates 〈Ω|X0Ω〉 to the correlator
for large distances r by Cr = 〈Ω|X0Ω〉2. Therefore, since the magnetization mx is
〈Ω|X0Ω〉 /2, we obtain that

mx = 1
2
(
1− λ2

)1/8
. (3.40)

This result can be found in [Pfeuty, 1970] and it allows us to identify the critical
exponent β′ of the order parameter. Namely, we have that

β′ = lim
λ→1
λ<1

log
(

1
2 (1− λ2)1/8)

log (1− λ) = 1
8 (3.41)

3.3.2 Asymptotics in the Paramagnetic Phase
Assume that λ > 1, that is, consider the paramagnetic phase. For all z ∈ S1, we have
that |(λz)−1| = λ−1 < 1. We rewrite the equation (3.36) in the form

γ = 1
2πi

∫
S1

1/z
1− 1

λz

dz
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and use the geometric series to obtain that

1
1− 1

λz

=
∞∑
n=0

λ−nz−n .

Therefore, we obtain that

γ =
∞∑
n=0

λ−n
1

2πi

∫
S1

dz
zn+1 = 1

since, for any non-negative integer n, Cauchy’s integral formula gives

1
2πi

∫
S1

dz
zn+1 = δn0 .

We cannot apply Theorem B.1 since γ 6= 0. We cannot apply Theorem B.2 either
because γ is positive. However, we can use instead of f another function which
generates the negative of the transposed Toeplitz matrix and has, thus, −γ as its
winding number about the origin. Namely, we introduce the new function

f̂ : S1 −→ C, z 7→ f̂(z) := −f(1/z) .

We also introduce
f̂m := 1

2π

∫ π

−π
f̂(eip)e−imp dp , (3.42)

for all m ∈ Z, with the property f̂m = −f−m. For any positive integer r, let Tr and
T̂r denote the r by r Toeplitz matrices given by (Tr)jk = fj−k and (T̂r)jk = f̂j−k for
any j, k ∈ {0, 1, . . . , r − 1}. Since f̂m = −f−m, we have that T̂r = −TT

r . Therefore,
we obtain that

Cr = detTr = det
(
−T̂T

r

)
= (−1)r det T̂r .

In addition, we have that the winding number of f̂ about zero is −γ since f̂(eip) =
−f(e−ip) and, thus, f̂ circles the origin clockwise if f circles it counterclockwise and
vice versa. Thus, the winding number of f̂ about zero is −1.

Since f̂(z) = −f(1/z) for all z ∈ S1, we have for the parametrization of f̂(S1)
given by

ϕ̂ : [−π, π] −→ f̂(S1), p 7→ ϕ̂(p) := f̂(eip)

that ϕ̂(p) = −ϕ(−p). Thus, it is smooth, which implies that, for any β > 1/2
with β /∈ N, the function has bβc continuous derivatives and the bβcth derivative
satisfies a Hölder condition with the exponent β − bβc. Therefore, we can apply the
Theorem B.2.

To this end, define the function

a : S1 −→ C, z 7→ a(z) := zf̂(z) .
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Explicitly, for all z ∈ S1, we have that

a(z) = − z − λ√
1 + λ2 − λ

(
z + 1

z

) = 1− λ−1z√
1 + λ−2 − λ−1

(
z + 1

z

) .
We observe that a has the same form as f with the difference being that we need
to substitute λ in f by λ−1 to obtain a. Thus, since λ−1 < 1, we can obtain the
Fourier coefficients of log a by substituting λ by λ−1 in the Fourier coefficients of
log f obtained for λ < 1. Therefore, for any p ∈ [−π, π[, we have that

log a(eip) =
∞∑

n=−∞
(log a)neinp , (3.43)

with

(log a)n =



− 1
2nλ

−n if n ≥ 1 ,

0 if n = 0 ,

− 1
2nλ

n if n ≤ −1 .

(3.44)

Further, we also have that
∞∑
n=1

n(log a)−n(log a)n = −1
4

∞∑
n=1

1
n
λ−2n = 1

4 log
(

1− 1
λ2

)
.

For the functions a± : S1 −→ C given by

a±(z) := exp
( ∞∑
n=1

(log a)±nz±n
)

for all z ∈ S1, we obtain that

a+(eip) = exp
(
−
∞∑
n=1

1
2n

(
eip

λ

)n)
= exp

(
1
2 log

(
1− eip

λ

))
=
(

1− eip

λ

)1/2

,

and that

a−(eip) = exp
( ∞∑
n=1

1
2n

(
e−ip

λ

)n)
= exp

(
−1

2 log
(

1− e−ip

λ

))
=
(

1− e−ip

λ

)−1/2

for all p ∈ [−π, π[. In particular, we have that
a−(eip)
a+(eip) = λ√

1 + λ2 − 2λ cos p
.

By applying the theorem by Fisher, Hartwig, Silbermann et al. (Theorem B.2), we
obtain that

Cr =
(

1− 1
λ2

)1/4 ( λ

2π

∫ π

−π

e−ipr
√

1 + λ2 − 2λ cos p
dp+O

(
r−3β

)) (
1 +O

(
r1−2β

))
(3.45)

for all positive integers r and for any β > 1/2 with β /∈ N.
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4 Correlations after a Sudden Quench

Quite often, the Hamiltonian of a system depends on some parameter, h, which
characterizes external perturbations of some reference system. Such a Hamiltonian
can be considered as a function of this parameter, that is, H = H(h). In general, this
implies that the eigenvalues and eigenvectors will be functions of h as well. In such
cases, a possible scenario is to prepare the system initially in the ground state of
the Hamiltonian H(h0), but then, suddenly change the parameter from h0 to some
other value h1. The evolution in time of the initial state is then governed by the
Hamiltonian H(h1). This process of abruptly changing the parameter h is called a
sudden quench.

For a fixed value of the interaction coupling between the spins, g, the Hamiltonian
of the transverse Ising chain in (2.4) may be viewed as a function of the external field,
h. Namely, we will take the system to be initially in the ground state represented by
Ω(h0) for some initial external field, h0. We consider the evolution in time for some
other external field, h1. Explicitly, the evolution in time is given by

Ψ(t, h1, h0) = exp (−itH(h1)) Ω(h0) . (4.1)

We will call the state represented by this vector the quenched state.
Our goal in this section is to derive an expression for the order parameter correlation

function with respect to the quenched state. That is, we will consider

〈Ψ(t, h1, h0)|XjXkΨ(t, h1, h0)〉 ,

which we will call the quenched ground state correlation function from now on. We
will find that the quenched ground state correlation function can be expressed as the
Pfaffian of a certain antisymmetric matrix. The structure of this matrix will allow us
to reduce the Pfaffian to a determinant. This determinant will be used to perform
numerical calculations of the quenched ground state correlation function for a chain
of finite size.
Expressions for the order parameter correlation function with respect to the

quenched state in the thermodynamic limit have been determined by Pasquale
Calabrese, Fabian Essler, and Maurizio Fagotti in [Calabrese et al., 2012a,b]. They
found in [Calabrese et al., 2012b] that the quenched ground state correlation function
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approaches stationary values which are given by a generalized Gibbs ensemble. We
will show this as well by using a stationary phase argument. In [Calabrese et al.,
2012a], they provide expressions for the time-dependence of the quenched ground
state correlation function for sufficiently large values of the time after the quench
and the distance on the lattice. These results will be compared to our numerical
calculations and we will conjecture an improved expression for the quenched ground
state correlator in the case of quenches within the paramagnetic phase.
For the rest of this chapter, we will restrict the values of the spin interaction

coupling, g, the initial external field, h0, and the final external field, h1, to be positive.
Further, we will denote with h a generic positive value for the external field.

4.1 Quenched Ground State Correlation Function
We begin by considering a system of finite size, N . We argued in Section 2.5 that, for
finite system sizes, the ground state of the Hamiltonian of the transverse Ising chain
is given by the ground state of the even part of the Hamiltonian as long as g and h
are positive. Therefore, for any value h > 0 of the external field, if Ω(h) represents
the ground state of H(h) and if Ω̃(h) represents the ground state of HP (h), then we
can set Ω(h) = Ω̃(h). In addition, Ω̃(h) represents the vacuum state of the fermionic
Bogoliubov operators, cp(h), for momentum values p ∈ PN . These facts enabled us
in Chapter 3 to use Wick’s theorem in order to determine the correlation functions
of the Pauli operators with respect to the ground state of the transverse Ising chain.
Subsequently, we will show that an analogous reasoning allows us to determine the
quenched ground state correlation function for finite system sizes.

Let us consider the time evolution of the initial ground state, which is represented
by Ω(h0), induced by an Hamiltonian H(h). We derived in Section 2.2 that the
Hamiltonian is given by the orthogonal sum of two Hermitian operators which
mutually commute. Namely, we have that H(h) = HP (h)P+HQ(h)Q, where HP (h)P
and HQ(h)Q are orthogonal and commute. Since Ω(h0) = Ω̃(h0) and since Ω̃(h0) is
in the even subspace, P (HN), as we found in Section 2.5, we obtain for the time
evolution of the initial ground state that

exp (−itH(h)) Ω(h0) = exp (−itHP (h)P ) exp (−itHQ(h)Q) Ω(h0)
= exp (−itHP (h)) Ω(h0) .

That is, the time evolution of the ground state is governed only by the even part of
the Hamiltonian, which has the form of a fermionic quantum harmonic oscillator in
terms of the Bogoliubov operators, cp(h), where p ∈ PN , as we have found in (2.84).
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By defining the unitary time evolution operator

U(t, h) := exp (−itHP (h)) , (4.2)

we can write the time evolution of the initial ground state more compactly as
U(t, h)Ω(h0). In particular, the quenched state is represented by Ψ(t, h1, h0) =
U(t, h1)Ω(h0).
By using the time evolution operator, we can rewrite the quenched ground state

correlation function as

〈Ψ(t, h1, h0)|XjXkΨ(t, h1, h0)〉 =
〈
Ω(h0)

∣∣∣U †(t, h1)XjXkU(t, h1)Ω(h0)
〉
, (4.3)

for any j, k ∈ {0, 1, . . . , N − 1}. This expression indicates that if we were able to
rewrite U †(t, h)XjXkU(t, h) as a product of mutually anticommuting operators, then
we could use Wick’s theorem and express the quenched ground state correlator as
a Pfaffian. That is to say, we could use the same techniques which we employed in
Section 3.1.
To this end, we define the operators

Āj(t, h) := U †(t, h)AjU(t, h) , (4.4)
B̄j(t, h) := U †(t, h)BjU(t, h) , (4.5)

for all j ∈ {0, 1, . . . , N − 1}, where Aj and Bj are given in (2.22) and (2.23). Since
U(t, h) is unitary and since all possible anticommutators of Aj and Bj, which are
given in (2.24), (2.25), and (2.26), are proportional to the identity operator, we
obtain that

Āj(t, h)Āk(t, h) + Āk(t, h)Āj(t, h) = 2δjk , (4.6)
B̄j(t, h)B̄k(t, h) + B̄k(t, h)B̄j(t, h) = −2δjk , (4.7)
Āj(t, h)B̄k(t, h) + B̄k(t, h)Āj(t, h) = 0 , (4.8)

for any j, k ∈ {0, 1, . . . , N − 1}.
We only need to consider U †(t, h)XjXkU(t, h) for such j, k ∈ {0, 1, . . . , N − 1}

for which j < k. This is no loss of generality for the same reasons we have already
discussed in Section 3.1. Namely, for j = k the products reduce to squares of the
Pauli operators, which are the identity operator. For j > k, we can commute the
Pauli operators and interchange the labels j and k. Thus, let j, k ∈ {0, 1, . . . , N − 1}
such that j < k. In Section 3.1, we expressed the operators XjXk as products of the
operators Al and Bl, with the result being (3.3). We can use that identity to rewrite
the transformed operators U †(t, h)XjXkU(t, h) as products of the newly defined
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operators Āl(t, h) and B̄l(t, h). Namely, we insert the identity operator in the form
of I = U †(t, h)U(t, h) in between the operators Al and Bl in expression (3.3). This
leads to

U †(t, h)XjXkU(t, h) = (−1)r(r−1)/2B̄j(t, h)B̄j+1(t, h) · · · B̄k−1(t, h)
Āj+1(t, h)Āj+2(t, h) · · · Āk(t, h) . (4.9)

Using the anticommutation relations of the Āl(t, h) and B̄l(t, h) operators, we realize
that all the operators in the product mutually anticommute. Moreover, this expression
is similar to (3.3) since we only need to exchange the Al and Bl in (3.3) with their
time-propagated versions Āl(t, h) and B̄l(t, h), respectively, in order to obtain the
above result. Therefore, we are formally in the same position as we were in Section 3.1.
That is to say that we can employ Wick’s theorem to express the quenched ground
state correlator in terms of two-point functions, which will ultimately lead to a
Pfaffian, resembling the formula (3.12).

For j, k ∈ {0, 1, . . . , N − 1}, we define the expressions

Ḡjk(t, h1, h0) :=
〈
Ω(h0)

∣∣∣B̄j(t, h1)Āk(t, h1)Ω(h0)
〉
, (4.10)

Q̄jk(t, h1, h0) :=
〈
Ω(h0)

∣∣∣Āj(t, h1)Āk(t, h1)Ω(h0)
〉
, (4.11)

S̄jk(t, h1, h0) :=
〈
Ω(h0)

∣∣∣B̄j(t, h1)B̄k(t, h1)Ω(h0)
〉
. (4.12)

Since we have periodic boundary conditions, the system is translationally invariant
and, therefore, we have that

Ḡjk(t, h1, h0) = ḡk−j(t, h1, h0) , (4.13)
Q̄jk(t, h1, h0) = q̄k−j(t, h1, h0) , (4.14)
S̄jk(t, h1, h0) = s̄k−j(t, h1, h0) (4.15)

for some functions ḡm, q̄m, and s̄m, with m ∈ Z, which are yet to be determined. For
the sake of brevity and simplicity, we will suppress the arguments of these functions
from now on, whenever there is no risk of misconception.

For any r ∈ {1, 2, . . . , N − 1}, by using (3.1), we obtain for the quenched ground
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state correlation function that

〈Ψ|X0XrΨ〉 = (−1)r(r−1)/2 pf



0 s̄1 s̄2 · · · s̄r−1 ḡ1 ḡ2 · · · ḡr

0 s̄1 · · · s̄r−2 ḡ0 ḡ1 · · · ḡr−1
. . . . . . ... ... ... ...

0 s̄1 ḡ−r+3 ḡ−r+4 · · · ḡ2

0 ḡ−r+2 ḡ−r+3 · · · ḡ1

0 q̄1 · · · q̄r−1
. . . . . . ...

0 q̄1

0



,

(4.16)
where the lower triangular part of the matrix is the negative of the transpose of the
upper triangular part. All that remains is to determine the functions ḡm, q̄m, and s̄m in
order to be able to calculate the quenched ground state correlation function. For this
purpose, we need to first determine Ḡjk, Q̄jk, and S̄jk for any j, k ∈ {0, 1, . . . , N − 1}
and, then, derive appropriate expressions for ḡm, q̄m, and s̄m by using the identities
in (4.13), (4.14), and (4.15).
Let j ∈ {0, 1, . . . , N − 1} and define

āj(t, h) := U †(t, h)ajU(t, h) . (4.17)

By substituting this operator into the defintions of Āj(t, h) and B̄j(t, h), we obtain
that

Āj(t, h) = ā†j(t, h) + āj(t, h) , (4.18)
B̄j(t, h) = ā†j(t, h)− āj(t, h) . (4.19)

If we substitute the inversion of the Fourier transformation, which is given in (2.54),
into the definition of āj(t, h), we find that

āj(t, h) = 1√
N

∑
p∈PN

U †(t, h)bpU(t, h)eipj . (4.20)

Therefore, we need to express U †(t, h)bpU(t, h) for any p ∈ PN in terms of the initial
Bogoliubov operators cq(h0) and c†q(h0) with q ∈ PN .
Let p ∈ π

N
Z. In Section 2.4, we determined functions up(h) and vp(h) such that cp(h)

c†−p(h)

 =
up(h) vp(h)
vp(h) up(h)

 bp
b†−p

 , (4.21)
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The properties of the functions up(h) and vp(h), which are given in the aforementioned
section, ensured that the matrix is unitary, which is why we can invert this equation
and obtain that  bp

b†−p

 =
u∗p(h) v∗p(h)
v∗p(h) u∗p(h)

  cp(h)
c†−p(h)

 . (4.22)

Additionally, due to (2.84) and (4.2), we have that

U †(t, h)cp(h)U(t, h) = e−itωp(h)cp(h) . (4.23)

By using these identities, we obtain that U †(t, h)bpU(t, h)
U †(t, h)b†−pU(t, h)

 =
u∗p(h) v∗p(h)
v∗p(h) u∗p(h)

e−itωp(h) 0
0 eitωp(h)


up(h) vp(h)
vp(h) up(h)

u∗p(h0) v∗p(h0)
v∗p(h0) u∗p(h0)

 cp(h0)
c†−p(h0)


We only need to determine the entries of the product of these matrices in the first row
since we are only interested in U †(t, h)bpU(t, h) and since the ones in the second row
are related to the ones in the first row by the canonical anticommutation relations,
which are satisfied by both the Fourier transformed Jordan-Wigner operators and
by the Bogoliubov operators. Let ū∗p(t, h, h0) denote the entry in the first row and
the first column and let v̄∗p(t, h, h0) denote the entry in the first row and the second
column. These functions are given by

ūp(t, h, h0) =
(
|up(h)|2eiωp(h)t + |vp(h)|2e−iωp(h)t

)
up(h0)

+
(
up(h)v∗p(h)eiωp(h)t + u∗p(h)vp(h)e−iωp(h)t

)
vp(h0) , (4.24)

and

v̄p(t, h, h0) =
(
|up(h)|2eiωp(h)t + |vp(h)|2e−iωp(h)t

)
vp(h0)

+
(
up(h)v∗p(h)eiωp(h)t + u∗p(h)vp(h)e−iωp(h)t

)
up(h0) . (4.25)

We extend their definition from p ∈ π
N
Z to all p ∈ R by using these identities. For

the operator U †(t, h)bpU(t, h), we have that

U †(t, h)bpU(t, h) = ū∗p(t, h, h0)cp(h0) + v̄∗p(t, h, h0)c†−p(h0) . (4.26)

Substitution of this identity into (4.20) gives that

āj(t, h) = 1√
N

∑
p∈PN

(
ūp(t, h, h0)cp(h0) + v̄p(t, h, h0)c†−p(h0)

)
eipj (4.27)
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for all j ∈ {0, 1, . . . , N − 1}. Introducing the expressions

ūpj(t, h, h0) := 1√
N
ū∗p(t, h, h0)e−ipj , (4.28)

v̄pj(t, h, h0) := 1√
N
v̄−p(t, h, h0)e−ipj , (4.29)

we obtain that

āj(t, h) =
∑
p∈PN

(
ū∗pj(t, h, h0)cp(h0) + v̄pj(t, h, h0)c†p(h0)

)
. (4.30)

Let j, k ∈ {0, 1, . . . , N−1}. Equation (4.30) is formally analogous to the expression
given in (3.15). Since only the initial Bogoliubov operators appear in (4.30), we
obtain by the same reasoning as in Section 3.1 that

Ḡjk =
∑
p∈PN

(v̄∗pj − ū∗pj)(ūpk + v̄pk) , (4.31)

Q̄jk =
∑
p∈PN

(v̄∗pj + ū∗pj)(ūpk + v̄pk) , (4.32)

S̄jk =
∑
p∈PN

(v̄∗pj − ū∗pj)(ūpk − v̄pk) . (4.33)

Substituting the definitions of ūpj and v̄pj, we obtain that

Ḡjk = − 1
N

∑
p∈PN

(
|ūp|2 − |v̄−p|2 − 2i Im(ūpv̄−p)

)
e−ip(k−j) , (4.34)

Q̄jk = + 1
N

∑
p∈PN

(
|ūp|2 + |v̄−p|2 + 2 Re(ūpv̄−p)

)
e−ip(k−j) , (4.35)

S̄jk = − 1
N

∑
p∈PN

(
|ūp|2 + |v̄−p|2 − 2 Re(ūpv̄−p)

)
e−ip(k−j) . (4.36)

These identities allow us to identify ḡm, q̄m, and s̄m by using the equations (4.13),
(4.14), and (4.15). Namely, for any m ∈ Z, we see that

ḡm = − 1
N

∑
p∈PN

(
|ūp|2 − |v̄−p|2 − 2i Im(ūpv̄−p)

)
e−ipm , (4.37)

q̄m = + 1
N

∑
p∈PN

(
|ūp|2 + |v̄−p|2 + 2 Re(ūpv̄−p)

)
e−ipm , (4.38)

s̄m = − 1
N

∑
p∈PN

(
|ūp|2 + |v̄−p|2 − 2 Re(ūpv̄−p)

)
e−ipm . (4.39)

In order to simplify the expressions for ḡm, q̄m, and s̄m, we need to consider
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ūp(t, h, h0) and v̄p(t, h, h0) in more detail. Let p ∈ R with p /∈ πZ. Then, we find that

ūp(t, h, h0) = cos(ωp(h)t)up(h0) + i(αp(h)up(h0)− βp(h)vp(h0))sin(ωp(h)t)
ωp(h) , (4.40)

v̄p(t, h, h0) = cos(ωp(h)t)vp(h0) + i(αp(h)vp(h0)− βp(h)up(h0))sin(ωp(h)t)
ωp(h) . (4.41)

For p ∈ 2πZ, we have that

ūp(t, h, h0) =


eitωp(h) if h ≥ g and h0 ≥ g,

e−itωp(h) if h < g and h0 ≥ g,

0 otherwise,

(4.42)

v̄p(t, h, h0) =


−ieitωp(h) if h ≥ g and h0 < g,

−ie−itωp(h) if h < g and h0 < g,

0 otherwise.

(4.43)

For p ∈ πZ, we have that

ūp(t, h, h0) =


eitωp(h) if h ≥ −g and h0 ≥ −g,
e−itωp(h) if h < −g and h0 ≥ −g,
0 otherwise,

(4.44)

v̄p(t, h, h0) =


−ieitωp(h) if h ≥ −g and h0 < −g,
−ie−itωp(h) if h < −g and h0 < −g,
0 otherwise.

(4.45)

Using these identities, we find that |v̄−p| = |v̄p|. If p /∈ πZ, we even have that
v̄−p = −v̄p. Furthermore, since the Fourier transformed Jordan-Wigner operators
satisfy the canonical anticommutation relations, which are given in the (2.51) and
(2.52), we have that |ūp|2 + |v̄p|2 = 1.

Starting from the expressions (4.37), (4.38), and (4.39), we proceed as follows.
We split the sum over the set PN into a summation over the positive and into a
summation over the negative summation indices. Then, we rewrite the sum over the
negative indices as a sum over the positive ones and combine the terms where it is
possible to combine them. This procedure will depend on the parity of N since if
N is even, the set PN consists fully of pairs of positive and corresponding negative
values, whereas if N is odd, there is one element in PN , namely −π, which does not
have a corresponding positive part in the set. This can be seen in the definition of
PN given in (2.53). However, performing the described procedure, we observe that
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the parity of N only makes a difference for ḡm. The expressions q̄m and s̄m do not
depend on the parity of N . Explicitly, we obtain that

ḡm = δm=0 mod N −
4
N

∑
p∈P+

N

(
|ūp|2 cos(pm) + Im(ūpv̄p) sin(pm)

)
, (4.46)

if N is even, and

ḡm = −(−1)m
N

+ δm=0 mod N −
4
N

∑
p∈P+

N

(
|ūp|2 cos(pm) + Im(ūpv̄p) sin(pm)

)
, (4.47)

if N is odd. For q̄m and s̄m, we obtain, independent of the parity of N , that

q̄m = +δm=0 mod N + 4i
N

∑
p∈P+

N

Re(ūpv̄p) sin(pm) , (4.48)

s̄m = −δm=0 mod N + 4i
N

∑
p∈P+

N

Re(ūpv̄p) sin(pm) . (4.49)

In [Calabrese et al., 2012a], the authors managed to reduce the Pfaffian given in
(4.16) to the determinant of a Toeplitz plus Hankel matrix. They used the eigenvalues
of a certain block Toeplitz matrix (which can be obtained from the matrix in (4.16)
by permuting rows and corresponding columns) to perform the reduction. In the
following, we will present our own proof for this reduction, which involves only
multiplication of matrices and basic properties of the determinant and the Pfaffian
and, thus, is simpler. To this end, we observe that s̄m = −q̄∗m for all m ∈ Z. In
particular, if m is not an integer multiple of N , then we even have that s̄m = q̄m. We
can use this relation to simplify the Pfaffian.
For this purpose, let r ∈ {1, 2, . . . , N − 1} and introduce the r by r Toeplitz

matrices

Ḡr :=



ḡ1 ḡ2 · · · ḡr

ḡ0 ḡ1 · · · ḡr−1
... ... ...

ḡ−r+3 ḡ−r+4 · · · ḡ2

ḡ−r+2 ḡ−r+3 · · · ḡ1


, (4.50)

and

Q̄r :=



0 q̄1 q̄2 · · · q̄r−1

0 q̄1 · · · q̄r−2
. . . . . . ...

0 q̄1

0


, (4.51)

49



where the lower triangular part of Q̄r is given by the negative of the transpose of
the upper triangular part and where we kept the arguments t, h1 and h0 implicit.
Note that Q̄r is antisymmetric, which means that Q̄T

r = −Q̄r. We define the 2r by
2r matrix

Dr :=
 Q̄r Ḡr

−ḠT
r Q̄r

 . (4.52)

Then, we can rewrite expression (4.16) in the form

〈Ψ(t, h1, h0)|X0XrΨ(t, h1, h0)〉 = (−1)r(r−1)/2 pf Dr(t, h1, h0) . (4.53)

For a positive integer n, let Fn denote the n by n flip matrix, which is given by
(Fn)jk = δj,n−1−k for all j, k ∈ {0, 1, . . . , n−1}. That is, Fn is the n by n matrix which
has ones on the antidiagonal and zero for all other entries. If M denotes an arbitrary
n by n matrix, then the matrix MFn is the one obtained from M by reversing the
order of its columns and FnM is the one obtained from M by reversing the order of
its rows. In particular, if T denotes an n by n Toeplitz matrix, then FnTFn = TT.
This implies that FrḠrFr = ḠT

r and that FrQ̄rFr = Q̄T
r = −Q̄r.

We define the 2r by 2r matrix

Sr := 1√
2

Ir Fr

Fr −Ir

 , (4.54)

where Ir denotes the r by r identity matrix. Then, we obtain that

SrDrS
T
r = 1

2

Ir Fr

Fr −Ir

 Q̄r Ḡr

−ḠT
r Q̄r

Ir Fr

Fr −Ir


= 1

2

Q̄r − FrḠT
r + ḠrFr + FrQ̄rFr Q̄rFr − FrḠT

r Fr − Ḡr − FrQ̄r

FrQ̄r + ḠT
r + FrḠrFr − Q̄rFr FrQ̄rFr + ḠT

r Fr − FrḠr + Q̄r


=
 0 Q̄rFr − Ḡr

FrQ̄r + ḠT
r 0


=
 0 Q̄rFr − Ḡr

−(Q̄rFr − Ḡr)T 0

 .
Furthermore, we have that

detSr = det 1√
2

Ir Fr

Fr −Ir

 = det
(
−1

2Ir −
1
2F

2
r

)
= det(−Ir) = (−1)r .

Therefore, we obtain that

pf(SrDrS
T
r ) = detSr pf Dr = (−1)r pf Dr ,
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and that

pf(SrDrS
T
r ) = pf

 0 Q̄rFr − Ḡr

−(Q̄rFr − Ḡr)T 0

 = (−1)r(r−1)/2 det(Q̄rFr − Ḡr) .

Eventually, putting everything together, we obtain the final result for the correlation
function,

〈Ψ(t, h1, h0)|X0XrΨ(t, h1, h0)〉 = (−1)r det
(
Q̄r(t, h1, h0)Fr − Ḡr(t, h1, h0)

)
,

(4.55)
for any r ∈ {1, . . . , N − 1}. We will use this formula to numerically determine the
correlation function on finite chains. This expression in terms of the determinant is
more suited for calculations than the expression in terms of the Pfaffian since there
are software packages which can evaluate the determinant efficiently.

4.2 Large Time Asymptotics
At this point, let us describe the thermodynamic limit. We argued in the preceding
section that the time evolution operator leaves the even and odd subspaces invariant.
More specifically, for any finite chain, we have that

exp(−itH(h))Ω̃(h0) = exp(−itHP (h))Ω̃(h0) , (4.56)
exp(−itH(h))Ω̂(h0) = exp(−itHQ(h))Ω̂(h0) , (4.57)

and since we saw in Section 2.2 that HP (h) and HQ(h) commute with the projectors
P and Q, we find that exp(−itH(h))Ω̃(h0) ∈ P (HN ) and that exp(−itH(h))Ω̂(h0) ∈
Q(HN). This, in turn, implies that the situation here is similar to the situation
in Section 3.2, where we determined the thermodynamic limit of the order param-
eter correlation function with respect to the ground state of the transverse Ising
chain. This can be seen as follows: For 0 < h0 < g, we need to calculate the cor-
relation function of the order parameter with respect to the state represented by
exp(−itH(h))(αΩ̃(h0)+βΩ̂(h0)) with |α|2+|β|2 = 1 and, then, take the limit N →∞.
The vectors exp(−itH(h))Ω̃(h0) and X0Xr exp(−itH(h))Ω̂(h0) as well as the vectors
exp(−itH(h))Ω̂(h0) and X0Xr exp(−itH(h))Ω̃(h0) are mutually orthogonal since
X0Xr flips spins at two sites and, thus, leaves the subspaces P (HN) and Q(HN) in-
variant. The order parameter correlation function with respect to exp(−itH(h))Ω̂(h0)
differs from the one with respect to exp(−itH(h))Ω̃(h0), calculated in the previous
section, by that the sums over the momenta in (4.37), (4.38), and (4.39) need to be
taken over QN , given in (2.59). However, the sums over PN and QN are the Riemann
sums of the integrals of the same respective functions. Therefore, the limits of the
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order parameter correlation function with respect to exp(−itH(h))Ω̃(h0) and with
respect to exp(−itH(h))Ω̂(h0) as N →∞ are the same. That is to say that we can
simply take the limit N →∞ of the expression (4.55) to obtain the order parameter
correlation function with respect to the quenched state in the thermodynamic limit.
Our aim is to determine the behaviour of the quenched ground state correlation

function in the thermodynamic limit for asymptotically large times, t � g−1. To
this end, we need to determine the thermodynamic limit of the quenched ground
state correlation function, which we denote by C̄r, first. We already realized that it
suffices to take the limit N →∞ of the expression (4.55). Since the determinant is a
continuous function of the entries of the matrix, this amounts to taking the limit
N →∞ of (4.37) and (4.38).

In order to consider the limit N →∞, let us make the dependencies on N explicit.
We introduce

ḡN,m := − 1
N

∑
p∈PN

(
|ūp|2 − |v̄−p|2 − 2i Im(ūpv̄−p)

)
e−ipm , (4.58)

q̄N,m := + 1
N

∑
p∈PN

(
|ūp|2 + |v̄−p|2 + 2 Re(ūpv̄−p)

)
e−ipm , (4.59)

for all m ∈ Z. For a fixed m ∈ Z, ḡN,m(t, h1, h0) and q̄N,m(t, h1, h0) are sequences
in N . For any N , they are the Riemann sums of the integrals of the functions
[−π, π] −→ C given by

p 7→ −1
2π

(
|ūp(t, h1, h0)|2 − |v̄−p(t, h1, h0)|2 − 2i Im(ūp(t, h1, h0)v̄−p(t, h1, h0))

)
e−ipm ,

p 7→ 1
2π

(
|ūp(t, h1, h0)|2 + |v̄−p(t, h1, h0)|2 + 2 Re(ūp(t, h1, h0)v̄−p(t, h1, h0))

)
e−ipm ,

respectively. Therefore, ḡN,m(t, h1, h0) and q̄N,m(t, h1, h0) converge to the respective
integrals of the above functions as N →∞. We denote these limits by ḡm(t, h1, h0) =
limN→∞ ḡN,m(t, h1, h0) and q̄m(t, h1, h0) = limN→∞ q̄N,m(t, h1, h0).

To determine the limits ḡm and q̄m more explicitly, we restrict our calculations of
ḡN,m and q̄N,m to even N since this case is easier to determine. This is justified since
any subsequence of a convergent sequence converges to the same limit. For such even
N , we obtain that

ḡN,m := − 1
N

∑
p∈PN

(
2|ūp|2 − 1 + 2i Im(ūpv̄p)

)
e−ipm , (4.60)

q̄N,m := + 1
N

∑
p∈PN

(1− 2 Re(ūpv̄p)) e−ipm . (4.61)
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For any p ∈ R with p /∈ πZ, we have that

|ūp(t, h, h0)|2 = 1
2 + cos2(ωp(h)t) αp(h0)

2ωp(h0)

+
((
α2
p(h) + β2

p(h)
) αp(h0)

2ωp(h0) − αp(h)βp(h)βp(h0)
ωp(h0)

)
sin2(ωp(h)t)

ω2
p(h) , (4.62)

and that

ūp(t, h, h0)v̄p(t, h, h0)

= cos2(ωp(h)t) βp(h0)
2ωp(h0) + isin(2tωp(h))

2ωp(h)
αp(h)βp(h0)− βp(h)αp(h0)

ωp(h0)

−
((
α2
p(h) + β2

p(h)
) βp(h0)

2ωp(h0) − αp(h)βp(h)αp(h0)
ωp(h0)

)
sin2(ωp(h)t)

ω2
p(h) . (4.63)

By substituting these expressions into ḡN,m and q̄N,m and taking the limit N →∞,
we obtain

ḡm(t, h1, h0) = − 1
2π

∫ π

−π

(h1h0 − g(h0 + h1) cos p+ g2)(h1 − geip)
(g2 + h2

1 − 2gh1 cos p)
√
g2 + h2

0 − 2gh0 cos p
e−ipmdp

+ 1
2π

∫ π

−π

ig(h0 − h1) sin p(h1 − geip) cos(2tωp(h1))
(g2 + h2

1 − 2gh1 cos p)
√
g2 + h2

0 − 2gh0 cos p
e−ipmdp , (4.64)

and

q̄m(t, h1, h0) = δm0 + 1
2π

∫ π

−π

g(h0 − h1) sin p sin(2tωp(h1))√
g2 + h2

1 − 2gh1 cos p
√
g2 + h2

0 − 2gh0 cos p
e−ipmdp .

(4.65)
Let us now consider the time-dependent parts of (4.64) and (4.65). Writing the

cosine and sine functions in terms of the exponential function, we find that the time
dependent parts take the generic form

I±(t) :=
∫ π

−π
f(p)e±2itωp , (4.66)

where f denotes some function which can be identified by comparing this expression
to the functions multiplying the time-dependent terms in (4.64) and (4.65). We
will use a stationary phase argument to extract I±(t) for asymptotically large t.
The relevant theorems are taken from [Bhattacharya and Basu, 1979]. Namely, ωp
is stationary at the points p = −π, p = 0, and p = π within the closed intervall
[−π, π]. In the cases at hand, the function f vanishes at all three points. However,
the derivative f ′ does not vanish as long as we restrict ourselves to the cases where

53



h0 6= g 6= h1 and h0 6= h1. Therefore, the stationary phase formula gives that
I±(t) ≈ 0 for asymptotically large t. This means that the time dependent parts in
the above expressions vanish and we are left with

ḡm(t, h1, h0) ≈ − 1
2π

∫ π

−π

(h1h0 − g(h0 + h1) cos p+ g2)(h1 − geip)
(g2 + h2

1 − 2gh1 cos p)
√
g2 + h2

0 − 2gh0 cos p
e−ipmdp ,

(4.67)
and that q̄m(t, h1, h0) ≈ δm0 for asymptotically large times t. Since the matrix Q̄r

in (4.55) does not involve q̄m for m = 0, the expression for the quenched ground
state correlation function in the thermodynamic limit reduces to C̄r(t, h1, h0) ≈
det Ḡr(t, h1, h0) for long times after the sudden quench. Therefore, the quenched
ground state correlation function becomes independent of time, that is, it becomes
stationary.

We will compare the result for the quenched ground state correlation function in
the thermodynamic limit and for asymptotically large times with the corresponding
correlation function obtained from a generalized Gibbs ensemble. Namely, consider
an ensemble represented by the density operator

% = 1
Z

exp
− ∑

p∈PN
βpωpc

†
pcp

 , (4.68)

where Z is such that tr % = 1 and where βp denote mode-dependent inverse temper-
atures from now on. The expectation value of an operator A with respect to this
ensemble is given by 〈A〉GGE = tr %A. We are interested in the correlator 〈XjXk〉GGE
for j, k ∈ {0, 1, . . . , N − 1} with j < k. For expectation values with respect to these
kind of density operators, there is a theorem which corresponds to Wick’s theorem
in (3.1) (e.g., cf. [Nolting, 2009]). Therefore, we can express 〈XjXk〉GGE as a Pfaffian
of the two-point functions 〈BjAk〉GGE, 〈AjAk〉GGE, and 〈BjBk〉GGE. We obtain that

〈BjAk〉GGE = − 1
N

∑
p∈PN

h− geip
√
g2 + h2 − 2gh cos p

(
1− 2

〈
c†pcp

〉
GGE

)
e−ip(k−j) (4.69)

and that 〈AjAk〉GGE = δjk = −〈BjBk〉GGE. We fix the mode-dependent inverse
temperatures by the condition〈

c†p(h1)cp(h1)
〉

GGE
=
〈
Ψ(t, h1, h0)

∣∣∣c†p(h1)cp(h1)Ψ(t, h1, h0)
〉
. (4.70)

Since the quenched state is represented by Ψ(t, h1, h0) = U(t, h1)Ω(h0) and since
we have that U †(t, h1)cp(h1)U(t, h1) = e−itωp(h1)cp(h1) for any p ∈ PN , we find that〈

Ψ(t, h1, h0)
∣∣∣c†p(h1)cp(h1)Ψ(t, h1, h0)

〉
=
〈
Ω(h0)

∣∣∣c†p(h1)cp(h1)Ω(h0)
〉
, (4.71)
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for all p, q ∈ PN . This means that the mode occupation numbers of the final
Bogoliubov fermions with respect to the quenched state do not depend on the time
passed after the sudden quench. We need to consider the expectation values of
c†p(h)cp(h) with respect to the initial ground state. Since Ω(h0) represents the vacuum
state of the initial Bogoliubov fermions, cp(h0) with p ∈ PN , the idea is to express
cp(h) in terms of cp(h0). This can be achieved by using the expressions (4.21) and
(4.22). Let p ∈ π

N
Z. Then, we obtain that cp(h)

c−p(h)

 =
up(h) vp(h)
vp(h) up(h)

 u∗p(h0) v∗p(h0)
v∗p(h0) u∗p(h0)

  cp(h0)
c−p(h0)

 .
Therefore, we can write

cp(h) = fp(h, h0)cp(h0) + gp(h, h0)c†−p(h0) , (4.72)

where we used the functions given by

fp(h, h0) := up(h)u∗p(h0) + vp(h)v∗p(h0) , (4.73)
gp(h, h0) := up(h)v∗p(h0) + vp(h)u∗p(h0) . (4.74)

From this expression for cp(h), it follows that〈
Ω(h0)

∣∣∣c†k(h1)ck(h1)Ω(h0)
〉

= |gp(h1, h0)|2 , (4.75)

for all p ∈ PN . In particular, we have that 1−2
〈
cp(h1)†cp(h1)

〉
GGE

= 1−2|gp(h1, h0)|2

since we have chosen the mode-dependent temperatures by
〈
cp(h1)†cp(h1)

〉
GGE

=
|gp(h1, h0)|2. Evaluating 1− 2|gp(h1, h0)|2 gives that

1− 2|gp(h1, h0)|2 = h1h0 − g(h0 + h1) cos p+ g2√
g2 + h2

1 − 2gh1 cos p
√
g2 + h2

0 − 2gh0 cos p
.

If we substitute this expression into (4.69) and take the limit N →∞ of the result, we
obtain the right hand side of (4.67). Therefore, the quenched ground state correlation
function is given by the generealized Gibbs ensemble for asymptotically large values
of the time after the quench.

In particular, we find that the quenched ground state correlation function is given
by a determinant of a Toeplitz matrix for asymptotically large values of t. This
suggest that the situation is analogous to the calculations performed in Section 3,
where the ground state correlation function of the order parameter Xj was given by
a determinant of a Toeplitz matrix as well. It turns out that it is possible to obtain
expressions for the quenched correlation function after long times for large relative
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seperations using the theorems provided in the Appendix B for quenches within one
of the phases. For quenches across the critical point, it is possible to consider the
behaviour for large relative seperations by using another theorem. These calculations
have been performed in [Calabrese et al., 2012b], to which we refer for the derivations.
Here, we simply state the results obtained in the aforementioned work. We will use
g = 1 from now on.

For fixed but asymptotially large relative seperations, r, the quenched correlation
function in the thermodynamic limit and for asymptotically large values of the time
passed after the sudden quench, t, is given by

C̄r(t� g−1, h1, h0) ≈ E(r, h1, h0)e−r/ξ(h1,h0) , (4.76)

where ξ is the correlation length. For the inverse correlation length, it is possible to
give the general formula

ξ−1(h1, h0) = − 1
2π

∫ π

−π
log |1− 2n(k, h1, h0)| dk

+ Θ(h1 − 1)Θ(h0 − 1) log min{h0, h̄(h1, h0)} , (4.77)

where n(k, h1, h0) denotes the average occupation numbers of the Bogoliubov fermions
after a sudden quench from h0 to h1, that is,

n(k, h1, h0) =
〈
Ω(h0)

∣∣∣c†k(h1)ck(h1)Ω(h0)
〉
, (4.78)

h̄ is a function of the initial and final fields, which is given by

h̄(h1, h0) =
1 + h1h0 +

√
(h2

1 − 1)(h2
0 − 1)

h1 + h0
, (4.79)

and Θ is the Heaviside step function. Depending on the type of the quenches, explicit
formulas have been derived for the correlation length ξ and the function E.

1. For sudden quenches within the ferromagnetic phase, h0 < 1 and h1 < 1, we have
that

E(r, h1, h0) =
1− h1h0 +

√
(1− h2

1)(1− h2
0)

2
√

1− h1h0

√
1− h2

0

, (4.80)

and for the inverse correlation length, we have that

ξ−1(h1, h0) = − log
(
h1 + h0

2 h̄(h1, h0)
)
. (4.81)

56



2. For sudden quenches within the paramagnetic phase, h0 > 1 and h1 > 1, we have
that

E(r, h1, h0) =



−
h0
√
h1(h1h0 − 1 +

√
(h2

1 − 1)(h2
0 − 1))2

4
√
π(h2

0 − 1)3/4(h0h1 − 1)3/2(h1 − h0) r
−3/2 if 1 < h0 < h1,√√√√√h1(h0 − h1)

√
h2

0 − 1
(h1 + h0)(h1h0 − 1) if 1 < h1 < h0,

(4.82)
and for the inverse correlation length, we have that

ξ−1(h1, h0) = − log
(
h1 + h0

2h0h1
h̄(h1, h0)

)
+ log min{h0, h̄(h1, h0)} . (4.83)

3. For sudden quenches from the the paramagnetic phase to the ferromagnetic phase,
h0 > 1 and h1 < 1, we have that

E(r, h1, h0) =
√√√√ h0 − h1√

h2
0 − 1

cos
r arctan

√
(1− h2

1)(h2
0 − 1)

1 + h0h1

 , (4.84)

and for the inverse correlation length, we have that

ξ−1(h1, h0) = − log
(
h1 + h0

2h0

)
. (4.85)

4. For sudden quenches from the the ferromagnetic phase to the paramagnetic phase,
h0 < 1 and h1 > 1, we have that

E(r, h1, h0) =

√√√√h1

√
1− h2

0

h0 + h1
, (4.86)

and for the inverse correlation length, we have that

ξ−1(h1, h0) = − log
(
h1 + h0

2h1

)
. (4.87)

4.3 The Space-Time Scaling Limit
In [Calabrese et al., 2012a], analytic expressions for the asymptotic behaviour of the
quenched ground state correlation function (4.55) in the thermodynamic limit and
for quenches within one of the two phases have been derived in a certain limit, which
the authors of the work called the space-time scaling limit. In the remainder of this
chapter, we will discuss their results and compare them to our numerical calculation.
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For a fixed relative separation, r, the time evolution can be divided into different
regimes by means of the propagation velocity of the elementary excitations, v(k, h),
which is given by

v(k, h) = dωk(h)
dk . (4.88)

For the maximal velocity, we have that vmax(h) = max{v(k, h) | k ∈ [−π, π]} =
2 min{h, 1}. The analytic expressions for the quenched ground state correlation
function have been provided for intermediate times which are characterized by
the condition that vmax(h1)t ∝ r. More precisely, the evolution in time has been
considered along rays in space-time, which are given by κr = vmax(h1)t, where κ is
some constant. The space-time scaling limit is then given by vmax(h1)t → ∞ and
r →∞ while κ is kept constant.
The analytic results for the quenched ground state correlation function in the

thermodynamic limit have been calculated using two different methods. The first
method is based on the representation of the quenched ground state correlation
function as a determinant as in (4.55). This method has been developped by the
authors of [Calabrese et al., 2012a] and it allowed them to consider the asymptotics
of the quenched ground state correlator for quenches within the ferromagnetic phase.
The second method uses a Lehmann representation for the quenched correlation
function. This results is an expansion in powers of the function K, where

K(k, h1, h0) = ivk(h1)uk(h0)− uk(h1)vk(h0)
uk(h1)uk(h0)− vk(h1)vk(h0) . (4.89)

This function is related to the mode occupations of the final Bogoliubov fermions
with respect to the quenched state by

n(k, h1, h0) = K2(k, h1, h0)
1 +K2(k, h1, h0) . (4.90)

This second approach is called the form factor approach by the authors and it gives
accurate results only for quenches resulting in small mode occupation numbers after
the quench. In particular, the authors emphasize that this form factor approach
is not expected to give good results for quenches to or from the close vicinity of
the quantum critical point. We will consider their results obtained using the form
factor approach only for quenches within the paramagnetic phase since, for quenches
within the ferromagnetic phase, the first method based on expression (4.55) is more
accurate.
In the following, we give the analytic expressions for the quenched ground state

correlation function for quenches within the two phases obtained in [Calabrese et al.,
2012a].
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Quenches within the Ferromagnetic Phase For quenches within the ferromag-
netic phase, for which h0 < 1 and h1 < 1, the first method based on the asymptotic
evaluation of the expression (4.55) in the space-time scaling limit gives that

C̄r(t, h1, h0) ≈ E(r, h1, h0) exp
(
r
∫ π

0
log |1− 2n(k, h1, h0)|Θ(2tv(k, h1)− r)dk

π

)

× exp
(

2t
∫ π

0
v(k, h1) log |1− 2n(k, h1, h0)|Θ(r − 2tv(k, h1))dk

π

)
, (4.91)

where E is given by (4.80). We emphasize, again, that this is an asymptotic expression
derived for vmax(h1)t→∞ and r →∞ while vmax(h1)t/r is kept constant. Note that
since vmax(h1) = 2 min{h1, 1} and since h1 < 1, we have that vmax(h1) = 2h1. The
dependence on the relative separation on the chain is within the first exponential
factor. This factor also involves Θ(2v(k, h1)t − r). This implies, that for a fixed r
and for 2h1t = 2vmax(h1)t < r, the first exponential equals to one. Correlations at r
arrive from t = r/(2h1) onward. This means that the correlations spread in a light
cone like fashion.

Quenches within the Paramagnetic Phase For quenches within the paramagnetic
phase, h0 > 1 and h1 > 1, the form factor approach in the space-time scaling limit
gives that

C̄r(t, h1, h0) ≈ E(r, h1, h0)e−r/ξ(h1,h0)

+
(
h2

1 − 1
)1/4√

4h1

∫ π

−π

K(k, h1, h0)
ωk(h1) sin(2tωk(h1)− kr)dk

π

× exp
(
−2

∫ π

0
K2(k, h1, h0) [r + Θ(r − 2tv(k, h1))(2tv(k, h1)− r)] dk

π

)
, (4.92)

where E is given by (4.82). Note that since vmax(h1) = 2 min{h1, 1} and since
h1 > 1, we have vmax(h1) = 2. We again observe a light cone like propagation of the
correlations. Based on this result, which is obtained by the form factor approach,
the authors conjecture the form of the full correlation function,

C̄r(t, h1, h0)

≈
(
E(t, h1, h0) +

(
h2

1 − 1
)1/4√

4h1

∫ π

−π

K(k, h1, h0)
ωk(h1) sin(2tωk(h1)− kr)dk

π

)

× exp
(∫ π

0
log |1− 2n(k, h1, h0)| [r + Θ(r − 2tv(k, h1))(2tv(k, h1)− r)] dk

π

)
(4.93)
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4.4 Sudden Quenches to the Vicinity of the Quantum
Critical Point

In the context of this work, we are interested in the correlation function of the order
parameter, Xj, with respect to the quenched state. By using the expression (4.55),
we are able to numerically evaluate the quenched ground state correlation function
for any choice of N and for any values of the initial and final fields h0 and h1. Note,
that we are still using g = 1, which also sets the units of energy and momentum.

In practice, we considered quenches from a large initial field, h0, effectively corre-
sponding to the limit h0 →∞, to the vicinity of the quantum critical point within
the paramagnetic phase, that is, h1 = 1 + ε for small positive numbers ε. We also
use a large value for N in our calculations of the quenched ground state correlation
function. Comparisons with calculations performed using the thermodynamic limit
show that, for large enough N , their difference is negligible. This is, of course, not
surprising since we already realized in Section 4.2 that the thermodynamic limit is
simply the limit N → ∞ of (4.55). The reason for why we use calculations with
large N instead of the exact expressions for the thermodynamic limit is that the
limit involves integrals, which take longer to be evaluated on the computer but
do not show significant differences to the large N computation. Even if we would
use the expressions in the thermodynamic limit involving integrals, when evaluated
numerically, they would be discretized anyway. However, we need to take into account
that due to the periodic boundary condition, the local perturbations initially starting
at the origin move in opposite directions and meet after a certain time. Therefore,
after identifying this time value for fixed and large values of N , we only consider the
time evolution for times smaller than this value. Of course, the larger the chain, the
larger will be this time span. We find that the value N = 400 is high enough since it
allows us to consider the evolution in time of the quenched ground state correlation
function for sufficiently long times to observe the characteristic behaviour and is
compatible with the thermodynamic limit as described above.

We will compare our numerical calculations with the analytical expressions derived
in [Calabrese et al., 2012a,b] in the following. We already presented the relevant
formulas in the preceding sections, namely Section 4.2 and Section 4.3. For the
quenches which we are considering, we need to compare our results to the equations
(4.92) and (4.93). Thereby, the first equation is obtained by the form factor approach
which is only valid for quenches which result in small mode occupations of the final
Bogoliubov fermions after the sudden quench. The second expression is a guess of the
authors based on the first equation. Since the validity of (4.92) depends on the mode
occupations after the quench, we need to consider them first. In Figure 4.1, we show
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Figure 4.1: Occupation numbers of the Bogoliubov fermions with respect to the quenched
state as a function of the momentum p in the interval [−π, π]. The curves are
all calculated for an initial field h0 = 1000, but different final fields h = 1 + ε.
The closer we get to the quantum critical point, the larger the occupations
become.

numerically evaluated post-quench occupation numbers for sudden quenches from
h0 = 1000 to the vicinity of the quantum critical point for different values of ε. We
find that the closer we get to the quantum critical point, the larger the occupation
numbers become. This renders the expression (4.92) invalid close to the quantum
critical point. This can be observed directly in the Figures 4.2 and 4.3, where we
have plotted (4.92) (green curve) and our numerical data (red curve) for six different
times and for ε = 0.1 and ε = 0.001, respectively.

In Equation (4.93), the authors of [Calabrese et al., 2012a] conjecture the generic
form of the correlation based on expression (4.92). We used the formula to compare it
with our numerical calculations. The comparison is given in the Figures 4.2 and 4.3,
where we have plotted this expression (magenta curve) and our numerical data (red
curve) for ε = 0.1 and ε = 0.001, respectively. We observe very good agreement close
to the quantum critical point. However, the further away we go from the quantum
critical point, the worse becomes the agreement. This is not surprising since, for
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h0 →∞, the inverse correlation length ξ−1, given in (4.77), reduces to

lim
h0→∞

ξ−1(h1, h0) = − lim
h0→∞

∫ π

0
log |1− 2n(k, h1, h0)|dk

π
+ ln(h1 +

√
h2

1 − 1) . (4.94)

Therefore, the first summand in (4.92) differs from the first summand of (4.93), since
the correlation length, for large values of t, differs by the term ln(h1 +

√
h2

1 − 1), as
can be seen in (4.94). This additional term decreases as h1 tends to the quantum
critical point from above, eventually vanishing for h1 = 1. In this limit, the two
expressions match.
So far, we observed that the formulas (4.92) and (4.93) describe two different

regimes. The first formula agrees with our numerical calculations for quenches further
away from the quantum critical point, where the mode occupations of the final
Bogoliubov fermions after the quench are small. The second expression describes the
numerical calculations well for quenches close to the quantum critical point. Based
on these two formulas, we propose a new formula to remedy the deficiencies. Our
conjecture reads

C̄r(t, h1, h0) ≈ E(r, h1, h0)e−r/ξ(h1,h0)

+
(
h2

1 − 1
)1/4√

4h1

∫ π

−π

K(k, h1, h0)
ωk(h1) sin(2tωk(h1)− kr)dk

π

× exp
(∫ π

0
log |1− 2n(k, h1, h0)| [r + Θ(r − 2tv(k, h1))(2tv(k, h1)− r)] dk

π

)
,

(4.95)

where E is given by (4.82), and does not depend on r, and ξ−1 is given by (4.83). This
guess is motivated by the following considerations: The second exponential in our
formula involves the lograrithm log |1−2n(k, h1, h0)|. The expression 1−2n(k, h1, h0)
is positive for the quenches which we consider. Thus, we do not need to take the
absolute value. Further, we have that

1− 2n(k, h1, h0) = 1−K2(k, h1, h0)
1 +K2(k, h1, h0) ,

where the function K is given in (4.89). We can expand the logarithm to obtain

log |1− 2n(k, h1, h0)| = −
∞∑
n=1

1
n

(1− (−1)n)K2n(k, h1, h0) .

In particular, the first term in the expansion is −2K2(k, h1, h0). Thus, expression
(4.92) agrees with the leading term of the expansion in K of our formula.

Formula (4.95) encompasses the advantages of both of the Equations (4.92) and
(4.93), and agrees reasonably well with our numerical calculations for a wide range
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of values of ε. This can be seen, again, in the Figures 4.2 and 4.3, where we have
depicted (4.95) in blue. Therefore, for our further considerations, we will use the
improved formula (4.95).

Although the formulas (4.92), (4.93), and (4.95) (since it is based on the first two
expressions) should be only valid for sufficiently large values of r and t, we observe
in the Figures 4.2 and 4.3 that they describe the correlations within the cone of
propagation right from the outset. In particular, our formula suggests that there is a
crossover scale on the lattice. Below this scale, the correlation function is dominated
by the first summand in (4.95), which is nothing else but the stationary value for the
quenched ground state correlation function given by a generalized Gibbs ensemble.
From this scale onward, the second summand in the same formula dominates the
form of the correlation function. This can be seen clearly in Figure 4.4. In Figure 4.2,
we can observe that this crossover scale changes slowly as a function of the time
passed after the sudden quench. In Figure 4.4, we can also see that for long times
after the quench, we are able to identify two correlation lengths ξ1 and ξ2. The
first one is given by the generalized Gibbs ensemble, that is, ξ1(h1, h0) = ξ(h1, h0).
Explicitly, we have that

ξ−1
1 (h1, h0) = − 1

2π

∫ π

−π
log |1− 2n(k, h1, h0)| dk + log min{h0, h̄(h1, h0)} , (4.96)

where h̄ is given in (4.79). The inverse of the second correlation length is given by

ξ−1
2 (h1, h0) = − 1

2π

∫ π

−π
log |1− 2n(k, h1, h0)| dk . (4.97)

The inverses of the two correlation lengths differ by log min{h0, h̄(h1, h0)}, which
vanishes for h1 = 1. Therefore, for quenches to the critical point, there is only one
correlation length characterizing the quenched ground state correlation function
and, thus, there is also no crossover. If we consider quenches from h0 → ∞ to h1,
then the difference of the inverse correlation lengths is given by limh0→∞ h̄(h1, h0) =
h1 +

√
h2

1 − 1. This decreases as h1 comes closer to the quantum critical point within
the paramagnetic phase. Therefore, we can characterize the correlation function by
one correlation length already for small distances ε from the quantum critical point.
This can be seen in Figure 4.3. That is, close to the quantum critical point, the
correlation length is the one obtained from the generalized Gibbs ensemble.

In any case, we observe that at short distances on the lattice, the quenched ground
state correlation function is characterized by the generalized Gibbs ensemble. To
further strengthen this claim, we fitted an exponential decay to the values of the
quenched ground state correlation function on the first ten points of the lattice
and compared the therewith obtained correlation length to the one given by the
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Figure 4.2: Comparison of the numerically evaluated correlator with the equations (4.92),
(4.93), and (4.95). The numerical data is given by the red curve. Equation
(4.92) is green, equation (4.93) is magenta, and equation (4.95) is blue. The
curves are depicted for four different values of t and for ε = 0.1.
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Figure 4.3: Comparison of the numerically evaluated correlator with the equations (4.92),
(4.93), and (4.95). The numerical data is given by the red curve. Equation
(4.92) is green, equation (4.93) is magenta, and equation (4.95) is blue. The
curves are depicted for four different values of t and for ε = 0.001.
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Figure 4.4: The correlation function for h0 = 1000 and ε = 0.1 at time t = 36.8. (Left
plot) The red curve represents the numerical data, while the blue curve is given
by equation (4.95). (Right plot) The red curve represents again the numerical
calculation. The green curve is the first summand of (4.95) and the magenta
curve is the second summand. Up to some length scale (here, approximately
given by 15 sites), the correlator is given by the first summand of (4.95). From
this length scale onward, the second term of the same formula dominates the
correlator.
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Figure 4.5: The correlation length obtained from the fit to the first ten points of our
numerical calculations for a fixed time. The time value is chosen such that the
decay over the first ten points is observable in the numerics. The red points are
the results of the fit and the blue curve is the correlation length obtained from
the generalized Gibbs ensemble. We used the generalized Gibbs ensemble result
for the correlation length in the limit h0 →∞, which is given by 1/ log(2h1).

generalized Gibbs ensemble, ξ1, for different values of h1. We depicted the result in
the Figure 4.5. We can clearly see an agreement with the correlation length given by
the generalized Gibbs ensemble.

In summary, we demonstrated that the short-distance decay of the order parameter
correlation function after the sudden quench is described by the correlation length
obtained by the generalized Gibbs ensemble right after the quench. This is interesting
because one would expect to see the stationary values only for asymptotically large
times after the quench.

The correlation lengths are mainly determined by the occupation numbers of the
final Bogoliubov fermions after the sudden quench. For this reason, we want to
understand them in more detail.

We shortly summarize what we already know about these occupation numbers. In
Section 4.2, we related the final Bogoliubov operators, cp(h1), to the initial Bogoliubov
operators, cp(h0), by the relation cp(h1) = fp(h1, h0)cp(h0) + gp(h1, h0)c†−p(h0), where

67



the expressions fp(h1, h0) and gp(h1, h0) are given in (4.73) and (4.74). The occupation
numbers of the final Bogoliubov fermions after the sudden quench are then given by
n(p, h1, h0) = |gp(h1, h0)|2. More explicitly, for all p ∈ R with p /∈ πZ, we have that

n(p, h1, h0) = 1
2 −

1
2

h0h1 − g(h0 + h1) cos p+ g2√
g2 + h2

0 − 2gh0 cos p
√
g2 + h2

1 − 2gh1 cos p
, (4.98)

and for all p ∈ πZ, we find that

n(p, h1, h0) = 0 . (4.99)

The occupation numbers are 2π-periodic, and, thus, we restrict our attention to the
intervall [−π, π].

The first question we are going to consider is, why these occupation numbers are
zero at zero momentum, as can be seen in Figure 4.1. The relation between the final
Bogoliubov fermions and the initial one is given by a Bogoliubov transformation
with the factors being fp(h1, h0) and gp(h1, h0). Therefore, we can relate the vacuum
state of the operators cp(h1), which is represented by Ω̃(h1), to the vacuum state
of the operators cp(h0), which is represented by Ω̃(h0), where p ∈ PN . Thereby, the
rationale is the same as in Section 2.5, where we related the Bogoliubov vacuum to
the Jordan-Wigner vacuum. Namely, we obtain that

Ω̃(h0) ∝ exp

− ∑
p∈P+

N

g∗p(h1, h0)
f ∗p (h1, h0)c

†
p(h1)c†−p(h1)

 Ω̃(h1) , (4.100)

where we left the normalization factor unspecified. With the help of this identity,
we can see that the vacuum of the initial Bogoliubov operator, cp(h0), contains
only pairwise excitations of the vacuum of the final Bogoliubov operators, cp(h1),
with positive and corresponding negative momenta. In particular the p = 0 and
the p = ±π modes are not excited. Thus, the mode occupation number of the final
Bogoliubov fermions after the quench are zero for these values of the momentum.
The second question we are asking is, whether the mode occupation numbers

of the final Bogoliubov fermions after the quench can be described by a thermal
distribution with an appropriately defined temperature. That is, can the occupation
numbers be described by a Fermi-Dirac distribution? The answer to this question is
that, for quenches from h0 →∞ to h1 = 1, we can use a thermal description to a
certain extend. Namely, for all p ∈ R with p /∈ πZ, we have that

n(p, h1 = 1, h0 →∞) = 1
2

(
1− 1√

2
√

1− cos p
)
. (4.101)
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Figure 4.6: The occupation numbers of the final Bogoliubov fermions after the sudden
quench from h0 →∞ to h1 = 1 compared to the thermal distribution of the
final Bogoliubov fermions with an effective temperature 2. The occupations
after the quench are given by the blue curve and the thermal distribution is
depicted blue. We observe that these two results are approximately the same
for momenta for which the dispersion is small, as can be seen in Figure 2.1.
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For the Fermi-Dirac distribution with inverse temperature β, we obtain that
(
e−βωp(h1=1) + 1

)−1
=
(

1 + 1 + 2β
√

2(1− cos p) +O(β2ω2
p(h1 = 1))

)−1

= 1
2

(
1 + β

√
2(1− cos p) +O((βωp(h1 = 1)/2)2)

)−1
.

If we now assume that β2ω2
p(h1 = 1)� 1, then we have that

(
e−βωp(h1=1) + 1

)−1
≈ 1

2
1

1 + β
√

2(1− cos p)
≈ 1

2
(
1− β

√
2
√

1− cos p
)
.

If we now take the effective temperature to be T = 2, that is, β = 1/2, then
this expression would agree with (4.101). However, we observe that ωp(h1 = 1) =
2
√

2(1− cos p) and thus βωp(h1 = 1)/2 =
√

(1− cos p)/2, which can be of order one.
The expansion is only valid for p such that ωp(h1 = 1) is small. This can be also seen
in Figure 4.6.
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5 Summary and Conclusions

In this thesis, we considered the dynamics of the Ising chain in a transverse field after
a sudden quench. We reviewed the diagonalization of the Hamiltonian in detail and
saw that the eigenvalues and eigenstates can be determined by first expressing the
Hamiltonian in terms of fermionic Jordan-Wigner operators, followed by a Fourier
and Bogoliubov transformation. In terms of the Bogoliubov fermions, the Hamiltonian
takes the form of a non-interacting fermionic system in certain subspaces of the
Hilbert space of the transverse Ising chain. We also analyzed the structure of the
ground state and found that, in the thermodynamic limit, the system has a quantum
critical point which separates the ferromagnetic from the paramagnetic phase. We
determined the ground state spin correlations and found that the formalism used to
determine them applies also for the calculation of spin correlations after a sudden
quench if the corresponding functions are defined in an appropriate way. We obtained
an expression for the quenched correlator in terms of a Pfaffian, which we then
reduced to the determinant of a Toeplitz plus Hankel matrix using only matrix
transformations and basic properties of the Pfaffian and determinant. With this, we
have put forward a reduction scheme which is simpler and more comprehensive than
the corresponding one in [Calabrese et al., 2012a]. Furthermore, this reduction to a
determinant allowed us to calculate the spin correlations after a sudden quench in
an efficient way.

In [Calabrese et al., 2012b], it is argued that the transverse Ising chain approaches
asymptotically a stationary state given by an generalized Gibbs ensemble which
accounts for the occupation operators of the Bogoliubov fermions. We reconstructed
this argument by considering the long time asymptotics of the longitudinal cor-
relation function in the thermodynamic limit after a sudden quench. Then, we
turned our attention to sudden quenches from initially large fields to the vicinity of
the quantum critical point within the paramagnetic phase. For such quenches, we
improved expressions from [Calabrese et al., 2012a] describing the large time and
distance asymptotics of the quenched longitudinal correlator. Our improved formula
is given by Equation (4.95). Our numerical calculations as well as this conjectured
formula showed that there are two correlation lengths characterizing the decay of the
longitudinal correlation function, one of which is the correlation length obtained from
the generalized Gibbs ensemble. In particular, the quenched longitudinal correlation
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function attains its stationary values already at short distances and these values are
characterized by the generalized Gibbs ensemble. This is an unexpected observation
since the generalized Gibbs ensemble expressions have been derived for large relative
seperations. This result is especially important for experiments since it implies that
stationarity can be observed on short distances and times. That the transverse field
Ising chain is not only of theoretical interest was shown in [Nicklas et al., 2015]. There,
quenches to the close vicinity of the critical point in a two-component Bose gas have
been experimentally realized and they succeded in observing scaling in the dynamics.
Moreover, numerical calculations showed that the dependence of the correlation
length on the distance from the critical point is reminiscent of the universal crossover
behaviour of an equilibrium one-dimensional Ising system.
Since the correlation lengths characterizing the decay of the longitudinal spin

correlator after the sudden quench are related to the occupations of the Bogoliubov
fermions after the sudden quench, we examined these occupations in more detail. We
found that these mode occupations can be described by a thermal distribution with
an effective temperature of two in units of the spin interaction coupling energy for
a certain range of modes where the dispersion of the Bogoliubov fermions is small
enough.
The Ising chain in a transverse field attracted a lot of attention in the context

of quench dynamics since it is integrable and the calculations are amenable. There
are a lot of works concerned about quenches in this model but we find the most
developed analysis is provided in [Calabrese et al., 2012a,b]. However, although the
calculations in these two works have been performed for the transverse Ising chain,
we think that it should be straightforward to translate these results to more general
spin models like the XY chain.
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A Jordan-Wigner Operators

Here, we prove that the Jordan-Wigner operators given by (2.7) satisfy the canonical
anticommutation relations

ajak + akaj = 0 , (A.1)
aja
†
k + a†kaj = δjk . (A.2)

Let [·, ·] denote the commutator and let {·, ·} denote the anticommutator. For
σj defined in (2.5), we have that {σj, σj} = 0 and that

{
σj, σ

†
j

}
= 1. From these

relations, it follows that the operators σ†jσj are idempotent. This, in turn, implies
that

exp
(
iπσ†jσj

)
= I − 2σ†jσj = Zj .

Therefore, by using (2.7), we can rewrite the Jordan-Wigner operators as

aj =
j−1∏
k=0

Zk

σj . (A.3)

We will use this form in the following to prove the canonical anticommutation
relations.
Let us first prove the identity (A.1). Let j < k. Then, we have that

{aj, ak} =
j−1∏
l=0

Zl

σj
[
k−1∏
m=0

Zm

]
σk +

[
k−1∏
m=0

Zm

]
σk

j−1∏
l=0

Zl

σj
=
k−1∏
l=j

Zl

 (ZjσjZjσk + σkσj) .

We have that [Zj, σj] = 1
2 [Zj, Xj] + i

2 [Zj, Yj] = 2σj. This identity implies that
[Zj, [Zj, σj]] = 4σj . On the other hand, writing out [Zj, [Zj, σj]] results in the identity
[Zj, [Zj, σj]] = 2σj − 2ZjσjZj. Therefore, we obtain that ZjσjZj = −σj. This gives

{aj, ak} =
k−1∏
l=j

Zl

 (σkσj − σjσk) = 0 .

For j = k, we have that

{aj, ak} = 2a2
j = 2σ2

j = i
2 {Xj, Yj} = 0 .
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For j > k, we can interchange the labels j and k and use the symmetry of the
anticommutator to reduce this case to the first one. Thus, we have proven that
{aj, ak} = 0 for any j and k.
Now, let us prove the identity (A.2). Let j < k. Then, we have that

{
aj, a

†
k

}
=
j−1∏
l=0

Zl

σj
[
k−1∏
m=0

Zm

]
σ†k +

[
k−1∏
m=0

Zm

]
σ†k

j−1∏
l=0

Zl

σj
=
k−1∏
l=j

Zl

 (ZjσjZjσ†k + σ†kσj
)

=
k−1∏
l=j

Zl

 (σ†kσj − σjσ†k)
= 0 .

For j = k, we have that {
aj, a

†
j

}
=
{
σj, σ

†
j

}
= 1 .

For j > k, we can use that
{
aj, a

†
k

}
=
{
ak, a

†
j

}†
and interchange the labels j and k

to reduce this case to the first one. Thus, we have proven that
{
aj, a

†
k

}
= δjk for any

j and k.
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B Asymptotics of Toeplitz Determinants

We present two results on the asymptotic values of determinants of Toeplitz matrices
obtained by Albrecht Böttcher and Harold Widom in [Böttcher and Widom, 2006].
The following statements are taken from the aforementioned work, to which we refer
for the proofs.
Let S1 := {z ∈ C | |z| = 1} be the complex unit circle and let f : S1 −→ C be an

integrable function. The Fourier coefficients, fk, k ∈ Z, of f are given by

fk = 1
2π

∫ π

−π
f(eip)e−ipk dp . (B.1)

For any positive integer n, let Tn(f) denote the n by n Toeplitz matrix generated by
f , that is, Tn(f) := (fj−k)nj,k=1. Let also Dn(f) := detTn(f).

Assume that f : S1 −→ C is a function which is continuous and nowhere zero on
the complex unit circle S1. Let γ ∈ Z denote its winding number about the origin.
We can write f(z) = zγa(z) for any z ∈ S1, where a is a continuous function on S1

which has no zeros on S1 and which has a vanishing winding number about the origin.
We assume that a (or, equivalently, f) belongs to Cβ for some β > 1/2 and β /∈ N.
This means that a has bβc continuous derivatives and the bβcth derivative satisfies
a Hölder condition with exponent β − bβc. Under these assumptions, the logarithm
of a, log a, is in Cβ. We denote its Fourier coefficients by (log a)k for k ∈ Z.
Let G(a) := exp(log a)0. Futhermore, define the functions a− and a+ on S1 by

a−(z) := exp
∞∑
k=1

(log a)−kz−k , (B.2)

a+(z) := exp
∞∑
k=1

(log a)+kz
+k (B.3)

for any z ∈ S1. Since a belongs to Cβ, a±1
− and a±1

+ belong to Cβ as well. We also
define the expression

E(a) := exp
∞∑
k=1

k(log a)−k(log a)k . (B.4)

Theorem B.1 (Szegö’s strong limit theorem). Under the above assumptions on a,
we have

Dn(a) = G(a)nE(a)(1 +O(n1−2β)) . (B.5)
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Theorem B.2 (Fisher, Hartwig, Silbermann et al.). For a positive integer κ and
for any z ∈ S1, let g(z) := z−κa(z) and let h(z) := z−na−(z)/a+(z). Then, under the
above assumption on a, we have

Dn(g) = (−1)nκG(a)n+κE(a)(detTκ(h) +O(n−3β))(1 +O(n1−2β)) . (B.6)
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