Energy 103 (2016) 100—106

Contents lists available at ScienceDirect -
Energy
journal homepage: www.elsevier.com/locate/energy o

Hollow carbon sphere/metal oxide nanocomposites anodes for
lithium-ion batteries

@ CrossMark

K. Wenelska  *', A. Ottmann >, P. Schneider , E. Thauer °, R. Klingeler ™ ¢, E. Mijowska *

2 Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pulaskiego 10, 70-322, Szczecin, Poland
b Kirchhoff Institute of Physics, Heidelberg University, INF 227, 69120 Heidelberg, Germany
¢ Centre for Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 20 August 2015
Received in revised form
26 December 2015
Accepted 9 February 2016

HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO, and MnO,, respectively)
were successfully synthesized and investigated regarding their potential as anode materials for lithium-
ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The
mesoporous nature of the nanocomposites is confirmed by Brunauer—Emmett—Teller analysis. For both
metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of
electrochemical performance. The charge capacity of HCS/SnO, is 370 mA hg~! after 45 cycles
(266 mA hg~! in HCS/MnO,) which clearly exceeds the value of 188 mA hg~! in pristine HCS. Remarkably,
the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show
that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode
materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable
enough to accommodate big volume change effects.
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1. Introduction

Rechargeable LIBs (Li-ion batteries) are currently the dominant
energy storage technology for portable electronic devices. Despite
their enormous commercial success in this field, for more
demanding high power and high energy applications new materials
have to be developed which enable significantly improved specific
energy densities, capacities, and power rates in combination with
long life time and cycling stability [1—-3]. In case of the anodes, the
most commonly used reference is graphite, which is a low-cost
material with good cyclic stability but rather low electrochemical
potential. Its limited reversible intercalation capacity (theoretically
372 mA hg~!) and poor rate performance hinder its application in
high-performance LIBs [4—6]. Accordingly, extensive efforts have
been done to develop new high-performance anode materials for
next-generation LIBs. One promising approach aims at utilizing
redox-active metal oxides such as Fe;03 [7], SnO [8], and Co304[9]
which exhibit very high theoretical specific capacities as they are
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capable of converting up to 6 Li per formula unit [10—13]. Despite
significant progress, however, metal oxide-based anodes do not yet
reach their full potential which is mainly caused by their low
conductivity and by large volume changes during dis-/charge
cycling [14,15]. Hence, during electrochemical cycling, metal oxides
typically break into small metal clusters, resulting in a large volume
expansion and a loss of reversible capacity [16,17].

A materials-science based answer to these issues applies
nanoscaled metal oxides embedded into conductive carbon struc-
tures. Such nanocomposites have indeed emerged as a promising
method towards high-performance anode materials [18,19]. On the
one hand, downscaling the active material yields short transport
lengths for both, electrons and Li-ions, higher specific surface areas,
and better accommodation of strain upon Li insertion/extraction
[20,21]. To date, such composites are commonly prepared by simply
coating pyrolytic carbon species on nanoscaled oxides [22,23].
However, while increasing the overall electronic conductivity of the
materials, pyrolytic carbon does provide an effective host structure
for accommodating the strain due to large volume expansion and
such materials hence offer only limited cycling stability. Alterna-
tively, creating composites with porous characteristics has been
proposed to overcome these limitations [24—27]. Such composites
can be achieved either by preparing hybrid composites or by pro-
ducing nanostructured composites. Here, we report a facile
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impregnation method [28] to synthesize HCS (hollow carbon
spheres) covered with SnO, and MnO, nanoparticles as advanced
anode material for high performance LIBs (see Fig. 1). The resulting
nanocomposite materials displays reversible capacities larger than
pristine HCS as well as good cycling performance.

2. Experimental section

Synthesis of solid SiO, nanospheres (SiO;). SiO, spheres were
prepared in a modified Stoeber process [29]. TEOS (Tetraethyl
orthosilicate) (1.5 ml) was added to a mixture of ethanol (50 ml)
and concentrated ammonia (28 wt%, 2.5 ml). Then the solution was
stirred for 24 h. Afterwards, the product was separated by filtration,
washed with ethanol and dried [30].

Synthesis of mesoporous silica spheres (Si0O,@m-SiO,). In a
typical synthesis, 100 mg of SiO, was dispersed in a solution con-
taining CTAB (cetyltrimethylammonium bromide 0.8 g), deionized
water, concentrated ammonia (28 wt%), and 60 ml ethanol. The
suspension was sonicated and stirred for 60 min, then 1.43 ml of
TEOS was added dropwise while stirring. The suspension was
stirred for another 6 h, and afterwards, the product was filtered,
washed with ethanol and water several times. Finally, the sample
was dried in air at 100 °C for 24 h.

Carbonization of Si0O,@m-SiO; and removal of silica (HCS). The
dried Si0,@m-SiO,_CTAB spheres were used as a template to pre-
pare the hollow mesoporous carbon spheres using CVD (chemical
vapor deposition). The silica spheres were placed in an alumina
boat and put into a tube furnace. Argon and ethylene were intro-
duced at a flow rate of 100 and 30 sccm, respectively. The tem-
perature was raised to 800 °C, and the CVD reaction time was 3 h.
Afterwards, the resulting SiO,@m-SiO,_C spheres were thoroughly
washed with hydrofluoric acid to remove the silica components
and finally hollow carbon spheres (HCS) were obtained.

Functionalization of HCS with metal oxide nanoparticles. Two
samples of HCS modified by metal oxide nanoparticles (HCS/SnO;
and HCS/MnO,, respectively) were prepared according to the
following procedure: 150 mg of HCS and 150 mg manganese
acetonate (product referred to as HCS/MnO;) or tin chloride
(product referred to as HCS/Sn0O;) were dispersed in 250 ml of
ethanol and sonicated for 2 h. Afterwards, the mixture was stirred
for another 24 h. Finally, the product was dried in air at 100 °C for
24 h.

Characterization. The morphology of the samples was investi-
gated by a FEI Tecnai F30 TEM (transmission electron microscope)
with a field emission gun operating at 200 kV and EDX (Energy-
dispersive X-ray spectroscopy) as one mode. Powder XRD (X-ray
diffraction) was performed on a Philips diffractometer using Cu-Kj,
radiation. Raman scattering was studied on a Renishaw micro-
Raman spectrometer (A = 720 nm). N, adsorption/desorption iso-
therms were acquired at liquid nitrogen temperature (77 K) using a
Micromeritics ASAP 2010 M instrument, and the specific surface
area was calculated by the BET (Brunauer Emmett Teller) method.
TGA (Thermogravimetric analysis) was carried out on 10 mg sam-
ples using the DTA-Q600 SDT TA at a heating rate of 10 °C/min from
room temperature to 900 °C in air flow (100 ml/min).

Electrochemical studies by means of cyclic voltammetry and
galvanostatic cycling were carried out in Swagelok-type two-elec-
trode cells by a VMP3 (Bio-Logic) potentiostat (see Ref. [30]). The
working electrodes were prepared from a mixture of pristine ma-
terial with carbon black (Super P, Timcal) and PVDF (polyvinylidene
fluoride) binder (Solvay Plastics) in a weight ratio of 70:15:15.
Additional carbon black was added in order to assure the mechanical
stability of the electrodes. PVDF was dissolved in NMP (N-Methyl-2-
pyrrolidon) and subsequently the active material and carbon black
were mixed with the solution. The resulting slurry was pasted on
circular copper plates and dried at 100 °C in a vacuum furnace
(<5 mbar) over night. After mechanical pressing at 10 MPa, the
electrodes were dried again. The Swagelok-type cells were assem-
bled in an argon atmosphere glovebox (H,0, O, < 1 ppm) with the
working electrode, a lithium metal (Alfa Aesar) counter electrode,
which had been pressed on a circular nickel plate, and two layers of
glass microfibre separator (GF/D, Whatman). 200 pl of a 1 M solution
of LiPFg in 1:1 EC (ethylene carbonate) and DMC (dimethyl car-
bonate) was used as electrolyte (LP30, Merck). While measuring, the
cells were held at 25 °C in a climate chamber. For the CVs, the scan
rate was fixed at 0.1 mV/s in the voltage range of 0.01—3.00 V and
GCPL (Galvanostatic cycling with Potential Limitation) measure-
ments were done at current densities of 100—1000 mA h/g.

3. Results and discussion

Fig. 2 shows TEM images of pristine hollow carbon spheres and
of HCS/metal oxide composites with different metal oxide loading.
As observed in Fig. 2(a,b), the pristine HCS are uniform in diameter
which amounts about 250 nm. The shell thickness is about 90 nm.
Functionalization with SnO, nanoparticles yields HCS/SnO» with a
small metal oxide particle size distribution ranging from 3 to 5 nm.
The particle sizes have been derived from averaging over 100
nanoparticles observed in the TEM image (Fig. 2(c,d)). SnO, nano-
particles are distributed on the surface of HCS homogeneously.
Similar results are obtained for HCS/MnO, (Fig. 2(e, f)). However,
the diameter of MnO, nanoparticles is smaller, ranging from 1 to
3 nm. As shown in Fig. 3, EDX elemental mapping clearly reveals
that the elements Sn, O, and C are evenly distributed throughout
the HCS/SnO, nanocomposite. Similarly, the elemental mappings of
HCS/MnO-, indicate the presence of Mn, O, and C. All detected el-
ements seem to be rather homogeneously distributed in the sam-
ple. In summary, the EDS data clearly show that SnO; and MnO; are
located both in the core and the shell of the hollow carbon spheres.

The carbon content and the quality of the materials are evalu-
ated by TGA (thermogravimetric analysis) (Fig. 4) and Raman
spectroscopy (Fig. 5). The thermogravimetric analyses of the HCS,
HCS/Sn0,, and HCS/MnO, samples present the thermal stability by
monitoring the change of weight during heating. From the TGA
results (Fig. 4), the pristine HCS start to oxidize around 550 °C [31].
The HCS are completely exhausted when the temperature is
increased to ~700 °C in air, which indicates high purity of the HCS.
TGA measurements for HCS with metal oxide nanoparticles show
ash contents of 24 wt% and 37 wt% for MnO, and SnO,, respectively.
In comparison to the pristine HCS, the stabilities of both metal

Fig. 1. Synthesis schematic of hollow carbon spheres (black) decorated with metal oxide nanoparticles (blue). Mesoporous silica spheres (grey) are being carbonized (step 2). After
removal of silica (step 3), the resulting hollow carbon sphere is functionalized by metal oxide nanoparticles (step 4). (See the text.) (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. TEM images of hollow carbon spheres (a, b), HCS/SnO, (c,d), HCS/MnO, (e,f).

oxide-functionalized HCS materials are weaker. The main weight
loss starts at around 400 °C for both HCS/metal oxide materials.
One may conclude that the interaction of the metal oxides and the
carbon induces lower stability of HCS. Additionally, a mass loss of
~10% is observed in the thermal profile of HCS/MnO, starting at
~210 °C. This feature presumably originates from the decomposi-
tion of residual manganese acetate.

In the Raman spectra, two obvious peaks are detected around
1314 and 1595 cm™!, which correspond to disordered carbon (D)
and ordered graphitic carbon (G), respectively, as shown in Fig. 5. In
case of the pristine HCS, the Ig/Ip intensity ratio of the G- and D-
lines amounts to 0.9, indicating a high degree of graphitization.
Note, that such a high crystallinity in general supports high

electrical conductivity as desirable for application in Li-ion elec-
trodes. Upon deposition of the metal oxide nanoparticles, the
relation of G-to D-band intensities slightly decreases which is
consistent with the assumption that additional defects are formed
in the HCS structures. The D-mode is most pronounced for HCS/
MnO,, indicating the highest concentration of defects and hence
the lowest stability as it is experimentally observed in the TGA data.

The XRD patterns of the synthesized samples confirm the
presence of graphitic carbon and metal oxides in the functionalized
materials (Fig. 6). For pristine HCS, there are two broad peaks at
24.9° and 42° which can be ascribed to graphitic carbon. In addition
to the carbon peaks, HCS/metal oxides exhibit further diffraction
peaks. In HCS/SnO,, there are major peaks at 33.9°, 51.8°, and 65.8°,
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Fig. 3. EDS mapping of HCS/SnO; and HCS/MnO,. (See the text.)
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Fig. 4. TGA profiles of HCS, HCS/SnO,, and HCS/MnO,.

which can be attributed to tetragonal SnO, nanomaterials. The XRD
pattern of HCS/MnO, shows characteristic peaks for f-MnO, at
20 = 27°, 54°, 56°, 68.7° [32].

The BET (Brunauer—Emmett—Teller) specific surface area and
the porosity of all samples studied by nitrogen adsorp-
tion—desorption analysis confirms the mesoporous nature of the
materials (Fig. 7(a)). The data show a typical type Il behaviour with
a H1 hysteresis loop, indicating a disordered mesoporous structure
[33] Quantitatively, the BET specific surface area of pristine HCS
amounts to 652 m?/g. It significantly drops for the metal oxide
covered nanospheres to 302 m?/g for HCS/SnO, and 184 m?/g for
HCS/MnO,. The corresponding mesopore size distribution in HCS
calculated by means of the BET method from the adsorption branch
reveals non-uniform pores centered at approximately 3.6, 6.0, and
12.7 nm. In HCS/SnO,, the pores sizes are 3.3, 4.1 and 6.7 nm, and in
HCS/MnO, they are centered at 3.7, 4.7, 6.1, 8.4 and 21 nm. The
observation of smallest pore volume and surface area in HCS/MnO,
suggests that the MnO, nanoparticles block the pore of the hollow
carbon spheres in this case. The pore size distributions shown in

HCS/MnO,

HCS/SnO,

Intensity (a.u.)

L 1 1 1 L
500 1000 1500 2000 2500
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Fig. 5. Raman spectra of HCS, HCS/SnO,, and HCS/MnO,.

Fig. 7(b) demonstrate the presence of bimodal porosity: there are
mesopores and macropores. Such porous structures, e.g., allow easy
access of Li* ions to the active materials and are hence enhancing
diffusion kinetics [34,35].

3.1. Electrochemical properties

The CV (cyclic voltammograms) in Fig. 8 show the characteris-
tics of the electrochemical processes upon variation of the potential
with 0.1 mV/s in the range between 0.01 and 3.0 V. For HCS, several
well-known features in carbon structures are observed. The first
cycle, starting with a negative voltage ramp at 3.1 V, shows
reduction peaks at 0.01 V, 0.6 V and 1.35 V. Oxidation occurs at
0.2 V, around 1.2 V, and above 2 V. The reduction peak at 0.6 V can
be attributed to the formation of a passivating SEI (solid electrolyte
interface) on the carbon surfaces [36]. Correspondingly, this peak
disappears upon further cycling but in the overall behaviour a
shoulder shows up around 0.8 V (see Fig. 8(b)). It might indicate an
ongoing irreversible contribution from the SEI formation or might
be related to the oxidation process at 1.2 V which decreases upon
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Functionalization of HCS by means of SnO; and MnO» nano-
particles yields additional features in the CVs. In cycle 1 (Fig. 8(a)),
initial reduction processes of SnO, and MnO, to corresponding
metals and formation of amorphous Li;O shows up. In the case of
HCS/SnO,, in addition to the processes for HCS discussed above,
there are reduction peaks at 0.97 V, 0.69V, 0.42 V, and 0.07 V, while
additional/more pronounced oxidations are observed around
0.53 V and 1.23 V (the latter being much more pronounced than in
HCS) in the 1st cycle. Upon further cycling, the three reduction
peaks at 0.97 V, 0.69 V, and 0.42 V merge to a plateau-like shoulder.

According to [33,34] the electrochemical behaviour of SnO, can
be described via

4Li" 4 SnO, + 4e~ ASn+2Li, 0 (1)

XLiT 4+ Sn + xe~ALixSn(0 < x < 4.4) (2)

The redox pair at 0.07 V/0.53 V can be attributed to the
reversible alloying and dealloying of Sn and Li (reaction 2) [38]. The
reduction peak at 0.42 V might also be part of this alloying process
[39]. The reduction peaks at 0.69 V and 0.97 V in the first cycle
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Fig. 7. (a) N, adsorption/desorption isotherms and (b) pore size distribution profile for HCS, HCS/SnO,, and HCS/MnO.

cycling as well. In contrast, the red./ox. pair at 0.01/0.2 V corre-
sponds to reversible de-/intercalation of Li-ions into the carbon
structures. With increasing cycle number the peak height of the
reduction peak decreases while the oxidation peak intensity in-
creases and shifts to slightly lower potentials. The origin of the
reduction peak appearing at 1.35 V in the first cycle only is un-
known. The oxidative contributions above 2 V are presumingly
originating from the cell setup.

The evolution of the dis-/charge capacities in HCS (Fig. 9) upon
cycling is typical for carbon structures. In the initial charge/
discharge process performed at 100 mA/g the material shows ca-
pacities of 1305 mA h/g and 269 mA h/g, respectively. The next
cycles show a huge drop-off mainly due to the absence of the
irreversible contribution of SEI formation in the first cycle. Quan-
titatively, the discharge capacity amounts to 190 mA h/g after 10
cycles. This is clearly below the theoretical capacity of 372 mA h/g.
We associate this observation to the presence of amorphous carbon
as indicated by the Raman and the XRD data (Figs. 5 and 6) which
implies lower capacities as compared to graphite [37]. Increasing
the charge/discharge current to 250, 500 and 1000 mA/g yields
153/149 mA h/g (after 20 cycles), 124/123 mA h/g (30 cycles), and
103/103 mA h/g (40 cycles). In cycle 45, back at 100 mA/g, the
charge and discharge capacities are 188 mA h/g and 179 mA h/g,
respectively, which is more than 90% of the capacities reached in
the 10th cycle.

presumingly correspond to the reduction of SnO; to Sn + Li;O
(reaction 1) and to the SEI formation [40—42]. The corresponding
oxidation of Sn is supposed to appear around 1.2V, i.e. this process
superimposes another oxidation peak around 1.2 V which is also
present in the case of pristine HCS. It is worth mentioning that the
specific peak current in the voltage range of SEI formation is just
~200 mA/g compared to ~500 mA/g for HCS. We attribute this
diminishment to SnO;, nanoparticles on the HCS surface which alter
the surface area and the chemistry of the interface to the
electrolyte.

The presence of SnO, nanoparticles enables alloying of Sn (re-
action 2), thereby increasing the capacity of pure HCS. Indeed, the
charge/discharge capacities (370 mA h/g and 364 mA h/g) in the
45th cycle are much higher than the respective values of pure HCS
(188 mA h/g and 179 mA h/g). Quantitatively, the experimental
values are slightly lower than if the full theoretical capacity of the
completely reversible process (2) is considered. A maximum value
of x = 4.4 corresponds to a theoretical capacity of 783 mA h/g.
Considering the mass fraction of SnO, being 37% (and 63% of HCS
with 179 mA h/g in cycle no. 45), a completely reversible process
would result in a specific discharge capacity of 402 mA h/g. The
observed value of 364 mA h/g hence would indicate x ~4.0 in cycle
no. 45, i.e. only rather small irreversibility. We note, however, that
the SnO; coating also may diminish the available capacity of HCS as
compared to the pure reference material due to blocking of pores
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for instance, which is indicated by a lower specific surface area of
the HCS/SnO, composite (Fig. 7). We emphasize that rather large
charge/discharge capacities of 315/308 mA h/g are still achieved

after 100 cycles and therefore, 85% of the charge/discharge capacity
is maintained over 55 cycles at 100 mA/g (from 45th to 100th).

Since HCS/MnO; exhibits a lower fraction of MnO5, the effect of
metal oxide functionalization is less pronounced than in HCS/SnO,.
The conversion reaction is however visible in the CVs in Fig. 8 as
demonstrated by the broad oxidation peak around 1 V and a
reductive feature around 0.35 V, which is overlain in the 1st cycle
and hardly visible in subsequent ones. This redox pair is associated
to the following reaction [43,44]:

MnO; + 4Li" + 4e~A2LiO, + Mn (3)

Comparing the peak current of the SEI formation in HCS and
HCS/MnO,, i.e. 500 mA/g and 250 mA/g, respectively, illustrates
lower activity of the functionalized material. Qualitatively, this
corresponds to the same effect as in the case of HCS/Sn02, namely a
significantly reduced surface area of nearly 4 times less, i.e. a
reduced interfacial area of carbon to the electrolyte.

The charge/discharge capacity in the 45th cycle is 266/
257 mA h/g compared to 188/179 mA h/g for HCS. We conclude that
the present MnO, mass fraction of 24% is associated to a discharge
capacity of 121 mA h/g which is less than half of the theoretical
value of 296 mA h/g~! (0.24 * 1233 mA h/g). A likely reason for the
inferior efficiency compared to the HCS/SnO; sample is the smaller
specific surface area (184 vs. 302 m?/g) due to in average much
larger MnO, nanoparticles which might e.g. hinder efficient Li*
transport. Furthermore, residual precursor (manganese acetate) in
the material, as indicated by TGA results (Fig. 4), would also have a
considerably negative impact on the electrochemical performance
because it is electrochemically inactive. Nevertheless, a capacity
retention of more than 90% over 55 cycles (from 45th to 100th) at
100 mA/g is observed. This cyclic stability (similar for HCS/SnO3)
argues for the benefit of utilizing HCS in order to maximize the
potential of metal oxide anode materials by strain accommodation
and by providing a conductive network.

4. Conclusions

The present work hence reveals advantages of the lithium
storage in HCS/metal oxide materials providing a route to develop
high-performance mesoporous hybrid materials. Considering that
metal oxides are cost-effective and a potential large-scale produc-
tion of HCS, the synthesized materials hold great potential for real
applications. This effective strategy can be easily expanded to
construct other high-performance architectures of functionalized
HCS with other metal oxides, providing a general and effective
approach towards high-performance metal-oxide-based anodes. In
addition, the synthetic route developed in this work is facile and
easily extendable to other Li-storable metals or alloys for the
development of advanced anode materials of Li-ion batteries.
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