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In this contribution, we present a facile encapsulating process for controlled synthesis of a hybrid
structure of ultrathin NiO crystals confined growth on the interior shells of hollow carbon sphere
(NiO@HCS). In this method, a complete HCS with high porosity and good electrical conductivity can
selectively confine the growth of NiO directly to its inner carbon shell. The as-prepared NiO@HCS offers
advantages such as high surface area, great electrical conductivity and suitable pore size distribution.
Besides, the small number of metal oxide nanocrystals inside HCS can provide more efficient electro-
chemical reaction within NiO compared with bulk NiO with large size. When used for a lithium-ion
battery, NiO@HCS possesses the high capacity and superior rate capability as an anode material.
Owing to the strong interaction of HCS and NiO crystals, NiO@HCS exhibits excellent cycle stability at a
high current density. Furthermore, NiO@HCS also shows good capacitive performance in a symmetric
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1. Introduction

The need for sustainable and renewable energy supply has
become one of the greatest concerns in the twenty-first century
because of the growing environmental and ecological crisis.
Various electrochemical storage devices such as lithium-ion bat-
teries (LIBs), electrochemical capacitors (ECs), and fuel cells (FCs)
are attracting ever-increasing attention due to their cost-
effectiveness and environmentally friendly properties compared
to combustion-based energy technologies. When LIBs were firstly
introduced into the market in 1991, they have been regarded as one
of the most promising and efficient energy storage systems because
they exhibited long lifetime and high energy density [1,2].
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Nevertheless, LIBs still cannot meet the fast increasing re-
quirements of great power and energy density, excellent cycling
stability, and superior reversible and rate capability in our daily life
[3,4]. Materials which can be used to assemble the electrode hold
the key to improve the properties of LIBs [5—7]. Since commercial
graphite anode exhibits a theoretical capacity of 372 mAh g,
much progress has been made with the anode materials [8—11]. In
the past decades, transition metal oxides with remarkable elec-
trochemical activity have emerged as new choices for electro-
chemical energy storage devices [12—16]. Among them, nickel
oxide (NiO) owning a big theoretical specific capacity
(718mAhg-!) has been regarded as a promising candidate as
electrode materials. Its properties such as low cost, natural abun-
dance and environmental friendliness have broadened its appli-
cation for next-generation LIBs [17—19]. However, it shows some
intrinsic disadvantages like the volume expansion/extraction/ag-
gregation during the electrochemical reaction process and low
electronic conductivity, leading to serious capacity fade and poor
cycling stability. To address this issue, a variety of strategies have
been developed, such as structural engineering [20,21],
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hybridization with conductive matrices [22], as well as mixed
transition-metal oxides [23,24].

To date, NiO has been synthesized into various structures such
as nanosheets [25,26], nanowires [27], nanotubes [28], nanofibers
[29,30], and hollow spheres [31,32] in LIBs. Especially, three-
dimensional (3D) hollow structures which possess large specific
area for electrolyte contact can help to improve the capacity of NiO
anode, but still suffer from the volume changing and capacity loss
due to the poor electrical conductivity and weak mechanical sta-
bility [33,34]. Hence, flexible and conductive carbon materials such
as amorphous carbon, graphene and carbon nanotubes (CNTs) have
been used in preparing composites (NiO-C), achieving promising
progress [35—37]. Besides, researchers tried to combine the two
strategies together by designing bowl-like NiO nanosheets@carbon
[38], metal-organic frameworks (MOFs) derived NiO/Ni/Graphene
composites with hierarchical hollow structure [39], growing NiO
nanosheets on hollow carbon spheres (HC@NiO) [40], et al
Benefiting from the two strategies, composites with hollow struc-
tures can not only improve the electrical conductivity, but also
maintain the structural stability and excellent electrochemical
performance. However, in those strategies, NiO structures are
usually grown on the outer surface of carbon materials. Recently, a
confinement strategy has emerged to grow nanostructures in hol-
low carbon materials to improve their electrochemical properties.
SnS; nanosheets confined growth in carbon materials, exhibited
excellent performance for sodium-ion batteries [41]. Although the
outer carbon shells have been proved to increase the conductivity
and reduce large volume expansion, the carbon materials produced
under a lower temperature to avoid reduction of metal oxide are of
low graphitization [41,42]. It is of great interest to figure out a
strategy to encapsulate nanostructured NiO into a completed hol-
low carbon sphere, especially directly attaching to the inner carbon
shell.

Due to the internal space of HCS, it is a perfect container for low-
conductivity materials [43—45]. Herein, we demonstrate a strategy
to prepare the hybrid structure of NiO crystals confined growing on
the interior shells of HCS (Fig. 1a). The as-prepared NiO@HCS offers
advantages as follows: (1) high surface-to-volume ratio giving rich
electroactive sites, (2) suitable mesopores providing short diffusion
paths for electrolyte, (3) enhanced electrical conductivity caused by
the direct contact between NiO and interior carbon shell, (4) small

size of NiO crystals formed from the confined Ni** after being fil-
trated through pores of HCS, which can provide more efficient
lithiation/delithiation within NiO compared with bulk NiO with
large size, (6) superior mechanical properties stabled by the strong
link of HCS. The electrochemical performance of NiO@HCS was
evaluated by cyclic voltammograms (CV) and galvanostatic charge-
discharge (GCD). NiO@HCS electrode possesses large capacity, good
capability and superior rate cycle stability.

2. Experimental section
2.1. Synthesis of NiO@HCS

Hollow carbon spheres were synthesized using a hard sacrificial
template (amine-modified silica spheres) and a carbon source
(glucose) [46]. Basically, amine-modified silica spheres (0.6 g) were
mixed with glucose (0.6 g) aqueous solution (50 mL) under stirring
for 2h and then transferred into an autoclave for hydrothermal
treatment at 180°C for 12h. The brown precipitate named as
Si0,@glucose was washed by filtration and dried up for further
calcination treatment at 800°C for 3 h. After removal of silica
template by hydrofluoric acid, the product (HCS, 50 mg) was dis-
solved in ethanol and then 1 mL Ni(NOs3),-6H,0 solution (10 M in
ethanol) was mixed with the above solution under sonication and
stirred for 4 h. After washed by filtration, the mixture was heated in
a furnace at 300°C for 1 h under N, flow to get the final product
NiO@HCS.

2.2. Electric measurements

HCS or NiO@HCS was mixed with polyvinylidene difluoride
(PVDF, Solvay) and commercial carbon black (the mass ratio: 8: 1:
1) in 1-Methyl-2-pyrrolidone (NMP, Sigma) to obtain carbon slur-
ries. Then the slurries were pasting on Cu foils as working elec-
trodes and dried at 70 °C for 12 h under vacuum. For LIBs, the 2032
coin-type cells were assembled using an above-mentioned working
electrode and a lithium foil (Aldrich) as the counter electrode. A
commercial electrolyte of 1M LiPFg in ethylene carbonate (EC)/
dimethyl carbonate (DMC) (1:1 by volume) (SelectiLyte™ LP30)
was used to assemble the cells in an argon-filled glove box. The
electrochemical performance was carried out in the voltage range

/ Glucose _Carbonization Ni(NO;),*9H,0
> | — T
. HF 300°C
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HCS NiO@HCS

SiO,@Glucose

Fig. 1. (a) Schematic illustration of the preparation of NIO@HCS. TEM images of (b) amine-modified silica spheres (SiO,-NH,), (c) SiO,@glucose spheres, (d) HCS, and (e) NiO@HCS.
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of 0.01-3 V by using GCD and CV techniques with an EC-LAB VMP
(BioLogic Science Instruments). For symmetric supercapacitor, two
electrodes with each mass of 2 mg were prepared as the working
electrode in LIBs. 6 M KOH aqueous solutions were used as the
electrolyte. The electrochemical performance was evaluated by
GCD and CV with a potential window from 0 to 1V.

2.3. Characterization

Scanning electron microscopy (SEM, Hitachi SU8020), trans-
mission electron microscopy (TEM, FEI) and X-ray diffraction (XRD,
Philips) were carried out to measure the structural properties. The
elemental mappings were performed on a scanning transmission
electron microscope (STEM, FEI) to determine the elemental
composition. The thermogravimetric analysis (TGA, DTA-Q600)
under flowing air was performed to calculate the NiO content.
The porosity was studied by N, adsorption/desorption isotherms
(Micromeritics).

3. Results and discussion

The experimental details are illustrated in Fig. 1a. Choosing
amine-functionalized silica spheres as the hard template is to make
use of the abundant cationic ammonium groups (-NH3), which can
interact with the hydroxyl groups of glucose through electrostatic
reaction. After glucose fully covered on the silica surface, it trans-
formed to carbon under carbonization, forming a porous shell of
HCS. When dissolving HCS into ethanol, the cavity of HCS can be
filled with ethanol. And the porous shells allow nickel precursors
diffusion into the cavity of HCS after adding nickel precursors to the
HCS solution due to the concentration gradient between the inte-
rior ethanol and outer Ni**-containing ethanol. Ni** ions were
adsorbed to the interior shells because of the negatively charged
carbon. When washed by water, those physically adsorbed Ni%*
ions were easily removed while the inside nickel precursors still
remained. Thus, after annealing at 300 °C, only NiO formed on the
interior shells obtained.

The morphology of each material was investigated by TEM
(Fig. 1). It can be observed that the silica spheres with a narrow
diameter distribution of about 170 nm were dispersed homoge-
nously (Fig. 1b). The samples obtained from the hydrothermal
process shown in Fig. 1c have increased diameter from 170 to
210 nm, indicating silica spheres were covered by glucose sepa-
rately. After carbonization and removing the silica core, the thick-
ness of shells for HCS is about 20 nm, which can be verified by
Fig. 1d. Besides, the strong contrast between the dark edge and
apparent cavities indicate the hollow structures. In addition, the
rough surface of HCS reveals a disorder porous texture of the shell.
We surmise those pores resulted from the evaporation of H,O and
CO, during the carbonization process. Those porous shells could
allow nickel precursors easy diffusion into the cavity of HCS. In
Fig. 1e, a thin dark layer of NiO crystals can be observed in each
cavity of HCS. There are crystals neither on the outer surface nor
inside the shell for this final product under high-resolution TEM
(Fig. S1), which further confirmed the NiO only formed in the
interior carbon shells. The amounts of NiO crystal were controlled
because after very few nickel precursors attached to the interior
carbon shells, the diffusion was controlled because of sealed pores.

To further characterize the resulting NIO@HCS samples, SEM
was used. Fig. 2a and b show the morphology of HCS and NiO@HCS,
from which the hollow structures can be revealed by the broken
spheres. Both HCS and NiO@HCS obtain a monodispersed sphere
size. After confined loading with NiO, the spherical structure is still
maintained. To be noted, there are no obvious dissociative nano-
particles and nanoparticle aggregations on the surface of HCS in

Fig. 2b, which suggests the presence of NiO can only be inside the
HCS. Energy-dispersive X-ray spectroscopy (EDS) mapping analysis
has shown that almost all Ni and O are surrounding the shell of HCS.
The Ni distribution together with the TEM image (Fig. 1e) can imply
the confined presence of NiO with the inner shell of HCS. The close
connection between NiO and HCS are believed to have a good effect
on the electric conductivity and stability of NiO@HCS.

Fig. 3a shows the characterization of HCS and NiO@HCS by XRD.
Two wide peaks at 26 of 23.4° and 43.8° in HCS pattern are assigned
to typical carbon (002) and (100) diffractions. An obvious carbon
(002) diffraction peak still maintained observed from NiO@HCS
pattern and a series of diffraction peaks at 26 of 36.5°, 43.1°, and
62.0° correspond to the (111), (200), and (220) planes of NiO (JCPDS
47-1049), revealing an overlay of HCS and pure NiO. The weight
percentage of NiO in the composite is determined by TGA, con-
ducted with a heating rate of 10 °C/min in the air (Fig. 3b). Negli-
gible weight was remained in HCS after raising temperature to
900 °C, revealing the composition of pure carbon. The mass ratio of
NiO is determined to be 12.7 wt%. The porosity structures of HCS
and NiO@HCS were characterized by N, adsorption-desorption
experiment. The type IV isotherms with distinct hysteresis loops
shown in Fig. 3c suggest the mesoporous structure. The specific
surface area of HCS is 719 m? g~ ! calculated by Brunauer-Emmett-
Teller (BET) method, while the value for NiO@HCS is still main-
tained with 418 m? g~ L. Pore size distribution is shown in Fig. 3d,
which clearly confirms the presence of micropores and small
mesopores, and the average pore size decreased from 4.2 to 3.8 nm
after encapsulated NiO in HCS (Table S1). Besides, the micropore
and mesopore volumes were obtained from N, absorption isotherm
with the Barrett—Joyner—Halenda (BJH) method at different P/Py
range (Table S1). The small decreases in micropore and mesopore
volumes indicate the fair retention of micropores and mesopore in
NiO@HCS, and suggest that the pores in carbon shells of HCS are not
occupied by NiO crystals.

Fig. 4a and b are CV curves at a scan rate of 0.1 mV s~ and GCD
profiles a current density of 0.1 A g~! for the beginning five cycles of
HCS within the potential range of 0.01—3.0V. The strong peak at
0.65 V which appears only in the first cycle is associated with a solid
electrolyte interface (SEI) layer. After the first cycle, the scanning
curves remain unchanged, suggesting high reversibility of HCS
electrode. A small plateau at about 0.7 V can be observed from the
first GCD profile, which is in accordance with the CV results. HCS
anode delivers an initial discharge capacity of 752 mAh g~! with an
initial charge capacity of 381 mAhg ! in the first cycle, revealing
an initial Coulombic efficiency (CE) of 50.6% due to the SEI layer. The
discharge and charge capacities of the 2nd cycle are 340 and
352 mA h g~ !, with an initial CE over 100%. And the CE values of the
following cycles keep around 100%. To further investigate the rate
behavior of HCS electrode, GCD profiles obtained by different
applied current densities were presented (Fig. 4c). A sequential
decay in reversible capacities as the rate increase can be observed.
Fig. 4d shows that the electrode delivered reversible capacities of
343mAhg !, 298mAhg !, 271mAhg !, 217mAhg ' and
187mAhg ! at current densities from 01 to 5Ag . When
decreasing the current density to 0.1Ag~! again, the capacity
quickly returned to 324 mAh g~ . These results indicate an excel-
lent rate capability.

To illustrate the electrochemical performance of NiO@HCS, we
prepared an anode for LIBs based on this material. Fig. 5a shows the
CV curves for the first five cycles at 0.1 mV s~ within the potential
range of 0.01-3.0 V vs. Li/Li+. There is a strong cathodic current
peak at approximately 0.5 V in the first cycle, which is attributed to
the reduction of NiO to Ni and the formation of amorphous Li;O and
SEI layer due to the electrolyte decomposition. To prove the for-
mation of SEI, the LIB cell was disassembled after the first cycle. As
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Fig. 2. SEM images of HCS (a) and NiO@HCS (b). (c) STEM image of a single NIO@HCS. (d—f) High-angle annular dark-field scanning transmission electron microscopy and energy-
dispersive X-ray spectroscopy (HAADF-STEM-EDS) mapping images of NiO@HCS showing the carbon edge (d, yellow), oxygen edge (e, orange), and nickel edge (f, green). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. (a) XRD, (b) TGA, (c) N, adsorption/desorption isotherms, and (d) pore size distributions of HCS and NiO@HCS.

revealed by Fig. S2, the SEI layer has already formed on the surface
of NiO@HCS. However, a positive shift to about 0.9 V occurred with
this cathodic current peak and the peak intensity decreased

obviously during the following cycles, which may owe to the for-
mation of the SEI layer and ultrafine NiO nanocrystals in the first
scan [47—49]. In the first anodic curve, the two peaks at about 1.3V
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and 2.3V correspond to the partial decomposition of the SEI film
and the conversion of Ni into NiO, respectively. What's more, the
following CV profiles after the first cycle remain well overlapped,
suggesting high reversibility of electrochemical reactions and good
cycle stability of NiO@HCS. Fig. 5b shows the initial 5 GCD profiles
of NiO@HCS at a constant current density of 0.1 Ag~'. The black
lines represent the first cycle with initial discharge and charge
capacities of 1048 and 588 mAhg~', respectively, for which the
contributed capacities of HCS are calculated as 662 and
335mAhg !, respectively. Based on the mass of NiO, the actual
capacity value is calculated to be over 2000mAh g for the first
cycle, which is much higher than the theoretical value of NiO
(718 mA h g 1). This could be ascribed to the SEI layers which can
trap lithium in the active material and provide extra lithium storage
capacity, as well as the synergetic effect between HCS and NiO
providing more efficient utilization of the active material [50]. This
phenomenon is common for NiO. The CE of the first cycle is as low
as 56%, which could be due to the SEI layer and the trapping of part
lithium in the active material. The subsequent discharge and charge
process can deliver a discharge capacity of 624 mAhg~!, with the
corresponding charge capacity of 572mAhg L. Capacities of
NiO@HCS remain stable after the first cycle with much higher CE
(>90%), indicating reversible redox reactions.

Rate capability is an important factor for LIBs. We further eval-
uate the rate capabilities of NiO@HCS electrode at different current
densities ranging from 0.1 to 5A g~ L Fig. 5¢ shows GCD profiles of

NiO@HCS at different current densities. A decrease from capacity
values can be observed as the increasing applied current density. In
detail, as shown in Fig. 5d, the electrode delivered reversible ca-
pacities of 598 mAhg!, 490mAhg !, 395mAhg !, 312mAhg!
and 231 mA hg~! with the increasing current density. After reset-
ting the current density back to 0.1 Ag™!, the capacity quickly
returned to 484 mAh gL When the current density reset to the
initial value, the capacity recovered, demonstrating a good rate
capability. It is obvious that NiO@HCS shows high capacity at a high
current density and excellent rate capability due to the structural
properties and the fine NiO crystals which allow fast electrolyte
diffusion and electron transport, as well as efficient lithium inser-
tion/extraction.

Cycling stability which is another key issue for evaluating the
behavior of electrode materials was tested at 2 A g~! for NNO@HCS
anode. As can be seen in Fig. 6, NIO@HCS exhibits a discharge ca-
pacity of 243 mA h g~ after 400 cycles with a high current density.
The capacity retention to the first discharge capacity is about 83%.
And the morphology of NIO@HCS after 400 cycles at 2.0 Ag~! was
revealed by Fig. S3. The spherical morphology maintained well
after long cycles suggested the high structural stability of NIO@HCS.
The corresponding CE is close to 100%, indicating that NiO@HCS has
good reversibility for Li* insertion/extraction. As shown in Table 1,
NiO@HCS exhibits good capacity compared to the state of the art,
and obtains enhanced cycling stability for 400 cycles at a high
current rate.

Table 1

Summary of representative NiO/C anode materials for LIBs.
Electrode Current (mA g~ ') Initial Cgis/Cena (MAh g7 1) Cycle number Capacity retention Refs.
NiO-G-Ni 125 936/734 150 78% [51]
CYS-NiO/C 1000 1124/778 500 88% [52]
NiO/MWCNT 50 1084/720 50 74% [53]
NiO-C 100 1155/715 50 35% [54]
Nio/C 100 1175/- 100 53% [55]
Nio@C 100 913/677 50 91% [56]
C-coated Ni/NiO 100 1600/- 100 96% [57]
NiO-NFAs@GNSs 100 957/608 100 41 [58]
NiO-NPs@GNSs 967/629 77
G-Ni-G 71.8 1164/639 50 54 [59]
NiO@HCS 100 1048/588 400 83% This work
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Inspired by the excellent results from LIBs, the symmetric
capacitor was constructed by the NiO@HCS. CV curves display a
small deviation from a rectangle due to the Faradaic reaction but
without obvious peaks for water decomposition (Fig. 7a). GCD
curves with different current densities are all triangular in shape,
suggesting good reversibility (Fig. 7b). And the good linearity of
GCD curves indicates a stable behavior at high potential. NiO@HCS
obtained a large specific capacitance of 297 Fg~! (Fig. 7c) owing to
the Faradaic capacitance contributed by NiO, of which the value is
1012Fg~! in consideration of the low content of NiO (12.7 wt%).
This great contribution of NiO reveals efficient Faradaic reaction
between electrolyte and electrode. The specific capacitances
calculated from GCD curves are in accordance with CV results, and
maintained 80% of the capacitance from 0.5 to 20Ag~' (Fig. 7d),
demonstrating its good rate performance. Besides, the cavity of
NiO@HCS can store electrolyte for deeper diffusion, and ultrathin
NiO crystals can provide more accessible active sites for electrolyte
ions. This synergistic effect helps to improve the capacitance and
rate stability of NiIO@HCS.

4. Conclusions

In summary, a unique NiO@HCS hollow structure was selectively
prepared, providing large electrode/electrolyte contact area and
interior space for extra Li* storage. Porous carbon shells with a thin
layer allow fast lithium ion diffusion and electron transportation.
As the anode material for LIBs, NIO@HCS delivers a reversible ca-
pacity of 598 mAhg~!at 0.1 Ag~! and exhibits a discharge capacity
of 243 mA h g~! after 400 cycles at a high current density of 2A g™,
For supercapacitor investigation, NiO@HCS also exhibits a high
specific capacitance of 297Fg ! based on a symmetric

configuration. The electrochemical performance of NiO@HCS can
be further optimized via tuning shell thickness and core size.
Moreover, such structures are also fit for other transition metal
oxides, sulfur, or silicon, providing further applications.
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