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Introduction

ZnO has attracted attention of a large community of
researchers as an electrode material for lithium-ion
batteries (LIBs) due to its low cost, environmental
friendliness and high theoretical capacity in particu-
lar [1-4]. Assuming a two-step reaction mechanism
that involves a conversion Eq. (1) and alloying pro-
cess Eq. (2), as proposed by previous studies [5-7],
up to 3 Li"/fu. can be reversibly stored corre-
sponding to a theoretical capacity of 978 mAh/g:

ZnO + 2Li* + 2e~ « Zn + Li,O, (1)
Zn+Li" +e < LiZn. (2)

However, there are some challenges to overcome.
One issue is the large volume change of ZnO during
the dis-/charge process resulting in pulverization of
the electrode material [8]. Furthermore, the studies of
Pelliccione et al. [6] and Park et al. [9] revealed the
limited reversibility of the conversion reaction
Eq. (1), which depends on the size of the electro-
chemically formed zinc particles, as additional reason
behind the rapid capacity fading. Li;O can only be
partially decomposed due to its poor reactivity and
low lithium ion conductivity [10]. Another factor that
limits the practical application of ZnO for electro-
chemical energy storage is its poor electrical con-
ductivity [11]. To overcome these difficulties and to
enhance the electrochemical performance of ZnO-
based anodes, hybridizing ZnO with varieties of
conductive carbon materials is frequently employed.
Carbonaceous materials can prevent the aggregation
of ZnO nanoparticles and maintain the structural
stability of the anode during charge/discharge pro-
cesses. ZnO nanoparticles anchored on the surface of
carbon nanotubes (CNT) have been shown to deliver
a reversible capacity of 602 mAh g~ at 100 mA g™
for up to 50 cycles, i.e., superior cycling and rate
performances [12]. Similarly, a ZnO/graphene anode
exhibits an initial specific capacity of 850 mAh g~ at
0.1 C and good cycling stability (capacity decay ~8%
after 50 cycles) [13]. Also, films of ZnO nanosheets
coated with 350 A thick graphite layers showed
specific capacity values of ~ 600 mAhg 'at1 A g™’
after 100 cycles [14].

Various synthesis methods and approaches have
been used in the literature to fabricate ZnO/C com-
posites. Yang et al. [15] reported the synthesis of
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porous carbon coated ZnO quantum dots by the
carbonization of metal-organic frameworks. As-ob-
tained composites exhibit a reversible capacity of 919
mAh g~' over 100 cycles at 100 mA g~'. The porous
ZnO/C microboxes prepared by annealing of the
analogous metal-organic framework carboxylate
groups deliver an initial discharge capacity of 1290
mAh g ' and reach a high reversible capacity of 716
mAh g' after 100 cycles at a current density of
100 mA g~ ' [16]. Bai et al. [17] have synthesized
ZnO/C nanospheres by a one-step co-pyrolysis
method using Zn powder and acetylacetone as
starting materials. As-prepared ZnO/C nanospheres
show a reversible capacity of 440 mAh g~ at a cur-
rent density of 100 mA g~ after 50 cycles. Electro-
spinning and subsequent thermal treatment by Zhao
et al. yielded a ZnO/carbon nanofiber composite,
which delivers a reversible capacity of 702 mAh g~
at a current density of 200 mA g~' [18]. Hydrother-
mally fabricated core-shell ZnO/C nanospheres by
Liu et al. [19] obtained from Zn-resorcinol-
formaldehyde polymer followed by carbonization at
650 °C under inert atmosphere show a capacity of 496
mAh g~' after 200 cycles at a current density of
82.5 mA g~'. Microwave-assisted solvothermal syn-
thesis permitting to reduce the time of reaction was
performed to produce ZnO/C composites using
sucrose as carbon source [20]. However, these meth-
ods always need multi-step or strict experimental
conditions which increase the costs and limit large-
scale production.

There are, however, one-step methods as well, with
calcination under a nitrogen atmosphere for the
synthesis of ZnO/C composites being probably the
most efficient, easily implementable, and low-cost
approach. In this case, organometallic complexes
suggested for thermal treatment such as zinc citrate
dihydrate (CsHs07),Zn;-2H,0 [21-24] and zinc tar-
trate C4H4ZnOg [25] can serve as precursors for both,
ZnO and carbon.

Summarizing, although a significant progress has
already been achieved, developing a facile route to
synthesize carbon coated nanosized materials
remains an important task to further improve the
performance of ZnO-based anode materials. In the
present paper, based on the results of our previous
work [26], a synthetic route involving a thermal
treatment of organometallic compounds was devel-
oped to prepare carbon-composited metal oxide. The
formation of ZnO/C composites has been
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successfully realized by heat treatment of zinc glyc-
erolate (ZnGly) under inert atmosphere. The organic
component of ZnGly partially transformed into car-
bon resulting in the formation of ZnO/C composites.
Additionally, potential applications of the ZnO/C
composites as anode materials for lithium-ion bat-
teries were investigated.

Experimental
Materials preparation

Zinc acetate dihydrate (CH3;COO),Zn-2H,O and
freshly distilled glycerol (analytical grade) were used
as the starting materials for the synthesis of zinc
glycerolate ZnC3;H¢O3;. The ZnGly precursor was
prepared via a polyol-mediated synthesis based on
Dong’s work [27]. Typically, 2.0 g (CH;COO),.
Zn-2H,0 and 1 ml of distilled water were added to
50 mL of glycerol in a 100-mL round-bottom flask.
This solution was heated to 160 °C and refluxed
under Ar flow for 1 h. After cooling to room tem-
perature, the resulting colorless precipitate, zinc
glycerolate, was collected using centrifugation,
washed with ethanol, and dried at 80 °C for 60 min.
Finally, ZnO/C composites were prepared by
annealing of the as-obtained ZnGly in a tube furnace
at different temperatures between 400 and 800 °C for
2h under N, flow at an initial heating rate of
5°C min~'. The carbonized products are termed as
ZnO/C-X, where X is the annealing temperature. For
the purpose of comparison, a bare ZnO sample was
prepared by annealing of the ZnO/C-800 composite
at 600 °C for 1 h in air.

Materials characterization

The synthesized ZnO/C-X composites were charac-
terized by a variety of complementary experimental
techniques, as described in detail below. X-ray
diffraction (XRD) patterns were obtained with a
Bruker AXS D8 Advance Eco diffractometer using Cu
K, radiation and a step size of A(20) = 0.02° at the
angular scan. The morphology of the samples was
investigated using a ZEISS Leo 1530 scanning elec-
tron microscope (SEM) and a JEOL JEM 2100 trans-
mission electron microscope (TEM). Raman spectra
of the samples were recorded on a Bruker Senterra
spectrometer equipped with Olympus BX-51 optical
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microscope using a 532 nm laser. To avoid damage to
the samples, the emitted power was limited to 2 mW.
All spectra were obtained at room temperature at a
wavelength range from 100 to 4000 cm™" using a 400
lines mm™" grid and 25 x 1000 pm aperture. X-ray
photoelectron (XP) spectra of the samples were
measured with MAX200 (Leybold-Heraeus) spec-
trometer equipped with a non-monochromatized Mg
Ka X-ray source (200 W) and a hemispherical ana-
lyzer. The powder materials were pressed into clean
indium foil and thinned by a brush to suppress
charging effects, following the established method-
ology [28]. Thermogravimetric analysis (TG/DTA)
was performed on a Mettler Toledo TGA/DSC1
analyzer with a heating rate of 5 °C min™"' in air and
Ar. The content of carbon was examined by elemental
analysis using Vario MICRO Cubes (Elementar).
Nitrogen sorption isotherms were determined on a
Micromeritics Gemini VII 2390 Surface Area Ana-
lyzer. Prior to N, physisorption data collection, the
samples were degassed at 150 °C under vacuum for
4 h. The specific surface area, pore size distribution,
and pore volumes were obtained by means of the
Brunauer-Emmett-Teller (BET) method and the
Barrett-Joyner-Halenda model from the adsorption
branches of the isotherms.

Electrochemical measurements

Electrochemical studies were performed in Swage-
lok-type two electrode cells at 25 °C by using a VMP3
potentiostat (Bio-Logic SAS) (see [26]). The prepara-
tion procedure of the working electrodes is as fol-
lows. A mixture of 80% ZnO/C, 15% carbon black
(Super C65, Timcal), and 5% polyvinylidene fluoride
binder (PVDF, Solvay Plastics) dissolved in
N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich) was
stirred for at least 12 h. In order to obtain a spread-
able slurry most of the NMP was evaporated in a
vacuum oven (10 mbar, 65 °C). The resulting elec-
trode slurry was applied on circular Cu meshes (di-
ameter 10 mm) with a mass loading of about
2 mg cm 2. Afterward, the electrodes were dried at
80 °C under vacuum, mechanically pressed at
10 MPa, and then dried again. The working electrode
and the counter electrode, consisting of a lithium
metal foil disk (Alfa Aesar) pressed on a nickel cur-
rent collector, were separated by two layers of glass
fiber separator (Whatman GF/D). As electrolyte 200
puL of a 1 M LiPFg salt solution in 1:1 ethylene
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carbonate (EC) and dimethyl carbonate (DMC)
(Merck Electrolyte LP30) was used. The cells were
assembled in a glove box under argon atmosphere
(0O2/H;0 < 5 ppm). For ex-situ XRD measurements
the cells were galvanostatically cycled at 10 mA g~
and disassembled at various dis-/charged states in
the glove box. The electrodes were washed in DMC
and dried under vacuum conditions overnight. The
XRD measurement of the post-cycled electrode
material was performed using an airtight sample
carrier.

Results and discussion

The structure of the ZnO/C-X composites was ana-
lyzed by XRD (Fig. 1a). For comparison, the XRD
pattern of ZnO obtained by annealing the ZnO/C-800
composite in air at 600 °C is also included. All
diffraction peaks can be assigned to a hexagonal
phase of wurtzite-type ZnO according to JCPDS # 36—
1451, space group P63mc. Lattice parameters deter-
mined by means of full-profile analyses with the
FullProf Suite (see Table 1) are in good agreement
with the literature. The intensities of the characteristic
peaks of ZnO increase with rising annealing tem-
peratures. For ZnO/C composites prepared by heat
treatment below 600 °C, the diffraction peaks are
rather broad which is attributed to nanosized ZnO
crystallites. The crystallite sizes of ZnO in the ZnO/
C-X (X = 400, 500, 600) samples are calculated using
the Scherrer equation:

J Mater Sci (2021) 56:13227-13242

where Dy is the average grain size based on the
particular reflecting crystal face (ikl) direction, K is a
shape factor which can be approximated to 0.9, /4 is
the wavelength of the applied Cu Ko radiation,
AQ20,,) is the full width at half-maximum of the
diffraction peak and 0y is the Bragg angle. The
analysis of the peaks below 20, = 65° yields the
averaged crystallite size for the ZnO/C-X samples.
Both, ZnO/C-400 and ZnO/C-500 composites, exhi-
bit similar particle size of around 12 nm. By contrast,
the ZnO/C-600 composite is characterized by a larger
size of 19 £ 3 nm.

Raman spectra collected from the ZnO/C-X
(X =400 — 700) samples display two prominent
peaks which are attributed to the carbon D- and
G-bands (see Fig. 1b). The G-band corresponds to
sp>-bonded carbon atoms, while the D-band is asso-
ciated with defects or disorders mainly due to sp’
hybridization [29]. The D- and G-bands of the ZnO/
C-400 composite are located at 1359 cm™' and
1591 cm ™', respectively. In comparison, the D-and
G-peaks of the ZnO/C-700 sample are slightly red-
shifted by 23 and 20 cm™' toward 1314 and
1571 em ™', respectively. The same shift toward
higher binding energy indicating the strong chemical
interaction between the surface carbon and Zn atoms
was observed by XPS on ZnO/C composite [23].
Similar shifts have been reported for TiO,/C com-
posites [30, 31]. These shifts are attributed to the
stress induced by the chemical anchoring of ZnO
atoms on the carbon surface. Obviously, such an
interaction can change the Raman shifts describing

Dia = K2/ A(2011) cos O, (3)  the carbon bond energy. The ratio of the maximum
intensities, Ip/Ig, was calculated as 0.73 and 0.91 for
@) ssz | o _ | o o ©),00 7
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Figure 1 a XRD patterns and b Raman spectra of the ZnO/C-X composites and bare ZnO sample as well as (¢) TG curves for the ZnGly
precursor heated in an inert atmosphere and ZnO/C-400(700) composites heated in air.
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Table 1 Lattice parameters obtained from Rietveld refinement, results of BET analysis, and carbon content for the ZnO/C-X composites

and bare ZnO

Sample Lattice parameters Sper m g™ ") Total pore volume (cm® g™') Carbon content (Wt%)

a (A) c (A) TG Chemical analysis
ZnO/C-400 34.80 52.05 54.8 0.18 8.0 8.7(5)
Zn0O/C-500 32.49 52.06 59.8 0.16 7.1 8.2(5)
Zn0O/C-700 32.55 52.16 100.9 0.36 5.7 6.0(5)
ZnO/C-800 32.53 52.11 93.1 0.29 - 5.8(5)
ZnO 32.49 52.05 6.6 0.02 - -

the ZnO/C-400 and ZnO/C-700 composite, respec-
tively. According to the model proposed by Ferrari
and Robertson, the ratio Ip/Ig is proportional to the
crystallite size, when it is less than 2 nm for amor-
phous carbon [32]. The increasing intensity of the
D-band with rising annealing temperature is charac-
teristic of the carbonization process and implies less
disorder and a lower number of defects in the carbon
component due to a growing crystallite size [33, 34].
The peaks associated with ZnO were not observed by
Raman spectroscopy using a laser wavelength of
532 nm.

TG/TGA analysis (Fig. 1c) of the ZnGly precursor
illustrates its conversion into carbon containing zinc
oxide upon annealing in a nitrogen atmosphere. A
significant weight loss of ca. 40% at heating from 400
to 1000 °C can be explained by the total decomposi-
tion of the ZnGy precursor with simultaneous for-
mation of zinc oxide, volatile products with low
molecular weight and products of condensation of
organic compounds, similar to titanium glycerolate
[26]. Furthermore, the products of the condensation
also undergo a disproportionation with the formation
of volatile low molecular weight substances and the
carbonaceous part of the ZnO composite. Therefore,
400 °C was selected as the start reaction temperature
to calcine the ZnGly precursor under nitrogen envi-
ronment to produce the ZnO/C composites. The
carbon content in the as-prepared ZnO/C-X com-
posites was determined by the TG/TGA measure-
ments in air, performed in the temperature range up
to 1000 °C to ensure the complete oxidation of carbon
into carbon dioxide (cf. Table 1). As a result, the
carbon contents in the ZnO/C-400 and ZnO/C-700
composites were estimated at 8.0 and 5.7 wt%,
respectively. These values were additionally verified

by the chemical analysis, with good agreement of the
results (Table 1).

To confirm the formation of the ZnO/C composites
and to exclude other oxidation states of Zn, XPS
analyses were carried out on ZnO/C-400 and ZnO/
C-700. The XPS survey spectrum and core level
spectra of the Zn 2p, O 1 s and C 1 s peaks for both
samples are shown in Fig. 2. The survey spectrum in
Fig. 2a displays the presence of Zn, O, C without any
detectable impurities. The Zn 2p spectra of both
samples in Fig. 2b exhibit a single Zn 2p3,5 1,2 dou-
blet, with the positions of the Zn 2p;,, and Zn 2p;,,
components, 1021.6 eV and 1044.7 eV, respectively,
corresponding to Zn** [11, 23]. This assignment is
additionally supported by the kinetic energy position
of the most intense Zn LMM Auger peak at 988 eV
(Fig. S1), which corresponds to ZnO. The O 1s
spectrum, as shown in Fig. 2c, was resolved and the
lower binding energy component at 530.7 for the
Zn0O/C-400 sample and 530.6 eV for the 700 sample
can be attributed to the hexagonal close packing of O,
in the wurtzite-ZnO structure. The peak at 532.3 eV
for both samples is associated with surface hydroxyl
groups (OH) and/or C=0. The peak at 533.9 and
534.2 eV corresponds to single bonds between oxy-
gen and carbon (C-O) and/or absorbed water [35].
The C 1 s spectra, which are shown in Fig. 2d, can be
fitted by four sub-peaks, the aliphatic C-C, the C-O,
C=0, and O-C=0 peak [35]. For ZnO/C-400 the
positions of these peaks are at 284.8, 286.2, 287.9, and
289.9 eV and for ZnO/C-700 the peaks are located at
284.4, 286.6, 287.9, and 289.8 eV. The shift of the C-C
peak from ZnO/C-400 to ZnO/C-700 towards lower
binding energies indicates, in accordance with the
Raman data, a more graphitic state for the carbon
component of the ZnO/C-700 composite [36].
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Figure 2 XPS spectra of
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SEM images of the ZnO/C-X composites in Fig. 3
show the drastic effect of the calcination temperature
on the morphology of the samples. The pristine
ZnGly precursor is mainly composed of irregularly
shaped sheets with several micrometers in length
(Fig. 3a). The ZnO/C composites fabricated via
annealing of the precursor at a temperature below
500 °C consist of sheets with an average size of few
micrometers, which are primarily composed of
nanosized grains of ZnO (Fig. 3b, c). Probably, carbon
acts as a cross-linking agent that holds the ZnO
nanoparticles together. The cross-sectional SEM
images of the sheets show that their thickness chan-
ges from 270 to 800 nm for ZnO/C-500 and ZnO/C-
400 composites, respectively (Fig. 3b, c, insert). In
contrast, the ZnO/C-700 and ZnO/C-800 composites
consist of many thin sheets and several large particles
of about 1 — 7 um in diameters (Fig. 3d, e). As shown
in Fig. 3f, the bare, carbon-free ZnO particles,
obtained by the heat treatment of the ZnO/C-800
composite in air, represent hexagonal ZnO prisms
with an average size of about 1-7 pm.

Further information on the morphology and
structural features of the sheets in the ZnO/C-700
composite was obtained by TEM studies. The TEM
images shown in Fig. 4a exhibit well crystallized ZnO
nanoparticles which are dispersed in a carbon matrix.
The corresponding high-resolution TEM (HRTEM)
image in Fig. 4b exhibits lattice fringes with spacings
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of 0.26 and 0.28 nm, which correspond to the dis-
tances between the (002) and (100) planes of ZnO,
respectively. Furthermore, the crystalline structure of
the ZnO/C-700 composite is confirmed through the
selected area electron diffraction (SAED) pattern as
shown in Fig. 4c. Several clear diffraction rings from
the SAED pattern can be assigned to the (100), (002),
(101), (102), (110), (103), and (200) planes of hexagonal
ZnO, suggesting a polycrystalline nature of the ZnO
component in the composite.

The porous nature and the specific surface area of
the as-prepared samples were investigated by nitro-
gen adsorption—-desorption isotherms. Correspond-
ing pore size distribution plots of the samples are
shown in Fig. 5. The ZnO/C-X composites display
isotherms of type IV, according to the IUPAC classi-
fication, with a H3 hysteresis loop (Fig. 5a) [37]. The
isotherms of the bare ZnO powder are close to type II,
which is typical for non-porous or macroporous
materials. The BET specific surface area and the
respective pore volumes of the samples are displayed
in Table 1. The BET surface area of the ZnO/C-X
composites is rather high which is attributed to the
presence of mesopores, in contrast to the bare ZnO
which displays a very low value of this parameter
(6.7 m*>g™"). In the case of the ZnO/C-X hybrid
materials, the annealing temperature of the ZnGly
precursor affects the specific surface area signifi-
cantly as this parameter increases with the increasing
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Figure 3 SEM images of

(a) ZnGly precursor, b ZnO/C-
400, ¢ ZnO/C-500, d ZnO/C-
700, e ZnO/C-800 composites,
and f bare ZnO sample. Insets
show high-magnification SEM
images of cross sections of
Zn0O/C-400(500) composites.

Figure 4 a TEM image, b HRTEM image, and ¢ SAED pattern of ZnO/C-700 composite.

annealing temperature, from 400 to 700 °C. We  N,. The decrease in the specific surface area of the
attribute this behavior to the formation of defects in ~ ZnO/C-800 composite compared to the ZnO/C-700
the composite structure during their annealing under composite is attributed to the appearance of large
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Figure 5 a N2 adsorption—desorption isotherms and b BJH pore size distribution curves of as-prepared ZnO/C composites and bare ZnO

powder.

ZnO particles, as demonstrated by the SEM images
(Fig. 3). Note, the ZnO/C-700 composite shows the
highest BET surface of 100.9 m* g~'. From the pore
size distribution plots (Fig. 5b), it is obvious that
mesoporous structures are predominant in the fab-
ricated ZnO/C-X composite materials.

The fabricated hybrid nanomaterials were studied
with respect to their applicability as electrode mate-
rials in LIBs. Note, that the mesoporous nature of
these materials is supposed to facilitate penetration of
the electrolyte, thereby securing good electrical con-
tact with the electrode and accelerating the diffusion
kinetics. The electrochemical properties were inves-
tigated by cyclic voltammetry (CV) and galvanostatic
cycling with potential limitation (GCPL). Figure 6a
shows the first, second, third and tenth CV cycles for
the ZnO/C-400 composite at a scan rate of
0.1 mV s™! in a voltage range of 0.01-3.0 V. During
the first reductive sweep the irreversible formation of
the solid electrolyte interphase (SEI) occurs at around
0.6 V (R3). The peak R1 at the lower voltage limit of
0.01 V originates in part from the lithiation process
related to carbon [38]. Since no corresponding
oxidative peak is visible, we conclude that the
delithiation process takes place over an extended
voltage range. The reduction peak R2 and the oxi-
dation peaks O1-O4 can be assigned to the Li* stor-
age in ZnO [5, 6]. In the initial scan the reduction
peak R2 at 0.3 V can be ascribed to both electro-
chemical reactions, the conversion and the alloying
process [6]. After the second cycle R2 splits up in R24
(0.4 V) and R2¢ (0.7-0.8 V) which may be explained
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by a reduced overpotential of the conversion reaction
at R2¢ due to structural changes during the initial
cycle as compared to the conversion reaction at R2
while the alloying reaction at R2, is not significantly
affected. Such a behavior is also observed for other
conversion materials, such as Mn3O, [38]. The oxi-
dation peaks O1-O3 located between 0.3 and 0.7 V
are assigned to the dealloying of LiZn alloy. The
occurrence of several peaks suggests a multi-step
process with various LiZn intermediate stages, such
as LipZns, LiZn, and Li,Zns [39, 40]. The peaks O1-
O3 as well as R2, corresponding to the alloying
process show good cycling stability. The oxidation
feature O4 at around 1.3 V finally signals conversion
to ZnO [6, 9]. Upon further cycling, the redox peak
pair R2¢/04 quickly decreases in intensity indicating
an inactivation of the conversion reaction of ZnO
Eq. (1). In contrast to the CV curve of the ZnO/C-400
composite, in case of the ZnO/C-700 composite
(Fig. 6b) and bare ZnO (Fig. 6¢) the oxidation peaks
01—04 have lower intensity in the first cycle, while
an additional oxidation peak at 2.6 V, labeled as O5,
can be observed. The latter feature was also observed
in several previous studies [3, 6, 7, 41, 42] but its
origin still remains unclear. Huang et al. [3] and
Pelliccione et al. [6] have speculatively assigned it to
the back formation of ZnO Eq. (2) and the oxidation
peak O4 to the dealloying process Eq. (1). In contrast,
Mueller et al. [7] showed by means of in-situ XRD
studies that the dealloying process is completed even
before the oxidation process O4 starts and that ZnO is
formed only afterwards, at O4. However, while these
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Figure 6 Cyclic voltammograms of (a) ZnO/C-400, b ZnO/C-700, and bare ZnO in the range of ¢ 0.01-3 Vand d 0.01-2 V at a scan rate
of 0.1 mV s™'. 01-05 and R1-R4 label oxidation/reduction features as discussed in the text.

results exclude the above-mentioned assignment of
O5, Mueller et al. make no further statements about
this oxidation process. Hence, for understanding of
the latter process we recorded a CV of the bare ZnO
anode in a restricted potential range of 0.01-2.0 V
(Fig. 6d), excluding O5. The comparison of this CV
curve with the full range scans shows that the elec-
trochemical activity steadily and strongly decreases
in case of O5 exclusion, whereas otherwise, i.e., when
the oxidation O5 takes place, the intensities of the
subsequent features are significantly higher. Appar-
ently, the oxidation process O5 plays a decisive role
in the reversibility of Li* storage processes.

Ex-situ XRD measurements were performed in
order to get insight into the structural changes of
ZnO/C composites during electrochemical cycling.
The XRD patterns of the ZnO/C-700 electrode at
different dis-/charge states are shown in Fig. 7. In the
initial state, the hexagonal ZnO phase (JCPDS
#36-1451) is identified. The additional peaks at 44°

and 51° originate from the Cu current collector. After
discharging to 0.6 V the XRD pattern is similar to that
of the as-prepared electrode. As expected, this
implies that the electrode material does not undergo
any structural transformation during the SEI forma-
tion. By further discharging to 0.3 V, the hexagonal
ZnO phase completely transforms into a Zn phase
(COD #9,008,522), which goes along with the con-
version reaction according to Eq. (1). As can be seen
from the expanded view of the 27-41° 20 range in the
inset of Fig. 7, a broad low intensity peak located at
33.7° indicates the presence of Li,O (ICSD #54,368). It
can be observed for all the following charge states as
exemplarily shown by the XRD patterns of the fully
charged and discharged state in the inset of Fig. 7.
The XRD pattern of the completely discharged elec-
trode (i.e., at 0.01 V) exhibits the characteristics of a
single LiZn phase (COD #1,539,519), resulting from
the alloying process described by Eq.(2). The
observed structural changes upon cycling are in good
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Figure 7 Ex-situ XRD patterns of a ZnO/C-700 electrode
recorded at different stages of electrochemical Lit de-/insertion.
The reflexes marked with * originate from the Cu current
collector. In addition, the Bragg peak positions for ZnO (JCPDS #
36-1451), Zn (COD #9,008,522), and LiZn (COD #1,539,519)
are shown. The inset shows the expanded view of XRD patterns of
the samples lithitated up to 0.01 V (fully discharged), 0.9 V, and
3 V (fully charged) in the 27-41° 20 range.

agreement with the reported results for a two-step
mechanism for Li" storage in ZnO including a con-
version and an alloying process [5, 40]. During the
subsequent charging to 0.9 V, the peaks associated
with LiZn vanish and the Zn phase reappears, con-
firming the reversibility of the alloying process. As
charging proceeds to 3 V, the peaks associated with
the Zn phase diminish in intensity, while no other
crystalline phase shows up. Apparently, no structural
changes are associated with the oxidation processes
reflected by O4 and O5. Against expectation, there is
no indication of crystalline ZnO in the completely
charged electrode (e, at 3 V). This might be
explained either by the amorphous structure or
nanosize of the electrochemically formed ZnO or by
the irreversibility of the conversion reaction Eq. (1).
The lattice parameters of the Zn and LiZn phases
appearing at various charging stages during the
electrochemical cycling were determined by means of
full-profile analyses with the FullProf Suite
(Table S1). Ex-situ XRD studies on ZnO/C-400 show
similar results (Fig. S2).

GCPL measurements at a current density of
100 mA g in the range of 0.01-3.0V enable
assessing the cycling performance of the composite
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Figure 8 a Specific dis-/charge capacities and coulombic
efficiencies of the ZnO/C-400 and ZnO/C-700 composites and
of bare ZnO for galvanostatic cycling in the potential range
between 0.01 and 3 Vat 100 mA g~ ' as well as (b) the respective
potential profiles for the first, second, tenth and twentieth cycles.

nanomaterials under study. Figure 8a shows specific
dis-/charge capacities and coulombic efficiencies for
the first 100 cycles of the ZnO/C-400 and ZnO/C-700
composite as well as of the bare ZnO electrode. In the
first cycle specific dis-/charge capacities of 1126/633
mAh g~ (ZnO/C-400), 1061/671 mAh g~! (ZnO/C-
700) and 749/439 mAh g~ (ZnO) were measured.
One reason for the large capacity loss in the first cycle
is the irreversible SEI formation during discharge. As
can be seen from the potential profiles of the first
lithiation (Fig. 8b), for bare ZnO the SEI contribution
is quite small with less than 50 mAh g™, whereas for
the composites it is larger due to the fact that the
irreversible charge loss is roughly linearly propor-
tional to the specific surface area of carbonaceous
materials [43]. Cracking and fracture of the electrode
material due to large volume changes can lead to an
unstable SEI and irreversible capacity losses beyond
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the first cycle [44], which also might explain the
unexpected high second discharge capacity of ZnO/
C-700 compared to the first charge capacity. Based on
the reaction mechanism of ZnO Egs. (1) and (2), a
maximal theoretical specific capacity of 978 mAh g~
can be reached. Considering the capacity from the SEI
formation, it can be concluded that in the case of the
composites the ZnO almost fully reacts with Li*
according to the expected reaction mechanism, while
this is not the case for the bare ZnO electrode. After
20 cycles 293 mAh g~ can be charged from ZnO/C-
700 and a slightly higher capacity of 374 mAh g™
from ZnO/C-400, corresponding to a capacity fading
of 44% and 41% relative to the first cycle. The poor
coulombic efficiencies and rapid capacity fading
during the first twenty cycles might be explained by
the limited reversibility of the conversion reaction
Eq. (1). This is supported by the results of ex-situ XRD
studies. Under the assumption that the back forma-
tion to ZnO Eq. (1) is irreversible and the reversible
lithiation reaction is a single alloying process Eq. (2) a
maximal capacity of only 329 mAh g ' can be
expected. Obviously, the charge capacities exceed
this value for about the first twenty cycles indicating
that the reoxidation of Zn to ZnO is at least partly
reversible as also observed by Pelliccione et al. [6]
and Mueller et al. [7]. Interestingly, during further
cycling the coulombic efficiencies are increasingly
converging at 100% and simultaneously the cycling
stabilities get much better. Exemplarily, the ZnO/C-
700 composite delivers a discharge capacity of 212
mAh g after 100 cycles exhibiting excellent cycle
stability with an average capacity loss of only 0.04%
per cycle over the last 80 cycles. The potential profiles
of the first, second, tenth and twentieth cycle in
Fig. 8b provide an insight into the origins of the
capacity fading. Comparing the potential profiles, it
is noticeable that the capacity loss can be mainly
traced back to an inactivation of the conversion
reaction Eq. (1), which can also be observed in the CV
curves (Fig. 6). During the first cycles both processes,
viz. the conversion and the alloying, take place but in
the further course the alloying mainly contributes to
the Li* storage, which might be due to the incom-
plete back formation of ZnO. In addition, the loss of
electrical connectivity to the active material due to
changes in the electrode structure, such as particle
aggregation or pulverization, results in capacity los-
ses. Comparing the two composites, indeed, the
capacities of the ZnO/C-700 composite fade more
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rapidly in the first cycles with lower coulombic effi-
ciency than for ZnO/C-400 but stabilize faster in the
further course. It should be noted, that the evolution
of the capacities of the ZnO/C-500 sample is similar
to that of ZnO/C-400 while the evolution of the
capacities of the ZnO/C-800 sample is similar to that
of ZnO/C-700 (Fig. S3), who each have similar crys-
tallographic and morphological properties, respec-
tively. The worse cycling stability of the ZnO/C-700
composite in the first twenty cycles might be attrib-
uted to the presence of microscaled polyhedrons,
whereas the ZnO/C-400 composite consists only of
nanoscaled primary particles. For one thing, the
reversibility of the conversion reaction depends on
the crystallite size of the transition metal particles
formed during electrochemical cycling [45]. Park
et al. [9] have shown that the back formation of ZnO
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Figure 9 a Rate capability test of the ZnO/C-400 and ZnO/C-700
composites and of bare ZnO at current rates between 100 and
1000 mA g~' as well as (b) the respective potential profiles of
cycle 10 at 100 mA g, cycle 40 at 1000 mA g~ and cycle 50
again at 100 mA g~ .
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only occurs for extremely small Zn nanocrystallites.
In addition, nanosized particles can better accom-
modate the strain caused by the volume changes
during electrochemical cycling [46]. Looking at the
comparison between the ZnO/C composites and the
bare ZnO sample, it is remarkable that over the whole
measurement the composites reach about twice the
capacities of the bare sample. In cycle 20 and 100, the
bare ZnO compound reaches specific capacities of
131 mAh g and 97 mAh g ', respectively. The
higher capacities of the composite materials can be
probably traced back to the larger surface area
offering more active sides as well as a better elec-
tronic connection of the ZnO particles due to the
conductive network provided by the carbon. Fur-
thermore, the stabilized coulombic efficiency and the
cycling stability of the bare ZnO electrode is with a
capacity loss of 70% in cycle 20 relative to the first
cycle worse than for the composites. We conclude
that degradation effects such as structural changes of
the electrode material leading to the electrical dis-
connection of the active material as well as an
unstable SEI can be at least partly prevented by the
carbon. The carbon matrix can effectively suppress
the nanoparticle aggregation and pulverization of the
electrode material due to large volume changes
maintaining the structural stability and, moreover,

J Mater Sci (2021) 56:13227-13242

helping stabilize SEI formation [23, 47—49]. In addi-
tion, the electrochemical properties of bare ZnO and
the ZnO/C-400 and ZnO/C-700 composites were
also investigated by galvanostatic cycling with vari-
ous current densities between 100 and 1000 mA g~ .
The specific dis-/charge capacities are shown in
Fig. 9a along with the potential profiles of cycle 10 at
100 mA g, cycle 40 at 1000 mA g~ and cycle 50
again at 100 mA g~' in Fig. 9b. The ZnO/C-400
composite reaches a charge capacity of 113 mAh g™
at a high current rate of 1000 mA g_1 while for ZnO/
C-700 a charge capacity of 125 mAh g~ ' is measured
and for bare ZnO 67 mAh g '. The inferior rate
capability of the sample ZnO/C-400 compared to
ZnO/C-700 is caused by a more severe polarization
resistance due to kinetic effects. As can be seen from
the potential profiles, at a high current rate of
1000 mA g-1, the potential gap between charge and
discharge increases more for ZnO/C-400 than for
ZnO/C-700. The reduced polarization resistance in
case of ZnO/C-700 might be associated with better
conductivity of the less disordered carbon as shown
by Raman spectroscopy and the XPS analysis. When
the current density is reset to 100 mA g~ ' charge
capacities of ca. 83%, 86% and even 88% relative to
cycle 10 can be regained for the ZnO/C-400, ZnO/C-
700 and bare ZnO samples, respectively.

Table 2 Comparison of the electrochemical performance of ZnO and ZnO/C electrodes prepared via different synthesis methods as

reported in the literature

Sample Method of synthesis Current density (mA Discharge capacity (mAh g~ ")/cycle References
g no

ZnO spheres Hydrothermal 100 109/100 [2]

ZnO/C Thermal decomposition of 100 850/200 [22]
nanoparticles Zn3(C¢H507),

ZnO/C spheres Thermal decomposition of 100 520/150 [24]

Zn3(C6Hs07)2

ZnO/C Thermal decomposition of C4H4ZnOg 100 610/300 [25]
nanoparticles

ZnO/C nanocages Pyrolysis 100 750/100 [50]

ZnO/C spheres Pyrolysis 100 750/100 [51]

ZnO/C Ball milling 100 610/500 [52]
nanoparticles

ZnO/C tetrahedron Calcination 110.7 518/300 [53]

ZnO/C Calcination 100 610/50 [54]
nanoparticles

ZnO/C spheres Coprecipitation 500 659/300 [55]

Zn0O/C-400 Thermal decomposition of ZnC;H¢O3 100 208/100 This work

ZnO/C-700 100 212/100

ZnO 100 98/100

@ Springer
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Interestingly, the comparison with the measurement
consistently at 100 mA g~' (Fig. 8) reveals that the
capacity fading seems to be more serious for elec-
trochemical cycling at lower rates accompanied with
higher Li* storage capacity. For ZnO/C-400, ZnO/C-
700 and bare ZnO which were continuously cycled at
100 mA g, charge capacities of only 68%, 67% and
54% were obtained in cycle 41 relative to cycle 10.
Higher degradation effects for a more comprehensive
dis-/charge process might be explained as a result of
more serious structural damages of the electrode
material. For comparison purposes, Li storage per-
formance of the as-prepared ZnO/C anodes and
those of ZnO and ZnO/C materials reported in lit-
erature are summarized in Table 2. The results show
that the cycling performance of ZnO/C composites
compared with bare ZnO is much better owing to
positive effects of carbon. The differences of the
specific capacities of ZnO/C composites produced by
various methods can be attributed to the morphol-
ogy, crystal size, specific surface area as well as
porosity which influence the electrochemical prop-
erties of the electrode materials. The lower electro-
chemical activity of the ZnO/C composites in this
work compared to most of ZnO materials in literature
can be explained by their morphological features and
carbon content in the compounds. The as-prepared
composites are composed of ZnO particles with rel-
atively large dimensions. Small-sized particles have a
large surface area, which provides more active sides
resulting in high specific dis-/charge capacities. The
good electrochemical performance of the electrodes
prepared by the thermal decomposition of the dif-
ferent organometallic complexes [22, 24, 25] can be
attributed to the distinctive carbon content in the
products.

Conclusions

In conclusion, a facile method to synthesize ZnO/C
composites, involving a thermal treatment of zinc
glycerolate as a source of both carbon and zinc, was
demonstrated. This one-pot method allows the syn-
thesis of a variety of controllable ZnO/C composites
with distinctive nano/microscaled arrays of ZnO
particles. When used as anode material for lithium-
ion batteries, the ZnO/C composite synthesized at a
calcination temperature of 700 °C achieves high ini-
tial discharge and charge capacities of 1061 and 671
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mAh g~! at a current rate of 100 mA g~'. As com-
pared to the bare ZnO, the composites exhibit sig-
nificantly better electrochemical properties, such as
higher specific capacities and superior cycling sta-
bility. The carbon acts as a conductive network that
runs through the material leading to the prevention
of inactive areas and thus to a higher electrochemical
activity. Ex-situ XRD studies confirm a two-step
mechanism for lithiation of ZnO including a con-
version and alloy process.
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