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Black-Hole-Laser-Instabilititen in Bose-Einstein Kondensaten:

Die vorliegenden Arbeit befasst sich mit der Realisierung von zu gravitativen Phéanome-
nen analogen Prozessen in Bose-Einstein-Kondensaten. Die Grundlage hierfiir bildet
die Realisierung des Ereignishorizonts eines Schwarzen Lochs mit Hilfe stufenartiger
Diskontinuititen der Parameter des Kondensats, speziell der FluBgeschwindigkeit des
Suprafluids. Solche Diskontinuitidten der Geschwindigkeit werden sowohl in einem
ein- wie auch einem zweikomponentigen Bose-Einstein Kondensat zu einer Black-Hole-
Laser-Konfiguration kombiniert, welche jeweils auf ihre linearen Anregungen hin unter-
sucht wird. In der fiir das Zweikomponentengas betrachteten Konfiguration wird ein
entgegengesetzt gerichteter Fluf in den beiden Komponenten angenommen, mit einer
die Schallgeschwindigkeit jeweils iibersteigenden FluBgeschwindigkeit. Durch Losen
der Bogoliubov-de Gennes-Gleichungen werden die stabilen sowie instabilen linearen
Anregungen des gekoppelten Systems auf dem Hintergrund eines zirkulédr geschlossenen
suprafluiden Flusses bestimmt und mit denen des einkomponentigen Black-Hole-Lasers
verglichen.

Black-Hole Laser Instabilities in Bose-Einstein Condensates:

In this thesis, a broad, generic and concise introduction to the field of Analogue Grav-
ity is developed. It is followed by a description of the simplest nontrivial example of
an analogue black hole with steplike discontinuities of the background parameters, a
configuration which is treated analytically, and a treatment of a one-component and a
two-component black-hole laser. For the subsequent analysis and results, the platform
of Bose Einstein Condensates (BECs) is used. Furthermore, the existence and char-
acteristics of a realistic configuration for subsequent experiments on Analogue Gravity
based on BEC:s is theoretically investigated, through the creation of a black hole laser for
two-component one-dimensional BECs. The specific configuration possesses a counter-
flow between the two superfluid components. A simplification of the generic model is
dealt with, consisting of steplike velocity profiles, through asymptotic analysis. For this
reason,the stability of the simpler one-component black-hole laser is first examined,by
taking into account linear quantum fluctuations from the Bogoliubov-de Gennes equa-
tions. Consequently,the theory of linear instabilities for BECs is thoroughly described
and then applied to both configurations in hand. The onset of complex modes is tracked,
thus concluding their linear instability.
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1 Introduction

"Black holes are like sharks. Elegant, simple, probably scary (more than what they de-
serve) and possibly lurking in deep, dark places all around us", as Joshua Sokol once
phrased in the Quanta Magazine in 2020 [1]. Black holes fascinated and revolutionized
physics from the very first moment. Their nature remained hidden and has proven harder
to understand than most of the concepts that General Relativity has given birth to. Their
existence provides a fundamental test-field of strong gravitational fields, beyond the point
of Newtonian approximations. They are encountered in astrophysics and stellar-evolution
physics, but also in a variety of different fields [2]. Their very blackness makes it hard to
estimate their number or their size. In the framework of General Relativity, black holes
can naturally emerge as the last stage of the stellar evolution for supermassive stars, as the
core of galaxies, etc. After the observation of gravitational waves, the arguments against
their existence have nearly completely disappeared. Black holes are also valuable in the
insight that can provide onto the connection between Quantum Physics and gravity. The
field of Quantum Field Theory of Curved Spacetime has flourished parallel to black hole
physics [3, 4]. When we describe them quantum-field theoretically, we find that black
holes behave as real objects with a non-zero temperature and entropy: they behave like
black bodies. Due to the attribution of a temperature, thermodynamics do not just emerge
accidentally but black holes follow, not just formally,thermodynamic laws. Black holes
fall into a crossroad where thermodynamics, Quantum Physics and General Relativity ap-
proach each other. They constitute one of the best tools for the description of a possible
theory of Quantum Gravity, a theory that could harmonically merge Quantum Physics and
General Relativity into one entity, one "theory of everything’ [5-8].

Although the concept of black holes emerged in the second half of the twentieth cen-
tury, originally found in David Finkelstein’s writings in 1958 [9], the arguments behind its
existence where known to Newtonian physicists, like Mitchell or Laplace, much earlier.
Newtonian dynamics do not treat the effects of gravity on light. However, we can find a
prototypical measure of their interaction, if it really exists. Light is characterized by its
speed, c¢. The obvious measure would be the escape velocity from an object of mass M
and radius R, v, = (% 1/2. In this case, if the speed of light was ¢ < |V,|, a distant

observer would be unable to detect any light source. Equally well, this bound can be

3/2 . .
expressed as M ~ (%) p~ 12, where spherical symmetry was assumed. Before the dis-

covery of white dwarfs and the revolutionization of the physical understanding brought by
General Relativity, the densest matter had approximately p = 5000 kgm > and the smallest
object having this normal density would have a mass of

1/2
M, ~ 108 (’%) M., (1.1)



where M., corresponds to the solar mass. The mass M,, being much greater than any
other known star’s mass, would be invisible from any observer.

However, in the twentieth century, the discovery of heavy matter of orders 10° —
10" kg m™ and the unambiguous description of the interaction of light with gravity
changed the Newtonian picture. The existence of such heavy and high density stellar
objects made the concept of black holes feasible. The formulation of General Relativity
made black holes, at least crudely, describable. Indeed, the theory of General Relativity
predicted the existence of supermassive astrophysical objects that would deform space-
time.

Black holes are regarded as objects in a region of spacetime where gravity is so strong
that nothing can escape from it. Primarily, spacetime can have a black hole, if it can be
divided into two mutually exclusive and exhaustive regions, the interior and the exterior
of the black hole. The exterior of the black hole being the region of spacetime causally
connected with a region infinitely far away from the interior of the black hole and the
interior as the region of spacetime from where nothing, not even in principle, can escape,
regardless of how long it tries. The boundary of the region from which no escape is possi-
ble is defined as the event horizon. Even if the event horizon is of utmost significance for
the black hole, General Relativity does not provide it with any locally detectable features
[5,7,8, 10].

It is important to note that the development of General Relativity did not alter the
relation that was earlier found between mass and density in Newtonian gravity. It does
however alter its conceptual consequences. Now, the density characterizes the black hole
itself. Furthermore the black hole’s mass has collapsed into a singularity; it does not
possess a material limit-surface (see Figure 1.1). This is now being played by the event
horizon.

In the eighties, Hawking came to some remarkable conclusions regarding black holes
[11, 12]. He stated that, when quantum effects are taken into account, black holes should
emit blackbody radiation. Following Hawking’s analysis and the attribution of thermo-
dynamic properties to black holes, we can define a temperature, which was found to be
inversely proportional with the black hole’s mass [5, 13],

T = ik hc?
B one T 8aGM’

(1.2)

In astrophysics, this amazing result of Hawking, in which an unprecedented exhibition of
physical constants from otherwise disparate areas of physics, like Quantum Mechanics,
Relativity and Thermodynamics, coexist is encountered, has few practical significance
with regard to nowadays experimental infrastructure. For a solar-mass black hole, Hawk-
ing’s equation, Equation 1.2, gives a temperature six orders of magnitude smaller than
the Cosmic Microwave Background, meaning that the existence of black holes would be
hidden from human detection for many more years to come, unless a different and indirect
method is found. Otherwise, we would need to find "micro’ black holes that have possibly
formed in the early stages of universe, which would be good candidates for the detection
of Hawking radiation. However, they have not been found until now, if they exist.



Hawking
radiation

Figure 1.1: An illustration of the emission of Hawking radiation from a black hole.

From a more philosophical point of view, the treatment of black holes as being eternal
or global objects or perfect absorbers needs to be used with care, as we nowadays accept
the semiclassical picture of black holes evaporating as they emit Hawking radiation [11,
12]. Hawking’s work initialized a merging’ of the fields of Gravity, Quantum Theory
and Thermodynamics. However, this "merging’ is not quite true as General Relativity and
Quantum Theory are in conceptual and physical tension in a variety of aspects with each
other. Even now, it is far from clear what it means to attribute thermodynamic properties
to black holes or even the necessity of this attribution. The problem is even amplified
when one realizes that black holes themselves suffer from necessity [14].

Analogue Models of Gravity could possibly give an answer to some of these problems
[13, 15]. These models attempt to describe gravitational effects through the use of other
physical systems, like acoustics in a moving fluid or Bose-Einstein Condensates (BECs)
[13, 16-20]. Physical phenomena studied in an analogue model could otherwise be hidden
into the complexity of real world and, thus, their nature would be hidden from human
detection and study. As a result, analogue models open a new world of "artificial” systems
where we can model real world gravitational phenomena and extract useful information
in our quest of exploring universe. After many years of intense research, last decade has
also shown the first experimental realizations of Analogue Gravity models based on BECs
[21-25].

There is indeed another area where analogue models could possibly help with the expla-
nation of Hawking radiation. In astrophysics, a black hole could be the last evolutionary



stage after the collapse of a star. Those quantum vacuum modes which are incident from
infinity, propagate through the collapsing spacetime and go again towards infinity, as they
experience a gravitational redshift because of the gravitational collapse. The modes of the
quantum vacuum which just managed to escape from the black hole are responsible for
the steady thermal flux seen at late times. These modes are slowed down and redshifted
to greater and greater scales. Any low-frequency mode can be traced back to those modes
with ever-increasing frequency, but these frequencies can easily exceed the Planck scale.
In these scales, Quantum Field Theory is not justified, but Hawking radiation seems to be
dependent crucially on these frequencies in order to generate the low-frequency late-time
modes [26-28].

What can analogue models say about this Transplanckian problem? An analogue model
with an artificial event horizon is subject to the same restrictions as the astrophysical one,
but analogue models with dispersion can avoid it. The behaviour of waves in different
scales i1s now governed by dispersion. The mechanisms that now describe the system
are much better understood than the Quantum Theory of Gravity that would describe the
Transplanckian frequencies. Analogue models are also predicted with the same temper-
ature as the astrophysical ones. As a result, it is obvious that analogue models provide a
very nice platform where problems of different nature can be tackled, being based on the
restless nature of the quantum vacuum instead of gravitation. Regarding the Transplanck-
ian problem, analogue models with dispersion conclude that Hawking radiation exists
independently of the high frequency regime, something clearly in favour of the existence
of Hawking radiation [29, 30].

Initially, the field of Analogue Gravity focused on improving our understanding of
Quantum Gravity applications. After years of enormous progress, it has evolved as an
autonomous field. In this process, Analogue-Gravity techniques have been used in con-
densed matter or optical systems, but generally in many more fields in different contexts,
shining new light on a variety of questions, improving our understanding of Gravity but
also of the test-fields themselves. The initial motivation for having a test-field where ques-
tions regarding Quantum Gravity will be tested remains, but other directions of research
have flourished as well. Analogue Gravity initiated a quest for the detection of Hawk-
ing radiation in analogue systems; this time, however, in a context very different to the
original. The description of Hawking radiation and its implications in ultracold bosonic
systems, a well-established field by now, will be the topic of research for the rest of this
work.

The description of analogue effects in gravity will be first introduced through the ex-
ample of the wave equation without dispersion [26]. This will be the topic of Chapter 2,
together with a general introduction to the terminology used in the field. Quantum Field
Theory for moving media can generally provide the bosonic nature for the quantization
of the field in presence of a moving background [3, 4]. Different representations can be
used for dealing with problems of varying background parameters across the analogue
event horizon [20, 31]. The steplike or flat profile, where the background velocity and the
speed of sound change across the horizon abruptly through ’steps’, will be mainly used,
as it stands out for its simplicity and accuracy [32, 33]. Then, the link with Unruh and
Hawking effects will be provided, based on a more kinematic viewpoint.



Analogue gravity models are deeply connected to the specific model where the im-
plementation takes place. As a result, a widely-used, thoroughly described, easily imple-
mented and highly controllable system needs to be used for better results. BECs constitute
one of these systems [34, 35]. From their first experimental realization, BECs have rev-
olutionized ultracold physics contributing to the second Quantum Revolution [36]. What
about trying to combine BECs with gravity, two otherwise quite successfully explained
fields in order to deal with their remaining conceptual and practical problems? This will
be the topic of Chapter 3.

In next chapters, systems based on BECs where the speed of sound crosses twice the
velocity of the background flow, forming a supersonic region of finite length, called black-
hole laser will be described [37—40]. Having in mind their description, the general theory
of instabilities in BECs will be exposed in Chapter 5. Then, the description of the lasing
effect of the black-hole laser will smoothly follow in Chapter 4. The emergence of the las-
ing effect for background velocity profiles that crosses twice the speed of sound indicates
the linear instability of the black-hole laser, as described by the Bogoliubov-de Gennes
equations. Black-hole lasers will be analysed in stages, giving first a brief classical de-
scription of the lasing effect, before describing it with the inclusion of quantum effects in
a semiclassical approximation. The treatment of modes describing instabilities through
the Bogoliubov-de Gennes equations for the quantum fluctuations of the respective Gross-
Pitaevskii equations will be gradually and thoroughly exposed in order to contain the most
general framework.

Chapter 6 will be concerned with an introductory analysis for the constituent regions
of the black-hole laser emerging from a two-component Rabi-coupled BEC. The Rabi-
coupled condensates will be initially described in detail for no background velocity. This
analysis will be useful for the numerical results of Chapter 7, as the outer regions of
the black-hole laser from the general countersuperflow of two-component Rabi-coupled
BECs will be treated through an asymptotic analysis. Note that the supersonic cavity
for the two-component BEC system will assume no Rabi or intraspecies coupling, in a
first, simplified picture. Although the most general configuration will be deduced and
explained, only the asymptotic modes for steplike velocity profiles will be analysed. Fi-
nally, we will discuss the instability properties of the black-hole laser formed from this
two-component model.

In conclusion, a general summary and further perspectives for study regarding black-
hole lasers will be given in Chapter 8.

10



2 An Introduction to Analogue Gravity

A spherically symmetric vacuum solution of Einstein’s equations is determined by one
essential constant, the mass M, and is described by the Schwarzschild metric,

-1
ds? = (1 - E)CQ dr - (1 - r—S) dr? — P de?, 2.1)
r r

where dw? = d6? + sin* §d¢? is the angular line element, ¢5 the Schwarzschild time and
rs = 2GM]/c? the Schwarzschild radius. The corresponding Schwarzschild metric is
asymptotically flat. Near infinity, this metric can be approximated by the linearised grav-
ity solution with the Newtonian potential ¢ = —M/r. This allows one to conclude that
the mass, M, is the mass of the gravitating object. The Schwarzschild metric describes
the spacetime exterior of a star or planet with slow rotation, as well as, more generally,
every spacetime of spherically distributed static matter with radial motion, thus preserv-
ing spherical symmetry. According to Birkhoff’s theorem, the external metric does not
depend on such motion [5, 8]. As rg/r — 0, the Schwarzschild metric approaches the flat
Minkowski metric, so the coordinates (s, r, 8, ¢) correspond to the usual spherical coor-
dinates of flat spacetime for an observer at infinity. Indeed, the metric equation, Equation
2.1, contains two singularities, one at r = 0 and another at r = rg. At the centre of the
black hole, at r = 0, the curvature is infinite. Near this singularity, the tidal forces grow
infinitely (physical singularity) and cannot be removed by any coordinate transformation.
In contrast, the singularity on the surface r = rg gives a vanishing Killing vector. Outside
the surface r = rg, the coordinate ¢ is the timelike coordinate. Inside the Schwarzschild
radius, we observe that 7 and r interchange their character; r becomes the timelike coor-
dinate and ¢ the spacelike one. The null surface r = rg separating the exterior from the
interior of the star (or the black hole) is, in fact, a regular surface of the spacetime man-
ifold. This can be tested by calculating curvature invariants and, in Painlevé-Gullstrand
coordinates, it can be seen that it indeed vanishes [5-8]. By defining a new time coordi-

nate
p
/E -1

f=15 42 PRI (I SR | 2.2)

c

the Schwarzschild-metric equation, Equation (2.1), can be transformed into

2
ds? = 2 di? — (dr L /r—scdt) — 2 dw?. 2.3)
r

In these coordinates, (¢, r, 6, ¢), the metric possesses no singularity at r = rg.

11



Returning to the Schwarzschild metric, by approximating to the near horizon region,
one can arrive to a Rindler metric. This has some clear consequences. It means that a
particle or light ray falling into the black hole needs only a finite proper time to reach the
event horizon, while the time 7y measured by an external observer for the same process
would be infinite. Lastly, a distant observer would detect a redshift for the free falling
observer analogous to e, with the infinite redshift surface being the event horizon. It
can be seen that the spacetime, described in the Schwarzschild coordinates, is geodesi-
cally incomplete, as there exists a continuation of the geometry beyond the Schwarzschild
horizon. A black hole interior is a mysterious region of the Schwarzschild spacetime from
where nothing can escape, unless there is a mechanism for causality violation. However,
the interior of the black hole does not affect classical calculations conducted in its exterior.

In order to explicitly view the behaviour of light trajectories and how they are affected
by the two different metrics previously defined, consider only radial curves for simplicity.
This will lead to

1 -1
ds2:0:>—:i—(1——) , (2.4)
C

meaning that light behaves as it does in flat spacetime. Far from the Schwarzschild radius,
it behaves as

dtg 1
— =+, 2.5
dr +c (2:5)

It can be seen that, as the Schwarzschild radius is approached, light travels progres-
sively slower, approaching the horizon at an infinite time #5. Now, considering the Painlevé-
Gullstrand metric and by focusing once more on only the radial trajectories, equation

dr rs
— _ 2.6
dr ¢ r (2.6)
is obtained. Then, the metric becomes

2 _ 24p2 2
ds® =c"dt” — ds;,,,

2.7)

As a result, these trajectories are geodesics and ¢ measures proper time. This geometry

could equally describe an inwards fluid flow with velocity —c \/g that tends to converge

to the point r = 0. This represents the comoving frame of the fluid. At the Schwarzschild
radius, the fluid flows inwards with speed ¢. Anything that falls beneath this radius, is
being dragged by the black hole towards r = 0. By briefly discussing the radial curves,

g = il (1 F r_S) , (28)

it can be inferred from the velocity of the propagation on top of the ’fluid’ that light can
propagate in two distinctive ways; with the fluid (negative and positive signs, respectively)

12
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or against it. This velocity of propagation is ¥c—c /=, consisting of the sum (difference)

of the light’s and fluid’s velocity. Trajectories with velocity —c — ¢ \/g are regular as they

travel across the horizon with increasing velocity as they reach smaller radii. However,
light rays that are propagating against the fluid are not regular at the horizon, meaning
that rays with positive total velocity will escape to infinity and rays with negative velocity
will be dragged by the fluid towards r = 0.

This analogy with a moving medium forms the basic concept of Analogue Gravity
[13]. As aresult, it is obviously needed to reformulate the corresponding metric, in order
to be able to express all analogue models that are using general velocity profiles, V(x).
Furthermore, 1 + 1 dimensional space will be considered from now on and all the results
will be formulated in this setting.

The metric for general moving media is

ds* = ?d* — (dx — V(x)dr)*. (2.9)

It is of fundamental importance to stress that in the analysis above, ¢ indicated the speed
of light, but this restriction does not apply from this point onwards. Thus, the velocity
¢ will now indicate any velocity with respect to the medium. The comoving frame will
then be the frame in which the wave speed is exactly ¢ (medium at rest). The coordinates
x and t will indicate the lab frame. Thus far, a discussion of the Schwarzschild metric
had been pursued and, in the process, an analogy for the description of other moving
media of generic background (not relativistic in any sense) was found. The metric for a
moving medium with respect to the relativistic case was found as well and, in order to
fully relate the new analogue system with the relativistic one, an analogue version of the
black hole itself needs to be found. As a result, one can, for clarity reasons, speak of a
waterfall configuration [26, 41]. The speed of the flow will increase with the direction of
travel, something that is indicated in Figure 2.1. At some point, the observers (the fish in
this framework) moving with maximum speed, ¢, will not be able to propagate any more
against the fluid, giving rise to the concept of the analogue black hole. All fish that pass
this point, the analogue event horizon, will be dragged towards the interior of the analogue
black hole, without any chance of escaping, irrespective of how much or how long they
try. In analogue models of gravity, there is no problem in defining the time-symmetric
version of an analogue black hole, the analogue white hole, without any reference to its
questionable gravitational existence. One can again consider the waterfall configuration,
but now with the water flowing from the waterfall. Water flows very fast for the fish to
be able to swim against the flow, but as the flow becomes progressively slower, fish will
be able to propagate against the water flow at some point, which again indicates the event
horizon. Previously, fish could not escape from the analogue black hole. Now, they cannot
enter the analogue white hole. As it can be seen, the analogue white hole forms the time
reversed version of the analogue black hole. This can be indicated by a change of sign in
Equation 2.9, as V — -V [26, 42].

For the astrophysical situation, white holes are of limited use. They are encoded into
the solutions of Schwarzschild metric, but are valid for ty — —oco. However, in analogue

13



Figure 2.1: Illustration of an analogue black hole in an analogue spacetime [43]. A river

(the moving frame) and the fish (the observers) can equally play the role of
the moving particles in the vicinity of a gravitational black hole. The sub-
sonic region is upstream and the supersonic downstream. Fish are dragged
towards the waterfall (horizon) and the supersonic region. Everything enters
the supersonic region (the interior of the black hole).

Faster water

Event
horizon

Figure 2.2: Illustration of the analogue white hole in an analogue spacetime [44]. In this

14

case, the supersonic region is upstream and the subsonic downstream. The
analogue black and white holes are symmetric with respect to the change in
sign of the velocity of the moving frame. Fish cannot enter the analogue white
hole, irrespective of how much or how long they try.



models there is no restriction in obtaining, using or interpreting them. More complex
situations can form as well, where two event horizons are formed into a system, the black-
hole laser [37, 38]. Most of the analysis in the rest of this work will be concerned with
black-hole laser configuration (see Chapters 5-7).

2.1 A role model. The wave equation

In this section, the basic concepts of Quantum Field Theory in Curved Spacetime will be
introduced, with an emphasis on analogue models. The prototypical example explored is
the massless scalar field. This section takes its inspiration from [20, 26, 31].

Starting from the action formulation for the massless scalar field, one can define the
action

S = f f dxdtL(¢,¢",0:4,0,¢9", 0., 0.¢") (2.10)
with
1
L= 5 \=3¢"0,0°0,0, 2.11)

where the Lagrangian of flat space has been expressed in covariant form. The metric
tensor, g,,, is used, with a determinant g. Then, Euler-Lagrange equations

oL 0 oL 0 oL
a¢*  or (6(6@*)) ~ ox (6(6@*)) =0 (12

give, for the Lagrangian density
1
L= (1@ + V) o - ¢ 10:0F). (2.13)
c
the following dispersionless wave equation:

(0, + 0,V) (0, + Vi) ¢ — *0*p = 0. (2.14)

It is obvious that partial derivatives are considered as operators, acting on everything to
their right.

Attempting to transform the solution of the wave equation into a form which will be
useful for our subsequent analysis in analogue gravity phenomenology, one can define the
new fields:

X dx’

u=t-— f m (215)
X dx’

vV=1+ f T(_x’) (216)
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These fields transform the metric equation, Equation 2.9, into

ds? = (¢ = V2(x)) dudv, (2.17)
which results to the transformed wave equation

3.0,¢ = 0. (2.18)

The wave equation, Equation 2.18, is now in a form which has the solution

X dx/ X dx/
¢ = ¢u(u) + ¢u(v) = ¢, (t - f m) + ¢, (l + f m) . (2.19)

In order to specify the model, one can assume that V < 0. Then, ¢, is right-moving,
counterpropagating to the background flow, and ¢, is propagating with the fluid. If it is
assumed that the spacetime possesses a horizon, then it is necessary that V = —c. As a
result, the u-mode diverges at the horizon, while the v-mode is defined in the infinite space.
The important concept here is that the u-mode does not cover both the interior and the
exterior of the black hole. Thus another u-mode needs to be introduced, in order to cover
the other half of spacetime left uncovered. The v-mode does not have any divergence and,
as a result, needs no new inclusion. The u-mode can come arbitrarily close to the horizon
but cannot cross it. One can equally well use the concept of a wavepacket which can
propagate in only one half of the spacetime and approach the horizon after infinite time.
Now, suppose that a wavepacket is formed close to the horizon and starts to propagate
further away. In the asymptotic future, the wavepacket will pick up speed and move further
away from the horizon. In the asymptotic past, however, the wavepacket approaches as
close as possible to the horizon. Each wavepacket has its own trajectory and, as electric
or magnetic field lines, different wavepacket trajectories cannot cross each other. Many
wavepackets which appear far away from each other in the asymptotic future will come
closer to each other as the time of their formation is approached in the asymptotic past.
Equally, lines of constant u bunch together as they approach the horizon in the asymptotic
past. Note that the Transplanckian problem states this exact conclusion; that as we trace
back the wavepackets, they should have originated from arbitrarily close to the horizon.

Summing up, he existence of the horizon has, until now, lead to the definition of two
u-modes, the u, and the u; mode, across the horizon. Equally well, the existence of a
horizon gives rise to one subsonic and one supersonic region, meaning a region where
|V| < ¢ and one with |V| > c.

Moving on to the description of the modes of the system, it can be seen that, as the
Lagrangian 2.13 is translationally invariant, the existence of stationary modes (energy
eigenstates)

Pt x) = €', (x) (2.20)

is guaranteed. Making use of the coordinates 2.15-2.16, the solution of the wave equation
can be expressed in the form

$o(x) = Cuel @@ 1 Cre @l F@ = Cugt (x) + C,8 (%) 2.21)
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and, if there is a spacetime possessing a horizon,
iw fx _de
Pu(x) = Cy e 2 VO O(x — Xxp)

. X dx . X dx!
w R T7avAY - v
+ Cu]e fxl c+V(x') ®(XH _ x) + Cve lwf c=V(x')

=Ci, ¢ ()O(x = xp) + Cyy 5 (N)O(xy — x) + Cupy,(X). (2.22)

In this process, the Heaviside step function has been used, in order to distinguish between
the interior and the exterior of the black hole. In both definitions of the field, one can
discern the modes that propagate with the fluid and those that propagate against it; the
u-modes constitute the counterpropagating modes (with u, the counterpropagating mode
in the subsonic right region and u; the counterpropagating mode in the supersonic left
region, respectively) and the v-modes constitute the copropagating modes in the whole
spacetime.
The wavevectors of these solutions can now be defined as

w

K (x) = Ve (2.23)
In this way, the mode solution becomes

¢ (x) = ¢ [raxr o) (2.24)
and the dispersion relation can found to be

W, = (w - Vk)? = 2, (2.25)

where it has been used that, due to the Doppler shift, the wavefrequency in the comoving
frame is related with the wavefrequency in the laboratory frame via this simple form. The
decomposition of the modes will give the dispersion profiles

kK f -mod
Wy = w—Vk = or wmodes (2.26)
—ck for v-modes

This equation indicates that the comoving frequency is related with the lab-frame’s fre-
quency and with the dispersion relation itself. As a result, it can be used for the graphical
solution of the dispersion diagrams, as shown in Figures 2.3 and 2.4.

Furthermore, the Lagrangian 2.13 is invariant under phase rotations, thus giving another
conserved quantity, the scalar product. This can now be defined as

(P1.¢2) =i f dx (7 (9, + VIy) ¢2 — $2((9, + VI,) 1) (2.27)
= if dx (¢pimy — ¢omt}) s (2.28)
with the conjugate momentum’
oL
= 70 =(0,+V0,)¢. (2.29)
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Figure 2.3: Dispersion relation in the comoving frame. The blue and orange dotted lines

18

represent the negative-norm branches. This dispersion profile can be divided
into the positive u- and v- and the negative u- and v- branches, consisting
of these four sectors in total. The black line crossing the dispersion relation
corresponds to the relation w,,, = w — Vk for a given laboratory frequency, w.
The point of intersection of this equation with the dispersion profile gives the
values of the wavevectors for the given energy. The only slope which gives no
intersection point is for V = —c, or differently, when the intersection points has
moved to infinity. This precisely indicates the existence of the Transplanckian
problem. For the v-branch, the existence of the Transplanckian problem can
again be inferred when the intersection point moves to infinity.



k,~mode
positive norm k,-mode

positive norm

-~ k,~mode
negative norm k,-mode
negative norm

Figure 2.4: Dispersion relation in the laboratory frame. The blue and orange dotted lines
represent the negative-norm branches. Now, the two branches of «# and v char-
acter are not symmetric. This time, the Transplanckian problem can be visu-
alized as follows: when V = —c the frequency of the u-branch, for example,
will be a line parallel to the constant w solution. As a result, there will be no
k-solution as before. The same reasoning holds for the v-branch as well.

From the definition of the scalar product, one can further define the scalar product of
a field with itself, its norm. For the subsequent analysis, it is crucial to mention that the
scalar product defined in Equation 2.27 is not positive definite, seen from the relation

(67, 03) = = (d1. )" (2.30)

This means that if ¢ solves the real wave equation with positive norm, then ¢* solves it as
well, but with negative norm.

2.1.1 Different field decompositions: The k- and
w-representations

Both the k- and the w-representations serve well for the decomposition of the field into
components in the process of its quantization [20, 26, 31]. The k-representation takes into
account the special case (which is not so special after all), where k is a conserved quantity.
This happens to be the case in spacetimes with background velocity V constant in space.
Then, the Lagrangian will be invariant under spatial translations and the constancy of
the wavevector will follow as well. States of constant wavevector, k, are momentum
eigenstates. By assuming constant background velocity, there is no horizon formed in the
spacetime and no splitting of the u-mode occurs.

'Note that this scalar product is sensible only for complex fields. Nevertheless, even real fields can be
decomposed into complex components that will respectively obey this scalar product rule.
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By investigating the scalar product of the two modes in this setting, one obtains

( glthi=e' ei(kzx—wu(kz)l)) = dxck,6(k; — ko) (2.31)
( githx=w' (k. ei(kzx—w“(kz)z)) = —dnck,5(k, — ky) (2.32)
( githx—w' k), ei(kzx—w"(kz)l)) —0. (2.33)

In this process, the key relation used is that, when acting on a stationary mode, the oper-
ator 0, + V4, becomes (0, + Vo,) = —iw,, = Fick, where the F sign refers to the u- and
v- modes, respectively.

From this result, the first conclusion can be inferred: plane waves of different nature
are mutually orthogonal and the sign of their norm is equal to the sign of their comoving
frequency. Thus, the dispersion profile can be decomposed as

0o = @ Vi = |ck] for positi've-norm modes - (2.34)
—|ck| for negative-norm modes

Until now, two different classifications for the modes have been used. Regarding the
norm, positive and negative-norm branches can be distinguished. Furthermore, modes
can be described as copropagating (the v-branch) or counterpropagating to the fluid flow
(the u-branch). These two classifications can be combined (see Figures 2.3 and 2.4), into
one classification scheme

Ver>0
e k>0, ck>0means k >0, ¢ >0 — positive u-mode

Vor>0 .
e k<0,ck<Omeansk <0, ¢c>0— negative u-mode

Vor<0 .
e k>0,ck<Omeansk>0,c<0 BN positive v-mode

Ver<0 .
e k<0, ck>0means k <0, c <0 —— negative v-mode,

where V,, = ‘:1—‘];’ is the group velocity, defined as the tangent of the dispersion profile in
any specific point.

As a result, the sign of the wavevector defines the direction of travel on top of the
fluid (comoving frame) for positive-norm modes, while the opposite is true for negative-
norm modes. From the inner product equations, Equations 2.32, the orthonormal k-basis,

normalized to +6(k — k"), can be defined as

¢i(x,1) = e/ F N = gt(x)e i P! (2.35)

Var |ck|

1 . , -
¢lt<’(x’ Z) — el(kx—w (k)t) = ¢,Z(x)e_"” (k)t (236)

VA |ck|
with (k) = (V + ¢) k.
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Proceeding by using Fourier analysis and decomposing the total field into positive (first
terms in the integrals) and negative-norm modes (complex conjugated terms in the inte-
grals), one obtains:

d(x, 1) = f oodk (Oz”(k)qﬁZ( e O 4 0 (k) (x) e—iw“(k)t)

(o)

0
= f dk (" () (e O + @™ (kg (x)e™ ")

(o)

+ f mdk(a“(k)fp,z(x)e—"w”(k)f+a“*(k)¢,z*(x)efw“<k)f) (2.37)
0

with orthonormality conditions

a'(k) = (¢ 9), (2.38)
a'(k) = (¢, 9), (2.39)
(k) =—-(¢.9), (2.40)
a”(k) =—(¢;". ). (2.41)

The quantization procedure further assumes that the generally complex-valued functions
o (k) are promoted to operators>. As a result, with the real-valued field, ¢ — ¢, the field
equation, Equation 2.37, can be quantized as

0
&(X, t) = f dk (&V(k)¢2(x)e—iw"(k)t + &,V"i'(k)(pz*(x)eiw"(k)t)
i f (@ W0 6 o (e ), (2.42)
0

Now that the crucial step of quantizing the field is complete, the process can be continued
in order to find the field’s canonical momentum, the mode operators 2.41 and finally their
canonical commutation relations. Then, the conjugate momentum is

0
a(x, 1) = f dk (&V(k)ﬂZ( x)e o 4 &VT(]()TI'Z* (x) eiw"(k)t)

[Se]

+00
+ f dk (& (k)i (x)e ™" O + & Ry (x)e’" ") (2.43)
0

and the mode operators can be found to be

AUl
@

i f " dx (64 (e P(x, 1) - " (x)e™ @' (x, 1)) (2.44)

AV
@

i f dx ()" (0)e™ P (x, 1) — 7 ()™ P (x, 1)) (2.45)

2In the previous analysis, the coefficients of the complex-conjugate modes have been written as complex-
conjugated as well, in order to preserve the real character of the total field
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@f—4j‘m@ﬂmwmwmo—#mfwwﬂxm (2.46)

(%)

& = —i f dx (Sie™ P a(x, 1) = my(x)e™ P d(x, 1) (2.47)

o0

with commutation relations

|, 0,20, )] = i6(x - ) (2.48)
|(x.0.8(x'. 0] =0 (2.49)
a(x, ), wa(x', 1) = 0. (2.50)
| |

These commutation relations can be used to find the respective commutation relations
Au AUt Ay avt

for the mode operators, &}, @, ,&,,a, . By using simple algebra, the desired result is
achieved,

k’

oy, | = [ar. &) | = otk - k), (2.51)

where all other commutators vanish.

The meaning of these results is of paramount importance. The procedure followed in-
dicates that the mode operators a7, &ZT, @, &ZT are of bosonic nature. Operators of positive
norm correspond to annihilation operators and operators of negative norm to creation ones
in a generalization of quantum-field-theoretic techniques in flat space [3, 4, 45]. As a re-
sult, the sign of the norm determines, not only the sign of the frequency in the comoving
frame, but also the nature of the bosonic operators.

Now that the nature of the modes has been found and the quantization of the field in
the k-representation has been explained, the w-representation and its relative differences
with the previous procedure will be presented.

Firstly, the k-representation is only valid for a constant background velocity profile, V.
In the presence of a spacetime with horizons, this representation is no longer applicable
if the velocity changes in different regions of space. However, there is one exception in
this rule that deals with steplike (or flat) velocity profiles. The k representation in that
case gives valid results as it corresponds to measurable quasiparticles at infinity. Now, for
the inhomogeneous velocity profiles, exact solutions will be given as sums over eigenfre-
quencies and these can be subsequently grouped into groups of equal frequency, w.

The resulting k-representation for a homogeneous flow is transformed into the w-
representation as

+00
p(x,1) = f dk (&) (x)e™ " + d g (x)e~ ")

(%)

_+oo
N f dow (&),6L(x)e”™ + aL gl (e ™), (2.52)
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where the following commutation relations

gt 01| = 6(w-w) 2.53)
o, &l | = 6 (w - o) (2.54)
|at, 2] = 6(w- o) (2.55)

are assumed.
With the use of the algebraic relations

dk
0(w—-w) = '—’ o6(k—k") (2.56)
dw
and
dw
dow = |—|dk, 2.57
@ dkl (257)

one obtains

o, = \/gd’ku(w) (2.58)
b = \/f Prow) (2.59)
&, = \/g () (2.60)
& = \/f B 2.61)

With these transformations, the desired mapping onto Equation 2.52 with the needed
commutation relations for the w-representation, Equation 2.58, is achieved. Indeed, the
new orthonormal basis will be
1 o .
¢ x, 1) = e/ KOO = g (x)e i (2.62)
47 ek @y (ke w))|

1 W .
oo (x,1) = ¢ C D = gr (x)e ™. (2.63)

\/47r |k () (k" (w))

It is stressed that these modes are again normalized as those in the k-representation to
+0(w — w’) depending on the sign of their norm.

Now that the field decomposition in the w-representation is found, we would like to
express it in terms of annihilation and creation operators for its quantization. In contrast
to the k-representation case, here the decomposition works differently; for w > 0, the
v-branch has always positive norm, but the u-branch has positive norm for the flow being
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subsonic and negative for the flow being supersonic. The u-part of the field is decomposed
as
oo AU U —iwt | AUT pux iwt
fo dw (aquw(x)e + @, ¢ (x)e ) for|V| < ¢

A

¢"(x,1) (2.64)

5 dw (@, (e + &g (e for V] > ¢

with the positive-norm modes represented by the first terms in both relations and the
negative-norm ones (their complex conjugates) following.

Until now, the quantized field has only partly transformed to the w-representation, as
only the homogeneous case in the w-representation was dealt with. The following analysis
will concern the general inhomogeneous analysis.

In the inhomogeneous case, there is a reference frame where the flow profile is time
independent, something that did not hold true for the homogeneous case. There, due to
the translational invariance we could shift between subsonic and supersonic flows, with no
mode mixing. Then, the definition of the modes in this non-uniform-velocity background
will be derived and the expression for the positive-norm u-modes will be written down

1 .

¢ r(x, 1) =0O(x) Z e (2.65)
TTCW
1

¢l (1) = ®(—x)4—e’”“’. (2.66)
TTCW

Modes with the same frequency can mix, meaning that linear combinations of the modes
of the form

(agt,, + 9%, 1 adl,, +Be",,)
= a' (@), . 4h,,) + B2, 65,)
B (¢, 0 00,,) +BB(8, 19,
= (lo” = 1B%) 6(w; — w)) (2.67)
can be constructed with |a|> — |B]*> = £1. Modes are normalized with positive or negative
norm, respectively. Lastly, these linear combinations are also orthogonal to any combi-
nation involving the modes ¢” , and ¢ .. As a result, any set of modes of this form

can be regarded as a complete and orthonormal set of positive or negative-norm modes,
depending on the assigned sign, with

Bt = X1 P + Bur (2.68)

Pur = w2, + Purde, (2.69)
and

|, ;> = |BuI” = 1. (2.70)
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Equation 2.68 gives infinite possibilities for linear combinations of modes. However,
the physically interesting ones reduce to the ingoing and the outgoing modes. Outgoing
modes can be defined from Equation 2.68 with ,, ; = 1 and 5, ; = 0. These modes can be
regarded as single outgoing wavepackets, indicating wavepackets that have formed at the
horizon and propagate to the right with frequency w, being excitations of the mode ¢, ,,
or to the left with frequency —w, being excitations of the ¢" ;. These modes propagate
towards infinity in the asymptotic future. Equally we can define the ingoing modes, as
those wavepackets of ingoing character in the asymptotic past. The modes ¢, are defi-
nitely of ingoing character in the asymptotic past, but u-modes are always outgoing. Is it
possible that u-modes be defined with ingoing character? There are two ways of resolving
this problem. The simplest one is to consider a black hole from the earliest stage in each
evolution [46]. Before the formation of the black hole, u-modes can be of ingoing charac-
ter. There is no point where these u-modes can diverge, as it happens across the horizon,
before the black hole’s formation. Furthermore, the sign of the wavevector of each mode
can never change and, thus, positive-norm modes are made up of positive wavevectors
and similarly for the negative-norm ones. After the evolution of the initial ingoing modes
through the different stages of the history of the black hole, we are only interested in their
final form, as the intermediate stages will not alter states in later times. As discussed in
Appendix B and in [47-49], the relation between « and S coeflicients of Equation 2.68
can be inferred. They can be normalized and written as a sum of the form

e — (€% gisom + &3 g0") 2.71)
2 sinh (%‘")

_
\/2sinh (22)

where the modes ¢ and ¢""/ are those defined in Equation 2.65. Negative-norm modes

w,r

o = (€% go + o3 grion), (2.72)

can be formed by taking the complex conjugate of the modes ¢""", % and ¢l

Let us now give a kinematic description of the nature of i mgomg modes and, subse-
quently, of the Hawking effect. How can the appearance of stationary ingoing modes, like
in Equation 2.71, be described in a spacetime with a horizon? Modes that are located at
points far away from the horizon stay unaffected during its creation. The worst scenario
would mean that they possibly change their direction of travel, while their region becomes
from subsonic supersonic. Now what happens to those modes that originate exactly at the
point where the horizon appears? These modes, as shown in Equation 2.71, are expressed
with respect to outgoing modes and thus, at the moment of the creation of the black hole,
one outgoing mode will propagate in the interior of the black hole and the other in its
exterior, with direction towards infinity. These two pieces of the initial ingoing mode are
seemingly disconnected, but they are in fact strongly entangled.

The total field can be decomposed into modes in the ingoing or the outgoing basis as

é(t, x) = fo w (P2, x) + &I B (8, X) + QLGL(,x) + hc) (2.73)
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or
(1, x) = fo da (@E @10 (1, x) + G100 (1, X) + GLOL(LX) + he),  (274)

respectively, with h.c. denoting hermitian conjugates. From this equation it is now obvi-
ous that, in the presence of horizons, there is always some mode mixing in the description
of the quantized field; incoming and outgoing bases are inequivalent. In this conversion
process, incoming particles are converted into outgoing ones, following conservation of
energy and momentum. If all the wavepackets had the same norm and there was no mix-
ing of opposite norm wavepackets, then, if we decreased the rate of outgoing particles to
zero, the same would have happened for the ingoing ones. Now that we have mode mix-
ing, decreasing the ingoing modes does not necessarily mean that the rate of conversion
for outgoing modes will decrease as well. The only constraint that remains is the condi-
tion |a|?> — |8]* = 1. This relation is solely responsible for the mixing of modes, meaning
that annihilation and creation operators mix even in the absence of ingoing modes. This
means that the presence of ingoing modes is no more a prerequisite for the existence of
outgoing ones! This is the effect of spontaneous emission [26, 50].

Let us now define the vacuum state, which will be different for ingoing and outgoing
modes when mode mixing occurs. The vacuum state is the state where no excited modes
can ne encountered and it is an eigenstate of all annihilation operators,

al0y=0, Va. (2.75)

This state can be an in-vacuum or an out-vacuum state, according to the type of modes
used.
Finally, using Equations 2.71 and 2.73, the expressions for the mode operators,

1 Tw H —Tw I
AUout __ 5% Au,in O Ny inf
@, = (e 2@+ e a_w’l) (2.76)
. w
2 smh( ” )
A U, out 1 LCNTRY/] T A int
o), = — (e W@ ey, ), 2.77)

\[2sinh (%2)

can be found.

2.2 Unruh and Hawking Radiation

The Unruh effect deals with uniformly accelerating noninertial observers in Minkowski
spacetime, or equivalently said, with Quantum Field Theory in Rindler space. Rindler
space represents part of Minkowski space. Then, a uniformly accelerating particle in its
uniformly accelerating reference frame, in which it is at rest, undergoes hyperbolic motion
[4, 5, 51]. One can always choose a Rindler frame (rest frame, see figure 2.5) for an
observer’s noninertial uniformly accelerating trajectory, x*(7), where 7 is the proper time,
such that %, = —a?, where a is the proper acceleration and the dots denote derivatives
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Region Il AN
g N

Figure 2.5: Minkowski diagram with the Rindler chart. Regions I and IV correspond to
the right and left Rindler wedges and Regions II and III to the past future
Rindler wedges. Lines of constant & correspond to the trajectories of acceler-
ated (in Minkowski space) observers.

with respect to time. An example solution of this equation in a 1 + 1 dimensional space
would be

1
t = —sinh(art) (2.78)
a

1
x = —cosh(ar). (2.79)
a

The acceleration, «, is being treated here as a constant parameter. By taking the second
proper time derivatives of #(7) and x(7), this parametrization can be simply verified.

Furthermore, it can be seen that x*> — > = a% and that the particle indeed follows a
hyperbolic motion. The lines x = ¢ represent the horizon for our observer and the region
x <t is forbidden to the Rindler observer. The observers can lie in one of the 4 regions
of Minkowski spacetime, called wedges’, depending on the sign of their acceleration.
These 4 regions are disconnected with each other and observers in different regions cannot
communicate with each other. Now, Equations 2.78 and 2.79 can be transformed into the
right Ringler wedge coordinates, (17, £), as

1

t = — e sinh(an), (2.80)
a
1

x = — e% cosh(an). (2.81)
04

The metric in these coordinates becomes

ds? = 2 (di? — d&?), (2.82)
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which is independent of 1. Thus, a% is a Killing field. Analogously, one could have used a
set of coordinates for the left Rindler wedge by taking the opposite signs in the previous
calculation.

After a lengthy calculation, which can be viewed in Appendix B, it can be proven that
an observer in Rindler space sees a thermal distribution. One can equally say that this
observer is immersed in a thermal bath of particles. The thermal distribution will be of
the form (see Equation B.23)

1
2 _
|B| - e2nw/a-1 (283)
with a temperature (see Equation B.24),
h
kpT = -2 (2.84)
2nc

At this point, it is of interest to mention that, for a parametric amplifier, there indeed
exists a temperature of the same kind as above, but each amplified mode has a temperature
of its own. Here, the whole electromagnetic spectrum has the same temperature. The
temperature equation, Equation B.24, is universal and depends only on the acceleration
of the observer and on natural constants. It is incredibly small, as in order to achieve
room temperature, an acceleration of the order of 10>? times the gravitational acceleration
on Earth needs to be imposed. With this result, the derivation of the Unruh effect is
concluded, as the relation between accelerating observers and the number of particles
observed in Minkowski vacuum has been established. Thus, the Unruh effect is defined by
the fact that the usual vacuum state for Quantum Field Theory in Minkowski spacetime,
restricted to the right Rindler wedge, is a thermal state with 7 playing the role of time
and similarly for the left Rindler wedge [46, 52]. As a result, creation of radiation out of
‘nothing’ is not just a possibility, but a necessity in uniformly accelerating systems.

After obtaining the results concerning Unruh radiation, its interpretation can now be
explored. The major question concerns the nature of the quantum vacuum and how an
accelerated object emits thermal radiation. For this, one can consider an inertial frame of
empty Minkowski spacetime, where the accelerated observer seems to be emitting photon
pairs. In this inertial frame, the momenta of the photons are of opposite value, something
which is no longer true for the accelerating frame (Rindler frame), due to the Doppler
effect. The reason for the emitted radiation is the quantum friction that is produced due to
the momentum imbalance. This is an outstanding result, as the quantum friction obviously
depends only on the acceleration and not on the velocity. Another important application
of this effect deals with two accelerating observers having opposite accelerations. Be-
ing on conjugate Rindler wedges (in the positive and negative one, respectively), they
independently feel the Minkowski vacuum as thermal radiation. But the most astonish-
ing fact comes from the nature of the photons that the two accelerating observers detect;
they always find them correlated with each other. Apparent random events caused by the
quantum vacuum have been correlated across space, signalling their entanglement [50].
The two partner-photons that appear to be correlated are in two different Rindler wedges,
being separated by a horizon.
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Let us now move to the description of Hawking radiation in the simplest possible rel-
ativistic framework, the spherically symmetric black hole. In this approach, the black
hole’s spacetime will be described like a moving medium and a strict and heavy mathe-
matical formulation will be avoided. It is also important to notice that the derivation of
the Hawking effect does not rely on Einstein’s equations [11, 12]. It is a purely kine-
matic effect that was derived before the proliferation of Quantum Field Theory in Curved
Spacetime. It only requires the existence of a Lorentzian metric and a horizon. No more
details relevant to dynamical effects are necessary.

By conveying the kinematic nature of Hawking effect and by using Equation 2.76, one
obtains

<nu out> — <Om| Al out’r Al outlom> (2.85)

which after substitution from Equation 2.76,

(0 ! (e 2 Q! it 4 e R ’[") (e W @ A Lte g ’”*)|0m> (2.86)
/2 sinh (%) 2sinh (%)
becomes
z,wl o(w - w') (2.87)
ez _

with @ denoting the surface gravity. This form of thermal radiation is of a similar nature to
Unruh radiation with spectral flux density (meaning the number of quasiparticles emitted
per unit time per unit bandwidth) [26, 53, 54] found to be

0’N 1 1
dtdw 21 e _ 1’

(2.88)

As emphasized in the previous section, outgoing creation operators come into r — [ pairs,
signalling the strong correlation between the emitted particles on both sides of the horizon.
In next chapters, we will reformulate this results, in its Analogue-Gravity version; vacuum
excitations (quasiparticles) come into pairs, one is emitted in the subsonic and the other in
the supersonic regime. Furthermore, the number of quasiparticles emitted on both sides
is equal and the two regions are maximally entangled.
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3 Bose-Einstein Condensation and Analogue
Gravity

3.1 Bose-Einstein Condensates of dilute gases

Bose-Einstein Condensation (BEC), a phenomenon that was predicted by Einstein nearly
a century ago, was experimentally observed in 1995. Bose gases, when cooled down near
the absolute zero temperature, tend to condense to their ground state and form a new state
of matter. The major boost in the field of Bose gases happened after their experimental
realization. In the past twenty five years there has been an incredible increase in research
related to them. Novel phenomena and experimental infrastructure, as well as specific
techniques have improved, with new ones even being invented, in an unprecedented ex-
plosion of research related to cold gases [34, 35, 55].

In dealing with the weakly interacting Bose gas, one requires a description of the in-
teractions of bosons in low temperatures. In this case, the dynamics of the single particle
states are not going to fully define the general Hamiltonian problem. Their mean-field
description will be derived, meaning that their interactions are mediated by a classical
field with Gaussian fluctuations.

Consider normal-ordered bosonic field operators which interact via an instantaneous
two-body potential V (|x — y|), where x and y are the positions of the two bosons in the
spherically symmetric potential term. The Hamiltonian that describes the system then
reads

2

H:fdxciﬂ(x,t)(_v )é)(x,t)

2m
+ % f dx dx @' (x, N (y, HV (Ix — y|) Dy, HD(x, 1) 3.1)
with the bosonic commutation relation
|(x. 1), d' (x| = 6(x - x). (3.2)
The integrations are taking place in 3 spatial dimensions and the quartic interaction term
represents a density interaction term ~ n(x)V (|x — y|) n(y), giving their mutual interaction

energy contribution, with the factor of 1/2 introduced to avoid double-counting.
In mean-field, ® — @. In this case, the equation of motion would be

2
(ic')t + ZV_m — fdy V(x -y o (y, )d(y, t)) O(x,1) = 0. (3.3)
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This is a non-linear Schrodinger equation, which can be solved for a given potential and
initial and boundary conditions in any time and space domain. For a contact interaction
potential type, the time-evolution of the macroscopic wavefunction in response to some
excitation can be reduced to the Gross-Pitaevskii equation

L,V
10+ 5 = Vew - glox, I’ | d(x,1) =0, (3.4)
where g = m is the effective coupling constant of the contact interaction potential

Vix-x) = g6(3)(x x’), which is spherically symmetric (s-wave scattering). Also in-
cluded is the effect of an external potential, which is indispensable for systems in traps
(where ultracold Bose gases are usually produced and studied)'.

Returning to the operator problem, the total particle number conservation is now taken
into account in the Hamiltonian formulation. Concurrently, moving to the momentum
space using a Fourier transform gives?

1 N ,
ax = — f dx O(x, r)e™™ (3.5)
Vv
Vi = f dx e**V(x). (3.6)
The Hamiltonian, after some algebraic manipulations, becomes
K=H-uN = Z (& — )akak + Z ak qALJqu Qe (3.7)
k K.q

where ' = u—V(0) and V denotes the volume of the periodic box where the normalisation
takes place.

The process that follows identifies quantum operators with mean-field values, with the
addition of some weak quantum fluctuations. The aim is to describe the zero-temperature
ground state of an interacting Bose gas. At sufficiently low temperatures, well below the
BEC temperature, a macroscopic fraction of the atoms are accumulated into the single
particle lowest energy state, described by the macroscopic wavefunction |®). Assuming
that the ground state will be occupied by N, bosons and that N — Ny < N, where N is the
total number of atoms and N, is the fraction of them which occupy the ground state of the
system, one can assume that

(D|&] Gol®) = Ny (3.8)

and that the ground state is a coherent state

& | @) = /Ny | D). (3.9)

n free space, one can set V,,, =0

ZNote that in this section, the symbol V denotes the volume normalization, the symbol V,,; denotes the
external potential and the symbol V(x) denotes the (contact) potential. In Section 3.2, the same symbol
V will be encountered, indicating the background flow of superfluids. Furthermore, the lower-case
letters u and v will be used in order to indicate the modes of the system, sometimes with an extra index
for further specification.
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This is a reasonable approximation for a weakly interacting Bose gas®. In this approach,
it is assumed that the total particle number must be conserved.

Thus, in this coherent-state representation, &, can be replaced with &, — +/Ny. Next,
one can assume all other occupation numbers to be small (for all higher energy states) and
approximate the Hamiltonian 3.7 to O (&i ¢0). The resulting grand canonical Hamiltonian
reads

K = Kyr + 0(d3,) (3.10)
with
1 1 )
KMF = EVO”ONO - 5 Z (Ek —le) _MNO
k#0
1 iy P ’ M _K & ’
— AT A kK k,—k K
+ 2 Z (a,k a—k) (_M—k,k' _P—k,—k') (_&IL/) ’ (3_1 1)
k#0,k'#0

where 7 is the number operator and

Prx = (& — ) Oxw (3.12)
My = —no Vi - (3.13)

with u = u —noVy — %no (Vi + V_) and ng = Ny/V. It has also been assumed that the
potential term is spherically symmetric, Vi = V_y.

The goal is then to diagonalize the relation 3.11 for Kyr. For this reason, one can
choose a linear transformation of the field operators, which preserves its bosonic-nature
commutator and is usually called a Bogoliubov transformation.

Thus, a new set of bosonic operators is introduced, as well as the following notation

Ax = (_&l) (3.14)
By = ( AT) (3.15)
~b}
_ I/ll*( +Vk

Usx = (iv; iy ) (3.16)
with

Ak = U+,kBk (317)

. . 1 O ) .

and the Pauli o3-matrix, o3 = 0 1 and uy and vy are in general complex functions.

Due to the assumptions that the new basis functions need to obey bosonic commutation
relations, similarly to the previous ones, the functions uy and v then obey

g |* — iel* = 1. (3.18)

3 Although the assumption of a coherent state strictly constrains the phase and particle number operators.
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In the new quasiparticle basis, the mean-field Hamiltonian can be rewritten as

K2 =5 > on(blbe+hib), (3.19)

k+#0,k’#0

if the Bogoliubov-de Gennes equations

pk,k Mk,—k _ ul’i B
((—M—k,k _Pk,—k) wk[) (vl*() =0, (320)

are satisfied.
Returning to Equation 3.11 for the mean-field Hamiltonian, its final form can be written
in the new basis as

Kur = Eg+ ) wbjby (3.21)
k#0

with ground state energy

1 1
Ey = (_,u + EnoVo) Ny + > Z (wk +u—=nyg(Vo+ Vi) — Ek)~ (3.22)
k=0

The eigenvalue problem 3.20 leads to the dispersion profile of the excitations of the
weakly interacting Bose gas, the Bogoliubov dispersion relation,

wy = Ve (& + 2nyVy), (3.23)

where g = 5 Then, the dispersion relation for k — 0 and k — oo approaches the limits

3.24
% when kK — o ( )

{clkl when k — 0
wy =
with ¢ = \/@ being the speed of sound which characterizes the propagation of low-
lying excitations of the Bogoliubov spectrum (sound waves) and 7 = 1. Note that the
potential V for V,_ is Vi—o = g, notation that will be adopted from now on, indicating that
particles interact only via s-wave scattering [34].

The vanishing of the gap for the weakly interacting Bose gas is a revelation of Gold-
stone’s theorem, as the original U(1) symmetry is spontaneously broken and a gapless
mode appears in the spectrum [55].

3.2 An application of Analogue Gravity in atomic
Bose-Einstein Condensates

This section will focus on the applications of weakly interacting Bose gases within the
framework of Analogue Gravity. It will attempt to give a first application of the model
example studied in the previous chapter within the framework of Bose gases.
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k

Figure 3.1: The dispersion relation of the Bose gas 3.24 for a one-dimensional system.
The orange curve corresponds to the k — oo limit of the Bogoliubov disper-
sion, which appears to be gapped, noVx + % The threshold between the two
limits in Equation 3.24 is determined by the inverse healing length.

Consequently, starting from the Gross-Pitaevskii Equation, 3.4, one can perform the
substitution to the density and phase representation, ® = /ne'®, and obtain the equations

om+V .-nV)=0 (3.25)
1
00 = —p=—>—(VO)’ —ng—Vey = V,, (3.26)
2m
where V, = —ﬁvi&/ﬁ is the quantum pressure term, representing the ’stiffness’ of the

macroscopic wavefunction, and V = % is the irrotational velocity of the condensate?.
The density and phase representation in the Bogoliubov approximation

b = fng + @+ (3.27)

is substituted into Equation 3.4. Then, the following equations can be similarly obtained

2 2 A
00, =-V-vo, - 2 h + ey (novﬂ) (3.28)
no 41’10 no
Oy = -V - (ﬁlV + %V@l), (3.29)

where the definitions of the healing length, & = mlc, and of the local speed of sound have
been used’. The healing length gives us an approximate length where the condensate is
"healed’. It denotes the threshold where the dispersion relation is linear and behaves like

“Unless explicitly mentioned, 7 = 1 will be used in the rest of this chapter.
The healing length & should not be confused with the Rindler coordinate & used in last chapter. From
now on, the symbol & will only indicate the healing length.
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sound waves (excitations) and where it is quadratic [34]. If the hydrodynamic approxima-
tion is satisfied and the last term in Equation 3.29 can be neglected, Equations 3.28 and
3.29 decouple, giving the form for the density

fr=——2 (V- VO +8,0) = (3.30)
mc
@+ V V)L 0,4V V)0 + V- (2w =0, (331)
mc m

which can be reformulated in a matrix form as

3 (,01) = 0, (3.32)
with
£~ _”_(ZJ £ = 0 _”_gvi fil = n_g (Czdij _ Vivj)’ (3.33)
c c c

in terms of the condensate density n and the local velocity V.
After defining Equation 3.32, it is straightforward to define the curved-space scalar
d’ Alembertian operator in any Lorentzian manifold as

1

Vg
with g,, denoting the metric and g*” denoting its inverse. Then, Equation 3.32 can be
rewritten as

O

3 (V=22"d,), (3.34)

A

o6, =0, (3.35)

as long as +/—gg"” is identified with the metric f*”,

V-g8" = 1", (3.36)
which leads to the effective metric for the BEC case
ny (— (02 - V2) -V
, = — . . 3.37
8 = e ( —vi g (5-37)

To this end, the Klein-Gordon equation for a massless scalar field propagating in a ficti-
tious spacetime described by the metric g,, can be mapped onto the equation of motion
for the phase fluctuations in a BEC under the hydrodynamic approximation. This is the
fundamental result of the gravitational analogy between standard gravitational physics in
a Lorentzian manifold and BECs under the hydrodynamic approximation. Otherwise, one
can say that the hydrodynamic approximation restricts the dispersion relation only up to
those values that the healing length allows. This means that only the linear part of the
Bogoliubov spectrum, the sound waves, is dealt with.

Nevertheless, at this point many aspects need to be clarified or further explained. First
of all, the general coordinate-transformation-invariance of Equation 3.35 is artificial, as
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the real spacetime in which the BEC lives has nothing to do with the Lorentzian space-
time of a relativistic particle. The BEC theory is not invariant under general relativistic
coordinate transformations. It is a Newtonian theory with an absolute time, the one of the
laboratory frame.

Another special feature of this system, revealed through the metric equation, Equation
3.37, is realized when the flow goes from the normal subsonic case, |V| < ¢ to supersonic,
V| > ¢, through any process that can change the velocity of the fluid or the speed of
sound. Between the two regions, the subsonic and the supersonic, an analogy with the
gravitational system of the spherically symmetric black hole in Gullstrand-Painlevé coor-
dinates can be made. When the velocity of the fluid is greater than the speed of sound,
meaning that it enters the supersonic region, sound waves cannot propagate back to the
subsonic region and are trapped inside the supersonic one. This is the analogy between
the gravitational black hole and an analogue black hole in BECs. This analogue or sonic
black hole possesses an analogue horizon where |V| = c.

As a result, it can be seen that in the hydrodynamic approximation, results from the
previous chapter, concerning the analysis of the massless scalar field, can be retrieved. But
now the analogy is apparent. As a result, one can proceed as in the previous chapter, by
obtaining the mode decomposition, finding the ’in’ and *out’ vacuum states and showing
their unequivalence under the non-trivial mixing of annihilation and creation operators
by the Bogoliubov transformation. Finally, one can also obtain the spectrum of thermal
radiation, the analogue of Hawking radiation, where the temperature of this blackbody
radiation will again be given with respect to the surface gravity, «, of the sonic horizon at
the horizon surface:

1d (02 - V2)
2_C dn hor

All this procedure seems quite reasonable, even in the framework of BECs, but it is not
quite exact. The hydrodynamic approximation being adopted in this section restricts the
validity of the final result. Thus, the BEC framework needs to be re-evaluated in order
to obtain an analogue Hawking effect without neglecting the large wavelength part of the
spectrum through the hydrodynamic approximation.

(3.38)

K =

3.3 An analogue Black Hole from BECs

In this section, the simplest model which can encode the gravitational analogy in a BEC
system will be discussed. Furthermore, one-dimensional condensates with a steplike
background profile for the speed of sound will be dealt with, meaning that the config-
uration in hand consists of two semi-infinite stationary and homogeneous condensates, as
in Figure 2.1 for the analogue black hole or Figure 2.2 for the analogue white hole, where
the two regions are connected by a steplike discontinuity.

Now, to further analyse the assumptions of the model, one can consider the Gross-
Pitaevskii Equation 3.4, and deduce that the background quantities should satisfy

V! + nog’, (3.39)

ext

+nog =V’

ext
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|V|>Cs 1VI<cs

Figure 3.2: An illustration of an analogue black hole where the upstream region is sub-
sonic and the downstream supersonic.

where it is assumed that the external potential and the coupling constant g take the same
values across the whole semi-infinite space of its sector. This condition reflects the equal-
ity of local chemical potentials across the configuration. Furthermore, it is assumed that
the discontinuity point is located at x = 0, thus the /-and r- indices reflect each side of
the discontinuity (left and right, respectively). From Equation 3.39, the speed of sound
across the horizon can be inferred,

r/l
o= |28 (3.40)

m

Because of the chemical potential conservation relation 3.39, it can be deduced that the
Gross-Pitaevskii Equation 3.4 has plane wave solutions of the form

@y = /e @ Fo0 (3.41)

in both semi-infinite domains. Then V = %" and wy = kg [2m + ngpg.

Let us now look at the Bogoliubov spectrum of our problem. As a result, the solution
for the operator form of the Gross-Pitaevskii Equation 3.4 needs to be decomposed into a
mean-field part and a part for the quantum fluctuations, which reduces to

dit,x) = (a0, + dle)), (3.42)

J

in the most general case, where the field responsible for quantum fluctuations around the
mean-field solution, @y, has been renamed as ¢A5
Operators @; and &; represent bosonic creation and annihilation operators satisfying

| &] = 6 (3.43)
Introducing the decomposition of the total field

D(x, 1) = Do(x, ) (1 + dCx, 1) e, (3.44)
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|VI>cs |V|<cs

Figure 3.3: An illustration of an analogue white hole where the downstream region is
subsonic and the upstream supersonic.

a set of coupled equations for the quantum field or, differently, the Bogoliubov-de Gennes
equations,

d¢ 82 1 ax 0 -~ ~ AT

Yar (Zm @ )‘f’ +nog(¢ +¢') (3:45)
9T (9 10, o -

Yar T (2m T @y )¢ +n0g($" + §) (3.46)

with ng = |®y|* can be obtained. By substitution of Equation 3.42, Relations 3.45 and
3.46 become

( i0,+Va,) + 2 =9 - E)¢J ;go, (3.47)
(—i(a, + Vo) + f—;ai - g)goj = gq)j. (3.48)

Due to the specific decomposition of the field, commutators of the following form

. 1
[$Cx.0). 8" (x'.0)] = oo =) (3.49)

need to be imposed for the quantum fluctuating fields. Equation 3.49 gives for the mode
normalization (or scalar product)

5,
f dx (¢;67 — @je;) = +nL(f) (3.50)

Due to the chemical potential conservation equation, Equation 3.39, imposed at the start
of this section, plane wave solutions for the Bogoliubov-de Gennes equations across the
whole infinite space can be taken into account. As a result, the fields ¢ and ¢ can assume
plane wave solutions of the form

¢ = D(w)e 1 @kw) (3.51)
Qo = E(w)e—i(wt—k(w)x). (352)
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After substituting in Equation 3.47, one obtains

&ck? c) c
(w=Vk) = — — = | D(w) = —E(w) (3.53)
[t0-v0 - 55 - o=
Eck? c) c
—(w—=Vk) - —=— - =< |E(w) = =D(w). (3.54)
[romvo- 5=
This system, in order to have nontrivial solutions, needs to satisfy the relation
2 k4
au-VkY::CP(k2+-§Z—), (3.55)

with the following dispersion relation
£2)A

1
Following the notation given in the previous chapter, the frequency of the comoving frame
is further introduced:

w=Vktclk?+ (3.56)

&K

Q. =w-V,k=+c[k*+ 1 (3.57)

Verifying the behaviour of this profile in the kK — 0 and k — oo limits, one obtains

Vxok, ifk—0
W= e (3.58)

iy if k — co.

Figures 3.4 and 3.5 represent the dispersion relation for an analogue black and white
hole, respectively. Figures 3.6 and 3.8 indicate the different branches of the dispersion
profile for an analogue black hole and 3.7 and 3.9 for an analogue white hole for the
subsonic and the supersonic regimes, respectively. The dotted parts of the dispersion
curves represent negative-norm modes.

The square root in Equation 3.57 consists of two terms. In the absence of the k* term,
the standard hydrodynamic dispersionless profile is retrieved. This term, which is pro-
portional to the healing length, introduces the dispersive effects in the model. This same
term, however, introduces another useful terminology. When it renders the group veloc-
ity, V,,, smaller that the speed of sound in the kK — oo limit, |V,,| < ¢, then we speak of a
subluminal dispersion relation while, as in our case, the dispersive effects tend to increase
the group velocity with increasing wavevector. This case is called superluminal. The real
dispersion relation for BECs is always superluminal (|V,,| > ¢ for k — o0).

Such a nonlinear dispersion relation limits the amount of blueshift occurring at the
horizon. The existence of infinite-frequency modes is not any more a problem. However,
this model needs still to predict the Hawking effect, something that will now be shown in
the simplest of settings. Moreover, it can also be shown that thermal radiation emitted at
late times from an analogue black hole is still predicted with the high-frequency details
of the dispersion relation remain irrelevant to this procedure.

39



Figure 3.4: The dispersion relation for the subsonic regime of an analogue black hole.

W

Figure 3.5: The dispersion relation for the subsonic regime of an analogue white hole.
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Figure 3.6: The four branches of the dispersion profile for an analogue black hole for
background flows V < 0 with |V| < c.
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Figure 3.7: The four branches of the dispersion profile for an analogue white hole for
background flows V > 0 with |V| < ¢. The branches of the analogue white
hole follow from the analogue black hole’s ones by V — —V and k — —k.
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Figure 3.8: The four branches of the dispersion profile for an analogue black hole for
background flows V < 0 with |V| > c.
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Figure 3.9: The four branches of the dispersion profile for an analogue white hole for
background flows V > 0 with |[V| > c.

In the hydrodynamic regime, meaning when k — 0, a linear dispersion profile is ob-
tained, which verifies the initial analogy made with the massless scalar field in Chapter
2. These modes correspond to sound waves in the BEC terminology. For k — oo, one
obtains a quadratic profile in Equation 3.58, when considering the Bogoliubov dispersion
relation for BECs (interacting bosonic particles).

Let us return now to find the eigenfunctions of our simple system. The normalization
condition when considering the previous advancements can be rephrased as

1 |dk

2 2, 1 |dk
ID(w)|” — |[E(w)|” = iZﬂno Tl (3.59)
Then, from Equation 3.53, one attains
(= Vk = £E) Dw) = £ (D(w) + Ew))
, ’ = (3.60)
~(w - Vk + 55) E() = £ (D) + E())
( §ck2) ( §ck2)
= U)—Vk—T D(a)):— Q)—Vk+T E((,l)):>
vk RV
= D) - [E@)F = D) |1 - [‘”V—i] ]
w-Vk+ ch
20, —
Y e Gl ML . (3.61)
dw

(a) - Vk + &Tkz)z 2rng
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which reduces to

w-Vk+ C‘ikz
D(w) = (3.62)
\/47rn0c§k2 (- Vi) (&)
w—-Vk - <k
E(w) = - 2 (3.63)

\/47m0c§k2 ’(a) - Vk) (%)_1'.

The mode-description of the system follows. From Equation 3.59, it is obvious that the
sign of the normalization defines positive or negative-norm modes respectively, as posi-
tive or negative-norm modes correspond to those branches of the dispersion relation with
positive or negative comoving frequency, as in the massless scalar field case (see Chapter
2). Any positive-norm branch with frequency w and wavevector k has its parter negative-
norm mode with frequency —w and wavevector —k. The existing duality between these
set of modes can be used to transform the normalization condition in w-space:

f dw (o = Putpr) = $ 20 (3.64)
0 no

Let us take advantage of this simplification and work only on the w > 0 region of infinite
space, as the same arguments will hold for negative-frequencies as well. In this specific
case, it is assumed that the background velocity, V, is everywhere constant and the sound
speed is step-discontinuous, ¢ = @(x)c” + O(—x)c!, with @(x) the Heaviside step function.
As discussed in the previous section, the k-representation can be used. As a result, by
solving the dispersion relation, Equation 3.56, with respect to k, one can find the 4 k-
roots. Then, the quantum fluctuating field can be written as a sum over these plane wave
solutions

4
Gu(x 1) = e " A D) (3.65)

i=1

4
Po(x,1) = e " AW E(w)e™ ", (3.66)
i=1

where AE“’) are the amplitudes of the modes and D(w) and E(w) their normalizations,
obtained in Equations 3.62 and 3.63.

The next step consists in finding the amplitudes of the modes, but, for this, the explicit
form of the 4 k;(w) solutions is needed. An approximate analytical treatment for many
of the following calculations will be used (see Figures 3.10 and 3.12 for the visualization
of the k-solutions for the subsonic and supersonic regions of the analogue black hole
configuration)®.

The system could equally well be described only by a numerical treatment, without any analytical ap-
proximation, but we believe that the elegance and meaning of the resulting equations is in this way
better exposed and conceptually understood
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Figure 3.10: The BEC flow for an analogue black hole with the modes in each sector
depicted, by assuming an ingoing v-mode in the upstream region.

The mode decomposition in the analogue black hole setting is illustrated in Figure 3.10
and further explained below. Then, the modes are decomposed in the in-going basis for
the analogue black hole configuration, as in Figure 3.147. The velocity of the background
flow is assumed to be constant everywhere, as depicted in Figure 3.10 and the speed of
sound varies from ¢’ to ¢!, by going from the subsonic to the supersonic regime. The
coupling constant also varies, g'’!, as well as the healing length, &”/!. The supersonic
region is located downstream, the horizon is located at x = 0 and the subsonic region is
located upstream.

In the subsonic region, as also shown in Figure 3.11, for any constant frequency wy, two
real solutions for the dispersion curves exist, which belong to the positive-norm branch
for wy > 0 and to the negative-norm branch for wy < 0. The k, mode has positive group
velocity, V,, > 0, and propagates against the fluid, while the k, mode propagates with the
fluid flow and thus has negative group velocity, V,, < 0. The u/v labels are used in the
same way as in Chapter 2. These two modes constitute the hydrodynamic modes.

An approximate form for the k-solutions of these modes for w — 0 (or, equally, find
a series expansion with respect to the dimensionless variable z = %‘”) will now be found.
The dispersion relation equation, Equation 3.56, or equally Equation 3.55, can be written

"The field could be equally well expanded in the outgoing basis. Then, results would follow in a similar
way for the two approaches, without however the later being identical, due to the horizon occurrence
(for more details, see Chapter 2). More details concerning the discontinuous subsonic flow can be found
in [56-58]. In this case, where no horizon has formed, the ingoing- and the outgoing-basis treatments
are identical.
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Figure 3.11: The two real k-solutions found for a given frequency are found by the 2
crossings of a specific energy scale, say wy, with the dispersion profile. At
the same time, the other 2 solutions are complex.

as
2k4 2 2k4
(w — Vk)? :cz(k2+ 54 )=> Ci + (A =-VHE +2Vwk - =0=>
2t + 40% (A = VO + 8VWlk — 4wt =0 (3.67)
For z: small
(e = Vi + 2Vwky — w* =0 = ko = Tt (3.68)
= C
Then Equation 3.56 becomes
22c2k? 22ctk?
w—Vk==xck+|1l+ e o~ J_rck(l 807
w w 1
k= — = (3.69)
Vac(l+22R) Vel e
and one obtains
w CSZZ
k, = 1+ —= +0(Z* 3.70
V—cr( 8V —c,) (Z)) (3.70)
w 72
k, = - r +0(hH). 3.71
V+c,( 8(V +c,)° (Z)) S

In the first approximation, the hydrodynamic approximation for the k, and k, modes can
be verified, based on results from Chapter 2. By including terms of higher order, correc-
tions to the hydrodynamic results are obtained.
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By this simple iterative method only the first two real solutions of the fourth order
algebraic equation can be found. It is assumed that z is small and, obviously, relation 3.67
leads to the neglect of the fourth order terms. Somehow these terms need to be included
as well. This is done by considering singular perturbation theory techniques [59, 60].
These two terms are found as follows. When the fourth order terms are neglected, the
previous two equations follow with their solutions found in Equations 3.70-3.71 . As a
result, these neglected terms are now indispensable to find the other two solutions as well.
By assuming that the fourth order term is big enough and cannot be neglected, the k value
needs to be big enough. If the k value is big enough then, the term 2V wk needs to be
much bigger than the constant-in-k term, 4w*. Thus, this term can be neglected and one
can obtain

2kt

17 H(E VIR +2Vok=0=k#0 = (3.72)
W
Z264k3
1o T (@ V2V = 0= 2 + dw(c? - V) = 0, (3.73)
{0

For the subsonic case,

2
ko= + 2NV (3.74)
Fdo
and Equation 3.67 can be written in a form convenient for this purpose:
r = 4wt 8Vw?  4w*(c* - V?)
T2tk 2ctk? 2tk

(3.75)

By using this last equation iteratively and the value of Equation 3.74 obtained earlier, one
finds that

\% 2i N V2 2.4

k= 1+ — . (3.76)

c2-V2 c& 4(V2 - c2)*
Going to second order in 3.55, the final form of the expansions is found to be
wV (2 + V)2 s
=Gy (1 T A - vy +0()
22— V2 2 4 DY) 42
I L 1+ G 2OT L ). (3.77)
cé 8(c2 - V?)3

Of course, the fact that only two real solutions could be found indicates that the other two
should be a complex conjugate pair, due to the real character of Equation 3.67. These
solutions correspond to a positive-imaginary-part solution, representing a decaying mode
as k — oo, k,, and a negative-imaginary-part mode which represents a growing as k — oo
mode, k_. This last mode will be excluded from the procedure of finding the amplitude
coefficients of the quantum fields in both the subsonic and the supersonic regime, as it is
not square-integrable.
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Figure 3.12: The four solutions for a given frequency wy < w,,,, are shown together with
the dispersion profile of the supersonic regime. At the same time, above this
threshold, the situation resembles the subsonic case where two real modes
can be found and other two become complex conjugates.
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Figure 3.13: The three solutions for a given

k,~mode
positive norm

k,~mode
negative norm

energy at the threshold frequency, wy = Wax-

The most negative solution is of multiplicity two. As the energy of the system

increases for wy, the two most

negative solutions of the u-branch merge into

one at the threshold. For wy > w,.x, the situation resembles the subsonic

regime.
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In the supersonic region, there are four real solutions for each wy solution up to a
maximum frequency w,.., as seen from Figure 3.12. When wy > Wy, the situation
resembles the subsonic case, as there are again two real and two complex solutions. The
complex solutions are the ones represented in Equation 3.77. The two real ones consist of
one mode propagating with the fluid flow, the v-mode, and one counterpropagating to the
fluid flow, the u-mode. It is of interest to note that the mode propagating against the fluid
is non-hydrodynamic and is not affected by the nature of the sonic horizon. The threshold
frequency wy., is given by the maximum frequency of the negative-norm Bogoliubov
mode,

3/2

V2 _ c2
Wmax = 2\/5\/|V| + V2 + 8¢ ’ : (3.78)
3IVI+ /V? +8c?

with ¢; the speed of sound in the downstream supersonic region. This phenomenon is
shown in Figure 3.12. The two hydrodynamic modes are

oo @ [i_ar oY (3.79)
L R ST DRI '
3.2
w ¢z .
k, = - . 3.80
’ V+c,( 8(V +¢)? ok )) (50

The crucial difference in this case lies in the nature of the velocity profile and the speed
of sound; in the supersonic region, |V| > ¢;, and thus both modes of the negative-norm
u-branch (the u;- and u,-modes) have a negative group velocity V,, < 0 together with
the positive-norm v-mode. These three modes propagate with the background fluid flow,
despite the general counterflow-character of the u,-mode. The v-mode, as before, propa-
gates with the fluid flow, but the nature of the u-branch-modes has changed. The hydrody-
namic u;-mode now belongs to the negative norm branch of the dispersion profile and it
is dragged by the flow. The energy carried by that modes is positive despite belonging to
the negative-norm sector. The wavevector of the two u- and u;-modes is nonperturbative
in z and found to be

ko = wV ( G+ VD

ci—V? 4(c; — V2)?

+ 0(24))
2./V?2 - 012 ( (C12 n 2V2)c?z4
+t —\1+ ———

oz ERT 0(Z4)) _ (3.81)
r )

These solutions are analytic continuation of the solutions in Equation 3.77.The k, mode
belongs to the positive-norm sector and has a positive group velocity. The k,, root has
positive group velocity as well, but it belongs to the negative-norm sector.

After this detailed analysis on the decomposition of the modes for the subsonic and the
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supersonic flow, the quantum field in each region can finally be written as

ol = e (ALDLe™* + ALDLe™* + Al D), " + Al D], o) (3.82)
gl = e (ALEL + ALELe™ + AL EL et + Al EL ) (3.83)
gl = e (ALDe™ + AL DLt + AT D™+ AT D M) (3.84)
@ = e (A;Egefkix + ATEre 4 ATE" M 4 AT Eie"kiX) (3.85)

in each region respectively.

Now, the amplitudes in the last four equations can be found. In the configuration in
hand, there is a steplike discontinuity at the horizon. At that point, continuity of the field
and its first derivative must be imposed. As a result, one needs to impose the conditions

lin(} (px+€)—p(x—€) =0 (3.86)
1in3 (p(x+€)—p(x—¢€) =0 (3.87)
. (d¢ d¢ B
ll—r)%(a X+e B a x—e) =" (388)
. (de do| 1\ _
ll_r)r(}(a ~ L _6) =0. (3.89)

These four conditions lead to a system of four equations with the respect to the four
unknown amplitudes in each one of them. This system can be rewritten in a matrix form

A} = M;A, (3.90)

where M is the matching matrix. Its explicit form comes from the matching across the
horizon relations,

i
Alv Al
A A’
Wil 21 =W, ., (3.91)
A=A
A, A"
with
l/r I/r l/r l/r
Z/DV Iy l/D = l/D”/ Ny l/D “r
. lr ro agl/r r . lr r g llr r
Wi = ik," Dy ik, D, ik, D, ik, D, (3.92)
I/r lr l/r I/r Ir .
II/EV Iy l/E el II/E"HI/ I/E “
g l/r r .gl/r r .l r g l/r r
ik)"E) 1ku2/uEu2/u lku/+Eu/+ lku|/—Eu|/—
and its final form is given by
M= W'W,. (3.93)
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3.3.1 Scattering decomposition

In order to find the scattering coefficients of the steplike configuration in hand, the modes
need to be decomposed into a basis that will be complete and orthonormal. As previously,
either the ’in’- or the *out’-basis can be chosen. In the subsonic case, the u- and v-modes
and the decaying mode are taken into account, while for the supersonic region all modes
need to be taken into account. The modes in the ’in’-basis need to be expressed in terms of
the modes in the ’out’-basis®. After the amplitude coefficients for the field are expanded
in a specific basis, the explicit form of the quantized field can be constructed and the
elements of the scattering matrix be found. Energies with w < w,, for the supersonic
region will only be taken into account®.
The quantum fluctuating field can be decomposed in the ’in’-basis as

max
¢ f\m da) Avm in Aum(p u1 mT¢ull

+ &> mo¢ir’l s A m'¢;n;< Qi m¢Z11*l) (3.94)
It is important to note that the u;-mode belongs to the negative-norm branch and thus
needs to be complex conjugated with respect to the other modes. This is exactly the
feature that is behind the Hawking radiation; the mixing of positive and negative-norm
modes in the description of the field for the quantum fluctuations.

The corresponding amplitudes will now be found. By decomposing the modes with
respect to the in’-basis, the exact form of the modes ¢}, ¢!, and ¢  is found. First,
the mode ¢ is considered. It can be defined as of unit 1n1t1a1 amphtude It is flowing
in the subsomc region with the fluid towards the horizon, coming from infinity. As this
mode impinges on the horizon, a reflected ¢ mode will occur in the subsonic region,
as well as a ¢4 and a ¢"”’ * mode in the supersomc region. The gb””’ mode is complex
conjugated as was also done for the negative-norm mode in the quantlzation procedure of
Chapter 2. Finally, the decaying mode, ¢%"/, in the subsonic region is considered'?. The
matching conditions 3.86-3.89 for the specific mode will then give (see Figure 3.14 for
the following analysis)

Al 1

Al A’
u | — u
0 M Al (3.95)
0 0

8we could also perform the same calculation but expressing the outgoing modes in the ’in’-basis. Both

ways of dealing with the scattering coefficients will give the same taste of the problem, despite defining
different vacuum states [57]. More details can also be found in Chapter 2
9FOT W > Wyay, the nature of the scattering matrix will be completely different. Furthermore, the Hawking
signal will be lost, indicating that the Hawking effect is influenced only by the low-frequency dispersion.
10This decaying mode will not be included in the scattering matrix decomposition (as it is not a propagating
mode in the strict sense) of the field and the necessity of including it will only be revealed by the
following matching matrix analysis
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AV=1

AR A AP A A A
A+ AU=1 A+ uy_ A+
A A A

Figure 3.14: The modes of the analogue black hole in the ingoing basis. The mode de-
picted in red always corresponds to the unit amplitude ingoing mode and the
A_ mode is dashed as it is always present, but not taken into account for
the matching matrix analysis due to not being square-integrable. The dotted
mode Aiiz corresponds to the negative-norm mode.

Equally for the other two ’in’-modes, as shown in Figure 3.10, it is found that

Al 0
Al A’
u | — u
U= M Al (3.96)
0 0
and
Al 0
Al Al
u | — v
ol= M Al (3.97)
1 0
respectively!'!.

These matrix equations can be solved numerically, but a "glimpse’ of the information
included in them can also be extracted by using the previous approximation in the expan-
sion of the k-roots. This time, only the leading order terms in z will be considered for

"Note the significance of the correct ordering of modes in each regime, (A{,, Al AL Aﬁ,l)T for the su-
personic regime and (A}, Al, A’, A”)T for the subsonic one. The first two modes for both vectors
correspond to the hydrodynamic modes, while the last two in the subsonic regime correspond to the
complex conjugate pair. Its analytic continuation to the supersonic regime gives rise to the last two

elements as well
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simplicity. Then, the amplitudes are found to be

r V_
Al = w/C— = S (3.98)
cqV-—-c

V+c

Av == = Suw (3.99)
c,V+c
S — = St (3.100)
and
(V2 _ c2)3/4(v + cr)
Al = ! (,/cf—V2+i‘/V2—02)=szuz (3.101)
c13/2 V2z/(c; + ¢,) ez = V? : ’
V2, (V2 = )V + ¢
A = V)7 +e) (Ve -v2eiyvi-c)=sumu G102
ciVzler + c)(e, — ¢y = V2
(V2 _ 2)3/4(V+ Cr)
I _ 2 _ V2.4 2 _ 22 =
Al = e _Cr)m(,/c, V2silv cl) S (3.103)
and

V2=V + )
A = —Vi-iy V- 3.104
ogr ‘/Z(cﬁcr)m(\/i ’\/701) Lt ( )

VIV = )Y + )

—V2-i V2 - wa (3.105

' CZ\/_(Cz+cr)(cr—cl)W(‘/7 lﬁ) 1 ( )
1 (V2 )3/4(V+cr) - ) —
A, = P \/E(c,—c,)\/czi‘ﬂ(‘/i ’\/Vicz) S utu > (3.106)

respectively.
It is crucial to note that unitarity imposes the satisfaction of the identity

=
I

AL + 1AL - AL P =1 (3.107)

by the first two relations 3.95 and 3.96. The negative sign in front of the A’uz—mode is due
to its negative norm. Respectively, the relation 3.97 satisfies the relation

AL + AL — AL PP = - (3.108)

uy

with the negative sign in the right part indicating the negative norm of the initial ingoing
mode.

Now that the amplitudes of the modes have been found, the explicit form of the field
decomposition 3.94 can be established. The Bogoliubov transformation of the field in the
’in’-basis in terms of the ’out’-basis can then be found to be

i)’,lr S vlyr S ur,vr S uyl,vr 3,'7
in | _ t
wl | — Svl,ul S ur,ul S ulul Z’Lir . (3 109)
in out

uy,l SVZ,MII Sur,ull Suzl,ull .l
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The S-matrix of the transformation obeys the condition
S™nS =8nS’7, (3.110)

where n = diag(1, 1,-1) [20, 58].
The above transformation 3.109 can also be expressed for the creation and annihilation
operators, as done in Chapter 2, Equation 2.76,

Avlout AVE,IN

ay, S vlvr S viuil S vi,ul a,

Aurout | _ Auylin

@ =S ur,yr S uryul S urul || X . (31 1 1)
Al outt A ul,int
a’a)z S upl,vr Suzl,ull Suzl,ul a,

This mixing of positive and negative-norm modes is behind the form of the n-matrix 2.
Due to this nontriviality of the scattering matrix, the vacuum states of the ’in’- and ’out’-
vacuum, |0, in) and |0, out), are not equal'3,

0, in) # 10, out) . (3.113)

The number densities of phonons in each mode are

2

n’ = (0, il @0, i) =[S i (3.114)
up,l _ 0.i Auzl,omTAuzl,omO i = |s 2 S 2 3115

n, = < ’ln|aw @, | ,ll’l> = Pulvr| T [Qualul ( . )
vl _ .1 avloutt avlout . _ 2

n, = (0,inja,, " &, "0, in) = |Svl,u11 (3.116)

These equations satisfy the number conservation relation

u,l _ _u,r vl

ny =n, +n,. (3.117)

As of the above equations, it can be seen that the vacuum state |0, in) spontaneously
creates particles on both sides of the horizon. But how is the energy-conservation relation
preserved? This is due to the negative-frequency modes of the u’z—branch. Assuming
that particles start at 1 = —oo, where there are no incoming phonons, Equation 3.117
indicates the creation of equal numbers of positive and negative-norm outgoing modes
in the subsonic and supersonic regions, respectively. Spontaneous emission of phonons
from the vacuum has occurred. As it can be seen, the total energy produced by the horizon
is zero, but there exist emitted particles on both sides.

A hypothetical observer located at +co will observe emitted flux [53]

2

de Sur,u 1
[Sural” 1 (3.118)

didw 27 w’

12In a simple setting where both regions across a discontinuity are subsonic, but with different background
sound speeds, say ¢!/", the 7-matrix would be replaced by the identity matrix ¥,

31n the respective case where the flow is discontinuous, but everywhere subsonic, then the two vacuum
states satisfy

10, in) = |0, out) . (3.112)
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where the 1/w dependence comes only from the approximate scheme previously used by
taking the first-order terms in the expansion with respect to z. It is clear that this inverse-
frequency power is the reminiscent of the blackbody radiation,

1 ij kBT
~ o

N =

(3.119)

kpT
ew —1

From Equations 3.118 and 3.119, the low-frequency effective temperature can be ex-
tracted [58]

e +V(V2- 012)3/2 2¢,
kB Cr — \% C% —Cl2 le]'

Teff = (3120)

This temperature is indeed finite. Nevertheless the surface gravity for a steplike profile is
infinite, something that causes problems in the interpretation of this effective temperature
as the Hawking temperature. The solution to this problem is found by going to smoother
profiles, where the quantities across the horizon do not change abruptly. In that case, the
temperature found is consistent with Hawking’s result as found in [20, 31-33, 61, 62].
Smooth velocity profile across the horizon can also be used [20, 31, 63].
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4 An analysis based on Quantum Field
Theory

The analysis of the black-hole laser configuration, discussed in next chapters, will mainly
focus on the unstable character of the modes characterizing the system. A black-hole
laser consists of a two-horizon configuration, when compared to the one-horizon black
hole or white hole cases. The description of the black-hole laser will mainly focus on
the revelation of its instability to linear perturbations. As a result, in this chapter, the
theory of instabilities for BECs will be presented, without making any more contact to
the explicit Analogue Gravity framework that will be introduced in next chapter. For this
reason, contact with the Klein-Gordon equation will be made, where the formalism of
this chapter will be analysed. Then, the description of the instabilities of Bose gases will
naturally follow.

To begin with, in order to describe the unstable character of the Klein-Gordon equa-
tion or of Bose gases, all the different modes that can occur to this system will be first
described. In previous chapters, we have dealt with the standard continuous spectrum
which emerges from the real frequency modes. Even if not explicitly said, these modes
are asymptotically bound because of their modulus being bounded. They are linear su-
perposition of plane waves with real wavevectors at spatial infinity.

A variety of new types of modes will be now stated, which will be useful for the sub-
sequent analysis. These are the quasi-normal modes, the dynamical instability modes and
the bound-state modes. Quasi-normal modes are complex frequency modes that are de-
caying exponentially in time and are unbounded at spatial infinity. They obey outgoing
boundary conditions, meaning that their group velocity points towards infinity (4+co or
—00), depending on the location of the modes with respect to the potential in question
(or the supersonic cavity of the black-hole laser at hand). Dynamical instability modes
grow in time and are spatially bounded. A dynamical instability mode is associated with
a pair-mode with complex conjugate frequency. This is a consequence of the Hamilto-
nian (symplectic) symmetry of the problem. These modes are decaying in time. Finally,
bound-state modes are stable with real frequencies. Dynamical instability modes and
bound-state modes are square-integrable and belong to the discrete sector of the spec-
trum. Quasi-normal modes are not spatially bound and are thus not square-integrable
[64, 65].

The instability character of the Klein-Gordon equation will be discussed with respect
to its frequency eigenmodes. The crucial difference between a system with only a contin-
uous real spectrum and one that can, in principle, sustain unstable modes stems from its
scalar product, as defined in Equation 2.27.It can be concluded that a system with a posi-
tive definite scalar product necessarily possesses a continuous spectrum of real-frequency
modes, but no discrete and unstable part. However, when the scalar product of the system
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is not positive-definite, instabilities are not formally excluded. There is then no general
spectral theorem that guaranties the real character of the modes and its stability. The the-
ory of indefinite metric spaces describes these systems [66—69]. Some basic formalities
on indefinite inner product spaces are also given in Appendix C.

Despite the lack of general solutions, in terms of spectral theory, in indefinite inner
product spaces, in the case of 1 + 1 dimensional space there is indeed an explicit con-
struction [70]. In the case considered, we will work with an infinite space, which is a
necessary condition for obtaining quasi-normal modes and for further studying the Klein-
Gordon equation in the presence of an electrostatic potential. The use of the electrostatic
potential will be due to historic reasons [45], but also due to its simplicity and analogy
with the final goal, the description of instabilities for the black-hole laser case.

After briefly introducing all the different modes that can be encountered when dis-
cussing instabilities in the context of the Klein-Gordon equation, the analysis based on
the Klein-Gordon equation will be made. In next section, after having established the
basics of the theory, the discussion of instabilities will be shifted to the case of BECs.

4.1 Quantum Field Theoretical Treatment of the
unstable behaviour of the massless scalar field

To begin with, the Klein-Gordon equation in the presence of an electrostatic field, A,
(0, + ieAo(t, X)) ¢ — O + m*¢p = 0, 4.1)

is considered, where e the charge and m the mass of the system. The scalar product is
defined as

(b1, ) = i f dx ($m — 7) 42)

with the conjugate momentum of the field ¢;, being r; = (0; + ieAy) ¢; with j € {1, 2}.Then,
the Laplace transform of Klein-Gordon Equation 4.1,

d(x; A) = f ) dt ¢(x, t)e'™, 4.3)
0

is defined. For 4 € C and Im(1) > 0, the above integral converges. Then the Laplace
transform 4.3 obeys the relation

(A= eAp(x))* + 8% = m?)p(x; ) = J3(x) (4.4)

with J9(x) = —n(x, 0)+i (4 — eAp(x)) $(x, 0) = JO(x) the source term, defined by the initial
conditions. Then, the solution of Equation 4.1 is given by

O (x, t):—% f dA d(x; Ve ™, 4.5)

Dret
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where D,., is a contour in the complex A-plane above all singularities of ¢(x; ).

The field is obtained for all times, if the field, ¢(x; 1), is defined for sufficiently negative
Im(A1), so as the corresponding inverse lies below all the singularities of D,;,. The final
integral is symmetric between the lower- and upper-half complex A-plane,

1 N .
p(x, 1) = —— f dA ¢(x; Ve ™. (4.6)
27r DretUDudV
For the solution of Equation 4.4, its Green’s function satisfies
H(x; Q) = f dx’ G,(x, x)J9(x) (4.7)
with
(A= eAy()* + 8% = m*)Ga(x, x') = 6(x - X). (4.8)

This equation has a solution constructed with respect to two linearly independent solutions
¢gl)(x) and ¢32>(x) of the stationary mode equation

(A= eAg(x))* + &2 = m?) ¢ = 0, (4.9)

as their space-ordered product,

1 [ e, ifx<x
Ge )= {¢§”<x')¢f>(x>, it > @10
with
W) = (0307 (x) — 6P (00,0 (x). (4.11)

The Green’s function is then uniquely determined by a choice of boundary conditions
which select the Jost functions gb(ﬁl)(x) and ¢32)(x) [71]. Then, the convergence of Green’s-
function integral 4.7 is made explicit by assuming that it decays sufficiently fast for x —
+00, a condition that is necessary for solutions of the time-dependent equation, Equation
4.1, with

f dx (g + ) < oo. (4.12)

Thus, the following boundary conditions are imposed:

) (4.13)

A

;1) is L? for x » —oc0
is L? for x - +oo

for the square-integrable mode-functions.

57



By using Equations 4.3 and 4.7 in Equation 4.6, the time-dependent solution of the
Klein-Gordon equation can be established’,

i

f ( f e M (A= eAy(x)) G (x, x’)dxl) Po(x) dx’
21 Jr DyetUDaay

+i f ( f e‘“’Gﬂ(x,x’)d/l)ﬂo(x)dx'. (4.14)
R D, etUD g,

The contour D,,, U D,4,, where the Green’s function is calculated, can be deformed to
enclose the spectrum.

Let us now try to apply this formulation in the description of a simple problem, the
square potential,

Ap(x) = {0’ iflxl > L (4.15)

¢(X, t) ==

A, iflxI<L’
Any solution is of this potential problem is a superposition of two plane waves
Pa(x) = @ e 4+ b e (4.16)
and the momenta in its region satisfy

= VA2 — m? if x| > L
TTIVA =AY —m x| <L

In order to obtain globally defined solutions, the same process as in Subsection 3.3.1 is
followed; continuity of the field and its first derivative, d,¢, across the point of disconti-
nuity, x = +L are then imposed.

When A € [-m, m], then, k, € C. If 2> > m?, then asymptotically bound modes exist as
scattering states (see section 3.3.1). For 4> < m?, the continuous part of the spectrum does
not exist. When k, € C, then the field equation, Equation 4.16, needs some vanishing of
the coefficients (., b.), in order to satisfy the square-integrability condition, Equation
4.13. For this specific choice of coeflicients, the Green’s function can be constructed.
This is not possible unless the Wronskian vanishes. In this case, the Green’s function has
a pole?. For W(Q) = 0, the fields ¢; and ¢, are dependent on each other and proportional,
allowing for the existence of a decaying mode on both sides of the potential step [65].

Bu assuming that there exist complex modes in the spectrum which are, thus, square-
integrable, these modes are necessarily pairs of dynamical instability modes. They are
pairs because of the Hermiticity of the respective model (See Appendix C), which pro-
vokes the Green’s function symmetry

(4.17)

Gi(x,x) = Gp(x,x). (4.18)

Ifor this reason, we use the Green’s function relation in the Laplace transformed version of the Klein-
Gordon equation

2Note that the Wronskian is composed of continuous functions. As a result, it can only vanish for a
discrete set of values. These are the poles of the Green’s function.
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By analysing the poles of the Green’s function, Equation 4.10, the discrete part of the
spectrum can be accessed, i.e. the complex frequency modes that describe the dynamical
instability [45, 65].

Dynamical instability modes can be regarded as a superposition of equal amount of
positive and negative-norm modes of the same frequency. This statement leads to many
interesting aspects on their quantization, something that will be analysed in Section 4.2.

In the case Ay — 0 for x — *oo, the most general form of relation 4.14 can be expressed

as’

d(x, 1) = f dw (afje"“”tﬁz)(x) + aLe‘i”’¢L(x))
Dean
) da )+ D (e B0(0) + ot (1), (4.19)

aeDgisNR a€Dyis\R

where D,;, is the discrete spectrum of the system, emerging from the poles of the Green’s
function. The discrete spectrum has been divided into those modes with vanishing norm,
the dynamical instability modes, and those with nonvanishing norm, the bound-state
modes. The continuous part of the spectrum is composed of the normal modes, defined
and analysed thoroughly in the previous chapter. They arise from the discontinuities
across the branch-cut of Green’s function. The discrete part of the spectrum has orthogo-
nality relations

Xa>Xb) = *0ap (4.20)
(D> ®p) = War¥p) =0 4.21)
(@a>¥b) = Oaiy- (4.22)

and the energy of the Klein-Gordon equation, Equation 4.1, is

El61= [ ax(90F + 10,67 + (n - 24300) ). (4.23)

By substituting Equation 4.19 and using the commutation relations for dynamical insta-
bility modes, bound-state modes and normal modes, the energy functional can be refor-
mulated as

(oo}
E = f dcua)(lcyff)l2 +lal ? + " )+, 2)
m
BSM DIM

+ ) Waldol? + D (~idebac), + icab}), (4.24)

where the lower integration limit for the part containing contributions from the normal
modes reflects their range of validity and DIM indicates the dynamical instability modes

3The respective form of Equation 4.19 for the Bogoliubov-de Gennes equations in the BEC framework is
given in theorem 7, where bound-state modes are omitted.
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and BSM the bound-state modes. The first term inside the integral reflects the continu-
ous character of normal modes, while the discrete bound-state and dynamical instability
modes are summed over the discrete spectrum.

To conclude this analysis, quasi-normal modes need to be further studied. As they are
not L? or asymptotically bound, they are not included in the spectrum. They emerge as
poles of the retarded Green’s function [65].

There are two types of poles for the retarded Green’s function; the ones in the upper
complex plane, which are poles of the Green’s function, G,, as well and those which are
located in the lower half plane across the branch cut. The first type of poles are included
in the spectrum, as they are poles of G,, too. However, poles in the lower complex plane
are not included in the spectrum.

By assuming solutions of 4.17 with Im{4} > 0, Im{k,} > 0, modes that are square-
integrable should asymptotically satisfy the condition

511) ~ e k% §s [? for x — —o0 (4.25)

@ e is [ for x — +oo. (4.26)

These modes are outgoing®.

On one hand, when the imaginary part of the frequency is Im{4} > 0, the corresponding
mode-function decays on both sides of the potential and is thus square-integrable. Re-
tarded Green’s function shares these poles with G,. On the other hand, when Im{4} < 0,
the corresponding mode-functions are exponentially increasing on both sides of the po-
tential. These modes do not belong to the spectrum [65].

4.2 Quantum-field theoretic treatment of unstable
behaviour of the Bogoliubov-de Gennes equations

Regarding astrophysics, it has been known in a classical basis that a star with ergoregion
but no event horizon is unstable to the emission of scalar, electromagnetic or gravitational
waves [72]. This classical ergoregion instability is characterized by complex frequency
modes. However, it cannot be directly connected with black hole radiation. It resembles
more to a laser amplification [73]. The subsequent analysis will mainly focus on general
results emerging from the unstable behaviour of BECs.

The linear stability or instability of BECs is usually analysed through the
Bogoliubov-de Gennes equations, which follow from linearising the time-dependent Gross-
Pitaevskii equation in the quantum fluctuations. Like in the case analysed before, all
modes with real eigenvalues can be mapped to the quasiparticle picture and be proven to
follow bosonic commutation relations. However, Bogoliubov-de Gennes equations can

“This can be seen in the following approximation. Assume that 1 is small and then k;,
. Ok 2
ki—wric = ko + 165 + 0(6 ),

possesses an imaginary part which shares the same sign as the group velocity.
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sustain complex eigenfrequency modes as well for some specific models, one of these
being the multi-component Bose gases [74—77]. Other models where complex eigenfre-
quencies are important include gap solitons or highly quantized vortices [78, 79].

Condensates can generally have instabilities of two kinds; Landau-type and dynamical
instabilities [77, 80, 81]. Instabilities of the Landau type indicate modes with negative
energy. For example, in the simplest one horizon model in a BEC which was studied
in Chapter 3, there indeed existed modes with negative energies (and positive norm),
when dealing with the supersonic region of the configuration. In the subsonic case, all
modes with positive energies had positive norms and no Landau instability could be iden-
tified. Landau instabilities are responsible for the absence of thermodynamic equilibrium
[82]. Dynamical instabilities deal with the decay of the initial condensate’s configuration.
They are caused by eigenfunctions of Bogoliubov-de Gennes equations with complex
eigenvalues. In the case of a highly quantized vortex, complex eigenfrequencies sign the
dynamical instability due to the external perturbations [75, 82].

When the field is decomposed with respect to its modes in the framework of black-
hole lasers with complex modes present, the exact quantum field theoretic description
of these modes will be important. As a result, this analysis will be based not only on
the time-dependent Gross-Pitaevskii equation, but also on the underlying Quantum Field
Theory. After this formulation will become apparent, time-dependent perturbations or,
for example, a linear-response theory treatment of the system will be feasible. As already
seen for the case of the Klein-Gordon field in the presence of an electric field, complex
eigenvalues give rise to different commutation relations compared to the ones for normal
modes. Bogoliubov-de Gennes equations characterize an indefinite metric space, as in
the Klein-Gordon case. The complete set of the modes will be needed in order to fully
characterize the system. Condensates trapped in a potential will give relevant results to
the black-hole laser case, where the supersonic cavity of the black-hole laser takes the
place of the potential. For all this subsequent analysis of finding the complete set and the
proper mode decomposition, an explicit redefinition of the problem will be made.

Thus, the interacting Bose gas action can be expressed as
A A 1 . A A
S = f d*x (cpT (xX)(T = Ty = V(X) + ) D(x) — quﬂ (x) (x)(I)(x)(D(x)) (4.27)

with x = (x,7), T = i0, and T}, = —ﬁVZ. The potential term is left arbitrary for this
analysis.

Then the substitution
D(x) = y(x) + P(x) (4.28)

is performed with respect to the classical and quantum fields, respectively, which results
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it the equations
So= f d*x (<I>3(x) (=T = V(X) + ) Do(x) — %g |®o<x>|4) (4.29)
Si= f d'x (®E‘3(x) (=T = V0 + 1 = g 1) ()
+37(0) (< T = V) + = g1Do(x0)I) d>o(x>) (4.30)
Sa2= f d*x (éﬂx) (T = Tie = V(X) + 1) ()
- %g (410001 §(0)p(x) + DRI (x) + @3@@*2@)) (4.31)

Saa = f d'x( - g(Pe()PZ(NAX) + PHEP (VP ()

- %g&*%x)&sz(x)). (4.32)

The quantum field must satisfy the commutation relations
[bx. 0,0 (x, 0] =6'x-x) (4.33)
[bx.0.6x,0] =0 (4.34)
6" x.0.6'x, 0] =0 (4.35)

in the canonical formalism in the interaction picture with
i = [ @B s v - wiw

2 (4100 ¢ (03 + PP (x) + DIEF™(x) ) (4.36)

| —

+

A

A A A A 1 . A
By = f d3x(g (d)o(x)(/)ﬂ(x)qﬁ(x)+(I)8(x)¢T(x)¢2(x))+quﬁﬁ(x)gbz(x)). 4.37)

The classical field is normalized to

f d*x |Dy(x)]* = no (4.38)
with the condensate number, ny. Alternatively, a new field can be defined in the form
1
= —®y(x), 4.39
f(x) w%o@) (4.39)

which is normalized to unity,

f Ex|f)? = 1. (4.40)
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The Gross-Pitaevskii equation can then be brought into the form of Equation 3.20, with
? and M as defined in Equations 3.12 and 3.13.

For the case of real eigenvalues, the quantum field can be expressed in the quasiparticle
basis by diagonalizing the Hamiltonian, Equation 4.37,

$(x) = Z (un(X) &, (1) = V(X)) (1)), (4.41)

n=1

where the operators & and &' satisfy bosonic commutations relations. The unperturbed
Hamiltonian can then be expressed as

Ay =) w,d]an, (4.42)
n=1

up to an irrelevant constant.
Embarking into the description of complex frequency modes’, the following shorthand
notation will be used in order to express more compactly the final results

r(x) = (”(X)) (4.43)

r2(X)

(r,s) = f Exrf(x)o35(x)

- f &x () rﬁ(x))((l) —01)(223)

= f &*x (7} (X)s1(%) = r3(%)52(%)) (4.44)

I = f Ex (I - InEP) (4.45)
X,(X) = (Lv‘gg) (4.46)
Ya(X) = oy x5 (X) = (Zgg) Vn € N — {0} (4.47)
o= ((1) (1)) (4.48)
o :(10 _01). (4.49)

The Bogoliubov-de Gennes equations, Equations 3.20, can then be expressed as
K(%)x,(X) = 4,X,(X) (4.50)
with

o [P M
M )

>Note that complex frequencies will be denoted with the Greek letter A and real ones with w.

Px) - M) ) 4.51)
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where

L= ( P M(X)) . (4.52)

M) PH(x)

With the above notation and by ignoring any contributions from the zero-mode state
[83-85], xo(x), the following conditions can be inferred

Xl = 0 (4.53)
(%0(X), X2 (X)) = Gy (4.54)
(), yw(0) =0 (4.55)
(), %y (®)) =0 (4.56)
D (0x)(x) = 3 (®)yx)) = 36V (x - x) (4.57)

n=1

with the commutation relation

6,0, 8", 1) = 6P x = x). (4.58)

Properties of complex modes in the context of BECs are then discussed based on [74,
79, 82, 86-88].

Theorem 1. If Im(1,) # 0, then ||x,|* = 0.

Proof. Due to the conjugate symmetry of the inner product,
(s,0) = (,9)", (4.59)
it can be deduced that

A (%0 (%), (X)) = (Kxu(X), %,(X)) = ((X), Kx,(X))

= A0 (X, 5,(0)) 222 [l = 0. (4.60)
O
Theorem 2. If (x,(x), x,(x)) # 0, then A = A,
Proof.
255230, 10(%)) 27 (K%, 2(%)) = (%), K0(X))
G20 (%), X(X)), (4.61)
while using in the first equation the property
(Kx,)' = X'x’. (4.62)
O

64



Corollary 2.1. When theorem 2 is applied to Equation 3.20, the complex eigenvalues
arise in pairs of complex conjugates, due to the symplectic structure of the Bogoliubov-de
Gennes equations. When complex modes arise, the condensate will have a dynamically
unstable ground state [89].

Theorem 3. If A, # A, then (x,(x), x,(x)) = 0.
Corollary 3.1. Two modes satisfying Theorem 3 are orthogonal to each other.
Corollary 3.2. Complex modes are orthogonal to real ones.

Theorem 4. If x, is an eigenvector belonging to the complex sector with

Kx)x,(x) = A4,x,(x), (4.63)
then it satisfies the equation

K@)y,(x) = =A,y,(D) (4.64)
as well.

This means that when x, is an eigenvector, then y, is also an eigenvector with eigen-
value —1;.

Theorem 5. When all eigenvalues of the matrix L in Equation 4.52 are positive, then the
eigenvalues A, must be real, A, = w,.

Discussion. The matrix L is hermitian and as a result will be equipped with a set of real
eigenvalues. Then, Equation 4.63, after being multiplied by o3 and x),(x) will be reduced
to

X1 (0) Lx,(x) = A,X (6)073,(x). (4.65)

Since the matrix L is always real, the left hand side of 4.65 is always real and A, can
be complex only if x,(xX)Lx,(x) = x.(x)03x,(x) = 0. When all eigenvalues of L are
positive, xf,(x).ﬁx,,(x) must be positive and then A, € R. They also carry the same sign as
X, ()03, (x).

As a result, it has been proven that an energetic instability is a prerequisite for the
occurrence of dynamical instabilities. A system energetically unstable is not necessarily
dynamically unstable. A system dynamically unstable is necessarily energetically unsta-
ble.

Theorem 6 (Complete set). Let us define a pair of complex modes with no degeneracy
between them, satisfying the commutation relations

(x,u’ Xay) = 5;11/ (4.66)
and

(yﬂa y*v) = _5;41/ (467)
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with
Kx, =4,x, (4.68)
KXy = dyXay = A%y, (4.69)

u,(x) Uy (X)
where furthery, = o1 x5, yo, = o xt, x, = " and x,., = *77)
Jurther d = 1 You = T S =\, ) [ 1 o (v*,,(x>)

Then, a complete set can be formed, that will satisfy the above theorems
D (et} @) = yulyi D)+ D (x0T, () + x ) (x)
n 7
=YL, &) =y )y = 036D (x - x). (4.70)

Theorem 7 (Free-Hamiltonian representation). From the complete set defined above, the
equation of the field in the Schriodinger picture can be deduced

bx) = ) (@ntn(x) - vy (x))

n

+ 3 (A, 0) + By (x) = Alvix) - Bivi, (x) 4.71)
u

3100 = ) (@fux) — @uva))
+ 3 (Al ) + Bl () = A,(x) = Byva(x), (4.72)
u
where the index n refers to the real modes and the index u to the complex ones. The oper-

ators A, Al, B, and B}, are introduced to describe the complex modes which characterize
the dynamical instability modes. The operators used in 4.71 and 4.72 satisfy

| @] = O (4.73)
A B] =6 (474)
|A.Al] =0 (4.75)
|B..B}| =0 (4.76)
|A.B,| =o0. 4.77)

The free Hamiltonian is then defined as
Ao =) w.dlan+ Y (VAIB, + A,BA,). (4.78)
n I

The time evolution of the complex-sector operators is
A (t) = e WA,
B,(H) = B,
R — i A
A () = €A,
Bi(1) = &' B] (4.79)
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and the field can be finally expressed in terms of the contributions from normal mode and
from dynamical instability modes in the form

Bex,1) = > (neu, (x) - afe vy (x))
+ 3 (Aue ™1, (x) + Bue i, (x)
= Al v (x) - B vy, (x) (4.80)
and
.0 = Z (@™ ;) — ane ™", (x))
+Z (Afeitur o) + Ble'™'u, (x)
= Ay, () = Bue v, (x)). (4.81)
It can be checked that Equations 4.80 and 4.81 satisfy the bosonic commutation rela-
tions, Equations 4.33-4.35.
The nature of the complex-sector operators can be easier understood if they are ex-

pressed in terms of some new operators that will satisfy bosonic commutation relations
[74,79, 87]. In this representation, the following operators can be deduced

i) 0w = 6 - i)
S = —b,[,|+ib = =—=|./~ anl- (4.82)
(B,, vz i\ =1 T B T R (4] - BY)
satisfying
|B- B | = 6,0 (4.83)
|5 B | = 60 (4.84)

The free Hamiltonian 4.78 is then transformed into the form
Ay = ana G + Z(Re (BB, - BB,) + Im{a,} (1Bu’ + }[,,)). (4.85)

Theorem 8. The modes of the complex sector of Hamiltonian of 4.85 cannot be diago-
nalized by a Bogoliubov transformation [74].

All this analysis has enlightened the properties of indefinite metric spaces (or Krein
spaces as seen in Appendix C) describing the emergence of complex modes in the de-
scription of unstable BECs. The existence of two inner product spaces, the positive semi-
definite one (the bosonic annihilation and creation operators for the normal modes) and
the indefinite one, corresponding to the complex modes (describing dynamical instability
modes), has further been elucidated.
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Another important aspect that needs clarification is that the emergence of complex
modes does not instantly imply the occurrence of dynamical instabilities. As in experi-
ments, the quantity under consideration (for example the initial distribution of the density)
remains static until some external perturbation perturbs the system under consideration.
Then, the exponential decay/increase emerges.

The existence of complex modes is encased in the occurrence of an energy degeneracy
between a positive and a negative-norm mode. Differently said, dynamical instabilities are
the result of the resonant coupling between a phonon mode and an anti-phonon mode (be-
tween a positive and a negative-norm mode for a given frequency, in the black-hole laser
case.). The fact that complex eigenvalues emerge as pairs in the Bogoliubov-de Gennes
equations is due to the matrix, K, in 3.20 being real (See Appendix C). The total energy is
conserved and, thus, dynamical instability modes have zero norm. The energy spectrum
of Equation 4.52 can, in principle, contain some negative-frequency modes. As a result, if
all eigenvalues of Equation 4.52 were positive, there would be no complex modes (and no
possibility for a dynamical instability) in the Bogoliubov-de Gennes spectrum, Equation
4.50. The possibility of emergence of dynamical instability modes is enabled by the exis-
tence of energetic instabilities. Moreover, the system cannot be energetically stable when
it is dynamically unstable, but it can be dynamically stable when energetically unstable.

When some of the eigenvalues of the matrix 7 in Equation 3.11 are negative, then
an energetic or Landau-type instability occurs to the system. Elementary excitations are
favored and the superfluid character of the condensate is lost, as the Landau criterion,

(@)

V < VCV = 9
(]

(4.86)

is not satisfied. In this equation, €,(q) is the energy of some excitations in the background
of the moving fluid.
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5 Black-Hole Lasers

5.1 A Classical Treatment

In this chapter, a configuration often termed black-hole laser, due to its resemblance with
the laser effect and the subsequent growth of modes happening there will be discussed in
depth. Analogue gravity models possessing one horizon consist of a really restricted set
of different configurations, the analogue black hole, the simplified version of which has
already been discussed, and the analogue white hole, the time-symmetric of the analogue
black hole. By introducing a second horizon in an analogue configuration, many novel
effects appear (see Figures 5.1 and 5.2). Inhomogeneous profiles with one horizon, in the
BEC context, can be dynamically stable, but are necessarily energetically unstable, due to
the emergence of negative-frequency modes; thus the appearance of superradiance effects,
meaning the spontaneous production of correlated phonon pairs, one at each side of the
horizon, with opposite energies. Now, by the introduction of a second horizon, flows with
a finite supersonic Region in between of two infinite and asymptotically homogeneous
subsonic ones are unstable because of a mechanism that leads to the amplification of the
superradiant effects at each horizon. The black-hole laser consists of an analogue black
hole and an analogue white hole.

The dynamical instability of the black-hole laser can be characterized by a complex
spectrum in the Bogoliubov-de Gennes level in the BEC framework (and also in the linear
regime for other configurations as well) with the unstable resonant cavity of the supersonic
region triggering the introduction of more complex frequency modes by the increase of
its width [90].

Before embarking on a fully BEC-based analysis of the effect, a more classical de-
scription will be given, based on a simple massless scalar field, as done in Chapter 2. This
will bring back to attention the analogy between gravitational modes and the mean-field
analysis with regard to Bose gases. The process of explaining the black-hole laser in this
section will be based on Figure 5.1.

An incident wavepacket in the right subsonic region will be assumed, being in the
mode ¢! and propagating with negative group velocity (see Figure 5.3). At the horizon,
a mode-conversion process will occur. A reflected wavepacket will then be scattered in
Region III in the ¢/ mode, while the decaying mode ¢, also needs to be included in the
description for a complete scattering description, as done in Section 3.3.1. In Region
II, there will be two outgoing modes. Firstly, the ¢{ mode belonging to the v-branch
has positive frequency and negative group velocity and, then, the ¢; mode (which is a
mode of counterpropagating-to-the-fluid nature) has negative-norm and negative group
velocity and is being dragged by the flow, as the speed of sound, ¢, is smaller that the
fluid velocity in this region. This mode-scattering analysis is redone by reaching the other
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[V]<c [V]>c [V]|<c

Figure 5.1: The black-hole laser consists of two subsonic regions, Region I and III, which
extend towards infinity. The intermediate finite supersonic Region II acts as a
resonant cavity giving rise to an exponential increase of negative norm modes.
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—4 —
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Figure 5.2: A constant velocity and a smooth speed of sound profile for the black-hole
laser. The dashed lines indicate the horizons (scale is arbitrary).
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[V]<c [V]>c [V]<c

Figure 5.3: The mode decomposition for the black-hole laser. The modes are decomposed
based on the same decomposition done for the analogue black hole case in
Chapter 3. Negative-norm modes are indicated as dashed. The exponentially
increasing or decreasing away from the horizon modes are represented with
dotted and solid lines, respectively.

horizon as well, but with the difference that now the subsonic flow is downstream and the
supersonic one upstream, on contrast to the analogue black hole’s horizon decomposition.
The second horizon resembles an analogue white hole. Across the analogue white hole’s
horizon, a second conversion process occurs. The ingoing modes lead to the existence, in
Region I, of a travelling with positive norm and negative group velocity mode belonging
to the ¢/ sector and the decaying mode ¢ . In the supersonic regime, the positive-norm
mode with positive group velocity ¢¢ and the negative-norm mode with positive group
velocity ¢, exist. After the scattering across the analogue white hole’s horizon, the two
right-going modes in Region II propagate towards the analogue black hole horizon, where
a new conversion process will occur. The two modes in the supersonic sector will give
rise to a new ¢, and ¢, set of modes. In the supersonic region a new set of ¢ and ¢;
modes will appear and the process will continue (see Figure 5.4) until the analogue black
or white hole evaporates or until some nonlinear effects prevail.

Importantly, the norm of this evolving solution is conserved. This means that in each
conversion process, equal amounts of negative and positive frequency occur, preserving
energy in each process. With each bounce at a horizon, it can be seen that the negative-
frequency mode in the supersonic region gets more “populated’. After some conversions,
an exponential increase will be manifest. As before, the size of the negative-frequency
mode will define the particle production, as in the gravitational picture; but the number of
particles in this mode is exponentially increased. This is the manifestation of the black-
hole laser effect [37—40].

This process, analytically explained in the previous paragraphs, can be described by
a four-level process, as can be readily seen from Figures 5.1-5.4. The process followed
below is heavily influenced by the seminal works of [37, 38].

The Bogoliubov transformation that underlies linear particle creation can be visualised
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Figure 5.4: The black hole lasing effect described in cycles indicated by the horizon-
tal dotted lines. Each cycle contributes to the exponential increase of the
negative-frequency mode in the supersonic region, Region II.
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as a general transformation of ingoing annihilation and creation operators, transformed in
the outgoing basis as

04 1 (0]
@, o)
A /’ A
@, n—1
a, Qp
&’IT =S a,”lf > (5.1
A al
ot ot
n-1 n—1
A 1T At
n a’n
where the scattering matrix is constrained by equation
Snst=n (5.2)
with
I 0
n= (O —I)’ (5.3)

where the identity matrix / has been introduced. Its dimension can vary, depending on the
exact problem at hand. Scattering matrices belong to the U(n,n) group and an example
matrix is the

coshp 0 0 sinh p

0 coshp sinhp 0

0 sinhp coshp 0o
sinh p 0 0 coshp

S = (5.4)

which is described similarly to the parametric amplifier case in optics [91]. The quantity
p can be defined with respect to the surface gravity across the horizon and the frequency
of the modes considered.

As a result, the Bogoliubov transformations due to the analogue white and black holes
can be written as

@\ _(cosh —sinh{)[@; (5.5)
&) " \-sinh¢  cosh¢ J\&} ’
and
@)\ _ (coshp sinhp) (@
(6/;) - (sinh o cosh p) (&;) ’ (5:6)
respectively.
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The four-step process described previously can be visualized by the following unitary
’Bogoliubov’ matrices

e 0\(cosh —sinh()[(e!~ 0 \[coshp sinhp
U= UsUsU2U, _( 0 1) (— sinh  cosh/( )( 0 ei9+)(sinhp Coshp) (5.7

and then the scattering matrix will be of the form
s =U", (5.8)

where n denotes the number of amplification steps. Each step includes the action of Uy,
U,, U; and U,. The matrix U; describes the mode conversion process across the black
hole horizon, U, the propagation of modes in Region II, U; the conversion process across
the analogue white hole’s horizon and U, the propagation back to the black hole horizon.
This four-step process can take place multiple times, until some external constraints are
imposed. At each propagation time between the two horizons, the two modes acquire
separate phases. One phase is a free parameter and can be set to zero.

When the Bogoliubov matrices U, satisfy the equation of the scattering matrix equation,
Equation 5.2, then the elements of the matrix U should satisfy equations

Ul = UpP =1 (5.9)
\Uail” = [Un* =11 (5.10)
UTlel_UTZUZZ :O (511)

due to unitarity and then, as U should be a U(1, 1) matrix,

_ ik M v
U=e (V ﬂ*) (5.12)

with Ju> = /2 = 1 and
1
uf? = 5(1 + cosh(2p) cosh(20) - cos(@,. + 6_) sinh(2p) sinh(20)) =

P {%(1 + cosh(2p) cosh(2¢) - sinh(2p) sinh(20))
/l =

i . . (5.13)
3(1 + cosh(2p) cosh(2¢) + sinh(2p) sinh(27))

with the two choices indicating maximal suppression (cos(f, +6-) = 1) and maximal
amplification (cos(6, + 6_) = —1), respectively. The maximal amplification condition
translates into

1
0, +6_ :27T(m+§), (5.14)

with m € Z. The phase 6, is not included in this relation, as modes from the subsonic
regions have no phase sensitivity. Indeed, the phase content that is included is the phase
difference between the two modes 6, + 6_ that propagate across the supersonic regime.
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After n-amplification steps, the negative-frequency mode trapped in the supersonic re-
gion leads the annihilation operator to obtain a form

n

& einklun&_l + v Z ei(n—l+l)/<ﬂn—l&']' (5 1 5)

-n = +
I=1
and the respective of the positive-frequency mode in the subsonic region to be
n—1
&fn — emkvlun—lcf\l_l + |V|2 Z el(n—l)Kﬂn—l—l&L + elku*&in (516)
I=1

with the vacuum conditions

a_110)=0
a0y =0 (5.17)
and [ = 1,...,n. The particle number content for modes in the supersonic and subsonic

regions is respectively found to be

(Vo) = (aa,)

= " -1 (5.18)

and
(R) = (&a,) (5.19)
= Jul*" (1 - Iu%) (5.20)

5.2 Mode analysis for the black-hole laser

In configurations where the speed of sound crosses the velocity of the moving fluid once
(see Figure 1.1), it has been seen that there exist 2 travelling modes, one exponentially
decreasing and another exponentially increasing in the subsonic region and two ingoing
and two outgoing modes in the supersonic region. For the black-hole laser, the situation is
a bit more intricate, as complex frequency modes ’usually’ occur as well (see Chapter 4).
Now, the matching conditions at the horizons for the two ’discontinuities’ encountered
between the three regions of a black-hole laser will be introduced. For the rest of this
section, steplike profiles for the speed of sound across the configuration will be used,
while the background velocity will be considered constant.

For this reason, the field in each region is expressed as a superposition of the available
mode-functions. On the left and on the right side, the field can be decomposed as

b0 = Lidl (5.21)

b = Z R (5.22)
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where [, r denote the left and right to the supersonic cavity regions I and Il and £/, and
R are the coefficients of this decomposition. The field ¢ is used in the same way as in
Equation 3.42!. By matching modes qbi;f/ " across the horizons with the components of the
decomposed in Region II field, one obtains

o = > ol (5.23)
J
o = > Rigls (5.24)

J
and the matrix equation
DlL D e-r, Y wilei=0 (5.25)
i=u,v,dec JEV,UUL U J=v,u,u o

with dec denoting the decaying mode towards infinity in each case. This reduces to the
equation

D IRUR, = > QL (5.26)

The notation ¢'/“/" is used for the field in each left, central and right region, respectively
with

Lo + L) + Logl = RIRL + RR. + RECRE (5.27)
Lo + Lo + LEQE = RIRL' + RORL + RERE™ (5.28)
LoQum 4 L7 QU g flecgdecun o QUguin 4 RYRYI 4 Riecqrdecn (5.29)
LUgue 4 freuin  plecgdecin — Qugiin | QVRYI y Rdecqrdecun (5.30)

for a single mode-function (doubled for both of them).

This is a system of four equations with six unknowns, coefficients £ and R, when
considering just one of the mode-functions, as stated above. The real modes of the system
will now be dealt with. For both mode-functions of the system, there are eight equations

Note that the total field can be decomposed as
é = fo dw(e-fw’(@mg +8 8 + O(Wnax — W) Z a"f )

i=uy,uy

a0+ O =) Y %00)

i=uy,uy

in the supersonic and as
00
1 —iwt{ Au gu AV gV iwt( Aut ux AVT v
¢= fo dw (e (ozwcbw + %%) te (% P+, ¢, ))

in the subsonic region, respectively.
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in total with twelve unknowns. Each mode-function has a set of two linearly independent
solutions. For this reason, any combinations of these modes can be chosen. For example,
for one of the mode-functions, one of these combinations could be the modes qbif;i" and
#.". For this solution, the coefficients are £, = 1,R, = 0 or £, = 0,R, = 1 for the
two right-going and left-going modes, respectively. With the help of the Bogoliubov
transformation, these modes can be written as

¢u,in — Tw¢z),0ut + Rw¢z;()ut (531)

w

¢v,in — @w(ﬁz),out + rf~w¢z;out’ (532)

w

with unitarity condition

Tl + R = [T + R =1 (5.33)
RT:+ TR =0. (5.34)

For the case of complex eigenvalues, A = w+il’, the situation is different. We again need to
impose that modes are asymptotically bound. After the acquisition of an imaginary part,
I' > 0, the mode k'] gains a positive imaginary part and thus diverges at x — —oo, unless
L" = 0. Furthermore, the v-mode will acquire an imaginary part and diverge at x — +oo,
unless R” = 0. These two conditions mean that the system 5.26 will only have the solution
L = R = 0, when considering both mode-functions, or that the determinant from the
respective equations, Equations 5.27-5.30, will vanish?. This is exactly the condition for
finding the complex frequency modes in a black-hole laser. This is the matrix condition
that will be used in order to find the emergence of instability in the black-hole laser case
for a one-component BEC.

5.2.1 Semiclassical analysis for real modes for a black-hole laser
from a one-component BEC

Let us now continue the treatment of the previous section, improving the example-based
classical description of the black-hole laser in Section 5.1. The same process in con-
structing the scattering matrix (found in Figure 5.5) will follow, but with the inclusion of
an important new constraint. In this case, the most general case for the unitary matrices
will be discussed, after gaining the experience needed from the specific example already
dealt with.

For the analysis, steplike velocity profiles will be considered. For smooth profiles, a
WKB (Wentzel-Kramers-Brillouin) analysis is usually performed for treating the asymp-
totic regions [48, 92]. In this case, the wavevectors acquire some spatial dependence in
first approximation [48, 92].

Numerical results have shown that in a first approximation, one can safely assume no
mixing between u- and v-modes [20, 31, 40]. This means that in the scattering analysis,

2The analysis follows the same path for both mode-functions. Results found for one of them can be just
duplicated in order to get the full picture.
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Figure 5.5: A one-component BEC with a background flow forming a black-hole laser.
When compared with Figures 5.4 and 5.3, an ingoing #' mode is now used.

one can ignore the v-modes and discuss only the effects coming from the u-modes. In
this approximation, the u-modes completely characterize the black-hole laser effect. The
ingoing u-mode in Region I, as in Figure 5.5, can be expressed in terms of the modes in
the central supersonic regime

Ph = AP + BUG + B (5.35)

The modes of negative norm are included as complex conjugated. Then, the scattering of
ingoing modes in terms of outgoing ones from one horizon to the other needs to be taken
into account. As the v-modes have been omitted in this analysis, the the scattering can be
described by a two-component vector®,

® = ((Z}; ) (5.36)
with 7r denoting the trapped mode of negative norm (meaning the ¢"!  or the ¢*2, modes)
and the modes of u-character, meaning the u-modes in the subsonic regions I and III and
the supersonic regime (see Figure 5.5). In this treatment, the example-based analysis of
Section 5.1 will be abandoned and the most general forms of the same unitary matrices
will be used. The first matrix, U;, will again describe the scattering of the incoming
right-going mode ¢* and of the incoming left-going negative-norm mode q)ff) across the
analogue white hole’s horizon, the second, U,, the propagation towards the analogue
black hole’s horizon in the central supersonic regime, the third matrix, Us, the scattering
across the analogue black hole’s horizon and the fourth, Uy, the propagation back towards
the analogue white hole’s horizon for the trapped mode and through the right subsonic

3Note that here the capital letter @ is used to denote the following vector and is not related with the same
symbol as used in Chapter 3
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region for the right-going u-mode,

| aw  @uze
U, = Guzok G, ) (5.37)
v=(¢7 O (5.38)
2= 0 e—iS(,]u), .
_| Yo YoWw
s 5/¢uww* 5’(1) ) (539)
1 0
Uy = 0 %] (5.40)
with?
2ol = 1l (5.41)
Yol® = ol (5.42)
ol (1= lzol’) = byl (1 = wul?) = 1, (5.43)
due to the unitarity of the U; matrices’, and
L
St = f dx k! (x) = 2Lk} (5.44)
-L
R
St = f dx (k! (x)) = —2Lk;! (5.45)
Ly
Ro
st = f dx (—k2(x)) = —2Lk2. (5.46)
Ly

The last equality for Equations 5.44-5.46 holds for steplike profiles.

The limits of integration denote the length of the supersonic regime, extending from —L
to L. The points L, and R, generally do not correspond to the horizons. They correspond
to the turning points [31]. In first approximation, any nontrivial effects can be neglected
and the wavevectors are assumed to possesses no spatial dependence, which considerably
reduces the integrals involved.

From this scattering process, the elements of the scattering matrix can be found in terms

“The unit element in U, reflects the freedom of choosing the initial ingoing mode in the left region, being
of unit amplitude, see also Sections 5.1 or 3.3.1.

Note that unitarity in 5.31 sums the respective elements of each row, while here it subtracts. This is
exactly the influence (and the signature) of the negative-norm mode (see also Section 3.3.1)
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of the coeflicients of the unitary matrices in 5.37-5.40, as

FQu & § s u uy
S = ayyL.e’e (1 + =2 wee (i ) (5.47)
(79
SQu & i u uq
S = ayy.ede (zw + 2y, e (S0 ) (5.48)
w
it _g"2 07 : u gl
Sa1 = &uFpe G =55) (zz, + e SES ) (5.49)
a’w
- o~ _i( M _¢g*2 (0% : u uy
S = a,Yue (S0 =54) (1 + ~—wzww:;e’”(sw+5*w ) (5.50)
w

Now, the scattering matrix will describe the propagation of the ingoing u-mode from
Region I, through Region II, to Region III, but also the bouncing of the negative-norm
mode at the horizons. This process will give rise to the lasing effect. After each time, @,
which represents physical solutions of the scattering, is imposed to be single-valued. The
value of the negative-norm mode impinging on the analogue white hole’s horizon, due to
U,4, will have the same amplitude before and after the action of the scattering matrix S on
it. The same follows for the other negative mode as well.

Then, the scattering can be characterized by the equation

(e;”) = (bl ) (5.51)

where the amplitude B} is assumed to be B,; = b,, and the phase 0, is real from unitarity.
This means that

S
b, = 5.52
=S, (5.52)
i, =S +S bw [ —22’ 5.53
e 11 12 Syr 1 — S ( )

where the last property is a direct consequence of the unitarity of S. From Equation 5.35,
A, and B can now be found from U, by setting B.> = b,,5,

A, =a, (1 +2z,b,) (5.54)
B =a,(z, +by,) (5.55)
B} = b,. (5.56)

After having concluded with the analysis for no u-v mixing, these results can also be
extended to include u-v mixing. The inclusion of the v-modes in the analysis hardly makes
any changes. The ingoing field in the subsonic left region is now
ot = Al + AL, + Bu Pl + B, (5.57)

w

The outgoing modes from the analogue white hole’s horizon are expressed via the unitary matrix U; as

A _ [ @ awio)(1
B4 " \anz,  @w [\bo

for this reason.
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but with

" = ¢ + R, (5.58)

in the left region, while in the right subsonic region it asymptotes to 7,¢;,. The coefli-
cients of this decomposition are again be found from the matching conditions across the
two horizons. Now, at each horizon a triplet of modes (compared to the doublet, for no
mixing) exists,

Do
o, |- (5.59)
o
From the scattering at each horizon, the following equations are found
Ay 1
Rw = SWH Bw (560)
B, B
and
Twe"si ﬂZ) iSg,
Ape®e |=Spu| 0 |, (5.61)
Bz)ze—isﬁﬁ, B e—iSlf{U

which fix the coefficients A’ and Bi,, with i = {u, v} and j = {u;, u,} and the R, and 7,
functions.

Each of the elements in the matrices S g and S gy are found through the analysis of the
ingoing modes in terms of the outgoing ones (or, equally, by constructing the outgoing
modes in terms of the ingoing ones), as done in Chapter 3 based on Figure 3.14. To
find the scattering decomposition for the analogue black hole’s horizon, the three sets of
four coupled equations (in total twelve equations) for the analogue black hole’s horizon
and the respective three sets for the analogue white hole’s horizon need to be solved. In
total, there are thirty equations (twelve for the scattering across the analogue white hole’s
horizon, twelve for the scattering across the analogue black hole’s horizon and six from
Equations 5.60 and 5.61), which need to be solved numerically (or analytically in some
lower order approximation, as done in Chapter 3), in order to fully characterize the real
modes across the black-hole laser configuration.

5.2.2 Semiclassical analysis for complex modes for a black-hole
laser from a one-component BEC

Let us now deal with the possibility of the emergence of complex-frequency modes. The
same scattering decomposition is again followed, but different conditions for the outgoing
modes are now imposed.
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At first, the complex frequencies A = w + il are assumed to have I' > 07. In Region
I, the ingoing u-mode will need to vanish in order to ensure its finiteness for t — —co.
The trapped mode is again assumed to be single-valued. It can be chosen to have unit
amplitude and, then, the relation for the complex-mode scattering gets

BY _(Su Si2\(0

(1) - (521 Szz)(l) (5.62)
with

=5 (5.63)
Sn=1 (5.64)

From the two parallel analyses followed for real and complex modes, a relation between
them can be identified; when a complex frequency exists for Equation 5.64, it is also a
pole for the coefficient B} = b,, in Equation 5.52. When I' is small, then B;; is dominated
by the contribution of the pole®.

Having concluded the scattering analysis, what follows is the calculation of the dy-
namical instability modes for the black-hole laser. In later stages of the evolution of the
black-hole laser, the real modes will be drown by the exponential amplification caused by
the complex modes. As it has become clear until now, there exist two equally valid pro-
cesses for their acquisition. We have chosen to follow the matching matrix route, through
Equation 5.26. The next section will be devoted to this analysis.

5.3 Matching matrix analysis for complex frequencies

Let us consider stationary solutions of the Gross-Pitaevskii equation (A =m = ¢ = 1),

1
i = —Qaiw + Vi + g [l v, (5.65)
of the form
w(t, x) = e f(x)e' ", (5.66)

with u denotes the chemical potential and f = n? denotes the amplitude of the wavefunc-
tion”.

Then, by using the definition of the conserved current (with respect to the velocity,
V =0.0),

J=V =nd,0= 23,6, (5.67)

"This is always the signal of some dynamically instability mode. Modes with I' < 0 will denote the
complex conjugates of each pair of complex modes, which are decaying in time, as shown in Chapter 4

8For further details, see [39, 92].

°In this section, the variable f instead of the density, n, will be used which will simplify some of the
calculations for the matching matrix.
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the ordinary differential equation

2

Oof =28if” = 2u,f + % (5.68)

is obtained, where the index j takes values in the set j = {I, II, III} of the respective region
of the black-hole laser.

Then, a homogeneous solution with f = f, is also assumed to exist across all regions

of the black-hole laser (with subsonic flow in regions I and III and supersonic flow for

Region II [93]). Perturbations of the homogeneous solution, with c? =gify.J = V[ are

being used for the equilibrium value f = fy and 6,(x) = 2, of the form

Ea
f@t,x) = fo+0of(t x) (5.09)
0(t, x) = 6p(x) + 66(¢, x). (5.70)
The zeroth-order resulting equation reads
1
wi = 5/ + gifs (5.71)

where it is used that u; = u — V;(x), with V;(x) the potential in each region (see Equation
5.65).
The first-order equations are found to be

(0, + VO, 6f = — fo0%66 (5.72)
V: o1 2)
— + =0%|6f. (5.73)

fo0; +V0,) 60 = u; - 3gify — > *5

Then, solutions of Equations 5.72 and 5.73 in the plane wave form are assumed,

Sf = Ape” "= (5.74)
60 = Age Wk, (5.75)

The resulting linear equations give

Ay  —2iQ

1
Q=w-kV =,/ + Lk (5.77)

Eight matching conditions for the two horizons are being used to construct the match-
ing matrix. Two conditions correspond to each mode, 66 and 6n, and two more for the
continuity of their derivatives across each horizon (in total eight conditions). For this
reason, the complex frequencies that give rise to dynamical instabilities of the black-hole

with
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Figure 5.6: Subsonic dispersion relation for w — iw and k — ik.

laser need to be considered. The modes of the spectrum responsible for this phenomenon
are asymptotically bound at each side of the horizon. Two such modes exist in each sub-
sonic regime, which are named k;, and k;, for Region I and k;;;, and k;;;, for Region III
(see Figure 5.6 for their analytic continuations in I' = Im w > 0). Figure 5.6 is obtained
by the transition to the discrete complex part of the spectrum by w — iw and k — ik with
the new variables k € R and w € R, which leads to a dispersion relation of the form

1
(w = VI = cjk* = 2K (5.78)

Note that from now on and until the end of this section, the specific character of each
mode will no more used. Modes will be just numbered as in Figure 5.6. This reflects
their identification as the first, second, etc. mode for each sector, I, /I or I1I. No more
information regarding them will be needed for the subsequent analysis.

For real frequencies, these two modes corresponded to the outgoing and the exponential
decaying wave in regions I and III. It is evident, from our selection method of Figure 5.6
that asymptotically bound modes need to be square-integrable (for the general analysis,
see 4.25). As a result, we retain four modes for the outer subsonic regions I and III. For
Region 11, all four solutions are retained. By concluding,the eight k-modes for every low-
frequency solution in total will be considered, evaluated at the analogue black and white
hole’s horizons, which are assumed being placed at x = —L and x = +L. By varying
the position of the analogue black and white hole’s horizons, the onset of instability is
detected'”.

The instability onset (see Figure 5.8) for the black-hole laser case can be explained
through the inclusion of quasi-normal modes in the analysis'!. Quasi-normal modes are
not square-integrable and are not included in the spectrum. From their definition in Chap-
ter 4, quasi-normal modes are found depicted for I' < 0, as in Figures 5.6 and 5.7. It is

10Take into account that by placing the two horizons symmetrically across the origin, only symmetric
variations of the supersonic regime are taken into account.
""For a more in-depth analysis, see Chapter 4 and references therein.
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Figure 5.7: Supersonic dispersion relation for w — iw and k — ik.

stressed that not all modes with I' < 0 are quasi-normal modes; there exist also dynamical
instability modes having I' < 0. These set of modes, however, will not be included in the
following figures. As shown in Chapter 4, quasi-normal modes obey outgoing boundary
conditions. Solutions k;, and k;;;, interchange their character in order to satisfy outgoing
boundary conditions, as they correspond to poles of the retarded Green’s function that are
not poles of the G,.

The first four columns of the matrix which gives rise to the dynamical instability of the
system are presented below:

e lk[lLkz e‘ik12Lk2 e—ikulLkZ e lk113Lk2
2 2
_lkll Lk3 —lk12 Lk3 e—lk”l Lk3 e—lk112 Lk3
—lkll LQ lk[zLQ lk]]I LQ e lk"ZLQIIZ
iky, L ik, L k L —iky, L
M = — kllQ Lo e k12Q no ek, Q111 e "k, Qyy (5.79)
i(1-4) — i j .
l( ) 0 0 elk”l Lk%[l elk112 Lk%lz
[k[[ L3 ikll L3
0 0 ek, ek,
iky, L 1979 %
0 0 et QH] e 2 QHz
iky, L ikyr, L
0 0 ek Qe ki, Qpy,

This matrix condition emerges out of the imposed continuity and differentiability across
the horizons. Columns of the matching matrix correspond to the eight k-modes and rows
to the eight matching conditions. The first four rows are evaluated across the analogue
black hole’s horizon, while the last four across the analogue white hole’s horizon. The
first and third rows consider the modes én and 60, while the second and fourth rows
their derivatives. All matrix elements are multiplied with a factor k* in order to avoid
numerical errors while searching for the solutions of the determinant problem. Third and
fourth rows correspond to e'® with fy = 1, by the inclusion of the normalization factors.
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The last four columns, not presented here (but exactly symmetric to the presented ones),
correspond to the last two modes for the supersonic regime, the modes k;;, and k;;,, and the
two modes for the subsonic Region III, k;;;, and kj;;,. The zeros in the first two columns
of the matching matrix are due to the fact that modes in Region I give no contribution
to the continuity and differentiability of the modes at the analogue black hole’s horizon.
The same phenomenon occurs for the first four elements of columns seven and eight, as
the modes in Region III give no contribution to the matching conditions at x = —L. The
frequency €Q; corresponds to the comoving frequency of the system, which is defined in
Equation 5.77 or 3.57. For the calculation of the figures in the rest of this section, V = 1,
c; = ¢ = 1.5 and ¢;; = 0.5 has been used. With this selection of values, we are able
to verify existing results of the bibliography and also extend the theoretical framework of
the emergence of dynamical instability modes in the black-hole laser. In the determinant
equation of the matrix 5.79,

det(M) = 0, (5.80)

the only free parameter is the distance of the two horizons, 2L. By varying this distance
for some specific range of complex frequencies, we can produce the following graphs.
Figure 5.8 includes the first two complex frequency modes belonging to the discrete part
of the spectrum. Blue and red curves correspond to the real parts of the mode solutions
while black and gray to their respective imaginary parts.

By initializing the system with a fluid flow being everywhere subsonic, no emergence
of complex frequency modes is initially predicted, something that is verified by the nu-
merical calculations for L = 0. The system is then stable. By initializing the supersonic
cavity, the first nonzero complex frequency mode appears as a purely imaginary mode
with a real degree of freedom. This happens before the ’healing-length’ scale is reached
(found for L = 1). When this mode hits the axis again, a nonzero real part emerges
and the mode becomes complex. Before L = 2.3, the next nonzero imaginary frequency
mode emerges. Its immigration to the complex plane occurs for approximately L = 3.2.
As L increases, new modes will become nonzero. The imaginary part of the first mode
varies with decreasing maximum as L — co. At this limit,it is expected that a supersonic
flow with range L — oo would correspond to a flow that would give no instability (all
imaginary parts of the complex modes would tend to zero). This exact behaviour of the
decrease of the imaginary part of all complex modes is shown in all the relevant figures.

Figure 5.9 depicts the real parts of the first five modes. It is evident that for increasing L,
the real parts tend to saturate to a maximum frequency which has a frequency of w < 0.3
and corresponds to the maximum allowed frequency-mode, as seen in Figures 5.6 and 5.7
or as computed in Equation 3.78.

The third dynamical instability mode is depicted in Figure 5.10. The pattern that the
first two modes follow is also found for the third mode'?.

By going to n > 3, the existence of modes that follow the exact same pattern as the first
three branches can be verified. The initial maximum, reached by the imaginary part of the

IZNote that we speak of the ’third’ mode, but we start our enumeration from n = 0. This will become
apparent when the points where complex modes first appear will be discussed.
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Figure 5.8: The first two dynamical instability modes of the one-component black-hole

laser. Blue and red (small dots) curves indicate the respective real parts of the
modes and black and gray their imaginary parts.
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Figure 5.10: Third dynamical instability mode with its real (green) and imaginary (cyan)
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Figure 5.11: The origin of dynamically unstable modes, explicitly shown for the first two
dynamical instability modes. For I' < 0, the four quasi-normal modes are in-
dicated. When they hit the real axis, they give rise to a degenerate dynamical
instability mode. The second (purple) and fourth (cyan) quasi-normal modes
give rise to a degenerate dynamical instability mode that instantly leads to
the production of a nondegenerate dynamical instability mode with the help
of the already existing degenerate dynamical instability ones.

respective mode decreases as the length L is increased. At the same time, more complex
modes emerge.

Figure 5.11 includes the first indication of the origin of the instability. By increasing
the length L, a quasi-normal mode exists in the system from the point that the supersonic
Region II is initialized. As the length of the supersonic cavity is increased, quasi-normal
modes move closer to the real axis. When the first quasi-normal mode (the gray in colour,
I'onm,) hits the real axis, it gives rise to the imaginary dynamical instability mode for
I' > 0. After L is increased more, this imaginary dynamical instability mode will hit the
real axis at the point where another quasi-normal mode hits it as well. Then, the first
complex frequency mode arises. The same process is found for the second dynamical
instability mode as well (n = 1) and for the quasi-normal mode I'gyy,. Note that the first
two quasi-normal modes are of imaginary frequency.

The situation for the description of quasi-normal modes differentiates for the third
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quasi-normal mode, which is of complex frequency. When the real part of the third quasi-
normal mode hits the real axis, a scattering of the imaginary part of the quasi-normal
mode occurs. Before L = 3.1, the third complex-frequency quasi-normal mode has split-
ted by a scattering process into two modes of imaginary frequencies. These two modes
hit the real axis at some values of L giving rise to dynamical instability modes, as seen
in Figure 5.12. In this last figure, all the information of the last figures is gathered to-
gether; small dots (blue, red and green) indicate the real part of the complex frequencies
for dynamically unstable modes.

The instability onset will now be explained. To begin with, an intriguing aspect of Fig-
ures 5.8-5.12 consists of their periodic onset. For this reason, Equation 5.68 is linearised
indof

2 s, S 2 3
o f = (—Zﬂjfo +2¢8;fy + 173) + (—Zﬂj +06g;fy — ﬁ) of
0
2/.[1‘:2€§+V2

= 4(c?-Vv?)of. (5.81)

Its solution reads
Asé? \/"?__sz, z<-L
6f = Ancos(2\V2 = G+ ¢), L<z<L (5.82)
Apre™? 'C%_sz, z>L

with A;, Ay, Ajp and ¢ constants.
Then continuity and differentiability of the function §f at the horizons are imposed,
leading to the equations

ANV 2 g cos(z lv2 A (~L) + ¢) (5.83)
A VTV = Ay cos(2 V2 - L+ 0) (5.84)

2\c} - VA VI 2 Ve m iy sin(2\V2 - G-Dy+9)  (589)

-2 "C% - V2A1][€_2 VC%_VzL =-2 ‘,VZ - C%IA” sin(2 1”/2 - C%IL + ¢), (586)
which reduce to
c% - V2

2 _ 2
Ve —cy,

cr—V? ;
— 2 _
e tan(2 V2 - L+ 9). (5.88)

From the properties of the inverse tangent function, the length, L, can be obtained as

1 - V2
L,=——— arctan[ ! ] + il . (5.89)

Vi-cu) 2 v o

- - tan(Z V-2 (-L)+ ¢) (5.87)
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Figure 5.12: All dynamical instability modes for n < 2 with the relative quasi-normal
modes are represented. Note that small dots (blue, red and green for positive
frequencies and the dark purple ones for negative frequencies represent the
real parts of the respective modes) and the thicker ones the corresponding
imaginary parts. The first three quasi-normal modes are imaginary, while the
fourth and fifth are complex. They split into two imaginary ones when their
real parts hit the imaginary axis and the two newly born imaginary modes
for its previously complex quasi-normal mode give rise to two degenerate
dynamical instability modes.
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Figure 5.13: The Hamiltonian-Hopf bifurcation. The two imaginary modes (red crosses)
will split with the variation of a parameter of the system giving rise to a
quartet of complex modes (the four blue crosses). The theory revealing this
phenomenon is explained below, in Chapter 4 and in appendix C.

For m € N, it can be seen that a new dynamical instability mode of imaginary frequency
emerges from a quasi-normal mode, while the latter hits the real axis. For L./, that
same mode enters the complex plane. For L = L, the system becomes unstable. This
same length corresponds also to the point where a nontrivial nonlinear solution becomes
energetically favorable when compared to the homogeneous one [90].

To conclude this section, the instability onset of the one-component black-hole laser
configuration in terms of the theory formulated in Chapter 4 will demonstrated and some
of the conclusions made there will be readdressed.

Based on considerations in that chapter it can be stated that the occurrence of a dy-
namical instability mode is interwoven with energetic instabilities, occurring for the same
values of the parameters of the system. Due to the Hamiltonian origin of the respec-
tive Bogoliubov-de Gennes equations, the symplectic structure of the system explains the
emergence of two kinds of dynamical instability modes; pairs of imaginary modes with a
real degree of freedom, the degenerate modes, and quartets of complex modes, the non-
degenerate modes. As shown in Figures 5.8-5.12, the process that the system follows in
becoming unstable can be summarized as follows; a quasi-normal mode hits the real axis
and gives rise to a degenerate dynamical instability mode for some length L = L,. Then
another quasi-normal mode hits the real axis and gives rise to a second degenerate dy-
namical instability mode for L = L; > L. Finally, the two degenerate instability modes
merge in order to create a nondegenerate dynamical instability mode for L = L,. In this
specific case, L; = L, and the second degenerate instability mode is instantly scattered
with the first degenerate dynamical instability mode, giving rise to the complex nongener-
ate dynamical instability mode. A second nongenerate dynamical instability mode will
occur in the system by another similar step for the third and fourth degenerate dynamical
instability modes.

Since the Bogoliubov-de Gennes matrix is real, it can sustain only complex frequencies,
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which arise in conjugate pairs, and real eigenvalues. If there is a doublet of nonreal eigen-
values, this necessarily corresponds to a pair of degenerate dynamical instability modes
and this pair can be described by the imaginary-frequency harmonic oscillator [94]. If four
eigenvalues are complex, then they correspond to a quartet of complex nondegenerate dy-
namical instability modes (4, —1*, —4 and 1*) and are described by the complex harmonic
oscillator theory of Chapter 4. Alternatively, they can correspond to two sets of imaginary
modes that have not evolved to create nondegenerate dynamical instability modes. This
case is not found in the black-hole laser system, but it is observed in other systems [65].
The energy of the system is conserved in time and this means that dynamical instabil-
ity modes have necessarily zero energy. The previous existence of energetic instabilities
in the system is necessary for the subsequent occurrence of dynamical instability modes
(see theorem 5 and the following discussion). This means that for the occurrence of a
zero-energy dynamical instability mode, two eigenvalues of opposite signs of the matrix,
Equation 4.52, are needed. When all eigenvalues of that matrix have the same sign, there
is no way to support the onset of dynamical instability modes and the system is stable.
For an eigenvalue of the that matrix changing sign, a degenerate dynamical instability
mode is created in (or erased from) the system. When a second eigenvalue of this matrix
changes sign, then the previous degenerate dynamical instability mode is erased from the
system or a new one emerges (see theorem 1). A further merging of these two degenerate
dynamical instability modes gives rise to a quartet of complex nondegenerate dynamical
instability modes. This phenomenon is represented in Figure 5.13. The axis are the real
and imaginary parts of the respective complex frequency. The two imaginary modes bi-
furcate and give rise to a quartet of complex modes, after some scattering process that
will trigger the imaginary modes to do so. This is called a Hamiltonian-Hopf bifurcation,
as by varying a parameter of the system (the length L in this case), the splitting of the two
imaginary modes into the quartet of four complex modes is witnessed.

All the conclusions made in this chapter regarding the onset of the instability of the
black-hole laser configuration can be strictly formulated through the theory of nonher-
mitian Hamiltonians via the identification of the Krein signature'®. Some introductory
concepts and theorems will be given in appendix C.

5.4 Conditions for the emergence of dynamical
instability modes for black-hole lasers

In Chapter 4, the possibilities for the emergence of energetic or dynamical instabilities in
BECs were discussed. General arguments, when applied to the black-hole laser case, give
a set of criteria that, when satisfied, the black-hole laser will possess dynamical instability
modes.

Prerequisite for the emergence of dynamical instability modes is the occurrence of
energetic instability modes. For energetic instabilities to occur the following conditions
need to be satisfied:

3For more details see [66, 95-97] or, for coupled nonlinear Schrodinger equations, [98]
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e There exists a region of frequency values where the field equations admit both pos-
itive and negative-norm (asymptotic) modes.

e These modes (of both positive and negative-norm) are mixed when considering
globally exact solutions of the mode equations.

Further conditions apply for the occurrence of dynamical instabilities:
e One of the solutions mentioned above needs to be trapped.

e The depth of the potential (or the length of the supersonic region) needs to be large
enough to sustain at least one pair of complex modes.

These conditions need to be satisfied in order for the dynamical instability to appear [39,
65, 90].
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6 Rabi-coupled
condensates-Countersuperflow

Bose-Einstein condensates (BECs) with one component, as studied in the previous chap-
ters, enable a simplistic analysis for the respective theory. However, due to their spin
degrees of freedom, multi-component BECs, open a whole new world of possibilities for
exploring spin waves, phase separation, quantum tunnelling, Rabi oscillations, vortices
and topological defects and many more [99-104].

In this section, a two-component Bose gas with Rabi coupling will be considered.
Furthermore, it will be assumed that the condensates have no background velocities. After
having finished this analysis, the differencies, when a nonzero background flow between
the two components is included, creating a countersuperflow, will be analysed [105, 106].

Starting with no background flow between the two components, the Lagrangian de-
scribing the system can be expressed in the form

. '/’ 1, 10U
L= | dxin|y] -E 6.1
with the energy functional E
2 2
hz alﬂ j 2 g Jk
- [of Z(% W o + ; o
—hQ g1y} + wi)) (6.2)
and m; the atomic masses of the components and y; their respective chemical potentials.
The coeflicients g = 2;12# of the density-density interaction are represented by the

effective masses of the j-th components as ka =m; "+ m;! and the scattering lengths,
@i, satisfy aj = ay; between the j-th and the k-th components. The last term on the
right hand side of Equation 6.2 represents the Rabi coupling, which will later be assumed
Q> 0.

Equations 6.1 and 6.2 represent two BECs in two hyperfine levels (spin states). Theo-
retical investigations on coupled BECs had initially been triggered based on the Landau-
Khalatnikov two-fluid model for one-component BECs and then extended on the stability
of ground state, to their properties and to their collective excitations as well. Hartree-Fock
theory has also been successfully tested to two-component systems [107-110].

Generally, many properties of two-component BECs (or, in general, binary BECs)
emerge out of symmetry arguments. Two-component systems sustain a wealth of symme-
try and symmetry breaking patterns. Condensation for binary condensates corresponds to
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the spontaneous breaking of two U(1) global symmetries which are related by No6ther’s
theorem to the conservation of each of the atom numbers of the two species. The cou-
pling of a system of two condensates populating two different spin states is specifically
enabled by, for example, an electromagnetic tuning to the transition frequency. In this
case, atoms can be converted back and forth between the two spin states and the numbers
of atoms of the two species are not conserved separately, as atoms always move between
components due to the coupling drive. In this case, only the total number of particles is
conserved. As a result, one of the two initial U(1) symmetries remains exact, but the other
is broken. The preserved U(1) symmetry originates to the total particle number conserva-
tion and is reflected to equal-amount changes on the phases of the two components. No
more a change of ¥, — €%y, and ¥, — e ®y, remains a symmetry of the total system
6.1, unless #; = 6,. The violated symmetry corresponds to the relative phase between
the two components. As a result, the presence of the electromagnetic coupling lifts the
degeneracy of the ground state with respect to the relative phase.

We proceed by obtaining the equations of motion, based on Equation 6.1. By taking
variations of the action (and restoring the operator-form of the fields),

S:fmmL (6.3)
the coupled equations are found to be

DA o, n A2 ~ 12\ A n

inddn = (502 + VCO )i + (g1 1]+ g2 9ol - 2 (6.4)

A o, A A2 ~ 12\ A n

iho, = — %3,5 + V() |y + (gu || + 822 || )lﬁz — iy, (6.5)

where it is first assumed that g = yg and 7y is arbitrary but real'. Initially, the general
analysis will be considered and no constraint to y will be imposed (when vy = 1, the
Manakov limit is reached, see [111] for the amazing properties of the system under this
constraint). It is further assumed that there is no external potential, V(x) = 0. The term
proportional to € gives rise to phase correlations of the two components. For the case of
a mixture of two Bose gases it is usually renamed through Q — J [112]. When Q is used,
one of the next two processes is usually inferred: a two photon Rabi process or a direct
Rabi coupling between the two components.

Starting with Q = 0 and by dealing with the ground state of the two-component gas
[113], the wavefunctions ¢; will have nonzero expectation values. These values can be
found by the minimization of the ’potential’ energy in Equation 6.1, with respect to i,

. o . 2
and yr,. This procedure will involve the densities of the two components n; = |:,l/ j| , as

811N + 8122 = |y (6.6)
82111 + 822No = Ho, (6.7)

'For the mean-field solutions of Equations 6.4-6.5, the substitution J; — 1; is used.
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where g, = g2;. These equations restrict to the extrema of the ’potential’ energy of
Equation 6.1. For finding the respective minima, the quadratic form

gum + 2gnming + gnn; (6.8)

is used, which needs to be positive definite. Furthermore, the following condition needs
to be satisfied:

21182 — g%z > 0. (6.9)

This equation ensures the stability of a mixture of two Bose superfluids and their ther-
modynamic stability against segregation [80]. When g;; = g1» = g2, the respective
Hamiltonian has § U(2) symmetry and some very interesting properties [111].

By returning to the Lagrangian with nonvanishing Rabi coupling, the symmetry

> ey, (6.10)
U — e® 6.11)

for the case 2 = 0 is not conserved. The total particle numbers of each component,
N, = f dx wle and N, = f dx 1//;1//2 are not conserved. Nevertheless, their sum, N =
N + N, is conserved (no inelastic scattering effects are taken into account). With Q # 0,
the Lagrangian is invariant only under a subset of the initial U(1) X U(1) symmetry.
When Q = 0, from Goldstone theorem, there exist two gapless modes, while initiating
a nonzero Rabi coupling leads one of them to acquire a gap. The gapless modes are the
phonon excitation (sound waves) also encountered for one-component Bose gases.

By substituting ¢; = ¢ *"¥,, in the equations of motion, Equations 6.4 and 6.5, and
following the same process as in Section 3.3, the dispersion profile of the Bogoliubov
spectrum can be obtained. This procedure will be further analysed in Section 6.2. Sta-
tionary profiles of the Equations 6.4 and 6.5 can be obtained only when u; = u, = .

Before this analysis, the stability of ground states will be discussed and the mode anal-
ysis will only then be performed.

6.1 Stability of ground states

In this section, the ground states of Rabi coupled condensates will be considered. As a
result, a two-component system of homogeneous Bose gases which interact via s-wave
contact interactions together with a coherent coupling is taken into account. The descrip-
tion of the system is enabled through the coupled GP model 6.4-6.5.

The ground state energy of the system, based on Equation 6.2 is

1 1

€= Egun? + Egzzn% + groming — 2Q~niny cos(¢s — ¢1) — pu(ny + ny), (6.12)

where generally the Rabi coupling can be complex, Q = |Q|¢”2. The minimum of the
energy corresponds to

¢:¢2—¢1+¢Q:2Kﬂ', Yk € Z. (613)
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General extrema of the energy are found only for values of the total phase ¢ = 0 or ¢ = 7.
Assuming, as before, without loss of generality, that Q € R and that Q > 0, the minimum
of the energy of the Rabi-coupled system corresponds to the conditions

0

8_; =2Q+nnysing =0

0%e

87432 =2Q Vniny cos ¢ > 0, (614)

which are satisfied for ¢; = ¢,, ¢po = 0. For % < 0, the system will possess other local
energy extrema [114—116]

From now on, the assumption that g;; = g, = g will be considered. The stability
criterion becomes

Oe O€ Qcos ¢
— =—=0=(g- + - =0=
o~ ony (8 g2 N ) (n —ny)
nyg=ny; =ng =73, symmetric ground state
_ Qcosg larized d (615)
Vnin, = e polarized ground state
with the necessary condition
Q
COSP 0, Vg g0 . (6.16)
8~ 812

The relation of the densities of the polarized ground state can then be found to be

2 2
nl—nzzin\/l—(mc—ow) :in\/l—(i), (6.17)
(g —gin n(g — gi2)

as cos ¢ = (—1)" for the ground state, with the total density

ny+n, =n. (6.18)

Generally, the nature of the extrema can be detected from the behaviour of the Hessian

e e > e

8?2 O¢on; O¢pony

He = e e Pe
€= on 0¢ 611% onony |» (6'19)

Pe Qe e

Onp0¢ onyon 8}1%

where H is regarded as an operator acting on the energy of the system. For a three variable
function as in this case, € = (¢, ny, ny), it is found that the following quantities need to
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A B D Type

>0 >0 >0 Minimum
<0 >0 <0 Maximum
otherwise saddle point

Table 6.1: Stability criteria for the Hessian

be taken into account:

_ |o%
A=55 (6.20)
Pe e
_ | o¢? on 1 0¢
B=|% Wi 6.21)
d¢on, on?
Pe e e
0?2 6n126¢ 0¢§n2
d°e J7e J7e
D =\%n o2 nom|- (6.22)
Pe Pe e
Opony oniony 6;1%

Then, the different cases for the extrema of the energy function are summarized in Table
6.1 The analysis of the matrix results in 4 cases:

e an extremum being a saddle point (with A < 0, B < 0, respectively)
e an extremum being a maximum for g, < g1, (defined only for g, < g)

e an extremum being a global minimum for g;» < g, and a saddle for g, > g1, (the
symmetric state)

e an extremum being a saddle for g1, < g1, and a global minimum for g, > g, (the
polarized state),

where
2Q
gn=¢- o (6.23)
2Q
g12 =g+ 7 (624)

A bifurcation occurs to the ground state (see Figure 6.1) when g, = g. For g, < g, the
symmetric ground state is the global ground state. For g, > g, the polarized ground state
is the global ground state (see Figure 6.1).

The bifurcation point has been found to correspond to a Schrodinger cat state [114].
The stability case briefly summarized for no Rabi coupling can discern the miscible from
a phase separated or immiscible phase. This phase transition is different from the one
between a miscible and an immiscible mixture without Rabi coupling [80]. Here, as also
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— polarized ground state

05 — symmetric ground state|

ny-n;

0.0

-0.5

0.0 05 10 15 20 25 3.0
g12

O

Figure 6.1: The bifurcation of the ground state. The respective regions of validity for the
symmetric and the polarized ground states have been indicated (2 = 0.5ng
has been used).

shown in the stability diagram 6.6, this critical value is shifted to higher interspecies inter-
action values. Phase separation is prevented by the polarization (or, differently said, by the
population imbalance). For the polarized ground state fixed point, self-trapping dynamics
would just emerge, while for the symmetric ground state closed orbits are observed [117].
This bifurcation has been first described experimentally in [118].

6.2 Mode analysis

In this section, a Rabi-coupled two-component Bose gas with no background flow (V = 0)
will be analysed. The background flow will be first introduced in Section 6.3.

The linear spectrum obtained from the Bogoliubov-de Gennes equations emerges from
Equations 6.4-6.5. By substituting solutions of the form

Gix, 1) = Yo, (0) (1 + i, 1) e (6.25)

with i,,(x) the symmetric ground state with ¥, (x) = ¥,,(x) = +/ng, the Bogoliubov-de
Gennes equations are

o P10, .\, N s s e s
0 = - (% O ax)«m +n,g (B +8]) + ynog (b2 + 8) - Qb (626)
s 0> 1909, . \. SN S .
i, = ~ (% o ax) Bo+nog (B2 + 83) + ynog (b1 + 3)) - QB (627)
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The fields ¢; are decomposed as
b1 =" (a8t 0 + dlgi(t, x) (6.28)
J

b2 = ) (a0 + &1X;(1,) (6.29)

J

with the boson commutation relation [&,dj] = ¢;; and, then, expanded in plane wave form

¢a) — D(w)e—iwt+ik(w)x (630)
Ow = E(w)e—iwt+ik(w)x (631)
Yo = F(w)e—inik(w)x (632)
X, = G(w)e @tk (6.33)

The final form of the eigenvalue problem reads

D(w) D(w)
Ew| |Ew)

K Fw)|~™ w Flw)|’ (6.34)
G(w) G(w)

where the matrix K is defined as

—307 + nog — Q nog nog1z + Q nog12

_ nog —30% + ngg — Q no&12 nog1z + Q (6.35)

nogr2 + Q no&12 —30% + npg — Q nog T
no&12 nog12 + €2 nog —50% +npg — Q

with the spatial derivative formally being substituted by 4> — —k* and %afyi = (0, due to

the static background. The dispersion relation obtained from the matrix equation, Equa-
tion 6.34, is

K> [ K
Wiz = 5~ (% +2n0g(1 + 7)) (6.36)
k> k>
Wi, = (% + 29) (% +2Q + 2ngg(1 — y)), (6.37)

where g1, = yg is used. For the miscible phase, y satisfies y < 1 and for the immiscible
¥ > 1. The dispersion relations in dimensionless variables reads”

Wi, =K (K +4(1 + 7)) (6.38)
@34 = (K + 20p) (B + 2wg + 4(1 - 7)) (6.39)

2The plots for the dispersion relations include dimensionless variables obtained from Equations 6.36 and

6.37 with the wavefunction, length, time and energy scaling as y = noy/’, £ = \%, & and nog/2.
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with wp = % (R: Rabi). The notation w;, and ws4 is used to further indicate the den-
sity and polarization modes, respectively. From now on, the definition of the rescaled
dimensionless eigenfrequencies and eigenmomenta with the tilde will be abandoned and
denoted simply by w and k; adimensionalization will be implied.

The eigenvalues of the matrix 6.35 organize themselves in two “branches’ of different
nature. One of them has a gap for low momenta, Equation 6.37, while Equation 6.36 is
gapless (see Figure 6.2 or 6.3).

For the dispersion relation, Equation 6.36, it can be shown that for low momenta the

dispersion profile is linear and, thus, takes the form

wi, =41 +7) = ik (6.40)
with
¢s = %ir%% —2/1+7. (6.41)

The dispersion relation 6.37 possesses a gap, A, for low momenta,
2 i — T _ 2
A = lim w3, = lim (4w (wp +2(1 = ) ) + O (k). (6.42)
For the limit to infinity, the eigenfrequencies read

]}nn w1234 = k2, (643)

in dimensionless form®.
From the polarization dispersion branch, a stability criterion can be inferred by observ-
ing that Equation 6.37 vanishes for a momentum scale that satisfies

K =4(y = 1) = 2w. (6.44)

It is of importance to verify that for wg — 0, or Q — 0, stability is indeed ensured, only
when y < 1 [119]. For k — 0, the criterion becomes
y=1+% (6.45)
2
which can be interpreted as that the Rabi coupling between the two components ensures
stability in an extended region of phase space, when compared to the two-component
Bose gas with Q = 0. The two cases are identical only in the limit kK — 0. As k increases,
the region of stability increases for the Rabi-coupled system as well (see Figure 6.6).
For k — 0 and
WR

vy>1+ > (6.46)

3 . . . k—oo 4242
“Restoring dimensions, v —— 7 -.
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— spin branch

k — polarization branch

Figure 6.2: Dispersion relation for Rabi-coupled condensates for wg = 0.6 and y = 0.3.
The spin and polarization branches are denoted with black and blue, respec-
tively, with the later being gapped.

the polarization mode becomes unstable. This is a sign of dynamical instability, by using
the language of Chapter 4. The appearance of a dynamical instability mode is always
traced back to an energetic instability of the corresponding matrix 4.52.

The behaviour of the polarization modes as k — 0 can be summarized as follows:

w
for ’)/>1+7R, (1)3’4€iR

for y <1+ %, w34 gapped, with A ==+ \/4a)R (wg +2(1 —y)).
When A > 0 (A = 0) the polarization modes, ws 4, cross the modes w, ; at some value k
(k=0),

(k2 +4(1 +7)) = & (K — 4w + 41 = ) + 2wk Qug +4(1 — 7)) =

P = wg (wWg +2(1 =)
2y — wg )

(6.47)

If 2y = wg the point of intersection of the two branches moves to infinity. As it can also
be inferred from Figure 6.2, there does not always exist a point of intersection.

Let us now assume that in an asymptotic analysis for a configuration with Rabi-coupled
condensates in the context of Analogue Gravity, we obtain this model (Equations 6.36
and 6.37). Then, the discussion of the modes of the system in the k-representation in the
sense of Chapter 3 follows*. Four k-modes for the spin branch and another four for the

“This is just an arbitrary assumption and the statement is not justified, but this analysis will be used for
accessing the black-hole laser instabilities in Chapter 7. As a result, even if it seems a bit arbitrary now,
it will be of fundamental importance for the analysis of Chapter 7.
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— spin branch

k — polarization branch

Figure 6.3: Dispersion relation for Rabi-coupled condensates for wgz = 0.1 and y = 0.8.
For this specific range of parameters the two branches cross each other. The
polarization branch is again gapped.

— spin branch

k — polarization branch

Figure 6.4: Dispersion relation for Rabi-coupled condensates for wg = 0.3 and y = 1.3
for the immiscible regime of the phase diagram of Rabi-coupled condensates
(see Figure 6.6 for the phase diagram of Rabi-coupled condensates).
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— spin branch

k — polarization branch

Figure 6.5: Dispersion relation for Rabi-coupled condensates for wg = 0 and y = 0.6. For
no gap, there is no broken U(1) symmetry and the two branches are gapless.
Then, there is no distinction between spin and polarization branches. In this
figure, however, we insist to this notation just for ease in detecting changes
when compared to previous figures, 6.2, 6.3 and 6.4.

Instability

WRabi

Figure 6.6: The phase diagram of Rabi-coupled condensates with no background flow.
Regions in white indicate instability.
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polarization branch exist.

e For the density branch,

wi, =R (K +4(1+7) =K =-21+y) £ VA1 + ) + 2, (6.48)

-®,k>0=k €R
-6,k*<0=k €iR

and, then, two real modes and two imaginary ones exist.

e For the polarization branch,

W}, = K (K + 4wp + 4(1 = 7)) + 2wg Qug + 4(1 - 7)) =

VA1 = y)? + w?

kK =2wg+1+7y)+ 5 , (6.49)
- @, k*>0=k eR,if
y s i ;Z)’I’: — (6.50)
and k2 <0 = k €iR,if
y < Wy + 2on = (6.51)

ZU)R

-6,k*<0=k €iR

To conclude, the polarization branch can have two real and two imaginary modes
or zero real and four imaginary ones for different parameter ranges.

For the case of Equation 6.50, there exist four k solutions that are k£ € R and four that
are k € iR modes. There exist two modes that have a positive group velocity and two
with a negative one’. These are the propagating k,,, k,,, k,, ,k,, modes and the decaying
ki, ki), k_,, k_,. The modes with positive imaginary part decay towards +co. The final
picture includes all modes in the respective regions as shown in Table 6.2 or in Table 6.3,
according to Equations 6.50 or 6.51.

>There are no negative-norm modes with positive frequencies or positive-norm modes with negative fre-
quencies. As a result, it is expected that the Rabi-coupled regions play successfully the role of the
subsonic regimes for the prospective black-hole laser of next chapter. What are the modes in the sub-
sonic regions of a black-hole laser consisting of a two-component Bose gas with the subsonic regions
being substituted by the Rabi-coupled condensates of this section? These modes are depicted in Table
6.2 or 6.3.
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k modes - I region II1 region

k= 20 +9)+ AT+ + }
k=—\-20+7)+ VAT + 77 +
k=201 + )+ ETH P 7 bem B ok, 570

cr K ki,

kIII\

X——00 X—+00
kl‘l - O k”[‘l — o0

€iR
k=—i \/2(1 +9)+ VA4l +y)? + w?
k—\/2(a)R+l—y)+ 4(1—)/)2+cu2
k=- \/2(wR+1—y)+ 4(1—’}/)2+cu2 ki,

k=i ‘/2(Q)R 19+ yal -y + o’ } r S0k, 50
€i
k=—i \/Z(wR +1-9)+ V41 —y)? + ? x—>—00 X400

k1_3 - O k[11_3 — o0
Table 6.2: Modes for the Rabi-coupled two-component system in the miscible regime,
emerging from the Bogoliubov-de Gennes system of 6.36 and 6.37.

kIIIu2

c R up

 The description of the details of the system will be postponed until Chapter 7.

6.3 The Sine-Gordon domain wall

In this section, the existence of domain wall solutions as solutions of an effective low-
energy theory for the countersuperflow of a Rabi-coupled two-component BEC will be
demonstrated. We introduce a counterflow between the BECs, when compared to the
analysis of Section 6.2, with V| = =V, = V.

Then, the field is decomposed as

Yy =+/ny + onge” (6.52)
Wy =ny + onye™. (6.53)

It is assumed that a regime where only fluctuations at length scales larger than the
largest healing length, &;, is reached. In this regime, the densities n; and n, can be regarded
as frozen and, then, an effective theory for the phases 8, and 6, can be attained. The
effective energy of the system will be a functional of the two phases. In this section,
dimensionful variables are gain used, but with 72 = 1. In this analysis, the densities will
be considered as constant in a first low-energy approximation. Then,

E[6,,6,] = f dx(i (n1 (0,0,)* + ny (axez)z) - 2Q\/nnycos(0; — 92)). (6.54)

The potential term —2Q /n;nycos(6; — 6>) has its minimum for 64 = 6, — 6, = 0. This
same configuration is also the global minimum of the energy, Equation 6.54, and hence
its ground state. The domain wall solution, another solution (apart from the homogeneous
one) of the same equation, Equation 6.54, is a solution with

1 1
—n1020) = ——ny326, = 2Q~niny sin(4; — 6,). (6.55)
m m
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k modes — I region II1 region

k= 2047+ AT TP+ }
k=20 49+ BT 7P er
k_l\/2(1+7)+ A +yP +w? } ki, 5 ki, 370

cR ” ki,

ki,

X——00 X—+00

€ iR
k——l\/2(1+y)+ VA +y)? + w? kp,, = 0 ky, — 0
k—\/Z(wR+1—7)+ 4(1—)/)2+a)2
k=- \/Z(wR+1—'y)+ 4(1—)/)2+(u2

k=i \/Z(wR +1-9)+ V41 -y)* + o’ } R ki, 5 e ki, 270
€1
k=—i \/Z(OJR +1- ’)/) + 4(1 — »)/)2 + w2 X—=—00 X—+00

k1_3 - 0 k[]]_3 — 00
Table 6.3: The same set of modes for the parameters of the system satisfying 6.51.

X——00 X—+00
ki, — oo ky, — 0

€ iR

X——00 X—+00

kI, 4 0 k]][vz — o0

This equation admits solutions of the form

n
6 = fm (6.56)
6, =-"g, (6.57)
n
with
0, = 4 arctan(e?") (6.58)
and
2 omO—1 (6.59)
1 \Vniny

by assuming that the phases #; and 6, approach some constant values as x — +oo.

The relative phase changes from 0 to 27 as the coordinate x runs from —co to +co. By
observing that the domain wall solution remains unchanged through 6, = 64 + 2vr, with
v € Z, it can be proven that the domain wall solution of the low-energy effective theory
6.54 has minimal energy among those configurations where 64 changes by 2z from —oo
to +co0 and cannot be continuously deformed into the configuration with 84 = 0. This
equation, Equation 6.58, resembles the soliton solutions of the Sine-Gordon model (see
for example [120, 121]), with the difference that the states at each side of the domain wall
are intrinsically different, on contrary to the real Sine-Gordon soliton which sustains a
’single’ state across its domain. For this specific case the ground state values are different
across the domain wall and take values

6,=6,=0, as x — —oo (6.60)

2
6, = dle’ = —@92, as x — +oo, (6.61)

108



something that due to their (mod 27) definition is equivalent to

0, =6, =0, as x — —oo (6.62)

= 0,, as x — +oo, (6.63)

Of course, this analysis of the effective theory didn’t take into account that it emerges
as a model of restricted validity for a specific low-energy range. In full generality, by
also including the fluctuations of the densities, it can be concluded that this approximate
solution can indeed decay to the global minimum configuration of 84 = 0. The configura-
tion of the Sine-Gordon domain wall is not strictly topological by taking into account the
whole picture through the initial system 6.1. But again, its solution corresponds to a local
minimum of the configuration, which assures its metastability.

The domain wall can be described by the velocities of the superfluid components

h ny 2(]
=—00 = ———— 6.64
& m n cosh(gx) ( )
h 2
=gy = (6.65)
m n cosh(gx)
The rates of conversion for the two components are
inh
Doji = —Ojo = 2Q Ny sin gy = ~2Q VA —— (6.66)
cosh”(gx)

The velocity of the flow is maximal near the domain wall and decays as the flow departs
from the near-to-wall region. From Figure 6.7, it can be seen that the flow changes sign
across the domain wall; on one side of the domain wall (negative x-axis), particles from
the first component jump to component two, while following the opposite path for positive
x values. Different species correspond to different energy levels and therefore energy is
absorbed on one side of the domain wall and released to the other.

In conclusion, let us briefly consider the case for the instability of interacting two-
component BECs with or without Rabi coupling with relative background motion between
the two components. In this case, instabilities emerge in the system for some specific
range of its parameters. Note, however, that the reason behind the emerging ’energetic
instabilities’ in this system is not traced back to the Landau instability, normally expe-
rienced by a Galilei invariant superfluid flow. The Landau instability is concerned with
the superfluid decay due to friction with the ’rigid’ environment, for example the con-
tainer wall or the normal fluid component. This normal component’s velocity is frozen at
the boundaries (the wall). The countersuperflow instability for two-component BECs is
an internal instability; it has nothing to do with the environment. Therefore, the energy
of the system is still conserved, as does the total momentum. In this countersuperflow
system it is apparent that the instability by itself cannot cause a reduction of the rela-
tive motion of the superfluids. The gradual appearance of (internal) excitations of the
superfluids is at the bottom of the momentum exchange. Further results concerning coun-
terflowing two-component BEC systems will be discussed in next chapter or can be found
in [105, 106, 113].
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Figure 6.7: The relative phase, the relative velocity and the conversion rate characterizing
the domain wall solution forQ =1,n, =n, =1,g = 1.
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7 A black-hole laser from a two-component
Bose gas

7.1 Description of the system. Modes of the
two-component system

In this chapter, the two component Rabi-coupled BEC system discussed in Chapter 6
will be considered and a black-hole laser will be analysed based on it. The resulting
configuration is shown in Figure 7.1. The supersonic region (Region II) is composed of
two BECs with no linear or quadratic interactions between them, meaning a supersonic
cavity having a two-component system with Q = 0 and v = 0. In the supersonic regime
the two condensates decouple and propagate from Region I to Region III or from Region
III to Region I (for component 1 and component 2, respectively).

The Rabi-coupled countersuperflow, as found in [105] or similar treatises, is unstable
for a relative velocity between the components, Vg = V, — Vi, that is |Vg| > |V,,|. This
critical velocity is always smaller than the speed of sound, c¢. In this section we want
to address the linear stability or instability of the system against perturbations, as also
done in Chapter 5. As a result, when constructing the general form of the configuration, a
velocity with |Vg| > |V,,| will not be taken into account for the countersuperflow in regions
I and III. The corresponding system with |Vg| > |V,,| has been discussed in [105]. In that
work, the stability of nonlinear solutions for |[Vg| > |V,,| was tested and the system was
found to relax to a state with the kink configuration of the relative phase between the two
components being broken gradually for increasing relative velocity. Finally, the relative
velocity of the two components was found to decrease and the two components exhibited
a flow with the same velocity.

Based on the afore-mentioned arguments, an intermediate region between the Rabi-
coupled condensates and the supersonic Region II is needed in order to obtain a continu-
ous profile for the background parameters. The phases ¢ and ¢, in the outer Rabi-coupled
regions I and III follow from the analysis of the Sine-Gordon soliton, Section 6.3. In the
intermediate region, no Rabi coupling is assumed, as shown from the last inlaid figure in
Figure 7.1. This is indeed true, as the conversion rate is identically vanishing between
the two condensates only when their linear (Rabi) coupling vanishes. Across the horizon,
a waterfall profile for both the background velocities of the two components is assumed.
Across the horizons the relative velocity, Vg = V, — V| = 2V, of the two components
decreases and, in the asymptotic regions, it vanishes . This is the part of the subsonic
regions that will be taken into account (near-horizon effects will be disregarded)!. There

'Note that, even thought this graphical representation seems more than one-dimensional, the analysis
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Figure 7.1: The most general form of the black-hole laser with its Regions I and III con-
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sisting of two-component BECs. In the inlaid figures the phase of the two
components is shown, the relative velocity and the conversion rate between
the two components. Resulting figures are based on the analysis of Chapter 6.
Phases ¢, and ¢, vary from O to —r and from O to 7, respectively. The veloc-
ity profile, V, is asymptotically V — 0. The two solid dark lines in the inlaid
figures of the velocity and conversion-rate represent the two horizons. The
two symmetric dashed lines in the supersonic regime indicate the intermedi-
ate regime where the velocity V can be considered in a good approximation
constant. The two symmetric dashed lines in Regions I and III indicate the
onset of Rabi coupling between the condensates. The quadratic coupling be-
tween is (ideally) gradually increased between the horizons and the dashed
lines, as in the last two inlaid figures. In the rest of Regions I and III, the Rabi
coupling has acquired its final value, ). As approaching the two respective
asymptotic regions the outer two dashed lines in central figure represent the
outer regions of Regions I and III where asymptotic analysis can be used for
their description. In these regions, particles have effectively zero velocity, but
a constant and nonzero Rabi coupling.



are two intermediate dashed ’surfaces’ (in fact, just dashed lines in 1D) in Region II. The
regions between them and the two horizons indicate regions where near-horizon effects
need to be considered and will be disregarded in the subsequent analysis. Between these
two dashed lines in the supersonic region, the two components acquire a constant back-
ground velocity, which is assumed to be V; = —V,. In each region, Regions I and III,
two dashed lines are also included. Coming from Region II and entering symmetrically
regions I and III, the first dashed lines encountered indicate the points in space where
the linear coupling between the components becomes nonzero. The last two symmetri-
cally placed lines (far left and far right) indicate the regions where the conversion rate
has significantly decreased, as approaching +co. In this analysis infinite condensates are
assumed, another simplification of the model. These two regions can be safely reproduce
asymptotic results based on Region’s I and III description. In these regions, there exists
a linear and a quadratic coupling between the two BEC components, but the conversion
rate asymptotes to zero. By squeezing all the other intermediate regimes, only these last
asymptotic regions in this analysis are going to be taken into consideration for the analysis
of linear instabilities of the black-hole laser from the two-component BEC.

For the Rabi-coupled condensates in the context of the black-hole laser configuration
in the asymptotic analysis, only the state where the Sine-Gordon soliton has obtained its
asymptotic form will be retained, meaning that V; = V, = 0. In the supersonic cavity, it
will be assumed to leading order that only effects from a constant velocity profile will be
considered and all other effects will be subleading, thus, only slightly affecting the stable
form of the system. This way near-horizon effects are avoided and the velocity of the
two components changes between regions I-III in ’steps’, as for the speed of sound in the
analysis of Chapter 3 and 5.

7.1.1 Discussion regarding regions |, Il and Il

The central region will consist of two counterpropagating superfluids with no intraspecies
interaction. They are described each by a corresponding one-component BEC model, as
that in Chapter 3. The first component will initially encounter the analogue black hole’s
horizon , starting from the far asymptotic Region III, and then propagate across the ana-
logue white hole’s horizon, entering Region I. At the same time, the flow will couple with
component two and particles from component one will be transferred to component two.
Then, the flow will follow exactly the opposite direction, first across the analogue black
hole’s horizon, entering Region II and then across the analogue white hole’s horizon,
before entering Region III.

The real frequency dispersion relation in the supersonic Region II is depicted in Figure
7.2. It incorporates the effects of the supersonic regime for a flow with negative back-
ground velocity, as of Figure 3.8, and a relevant with a counterflowing component with
positive background velocity, as of Figure 3.9, combined?.

followed will be restricted to just one dimension, as shown by the big purple arrows. Furthermore, note

that the two components seem to be well separated from each other. This is not necessarily true and can

vary depending on the experimental set-up chosen for the realization of the system, see discussion in 6.
2The dispersion profiles are symmetric under V — —V and k — —k.
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Figure 7.2: The dispersion profile for the central regime with two independent compo-
nents one flowing with V' < 0 and the other with V > 0.

Regarding the modes for the asymptotic regions I and III, for any positive or negative
frequency four real k-modes in Region I (corresponding to the *asymptotic’ countersu-
perflow of a Rabi-coupled two-component Bose gas, with V; = V, = 0) and four more
possessing complex wavevectors exist. In the supersonic regime there exist eight real
k-modes. In the symmetric Region III there exist four real k-modes and another four
complex ones, as seen from Figures 6.2 or 6.3.

7.2 Discussion on a steplike configuration for a
black-hole laser from a two-component BEC
system

The two-component BEC configuration of Figure 7.1 gives rise to similar effects regarding
real and complex modes, when compared to the one-component case. The real modes
of this configuration will be described by a respective set of sixty equations, which fully
characterize the system and stem from the analysis of Section 5.2.1, but with the difference
that

Ui
w

¢u ) f_rl*
s =( e | = e (7.1)
¢—w ”(:.)2*
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Figure 7.3: Dispersion relation for w — iw and k — ik for the outer symmetric regions |
and III for the asymptotic analysis of the two-component BEC of Figure 7.1.

for no u-v mixing and

Ui
w
Vi

w

V2

w
1ro*
W

” irys
Z)] md T (7.2)

by including u-v mixing.

The scattering across the analogue white and black hole’s horizons will be comprised
of 6 X 6 matrices for the u-v mixed case. The number of equations in Equations 5.60 and
5.61 will thus be doubled in number.

For the complex frequency modes of the system, the matching-matrix technique will
be used. The modes found in each region of the two-component black-hole laser can be
found in Figures 7.3 and 7.4. The matching matrix is defined through the same process,
as in Chapter 5.
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Figure 7.4: Dispersion relation for w — iw and k — ik for Region II.

The first four columns of the matching matrix are here presented

e *lP(ky) e *elP(ky) e ™sLPky) e *ulP(ky,)
e~ *nli, P(ky,) e *ulky, P(ky,) etk P(ky,) e ™atky, P(k;,)
e—ikll LR(kII) e—ikzzLR(klz) e—ik13LR(k13) e—ikl4LR(kI4)
etk Lk[1 R(kll) e—ik12Lk12R(k[2) etk Lk13R(k[3) e—ik14Lk[4R(k14)
et LS (k) e IS (k) e sES(ky) e ™S (ky,)
e *nlky S k) etk S (k) e ™tk S (ki) etk Sky,)
e—ikllLT(kll) e—ik12LT(k12) e_ikI3LT(k13) e—ik14LT(kI4)
e~ ik LkIl T(kll) etk Lk]2 T(klz) etk Lk]3 T(k13) e—ik14LkI4T(kI4)

M = 0 0 0 0 (7.3)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

with the functions P(k), R(k), S (k) and T'(k) obtained through the normalization of Equa-
tions 6.34, being defined in the Rabi-coupled symmetric regions I and III, similarly to
Equation 5.76. Finally, multiplication by k? is again used for all elements for numerical
accuracy reasons.

The supersonic cavity ranges from —L to L, by assumption. The matching matrix is
solved numerically for different lengths of the supersonic cavity, 2L, for some specific
range of the complex frequency. To ensure convergence, a satisfactory number of it-
erations for the root-finder algorithm and explicit parallelization are being used. The
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resulting figure indicates not only quantitative, but also qualitative differences with the
one-component case.

As shown in Figure 7.5, the Rabi coupling plays a major role in changing the character
of dynamical instability modes for all length scales, L. In this case, the quasi-normal
modes for 4 < 0 have not been included, but only their partner-modes having positive
imaginary frequency®. As L increases, the real part of each dynamical instability mode
saturates to a maximum frequency, as before, while the imaginary parts of the dynamical
instability modes decrease and tend to vanish. For L — oo, Region II will solely and
fully characterize the whole system. In this case, dynamical instability modes will have
I' - 0. For L roughly L < L. ~ 2.5, effects (and modes) observed do not obey a
specific pattern and further analysis of the specific modes needs to be performed (this
specific region is not included in Figure 7.5). Another important fact about Figure 7.5 is
related to the dynamical instability modes plotted for w < 0. This is another important
consistency control of the existence of the underlying symmetries of the problem. As a
result, it is obvious that dynamical instability modes continue to emerge as quartets of
modes (the analysis of the symmetries of the Bogoliubov-de Gennes equations from the
previous chapters remains valid). The real parts of the dynamical instability modes that
are responsible for the lasing effect are, as before, those with I > 0.

Concerning Figure 7.5, yellow, purple, green and gray colours indicate the partners of
the quasi-normal modes. Note that each real or imaginary component of the aforemen-
tioned modes is indicated close to the respective curve in each plot. Note the symmetry
of the imaginary parts of the first and third and, equally, of the second and fourth quasi-
normal modes. Regarding dynamical instability modes, their imaginary parts have been
plotted using undersized dotted lines. The real parts of the (positive and negative) frequen-
cies have also been plotted. Note the symmetry between the red (first) and cyan (third)
and, equally, the blue (second) and dark-red (fourth) dynamical instability modes. Our
intuition suggests that this symmetry is due to the two-component nature of the system.
Each component is responsible for each set of two modes. When compared to the black-
hole laser from a one-component BEC, real parts of the dynamical instability modes never
"cross’. However, here this phenomenon is indeed observed, increasing the validity of our
interpretation that these modes belong to the two different components of our configura-
tion. One component is thus assumed responsible for the creation of the red and cyan and
the other for the blue and darker-red modes.

Another important aspect of the Rabi-coupled condensates, their massive mode, leads
to the alteration of the nature of the creation of dynamical instability modes, when com-
pared to the results of Chapter 5. In this case, each quasi-normal mode gives rise to
the corresponding dynamical instability mode for some nonzero imaginary part for the
respective mode. This suggests that the Rabi-coupling should be responsible for this phe-
nomenon. Although the Rabi coupling of the condensates in Region I and III is always

3Note that due to the symmetry of the underlying equations, there is always going to exist dynamical
instability or quasi-normal modes for both positive and negative frequencies. It is also crucial to add
that modes with positive imaginary part cannot exhibit the character of quasi-normal modes, as they
are not decreasing with time. However, in Figure 7.5, we have plotted exactly these modes, for better
presentation reasons.
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Figure 7.5: The instability character for the black-hole laser of the two-component BEC
system depicted in Figure 7.1. As in the black-hole laser analysis of Chapter
4, the values of the parameters used are: V = —1 in Region II, ¢ = 0.5 across
the whole configuration, y = 0.2 and Q = 0.1. Note that for the Rabi-coupled
regions, Regions I and 111, the speed of sound for the spin excitations is ¢ =
c*(1 + ). Only modes for 2 < L < 8 are depicted.
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considered constant, the value of the imaginary part of each dynamical instability mode
at the point where it emerges is different for different modes. The interpretation of this
phenomenon remains an open question.

Although many effects shown in Figure 7.5 can be explained by the underlying theory
governing the instability onset for black-hole lasers, there are important details that are
still not clarified by the nature of the specific instability-onset. First of all, the first dynam-
ical instability mode emerging in the system by increasing the length L is probably not
depicted in Figure 7.5, and its nature and characteristics are an open question. This causes
the problem that the length L for the onset of the first dynamical instability mode in the
system cannot be clearly identified. It could be placed in the region where results are still
not obtained with the needed accuracy (L < 2.5). Furthermore, the emergence of dynami-
cal instability modes does not involve the two- (or generally three-) step process described
in Chapter 5. The obvious explanation could include the simultaneous emergence of two
imaginary modes when another quasi-normal mode hits the real axis, which then trans-
form to the dynamical instability modes depicted in the corresponding figure. However,
these new quasi-normal modes could not be found, as well as the early emergence of
degenerate dynamical instability modes. Another possible explanation could involve the
emergence of a nondegenerate dynamical instability mode by the corresponding quasi-
normal mode, with the two degenerate dynamical instability modes giving instantly rise
to the complex mode. However, as well as in the previous case, another quasi-normal
mode would be needed for this process to happen, as discussed in Appendix C, due to the
conservation of degrees of freedom.
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8 Outlook

In this thesis we delved into Analogue Gravity based on Bose-Einstein Condensates [13,
20]. The bosonic nature of the quantized field in the framework of Quantum field theory
in Curved Spacetime was presented through the example of the wave equation without
dispersion. Basic concepts regarding the different representations of this model were then
introduced and the usefulness of w- and k-representations was demonstrated.

Initially, the theory of BECs was explained and the respective Bogoliubov-de Gennes
equations were set. The analogue black hole, the simplest one-horizon analogue model,
was analysed, its excitation spectrum found through the respective Bogoliubov-de Gennes
analysis and its mode analysis explicitly performed for the simplified picture of flat pro-
files. By considering, then, flows that cross the speed of sound twice [37-40], a wealth
of new phenomena are now present and the relevant description of the model needs to
take into account both the continuous and normal real part, but also the discrete and com-
plex part of the spectrum of the system [65, 74, 76, 82]. Flows with a finite supersonic
region between two homogeneous and infinite subsonic regions were then considered,
under steplike speed of sound and velocity profiles. In this way the calculations were
simplified, while retaining most of the essential physical intuition.

As a result, only after the consideration of dynamical instability modes, was the full
description of the black-hole laser allowed. These modes belong to the discrete part of
the spectrum and emerge through a generally three-step process. Quasi-normal modes are
then needed in order to characterize this process. These are modes that, as they are not
spatially bound, they are not included in the spectrum. A quasi-normal mode of imaginary
(or complex, in general) frequency hits the real axis, by varying an external parameter
of the system (in the case considered, the length, L, of the supersonic region). This
phenomenon occurs for, say, L = L; and gives rise to a degenerate dynamical instability
mode. Another quasi-normal mode may hit the real axis as well for L = L,, giving rise
to a second degenerate dynamical instability for some value of the external parameter, as
defined through the Krein theory presented in Appendix C or in Chapter 4. The condition
L = L, > L; needs to be satisfied. This second degenerate dynamical instability mode
may merge with the previous one for some value L = L;. In the black-hole laser case,
itis L, = L3 and thus the instability modes emerge in two steps. Then, a quartet of
nondegenerate dynamical instability modes is observed, as predicted from the theory of
Chapter 4. Conditions for the emergence of dynamical instabilities are formulated in
Chapter 4.

The lasing effect originates to the self-amplification of the negative-norm trapped mode
in the supersonic region. This is the mode responsible for the Hawking effect and the
superradiance observed in analogue black holes [32, 58]. The same three-step picture
responsible for the emergence of the nondegenerate dynamical instability modes could

120



not be fully identified for the case of the two-component one-dimensional Rabi-coupled
BECs forming a black-hole laser with the two subsonic regions being asymptotically ho-
mogeneous and Rabi-coupled, while the supersonic regime consisting of two identical
and counterpropagating one-component BECs with no linear or quadratic couplings.

Further insight is needed for the two-component Rabi-coupled BECs forming the spe-
cific idealization of the realistic black-hole laser, presented in Figure 7.1. A more general
treatment needs to take into account the full subsonic regions I and III. The system can be
described by including the Rabi-coupled countersuperflow of the outer subsonic regions
and even by including near horizon effects, as visualized in 7.1. Different velocity and
speed of sound profiles could also be examined.

Further results are needed for the nonlinear stability of the configuration. For a black-
hole laser formed from a one-component BEC in one dimension, results have shown
the stabilization of the black-hole laser with the emission of ’shadow’-soliton or soliton-
train solutions at late times, thus suppressing the exponential growth of unstable modes
[65, 90]. Further results in the same direction could be obtained for the two-component
black-hole laser as well. Another aspect where further results are needed concerns the
flat or steplike profile of the background velocity and the speed of sound. In a realis-
tic configuration, smooth variations of the respective parameters need to be taken into
account [33, 93] by interchanging the flat profile with, for example, the waterfall configu-
ration which connects closely with experimental implementations [21-23] and analytical
soliton solutions for the black-hole laser formed by a one-component BEC [93].
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A Black Hole Uniqueness and Properties

It can been proven that all stationary black holes, solutions of the Einstein equations of
general relativity, after they achieve a stable condition, can be completely characterized
by three external parameters: mass, electric charge (and, if it exists, magnetic as well)
and angular momentum. This is stated under the name of no-hair conjecture or no-hair
theorem [5, 7, 8]. As a consequence of this theorem, any two black holes which share
the same mass, charge and angular momentum should be exactly the same. These three
parameters are the only ones that can be individually detected from observations from
outside of the black hole. As the only conserved numbers are the total ones, any falling
objects approaching and passing through the horizon lose their ability to maintain their
shape, distribution of charge or any other characteristics. This inevitable loss of informa-
tion in the final stable state that the black hole achieves cannot be reverted by simply the
gravitational or the electric field; the matter that created the black hole has fallen into its
singularity. The interior of the spacetime and the matter falling there can by no means
affect matter in its exterior. Only those characteristics of the field that are connected with
globally conserved integrals, such as the mass and angular momentum, survive. The in-
formation that can be measured from an observer in the exterior of the black hole is far
less than the information of every single object that has fallen inside it, a puzzling fact
stated as the Information Loss Paradox.

On contrary, a newly born black hole is not stationary. This can be seen from the
radiation of its excitation modes. Part of this radiation escapes to infinity and part of it
is absorbed. It is crucial to mention that the gravitational field close to the horizon is
infinitely strong, but the spacetime remains regular.

Setting G = ¢ = 1, there exists a unique solution for the existence of a black hole, if it
satisfies

- (2 s 0 Al
() -
for any set of parameters M,J and Q [7, 8]. Black holes having the minimal possible
mass that satisfies this equation are called extremal. This condition is being violated by
solutions of the Einstein’s equations defined as naked singularities. These solutions are
unphysical, as they don’t possess a horizon and cannot be observed from the black hole’s
exterior.

The analogue of the black-hole laser effect thoroughly discussed in Chapters 5-7 is sim-
ilar to the gravitational analogue of a rotating star with ergoregion, but without horizon,
as then the radiation would be absorbed and not amplified'. Rotating black holes twist
spacetime in the direction of the rotation at a speed that decreases with the distance from

'For more details, see [72, 73, 94].
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the event horizon (as shown from the Lense-Thirring effect). In this case, their spherical
symmetry is being completely lost [5]. Rotating black holes are described by the Kerr
metric [122]. In the ergosphere, a particle or an observer cannot be regarded as stationary
with respect to an outside observer satisfactorily far from the black hole. This could be
true only when the observer could move with a speed faster than the speed of light with
respect to the local spacetime. When moving away from the event horizon, an observer
can appear stationary for some velocity greater than the speed of light. An distancing fur-
ther from the event horizon, this velocity decreases and, at some point, it becomes equal
to the speed, c, of light. This surface of points defines the ergosphere [123].
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B Some calculations on Unruh radiation

We are now going to show what does a right Rindler observer see in the Minkowski
vacuum and prove that this is a Planck spectrum for bosons with temperature

o«
Y

Equally,it can be said that the Rindler observer is immersed in a thermal bath of par-
ticles [12, 124—127]. For the following calculation arguments based on [128] will be
mainly used.

Any solution in Minkowski space can be equally well decomposed in the right Rindler
wedge into the plane wave basis. For this, the set g, g;" is considered, which is the
eigenvector of the Killing field , in the respective wedge and the set f;, f; for the flat

spacetime. Then, each field can be decomposed as

6= (afi+he) =) (bugi+cgh+hec.). (B.2)
k

k

T (B.1)

What will an observer see in Minkowski vacuum? The matrix element needed to answer
this question is

m COIN;I0Y (B.3)

where N; needs to be transformed in Minkowski space. This is easily done by a Bogoli-
ubov transform. By writing it in continuous fashion, we get

g = f dow’ (Aww [ + Bow f) - (B.4)
Then

1 . 1 s 1 -
fw’ — —e—zkﬂx“ — —e—zw (t—x) — e—twu (B5)
Vanw’ Vdnw’ drw

and Equation B.4 can be written as

1 » 1 .
g () = f A0’ (Awey — 1| =7 4 B — | =e'). (B.6)
2n Y o’ 2n N '

Equally, g/ («) can be written as

1 " ’ —iw'uy ’
=5 [ dof e w)
l _(‘foo

H ’ l +oo H ’
=— dw e g (W) + — f dw' e'“"g,(-w"). (B.7)
2 0 2 0
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Comparing the last two equations, the form of A, and B, can be inferred

Avr = | L300 (B.8)
JT

Buw = | Lau(-a). (B.9)
JT

The next step is to relate g,(w’) with g,(—w’). In order to do this, Equations 2.80 and
2.81 are used, with

—+00 . —+00 . 1 ) .
Bo(w) = f du ™™g’ (u) = f du e/ ——— ¢ (B.10)
_ _ iz

oo o drrw
and, then, by making the coordinate transformation
L et 1
t—x=u=—-—e""% =5 n-¢=——In(-au), (B.11)
o o

the Fourier transform in Equation B.10 becomes

0
.y 1 iw
Zu(w') =f du ' ———e¢'« "
—c0 Vdrw
1 0 . :
= N7 due“"(—au)«
Arw J-oo
1 iw iw'u iw

e due ™ ue
0

Varw

1 iw W e . iw
« due ™yt B.12
4ﬂwa " I) ue u ( )

Some general identities and some based on I'-functions will now be stated. I'-functions
are also analytically continued in the complex plane with

. f dyey" ! =T(s) (B.13)
0
< db by)*! « . .
° f _ye—hy% — b—Sf dy e—yys—l — e—slnbr(s) (B14)
o b b1 0
B
* Inb=In(A+iB)=Inr+i6 = ln( VAZ + BZ) +1i arctan(Z)
B B
= ln( VA? + B2) + i arctan 1 sign (Z)
i:ifwli ln( Vw'? + 62) + i arctan | sign(ﬂ) (B.15)
s=t2+e € €
lim o+ , T ,
In|w’| + ZE sign(w”). (B.16)
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By using this mathematical machinery, the form of the Fourier transformed g, can be
obtained,

- 1 iw w . _Mll r|+% g( /) (la))
" " — < ’ o Inlw'l+55 sign(@) (2] B.17
(@) = a1 sien (o)« E .17

It is now obvious that the two solutions for g, (w’) and g, (—w’) for w > 0 are

< , I wf @\ epgypern (i@
8o(0) = - — e MF(—) (B.18)
(&) Vanw (0/ lw |) @

- 1 iw w _Mll ’|_M (la))

w (W) = ae |- e« T —), (B.19)
8o (=) Vanw ( 0/|(U'|) a

which relates the two coefficients as
3, (~w) = -G, (o). (B.20)

By returning to the Bogoliubov coefficients, their relation can then be calculated as

A = | =80 (@) = = 1| =80 (~0) €% = /7B, (B.21)
T T

In the last step Equation B.20 is being used. From their definition, it can be seen that they
satisfy the relation

AA" - BB = 1. (B.22)

The final result can then be deduced for the Bogoliubov coefficient B,

1
2 _
|B| mala 1’ (B.23)
which is indeed a Planckian spectrum with temperature (after restoring units)
h
kT = & (B.24)
2nc
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C Krein Theory

This section will introduce some basic notions of Krein theory, based on the Schrodinger
equation. The linear perturbations introduced in the context of Bogoliubov-de Gennes
equations define the eigenvalue spectrum (by using the notation of Chapter 4)

o3 Lx, = 4,x, (C.D

with £ a self-adjoint unbounded operator in the space of square-integrable functions
L*(R) with a dense domain L?>(R) and o3 the respective skew-adjoint,

bounded in L*(R), Pauli spin matrix. We remind that, due to the Hamiltonian symmetry,
it follows that

oL+ Lol =0. (C.2)

If 4, € C is an eigenvalue, then it is neutrally stable if Im{4,} = O and unstable for
Im{A4,} < O.
For a nonzero eigenvalue A, € C, the Krein quantity is defined as'

K(A,) == (Lxy, x,) (C.3)
with (-, -) the inner product defined in Chapter 4. Then,
e for A, € R, K(4,) is real
e for 4, € R\ {0}, K(4,) is simple
e for A, € Im, K(4,) is zero.

The Krein signature is defined as the sign of the Krein quantity K(4,) for a simple neu-
trally stable eigenvalue A, € R\ {0} [97]. The eigenvalues that are simple, as defined
through the definition above, even when the parameters of the Gross-Pitaevskii system
change, remain on the real axis (Im{4,}) = 0), unless when they coalesce with another
eigenvalue or a part of the continuous spectrum, due to the preservation of their multi-
plicity and the Hamiltonian symmetry of the eigenvalues. In this last case, the eigenvalue
A, and the Krein quantity remain at least continuous functions of the parameters of the
Gross-Pitaevskii equation. Through the stability analysis of this system (but also any other
Hamiltonian system with the same symmetries), it is common to find points in parame-
ter space where real eigenvalues (of £ or imaginary ones of K) coalesce at a bifurcation
point, followed by a splitting of them into the complex plane as unstable eigenvalues past
the bifurcation point. Let us now formulate a necessary condition for the occurrence of
instability bifurcations [97]

'Note that there also exist other definitions for the Krein quantity, see for example [69].
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Theorem 9. Under some nondegeneracy constraints, the double eigenvalue A, = A, € R
of the spectral problem, Equation C.I, with a bifurcation parameter € € R splits into a
pair of complex eigenvalues symmetric relative to Im{A,,} = 0 for € > 0, only if there exist
two simple eigenvalues A,, A, € R with the opposite Krein signature for € < 0.

For the completeness of the respective spectrum of the problem the following theorem
can also be formulated

Theorem 10. If L has no kernel, has finitely many negative eigenvalues n(L) < co and
the rest of its spectrum is strictly positive, then eigenvalues of the spectral problem C.1
satisfy the completeness relation

I’l(.£) = Nreal + Ncomp + Ni;nag’ (C4)
where N, is the number of real positive eigenvalues, N .y, the number of complex eigen-

values and N, " the number of purely real eigenvalues of negative Krein signature.

Note that this equation, Equation C.4, needs to take into account the algebraic mul-
tiplicity of the respective eigenvalues as well. These relations where also formulated in
the context of black-hole laser analysis, conducted in Chapters 4 and 5. For more results
towards the significance of Krein signature in the identification of stability of Hermitian
or nonhermitian Hamiltonian eigenvalue problems and the related concept of Evans func-
tion, see [66, 69, 96, 97].
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