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Skalierbare Quantenzustandstomographie mit künstlichen
Neuronalen Netzen:

Moderne Quantensimulatoren können eine Vielzahl von Quantenzuständen präparieren,
jedoch stellt das Auslesen dieser "Quantendaten" aufgrund seiner exponentiell skalieren-
den Natur nach wie vor eine Herausforderung dar. In dieser Arbeit wird dieses Problem
angegangen, in dem eine Quantenzustandstomographiemethode entwickelt wird, deren
zentraler Baustein ein neuronales Netzwerk ist. Dieses approximiert die Wahrschein-
lichkeitsverteilung über die Ergebnisse einer informationell vollständigen Messung. Dabei
zeigt sich eine hervorragende Darstellbarkeit prototypischer Grund- und Gleichgewichts-
zustände, unter Verwendung einer Anzahl an Variationsparametern, die nur polynomiell
in der Systemgröße skaliert. Diese komprimierte Darstellung erlaubt die Rekonstruktion
von Zuständen mit hohen Genauigkeiten, wobei Standardmethoden, wie die Maximum-
Likelihood-Schätzung, übertroffen werden. Des Weiteren werden quadratische Mittel-
wertfehler von Observablen erreicht, die um bis zu einer Größenordnung kleiner sind als
bei der direkten Schätzung aus experimentellen Daten. Mögliche Hindernisse, wie ein
Scheitern der Rekonstruktion nicht-repräsentierbarer Zustände, sowie resultierende Ein-
flüsse systematischer Fehler werden analysiert. Somit wird ein entscheidender Schritt
gemacht, hin zur Anwendung der Methode im experimentellen Rahmen.

Scalable Quantum State Tomography using Artificial Neural Networks:

Modern day quantum simulators can prepare a wide variety of quantum states, yet the
readout of this ”quantum data” still poses a challenge, due to its exponentially scaling
nature. In this thesis, this problem is tackled by developing a quantum state tomogra-
phy scheme which relies on approximating the probability distribution over the outcomes
of an informationally complete measurement in a variational manifold represented by a
convolutional neural network. An excellent representability of prototypical ground- and
steady-states with this ansatz is shown, using a number of variational parameters that
scales polynomially in system size. This compressed representation allows the recon-
struction of states with high classical fidelities, outperforming standard methods such as
maximum likelihood estimation. Furthermore, it achieves a reduction of the root mean
square errors of observables by up to an order of magnitude compared to their direct
estimation from experimental data. Possible pitfalls like the failure to reconstruct un-
representable states and effects of biases are analysed, paving the way for an application
of this tomography scheme in experimental settings.
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1 Introduction

Quantum computers and quantum simulators are a hot topic of experimental and
theoretical research. Both technologies promise to represent milestones in fields
such as solid-state physics, particle physics, chemistry and even cosmology [1] and
there is a multitude of platforms such as superconducting qubits, ion chains, Ryd-
berg systems, cold atom systems and many more [1], that are continually maturing
to powerful scientific instruments that make contributions to the stated fields. Like
any experimental apparatus, these devices have to be validated, characterized and
benchmarked, in order to ensure that simulations performed actually match phys-
ical reality. While parts of this validation process might happen on a component
basis, e.g. ensuring that lasers or power supplies are within specification, there
eventually comes a stage, where the prepared quantum states themselves must fall
under scrutiny. It is at this point where the task becomes particularly challenging,
especially when compared to the validation of classical ”states” or bit-registers.
While a classical register might contain N bits of information (which is trivial
to read out), describing the full quantum equivalent, i.e. a quantum state of N
qubits, requires the knowledge of 2N complex numbers. Furthermore, quantum
mechanics is at its heart a probabilistic description of nature. This implies that
the readout of a general quantum state is of statistical nature and requires a pro-
cess in which data is collected. The consequence of these two facts, is that the
readout of a quantum state is a highly challenging task, that takes an exponential
effort to succeed.

Neural networks on the other hand, are a versatile numerical tool, that have
proven highly useful in the application to tasks of even exponential computa-
tional complexity, such as protein folding [2], which some deem solved [3] by Al-
phaFold’s [4] recent progress using machine learning approaches. The task of
modelling human language is another, to which an application of neural networks
has had a disruptive impact. The famous GPT-3 model can summarize texts and
synthesize new ones with a quality that makes it hard to distinguish its output
from human made ones [5].

It is therefore not surprising that neural networks have also found their way into
the quantum sciences. Neural networks have been used to discriminate topological
phases in quantum systems [6], for detecting phase transitions [7] and have been
used as efficient parametrizations of wavefunctions [8], so-called neural quantum
states (NQS). For the latter task, neural networks have been theoretically proven
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CHAPTER 1. INTRODUCTION

to be capable of outperforming the best standard methods, such as matrix-product
states (MPS) [9, 10]. It is this success that motivates this thesis: solving the expo-
nentially hard task of quantum state readout, termed quantum state tomography
(QST), with the versatile tool that is ”neural networks”.

This is done by following the ideas of Carrasquilla et al. from [11]: The quan-
tum state is injectively mapped to a probability distribution, which, in turn, gets
approximated by a neural network. This probabilistic formulation in combination
with Monte Carlo methods allows for observables to be efficiently extracted from
the exponentially large quantum state. The neural network, being a powerful func-
tion approximator, is capable of learning this probability distribution from a very
sparse dataset, alleviating the experimental burden of data collection. These are
the two key ingredients, that will allow for a more efficient quantum state readout.

This thesis is structured as follows: In Section 2.1, the term quantum state to-
mography is defined more precisely. Section 2.2 will detail the mathematics of
positive operator valued measures (POVMs), which is the probabilistic framework
used to bridge the gap between quantum mechanics and neural networks. Sec-
tion 2.3 will provide the necessary background on neural networks and illustrate
the network architectures used throughout this thesis. In Section 2.4 all ingredi-
ents are put together and the main tomography scheme of interest is explained in
detail, after a more extensive literature overview is given.

The results are split into three sections, in which the tomography scheme is
benchmarked in the three scenarios of infinite synthetic data (Sec. 3.1), limited
synthetic data (Sec. 3.2) and real-world experimental data (Sec. 3.3).
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2 Theory and Methods

2.1 Quantum state tomography

Quantum measurements follow the Born rule [12]: If one prepares a mixed quantum
state ρ̂ and measures a hermitian observable Ô =

∑
i oi |oi⟩⟨oi|, one randomly

obtains the outcome oi with probability

P (obtain oi) = Tr[ρ̂ |oi⟩⟨oi|]. (2.1)

The measurement updates the quantum state, projecting it onto the eigenspace of
the obtained eigenvalue:

ρ̂
obtained oi−−−−−−→ ρ̂post-meas. =

|oi⟩⟨oi| ρ̂ |oi⟩⟨oi|
Tr[ρ̂ |oi⟩⟨oi|]

(for non-degenerate oi). (2.2)

In general, this process is irreversible, as the density matrix gets projected onto a
linear subspace with dimension 1, in the extreme case. This is often called the ”col-
lapse of the wavefunction”. The original state is now destroyed and repeating this
measurement gives no further information about the prepared state or measured
observable. If one wants to reconstruct the density matrix of the original state,
one has to prepare multiple copies of it, and measure each one independently. This
is exactly the task which quantum state tomography (QST) aims to solve: given
multiple independent copies of a quantum state ρ̂, perform multiple measurements
and process the resulting data in such a way, to infer the density matrix ρ̂ of the
state. The combination of the set of measurements and this post-processing will
be referred to as a tomography scheme.

For anN qubit system, the Hilbert space is 2N -dimensional. This means that ρ̂ is
a matrix with 2N ×2N = 4N complex entries. Neglecting normalization and taking
into account that ρ̂ is hermitian, this results in 4N independent real parameters,
all of which have to be estimated from experimental data. One therefore has to
perform at least 4N linearly independent measurements, of which each requires
repeated execution to collect statistics [13]. The experimental burden of such full
QST is thus of of exponential nature, i.e. the amount of data the experiment has to
collect is exponential. In addition to that, the classical post-processing is of similar
complexity: if the desired result is the full, exponentially large density matrix, the
numerical complexity for obtaining this matrix is of course also exponential. This
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CHAPTER 2. THEORY AND METHODS

is why performing a successful state tomography may be thought of as one of
the most challenging tasks related to quantum mechanics: it suffers two-fold from
the exponential scaling of quantum mechanics, once in experiment and once in
post-processing.

This task seems quite daunting and in fact is only feasible in full extent on
relatively small systems. For larger systems, corners need to be cut. Over the years,
several algorithms have been developed, which make some compromise regarding
the generality of the tomography scheme, in order to avoid the exponential scaling.
In Section 2.1.1 some criteria are laid out, which may be used to classify most of
these algorithms. In Section 2.1.2 an overview over various existing tomography
schemes is given.

2.1.1 Classification of tomography schemes

One can write down a few properties that a perfect tomography scheme might
possess:

1 Sub-exponential scaling in required experimental data.

2 Sub-exponential scaling in classical post-processing.

3 ”Observable universality”, referring to the requirement that upon performing
a successful tomography, any linear or non-linear quantum observable should
be faithfully computable, without requiring further experimental data.

4 ”State universality” meaning that the algorithm should be indifferent to the
(possibly mixed) target state that is prepared experimentally.

Obviously, no tomography scheme can exist that matches all four of these require-
ments to perfect accuracy. Most tomography schemes choose to give up one or
more of these conditions, in order to gain with respect to the remaining.

One might argue whether a scheme that does not satisfy ”observable universal-
ity” should be called a tomography scheme. Strictly following the above criteria,
an entanglement detection scheme for example would fall under the ”observable
universality” violating tomography schemes, even though entanglement detection
usually is not called ”tomography”. However, recent approaches like shadow to-
mography [14, 15] blur the lines between simple measurements of single observables
and schemes resulting in full density matrices. Hence, it makes sense to explicitly
mention ”observable universality” as a distinguishing property.

Using these criteria, the main target of this thesis may also be formulated more
precisely: As the word ”scalable” in the title suggests, the goal is to construct
a scheme, that gives an improvement w.r.t properties 1 and 2 while possibly
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CHAPTER 2. THEORY AND METHODS

making compromises on properties 3 and 4 . To see that making such compro-
mises are not too unusual, one may look at the properties of some more common
tomography schemes.

2.1.2 Overview of tomography schemes

Linear inversion

The (mathematically) simplest tomography scheme relies on finding an orthonor-
mal basis Mi for the set of hermitian operators on the Hilbert space. This allows
for an expansion of the density matrix as

ρ̂LI = ciM̂i ci ∈ R ∀i ∈ {1, ..., 4N}. (2.3)

In this thesis, the Einstein-convention is used, implying sums over repeated indices.
Since all M̂i are observables, the coefficients ci may be measured directly:

Tr
[
ρ̂LIM̂i

]
= cj Tr

[
M̂jM̂i

]
= cjδij = ci. (2.4)

An example for such a basis is are Pauli-strings, where the M̂i are all 4N products
of the four operators {1/2, σ̂x/2, σ̂y/2, σ̂z/2} [13]. Not only is this procedure math-
ematically simple, but it is also easy to implement in experiments which allow
individual qubit control, as measuring Pauli-strings only requires single qubit ro-
tations and subsequent projections. However, this scheme violates several of the
conditions from Section 2.1.1. The expectation values of 4N operators have to be
measured experimentally, violating condition 1 . The subsequent sum in Eq. (2.3)
is exponentially hard, thus condition 2 is violated. Also, for finite measurement
statistics, the resulting density matrix may be negative. A negative density ma-
trix implies that some observables will not be captured accurately, thus hindering
condition 3 .

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is the simplest extension of linear inversion
that ensures positive density matrices. It seeks to find the physical density matrix
that has the highest probability of yielding the dataset that was actually measured.
The probability of obtaining the dataset is given by the product of the probabilities
of obtaining the individual measurement outcomes oi

P (Dataset = {o1, o2, ...}|ρ̂guess) =
∏

oi∈Dataset

P (oi|ρ̂guess)

=
∏

oi∈Dataset

Tr[ρ̂guess |oi⟩⟨oi|] =: L(ρ̂guess).

(2.5)

8



CHAPTER 2. THEORY AND METHODS

This quantity is called the likelihood function. MLE now seeks to maximize it
w.r.t. ρ̂guess

ρ̂MLE = argmax
ρ̂guess physical d.m.

L(ρ̂guess). (2.6)

To perform this non-linear maximization two standard algorithms are used. The
first parametrizes ρ̂guess as BB†

TrBB† , with any complex matrix B of correct dimen-
sions. This parametrization ensures positivity, normalization and hermiticity of
the density matrix, therefore turning the optimization problem into an uncon-
strained one. This may be performed for example using standard gradient descent
based methods. An alternative method is so called iterative MLE [16]. It works
by first constructing the matrix

R̂(ρ̂) =
∑

oi∈Dataset

|oi⟩⟨oi|
Tr[ρ̂ |oi⟩⟨oi|]

.

Notice that if ρ̂ is consistent with the dataset, the frequency with which oi occurs
in the dataset is proportional to Tr[ρ̂ |oi⟩⟨oi|]. Therefore R̂(ρ̂) ∝

∑
i |i⟩⟨i| = 1.

Starting with ρ̂0 ∝ 1, one can iterate the equation

ρ̂n+1 = N R̂(ρ̂n)ρ̂nR̂(ρ̂n) (2.7)

and by the previously made observation it is clear that this iteration has a fixed
point when ρ̂ is consistent with the dataset. Here N is a normalization constant
that is recomputed after every iteration. Since R̂(ρ̂) is always a positive definite
matrix, ρ̂n is also positive definite for every n. This scheme finds application in
theory [17] and experiment [18].

As MLE relies on optimizing or multiplying exponentially large matrices it vi-
olates condition 2 , and it typically needs a lot of data, violating condition 1 .
Apart from these scaling issues, MLE has a further issue: it tends to produce
zero-eigenvalues, which are never compatible with any dataset [19]. Despite this,
MLE is conceptually simple and versatile and is therefore one of the most readily
used tomography schemes. It thus plays a crucial role throughout this thesis as a
reference scheme.

Bayesian mean estimation

Bayesian approaches, like Bayesian Mean Estimation (BME), go yet another step
further. While MLE seeks the state with the highest likelihood, Bayesian ap-
proaches take into account all states with high likelihood [19]. BME returns the
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CHAPTER 2. THEORY AND METHODS

mean of a posterior distribution

ρ̂BME =

∫
ρ̂P (ρ̂|Data)dρ̂ with (2.8)

P (ρ̂|Data) =
P (Data|ρ̂)P0(ρ̂)

P (Data)
≡ L(ρ̂)P0(ρ̂)

P (Data)
.

Here P (ρ̂|Data) is a probability distribution that quantifies how likely a given
density matrix is, given the data. As opposed to MLE, this takes into account
a prior distribution over all density matrices P0(ρ̂) that can encode any prior
knowledge about the state or possible noise on the data. This scheme has the
advantage of giving errorbars on its estimate and it does not give zero-eigenvalues
as MLE does. However, due to the integral over the space of density matrices in
Eq. (2.8), it is even more demanding resource-wise than MLE. It thus also violates
condition 2 . The sample complexity is difficult to estimate, as it depends on the
choice of the prior [19], but for the general case where no assumptions about the
target state are made, there is no reason to expect a better scaling than MLE,
thus also condition 1 is violated.

Schemes for limited sets of observables

There are a few schemes, that do not attempt a full reconstruction of the density
matrix, thus violating condition 3 . The culmination of these algorithms is the
one by Huang, Kueng, and Preskill in [15], built upon works of Aaronson in [14,
20]. This scheme builds a ”classical shadow”

S(ρ̂, N) =
{
ρ̂1 = M−1(Û †

1 |b1⟩⟨b1| Û1), ..., ρ̂N = M−1(Û †
N |bN⟩⟨bN | ÛN)

}
(2.9)

resulting from computational basis measurements (bit strings |bi⟩) after applying
random unitaries Ûi to repeated copies of the target state. The mapping of ρ̂ to
Û † |b⟩⟨b| Û is thought of as a quantum channel M(ρ̂) = E

[
Û † |bi⟩⟨bi| Û

]
[15]. The

snapshots ρ̂i are split into K bins, the sum over each bin is computed, resulting
in K estimates for the (not necessarily positive) density matrix. Each of these
estimates is used to compute a desired expectation value, and the median of these
K expectation values is returned. This scheme requires

O
(
log(M)max

i
||Ôi||2shadowϵ

−2
)

measurement samples, to predict M expectation values Tr
[
Ô1ρ̂

]
, ...,Tr

[
ÔM ρ̂

]
up

to an error ϵ [15]. For an observable acting on k qubits, the norm ||.||shadow satisfies
||Ôi||2shadow ≤ 4k||Ôi||2∞, the latter being the operator norm. Storing the classical
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CHAPTER 2. THEORY AND METHODS

shadows is efficient [15], thus apart from condition 3 none of the other conditions
are violated. An example for an experimental application of this scheme can be
found in [21].

Variational schemes

The class of variational algorithms is the most important in the context of this
thesis, as the main algorithm developed and tested here belongs to this category.
These schemes parametrize the density matrix in such a way that makes the nu-
merical representation efficient, as required by property 2 . The space in which
they search for the target density matrix is therefore restricted, and condition 4
violated. The most notable of these schemes is matrix-product state (MPS) to-
mography [22–24]. Here the search space is restricted to states that are efficiently
representable via MPS, i.e. those where the coefficient matrix Ci1,...,iN of a state

|ψ⟩ =
∑

i1,...,iN

Ci1,...,iN |i1⟩ ⊗ ...⊗ |iN⟩

can be factored into a matrix-product

Ci1,...,iN = Tr [c1 · ... · cN ] , (2.10)

where the ci’s are matrices of smaller rank than Ci1,...,iN . The states that are
efficiently representable can be classified using the entanglement entropy S(ρ̂) =
−Tr[ρ̂ log ρ̂]. More precisely, it is well known that a dimension D of the ci’s allows
for an entanglement entropy S(ρ̂L) = O(logD) for 1D systems [25], where ρ̂L is
the reduced density matrix of a subsystem of length L. Therefore, MPS can only
be used practically for states whose entanglement entropy does not scale with the
length of L of the subsystem. These states are said to satisfy (1D) area-law scaling
of entanglement, as opposed to volume-law scaling, where the entanglement would
grow with the size of the subsystem. Generalizations to higher dimensions exist,
but the contraction of Eq. (2.10) typically turns exponentially hard [25].

Compressed sensing [26, 27] and permutationally invariant tomography [28, 29]
are two further common scheme that restrict their search space. The first assumes
low-rank density matrices and the latter assumes permutation invariance.

This restriction of the search space is the key point that allows these schemes
to achieve greater accuracies with less data than competing algorithms, as infor-
mation about the target state is encoded a priori in the ansatz that is made.
This prior information therefore does not need to be re-learned from the data or
experiment, allowing for more efficient algorithms w.r.t. condition 1 .

The most recently developed class of variational tomography schemes is that
based on neural networks. The entire Section 2.4 is dedicated to these schemes.
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CHAPTER 2. THEORY AND METHODS

2.2 POVM formalism

As stated in the introduction, a crucial step to specifying a tomography scheme is
specifying the physical measurements that are repeatedly performed on the system.
This is where POVMs come into play.

2.2.1 Motivation and definition

Quantum measurements as described in Section 2.1 are typically called projective
measurements, because the key operators P̂i = |oi⟩⟨oi| are projection operators in
the mathematical sense, satisfying P̂ 2

i = P̂i. Notice that there are three essential
properties of the operators |oi⟩⟨oi| that make equations (2.1) and (2.2) meaningful:
They are self-adjoint, positive and sum up to the identity matrix. This ensures
the expectation values in Eq. (2.1) may be interpreted as probabilities and that
the post-measurement state in Eq. (2.2) remains a physical density matrix. Par-
ticularly, neither the projective nature nor the orthonormality of the |oi⟩⟨oi| is
necessary [13]. We may thus write down a different set of measurement operators
M̂1, ..., M̂n that satisfy

M̂a = M̂ †
a , M̂a ≥ 0 and

∑
a

M̂a = 1. (2.11)

Such a set of operators is typically called a positive operator-valued measurement
or POVM. The Born-rule translates simply1: the probability of obtaining outcome
a is obtained via

P (a) = Tr
[
M̂aρ̂

]
. (2.12)

The formalism of POVMs becomes most useful in this thesis, if, in addition to the
above properties, it is also informationally complete (IC). This means, that the
POVM operators M̂a span the entire space of hermitian operators on the desired
Hilbert space. Consequently, every hermitian operator (and thus every density
matrix ρ̂) has a unique expansion

ρ̂ = caM̂a.

From here on, many explanations closely follow those from [11]. By multiplying
with M̂b and taking the trace, one can compute the coefficients ca as follows

P (b) ≡ Tr
[
ρ̂M̂b

]
= caTr

[
M̂aM̂b

]
≡ caTab, where Tab = Tr

[
M̂aM̂b

]
⇒ ca = P (b)T−1

ab

⇒ ρ̂ = P (b)T−1
ab M̂a. (2.13)

1For completeness sake: The post-measurement state is now proportional to
√

M̂aρ̂
√
M̂a. For

details on why the square root appears here, see [13].
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CHAPTER 2. THEORY AND METHODS

Notice that this is the generalization of the linear reconstruction of the density
matrix from Eq. (2.4) to a non-orthonormal basis: Knowing the complete POVM
probability distribution is equivalent to knowing the density matrix. The mapping
between density matrices and POVM distributions given by equations (2.12) and
(2.13) is only bijective if one restricts the space of probability distributions. While
every density matrix has a corresponding POVM probability distribution, not
every probability distribution gives a positive density matrix when inserted into
Eq. (2.13). How one can parametrize positive POVM distributions and why this
is not very useful in this context is discussed in Appendix B.2.

A key tool in Eq. (2.13) and everything that follows is the matrix T . Its elements
quantify how strong any two POVM operators overlap with each other, which is
why it is commonly called the overlap matrix. For measurements consisting of
orthogonal projectors, it would be the identity matrix. Unfortunately, a POVM
cannot be both informationally complete and orthogonal [30], i.e. a set of hermi-
tian operators can only ever have at most two of the properties informationally
complete, orthogonal and being all positive.

2.2.2 Choice of POVM

There are uncountably many POVMs one could choose from. However, in the
context of tomography it makes sense to choose a POVM based on how easy it is to
measure in an experiment. Many quantum computers or quantum simulators, that
are available today can perform single qubit measurements. This implies that the
measurement operators are product operators M̂a = M̂

(1)
a1 ⊗ ...⊗ M̂

(1)
aN . It remains

to determine the single-qubit POVM M̂
(1)
a . The most natural measurements on

most systems are Pauli-measurements, i.e. randomly choosing an axis x, y or z
and projecting the qubit onto it. This measurement has the six outcomes

M̂ (1)
a ∈

{
1

6
|↑∗⟩⟨↑∗| ,

1

6
|↓∗⟩⟨↓∗|

∣∣∣∣ ∗ ∈ {x, y, z}
}
, (2.14)

and is typically called the Pauli-6 POVM. However, these operators are not all
linearly independent and result in an overlap matrix T that is not invertible. This
is also clear because a single-qubit density matrix has 4 real degrees of freedom
(up to normalization), one thus needs 4 (up to normalization) linearly independent
operators satisfying the POVM conditions (2.11) to obtain a complete basis. One
can fix this issue, by simply grouping three out of these six operators into one,
resulting in e.g.

M̂
(1)
1 =

1

3
|↑x⟩⟨↑x| , M̂

(1)
2 =

1

3
|↑y⟩⟨↑y| , M̂

(1)
3 =

1

3
|↑z⟩⟨↑z|

M̂
(1)
4 = 1− M̂

(1)
0 − M̂

(1)
1 − M̂

(1)
2 . (2.15)
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This is typically called the Pauli-4 POVM [11]. Physically, one would still measure
the Pauli-6 POVM, but any ↓ outcome would be considered an a = 4 POVM out-
come. This grouping of three measurement outcomes into one, effectively means
that data is being discarded. This loss can be avoided by using multiple differ-
ent groupings. There are 23 = 8 possible single-qubit groupings that give valid
POVMs, and per qubit this grouping may be different, resulting in 8N possible
POVMs that result from this scheme. However, in all analysis that follows, only
the grouping shown above will be used. All comparisons will still be fair, because
every tomography receives the same ”reduced” dataset.

An alternative to the Pauli POVMs is the product-SIC POVM. Its single particle
operators project onto the four states

|ψ0⟩ = |0⟩ , |ψ1⟩ =
1√
3
|0⟩+

√
2

3
|1⟩ ,

|ψ2⟩ =
1√
3
|0⟩+

√
2

3
e

2πi
3 |1⟩ , |ψ3⟩ =

1√
3
|0⟩+

√
2

3
e

4πi
3 |1⟩ , (2.16)

which form a tetrahedron in the Bloch sphere. For a single qubit, this POVM
is symmetric, meaning that its overlap matrix is as close to the identity matrix
as possible [30] and that the overlap between any distinct pair of operators is
equal. In this sense, this POVM is more ”uniform” than the Pauli-4 POVM, for
which the a = 4 outcome will have the highest probability for most states. While
this property might be beneficial, this POVM is much more difficult to measure
experimentally, as the outcomes do not easily map to single qubit spin projections.
Appendix B.1 explicitly shows how to measure this POVM by coupling to an
ancillar qubit. For the stated reasons, only the Pauli-4 POVM will be used from
here on, unless stated otherwise.

2.2.3 Observables in the POVM formalism

Observables may also be computed directly within the framework of POVMs,
which can be seen by expanding an observable Ô = oaM̂a using the POVM oper-
ators, computing its expectation value and using Eq. (2.13):

Tr
[
Ôρ̂
]
= Tr

[
oaM̂aP (b)T

−1
bc M̂c

]
= oaP (b) Tr

[
M̂aM̂c

]
T−1
bc

= oaP (b)δab = P (a)oa. (2.17)

As in Eq. (2.13), the coefficients oa can be computed using oa = T−1
ab Tr

[
M̂bÔ

]
.

Similarly, non-linear quantities like the purity may be translated to POVMs:

Tr
[
ρ̂2
]
= Tr

[
P (a)T−1

ab M̂bP (c)T
−1
cd M̂d

]
= ... = P (a)P (b)T−1

ab .
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The key point with both of these expressions is that they can be written as expec-
tation values

Tr
[
Ôρ̂
]
= P (a)oa = ⟨oa⟩a∼P (a) and (2.18)

Tr
[
ρ̂2
]
= P (a)P (b)T−1

ab = ⟨T−1
ab ⟩a∼P (a),b∼P (b). (2.19)

2.2.4 Some details on numerics

Monte Carlo sampling

Expectation values like the above can be approximated numerically using Monte
Carlo (MC) techniques [31] as

⟨oa⟩a∼P (a) ≈
1

Ns

∑
a∈D

oa =: ENs .

Here D is a dataset containing Ns samples, each having a probability P (a) of
appearing. Such Monte Carlo estimates come with an intrinsic error estimate. The
standard deviation of the estimate ENs may be approximated using σNs =

SNs√
Ns

where SNs satisfies [31]

S2
Ns

=
1

Ns

∑
a∈D

o2a − E2
Ns
. (2.20)

Monte Carlo estimation thus offers a means of systematically estimating quantities
that might otherwise be intractable to compute. However, not all observables can
be efficiently evaluated this way. Sign problems, i.e. situations where large positive
and negative portions of a sum have to cancel out, can lead to an exponentially
large variance (2.20), and thus hinder the efficient computation of observables.
Exactly this happens with purity-estimates such as (2.19) which are therefore not
efficiently accessible for more than one or two qubits using this scheme.

Consequences of factorized POVMs

Using a factorized POVM as described in Section 2.2.2 has some nice conse-
quences. All previous and following expression involving the POVM operators
may be rewritten by replacing the indices a ∈ {1, ..., 4N} with multi-indices a =
(a1, ..., aN) ∈ {1, 2, 3, 4}×N , where an index ai corresponds to qubit i. The trace
property Tr[A⊗B] = Tr[A] Tr[B] implies, that the overlap matrix T factorizes
as Tab = Ta1b1 · ... · TaN bN and the same goes for its inverse. A product state
ρ̂ = ρ̂1 ⊗ ρ̂2 turns into a product distribution P (a) = P (a1)P (a2), which can be
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easily seen from the Born rule (2.12) and the stated trace property. Taking the
partial trace becomes very easy on the POVM distribution, e.g.

TrQubits 1,3,5[ρ̂] ↔
∑

a1,a3,a5

Pa1,...,aN .

Furthermore, local observables, i.e. those acting only on a subsystem, also remain
local. E.g. for an observable Ô1,2 acting on qubits 1 and 2

Tr
[
Ô1,2 ⊗ 1

3,...,N ρ̂
]
= ... = oa1,a2P (a1, a2),

i.e. local observables only require the knowledge of a marginal of the POVM
distribution. For more details on this, as well as nice representations of these
equations using tensor diagrams, see [11].

All of these consequences of the factorized POVM mean that many quantities,
such as most local observables can be extracted efficiently, even from exponentially
large state representations, as long as samples from the corresponding POVM
distribution are available.

2.2.5 Simulating POVM measurements

By virtue of the Born rule (2.12), simulating measurements of a POVM on a
state ρ̂ amounts to generating samples from the POVM distribution P (a1, ..., aN)
corresponding to the target state ρ̂. Since P (a1, ..., aN) is a discrete, non-trivial,
high-dimensional probability distribution, one has to resort to Markov Chains to
generate samples from it. The procedure for doing so, goes as follows [32]:

1. Generate an arbitrary initial sample a and compute its probability P (a).

2. Randomly change one of the components of the sample e.g.
a = (a1, ..., ai, ..., aN) → (a1, ..., a

′
i, ..., aN) = a′ and compute the POVM

probability P (a′).

3. Draw a random number r uniformly between 0 and 1.

4. Return a′ and replace a with a′ if r ≤ P (a′)
P (a)

. Otherwise return a.

5. Go to step 2. until sufficiently many samples have been returned.

This algorithm creates highly correlated samples, as only one component of a is
updated per step. To remedy this, one has to discard most samples and only keep
the sample after every s steps. The stride s is a hyperparameter. Also, the first
few samples will generally have very small probabilities and therefore also have to
be discarded. This is called burn-in [32].
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2.3 Neural Networks

Neural networks (NNs) are the driving force behind many advances in modern
computer science [33], robotics [34], physics [6], biology [4], medicine [35], lin-
guistics [5], finance [36] and many more. The immense increase in computational
power over the last 30 years has enabled researchers from many fields to develop
deep, application specific machine learning architectures, and achieve results that
are unmatched by competing approaches.

While neural networks were originally inspired by biological models for the brain
[37], explaining the term neural network, many recent architectures have little to
do with their biological ancestry. In a more modern definition, neural networks
would be seen as a class of non-linear, highly parametrizable functions, that fulfil
some sort of ”universal approximation theorem” [38] meaning that (in some limit
of many parameters) they can approximate any function to arbitrary accuracy.

In this section, the most important neural network architectures will be ex-
plained, with a focus on those that are most relevant to this thesis. Some brief
details on training neural networks will be covered, and finally the context for
neural networks in quantum mechanics will be set.

2.3.1 Types of neural networks

There are a few important classes of neural networks to distinguish. The first
classification is that of generative and non-generative neural networks. Generative
neural networks are those that understand the notion of probabilities. Designed
with the goal of learning exactly normalized probability distributions, their dis-
tinct feature is the ability to generate data according to a learned distribution.
The most important example here is the Recurrent Neural Network (RNN). Non-
generative models do not have this ability to generate data and can be seen as more
general function approximators. The most important examples here are Restricted
Boltzmann Machines (RBMs), simple Dense Neural Networks (DNNs) and Convo-
lutional Neural Networks (CNNs). Further information about these architectures,
that goes beyond the following introductions can be found in [39].

Restricted Boltzmann Machines

RBMs are the simplest class of neural networks. They consist of a set of visible
binary neurons v which are connected to a set of hidden binary neurons h via a
weight matrix W [40]. Visible and hidden neurons are subject to biases b and c.
RBMs encode the Boltzmann distribution p(v,h) ∝ exp (Wijhivj + bjvj + cihi),
where the exponent is typically referred to as ”energy” [40]. After summing over
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the hidden neurons, the remaining distribution is given as [41]

p(v) ∝ exp

(
bivi +

∑
i

softplus(ci +Wijvj)

)
,

where softplus(x) = log(1 + ex). Sampling can be performed using Gibbs sam-
pling, more on which can be found in [41].

Dense Neural Networks

Dense, or fully-connected neural networks can be thought of as a generalization to
RBMs, consisting of multiple layers l of a form reminiscent of RBMs:

xl+1
i = f l(cli +W l

ijx
l
j),

where f l(x) is a non-linear function, xl is the input to the l’th layer and cl and
Wl are bias and weight parameters respectively. If one considers the entries of xl

as ”neurons”, then each neuron from the l’th layer is connected to every neuron on
the (l + 1)’th layer, explaining the term dense network.

Recurrent Neural Networks

RNNs are commonly used to learn probability distributions. They make use of the
fact that any multivariate probability distribution may be factored into a product
of conditional probability distributions

p(x1, x2, ..., xN) = p(x1) · p(x2|x1) · ... · p(xN |xN−1, ..., x1). (2.21)

Networks that make use of this fact are often called autoregressive. A RNN con-
sists of a parametrizable, non-linear function, that takes a hidden state h, as well
as a single input component xi−1 and returns a new hidden state h′ and a prob-
ability distribution for the next component p(xi). By sequentially sampling the
components xi and simultaneously iterating on the hidden state h, probability
distributions may be efficiently approximated [42].

Convolutional Neural Networks

CNNs are designed to deal with spatially correlated data, such as images. Typi-
cally, they are fed two dimensional images, but 1D and 2D CNNs are conceptually
identical. CNNs perform iterated convolutions (here shown for the 1D case)

(conv(x; k, b))i = f

b+ |k|−1∑
j=0

kjxj+i

 , for i ∈ {0, ..., |x| − |k|} (2.22)
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Convolu�on
So�max
Product/
Dense

a) (Circular- ) CNN b) Autoregressive CNN

Figure 2.1: Schematic representation of the standard and autoregressive CNN,
both for an input length of N=4.

of the input data x with a so-called kernel k. Here the length of a vector v is
denoted by |v|, b is a bias and f l is again a non-linear ”activation” function acting
element-wise on the results of the convolution. This can be thought of as taking
dot-products of the kernel and translated section of the input vector. A graphical
representation of this architecture can be seen in Fig. 2.1a. For a 2D CNN, k would
be a matrix, and Eq. (2.22) would compute dot products between this matrix and
translated submatrices of the then two-dimensional input x.

Typically, multiple kernels are used per layer l resulting in multiple intermediate
representations xl,m. The latter would then be computed via

xl+1,m =
∑
n

conv(xl,n; kl,m,n, bl,m). (2.23)

This ”dense”-like structure on kernel-level is not visible in Fig. 2.1. The axis
indexed by m here is often called the feature dimension.

As is evident from Eq. (2.22), the dimension of interest of x shrinks with each
convolution. To prevent this, one can artificially increase the size of this dimension
by applying padding before performing the convolution. Common choices are to
pad with a constant, or, if the target function satisfies periodic boundary condi-
tions, one can pad with opposing entries along the desired dimension [43]. The
latter case is shown in Fig. 2.1a.

In order to convert the last intermediate vector xL,m on a CNN of depth L into
a scalar, one has a few options. Most commonly, a dense layer with scalar output
is applied to the feature dimension, resulting in a vector xL. Now, one can choose
to apply another dense layer over the final dimension with exponential as output
function fL, or one can return e

∑
i x

L
i , if one seeks to preserve translation invariance

[43]. These two cases are referred to as the Dense- and Product-output layer in
Fig. 2.1a.

In this thesis, the distinction between the ”CNN” and the circular CNN, i.e. the
”CCNN” is made. The prior refers to the standard CNN with constant padding and
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dense output layer, while the latter refers to the translation-invariant architecture
with periodic padding and the product output layer.

For all use-cases throughout this thesis, all layers but the final are kept identical,
resulting in three main hyperparameters that may be varied: the number of layers
L, the kernel width k and the number of features per layer f . The number of
variational parameters is dominated by the kernel tensor kl,m,n, resulting in

Num. params = O(kLf 2) (2.24)

parameters.

Autoregressive Convolutional Neural Networks

The following architecture is heavily inspired by [44]. With three minor modifi-
cations, the 1D CNN can be turned into an autoregressive CNN (ARCNN) that
can exploit the factorization of probabilities into conditionals, just like the RNN.
This enables the ARCNN to encode exactly normalized discrete probability dis-
tributions p(x), x = (x1, ..., xN). Here xi are the discrete components of x, each
with a value ranging from 1 to dl, the local dimension. The modifications that
are necessary are visible in Fig. 2.1b. First, the input dimension has to be shifted
by one, resulting in the last component of the input vector to not be fed in as
an input. Secondly, the padding has to be chosen constant. These modifications
ensure, that dependencies on the input components only grow in one direction,
just as is necessary for the factorization of probabilities in Eq. (2.21), as visible in
Fig. 2.1b.

One can then map the local output of each final cell to a local probability
distribution, for example by using a dense layer (with outputs yi, dl per site) along
the feature dimension, followed by softmax layer which performs the computation

yi →
eyi∑
i e

yi
.

Therefore, upon given an input of length N , the network therefore gives an output
of the form:

Site 1: Site 2: ... Site N :
P (x1 = 1) P (x2 = 1 | x1) P (xN = 1 | xN−1, ..., x1)
P (x1 = 2) P (x2 = 2 | x1) P (xN = 2 | xN−1, ..., x1)

...
P (x1 = dl) P (x2 = dl | x1) P (xN = dl | xN−1, ..., x1)

These are dl ·N individual probabilities, conditioned on the inputs of the network.
To evaluate the probability of e.g. P (x1 = 2, x2 = 1, ...) one can now select the
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second entry of the first column P (x1 = 2), the first entry of the second column
P (x2 = 1 | x1), etc. and finally take the product of these values which results in
the full probability, according to Eq. (2.21).

Exact, uncorrelated samples may be drawn by first passing a zero-vector x =
(0, ..., 0) through the network and using the result to sample the first component
x1 of the result. This first component may be passed through the network as x =
(x1, 0, ..., 0), resulting in the conditional probabilities for the second component x2
and so on. It therefore requires N passes through the network, to generate one
sample.

Unfortunately, this simple extension of the CNN to an autoregressive struc-
ture fails for the 2D CNN, as certain regions would end up uncorrelated (see
Appendix A.1 for a more detailed explanation). Hence, the ARCNN is limited to
1D systems.

Others

Other architectures such as the Transformer [45, 46], the LSTM [47], invertible
neural networks [48], generative adversarial networks (GANs) [17] and variational
autoencoders (VAEs) exist and have also found their way into physics applications,
but they are not relevant in the context of this thesis.

2.3.2 Training

When it comes to training neural networks, the key quantity is the so called loss
function L(θ,D). This function returns a scalar, that quantifies the performance
of the network. One formulates the task that the network is supposed to learn,
such that smaller values of the loss function correspond to a better performance of
the network at its given task. The loss function depends on two main quantities.
The first being the parameters θ of the network. This is the object to be learned,
i.e. one seeks those values for θ that minimize the loss. The second input is a
dataset D. For a task of e.g. image classification, this dataset might consist of
images and their corresponding labels (”Cat”, ”Dog”, ...).

The task of optimizing this loss function w.r.t the parameters θ is an entire
field of research of its own. In the context of this thesis, one relies on the fruits
carried by decades of research on optimized training strategies. Standard neural
networks, such as those described above, in conjunction with the task of optimizing
an analytic loss function, are typically trained using gradient based methods. This
means that one computes gradients of the loss function w.r.t the parameters θ,
and iteratively updates the latter based on those gradients. In the simplest form,
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one simply takes steps in the direction opposite the gradients [49]:

θi+1 = θi − λ∇θL(θi,D). (2.25)

The step size λ is called the learning rate. This technique is called gradient de-
scent [49].

The simplest extension to gradient descent it the momentum optimizer. It
adjusts the update rule (2.25) by adding a velocity or momentum term [50]:

θi+1 = θi − vi, (2.26)
vi+1 = γvi + λ∇θL(θi,D).

This can speed up convergence and help avoid local minima in the loss landscape.
A damping factor λ ≈ 0.9 < 1 ensures a steady state velocity is reached [50].

The current state of the art optimization algorithm is the Adam algorithm [51],
short for ”adaptive moment estimation”. It adaptively changes the learning rate λ
for every parameter individually, based on all previously seen gradients. The latter
allows the algorithm to effectively approximate the second order gradients of the
loss function, without computing these explicitly [51]. This tends to increase the
speed of convergence yet again, making it one of the most widely used optimization
algorithms to date.

Commonly, not the entire dataset D is used to compute the weight updates
(2.25) and (2.26). Rather, the dataset is randomly split into equally sized batches
D1, D2, ... ⊂ D, and for every weight-update i a new batch is used, e.g. for simple
gradient descent (2.25)

θi+1 = θi − λ∇θL(θi, Di).

This has two main reasons: on the one hand it decreases the computational work
load per iteration, and on the other hand it introduces stochasticity to the training
process, which can help the network to generalize [39].

In the context of machine learning, the word generalization, used in the previous
sentence, refers to scenario where a model trained on some limited dataset acquires
knowledge about its underlying structure and is able to make predictions that go
beyond the information contained in the data. Achieving this scenario is the
ultimate goal most machine learning tasks strive for.

Furthermore, one may add an additional regularization term

µ · ||θ||2

to the loss function. This term, commonly called weight decay, penalizes large
network parameters and can further improve generalization performance and help
prevent overfitting [39]. The importance of this term can be influenced by changing
the weight decay coefficient µ.
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2.4 Neural network quantum state tomography

2.4.1 Neural network quantum states and literature

In Sec. 2.1.2 some variational algorithms such as matrix product states were in-
troduced as a means of representing quantum states of large systems efficiently on
classical, resource-limited hardware. In 2017, Carleo and Troyer introduced neural
networks as an entirely new variational approach [8]. As stated in Sec. 2.3.1, neural
networks are an incredibly successful and efficient class of universal function ap-
proximators, that offer a great representational power, even with limited numbers
of parameters. Motivated by this, the Neural Network Quantum State (NQS) was
conceived. The idea is simple - in analogy to MPS (2.10), the coefficient tensor
Ci1,...,iN of a complex many-body state

|ψ⟩ =
∑

i1,...,iN

Ci1,...,iN |i1⟩ ⊗ ...⊗ |iN⟩

is replaced by a neural network. This neural network accepts a configuration
of single particle states (i1, ..., iN) and returns the corresponding wave function
amplitude Ci1,...,iN . Naturally, this is a complex quantity and multiple approaches
have been studied for handling this fact. The original authors use a neural network
with complex parameters [8]. This has the issue, that not all neural network
frameworks can easily handle and differentiate w.r.t. complex network parameters
[40]. A possible solution is to employ two different neural networks, one for the
amplitude, and one for the phase of the wavefunction [40, 52]. Using this ansatz,
a generative model can be used for the amplitudes, allowing spin configurations to
be sampled.

A more recent, less adopted suggestion is to use one network to learn real, basis-
dependent amplitudes and use a second network to adjust the parameters of the
first, in order to represent the wave function in different bases [53].

Soon questions were asked on how to represent mixed quantum states with neural
networks. Here, the community has settled on three main approaches. The first is
a purification ansatz [54], that phrased the mixed quantum state as a pure state
of a larger system, thus mapping the problem to a known one. This approach has
been applied in [55–59]. Others have adopted approaches that directly operate on
the elements of the density matrix themselves [17, 60, 61], at the cost of exponential
scaling. A popular approach, pioneered by Carrasquilla et al. in [11], is to represent
the mixed state using its POVM probability distribution. This has the advantage
of allowing for an entirely probabilistic formulation, enabling efficient sampling
of observables, all by using only one, real-valued network. The drawback is, of
course, that positivity is not ensured, as explained in Sec. 2.2. This approach has
found adoption in [46, 59].
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Further approaches based on neural networks in combination with multiscale
entanglement renormalization [62] and renormalization group methods [48] have
been developed, while others seek to modify standard network architectures, to
better encode desirable properties of specific target states and e.g. enhance the
ability to capture specific correlators [63, 64].

These NN approaches have been applied to various typical problems in quan-
tum mechanics, which include ground state search [8, 42, 44], even for frustrated
spin systems [43], the simulation of quantum circuits [46] and typical quantum
algorithms such as the Quantum Approximate Optimization algorithm [65], time
evolution [8, 66–68], entanglement detection [69, 70], and of course state tomog-
raphy [11, 17, 52, 53, 60, 71–74], with experimental implementation of the latter
in [59, 75–77].

This literature on neural network assisted quantum state tomography can be
classified according to the encoding of the quantum state within the network as
described above, and the network architecture used. The pure-state approach with
RBMs is used in [52, 59, 71, 75]. RBMs are further used in combination with basis
dependent neural networks [53], low-rank approximations [73] and the purification
ansatz [59, 73]. Tomography resulting in full density matrices has been carried
out with CNNs [60], GANs [17] and RNNs [61]. The POVM approach has been
applied to RNNs [11], RBMs [59] and Transformers [72].

The theory side has also made progress since NQS were first envisioned. It
has been shown, that RBMs and MPS are equivalent in the sense that they can
be transformed into each other [78] and the entanglement properties of RNNs
and CNNs have been understood (at least for pure states), framing CNNs as
a generalization to MPS [10], capable of encoding volume-law entanglement [9]
unlike MPS.

For recent reviews on the field of NQS and their applications, see [79] and [80].

2.4.2 Description of the tomography scheme

With most details out of the way, one can now put all building blocks together,
and describe the tomography scheme that is of interest in this thesis.

The big picture idea is the following: Use the POVM formalism as a state rep-
resentation. This turns the task of finding the target state density matrix into the
task of ”density estimation”, i.e. the reconstruction of a probability distribution
from measured samples. Then, parametrize the POVM distribution using a neural
network, and determine their variational parameters using the maximum likeli-
hood method, i.e. by optimizing the same target as is done for MLE tomography
in Section 2.1.2. As networks, use the two aforementioned CNN architectures,
motivated by their previously mentioned superiority in the context of NQS [9, 10].
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Notice, that this combination of network architecture and state encoding scheme
is itself novel, as it is absent from the above literature list.

Now follows a more detailed explanation of the tomography scheme: Data
from Ns POVM measurements is considered to be available in the form D =
{a1, a2, ..., aNs}, where ai = (ai1, a

i
2, ..., a

i
N) are independent tuples of single-site

measurement outcomes aij on an N qubit system. The ground truth POVM dis-
tribution P (a1, ..., aN) underlying the target state is approximated by the CNN,
i.e. the output of the CNN is interpreted as a variational probability distribution
Pθ(a1, ..., aN).

For the ARCNN, these probabilities may be directly evaluated as described in
Sec. 2.3.1. The application of standard CNN, however, is not as straightforward.
Its outputs are positive scalars CNNθ(a1, ..., aN), which are not normalized to form
a probability distribution. Thus, a manual normalization has to be introduced.
Computing this exactly as

N :=
∑

a1,...,aN

CNNθ(a1, ..., aN)

is not an option, since this sum contains exponentially many terms. It can be
approximated efficiently using a Monte Carlo estimate, as in Sec. 2.2.4 by summing
over a smaller batch containing Nb ≪ 4N uniformly generated POVM samples:

NMC
θ ≈ 4N

Nb

∑
ai∈ Batch

CNNθ(ai). (2.27)

This quantity has to be re-computed after every training step. Using this, the
CNN probability distribution may be written down as

Pθ(a1, ..., aN) =
1

NMC
θ

CNNθ(a1, ..., aN). (2.28)

The task now is to find the parameters θ of the CNN, such that the CNN best
approximates P , i.e.

Pθ(a1, ..., aN) ≈ P (a1, ..., aN). (2.29)

This approximation is found by maximizing the probability that the network re-
produces the dataset; the same ansatz as used for MLE in Sec. 2.1. Therefore, the
task is to maximize the likelihood function w.r.t. network parameters

Pθ(a1, ..., aN) ≈ P (a1, ..., aN) ↔ θ = argmax
θ

∏
ai∈Dataset

Pθ(ai).
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To prevent numerical issues due to exponentially small numbers, the logarithm of
the above function is taken, which does not shift the position of the maximum.
Flipping the sign of the likelihood function turns the maximization into a mini-
mization problem. Thus, the loss function used for training the network becomes

L(θ,D) =
∑
ai∈D

logPθ(ai). (2.30)

This is a loss function predestined to be optimized with the Adam optimizer from
Section 2.3.2, which may be trained until Eq. (2.30) converges.

Here, the vector of single site outcomes ai is treated as a 1D or 2D image (de-
pending on system geometry). Neighbouring outcomes ai and ai+1 are physically
close to each other, and thus probably correlated, just as is common with neigh-
bouring pixels of an image. This further motivates the use of a local neural network
architecture such as the CNN. However, unlike with real images, the pixel values
do not represent a magnitude. For an image, with 8-bit pixel values ranging from
0-255, a value of e.g. 100 is ”close” to a value of e.g. 101, meaning that these
pixel values may be treated similarly. However, for POVMs with local outcomes
ranging from 0-3 (or 0-5 for the Pauli-6 POVM), this property does not hold, since
measuring e.g. POVM outcome 2 is not at all ”close” POVM outcome 3. To cir-
cumvent this problem, one has to encode the POVM outcomes in some different
way. Common choices are the binary encoding, mapping

0 → (0 0), 1 → (0 1), 2 → (1 0), 3 → (1 1),

or the one-hot encoding

0 → (0 0 0 1), 1 → (0 0 1 0), 2 → (0 1 0 0), 3 → (1 0 0 0).

These mappings effectively increase the input shape by one dimension for the first
layer, which can be undone using e.g. a subsequent dense layer along the extra
axis. A short comparison of these encoding types can be found in the appendix in
Sec. A.3.

After performing a successful tomography, i.e. finding a good approximation
to the target distribution, samples may be generated using the neural network,
either directly for the ARCNN as described in Sec. 2.3.1, or using Markov Chains
2.2.5 for the standard CNN. Due to the locality preserving nature of the POVM
formalism all of this remains efficient, and local observables can be sampled from
the neural network, allowing the prediction of new observables.

As stated in Sec. 2.2, the use of the POVM formalism has the consequence
that the reconstructed density matrix is not necessarily positive definite. A non-
positive density matrix will lead to the violation of quantum bounds on observables,
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such as −1 ≤ ⟨σ̂z⟩ ≤ 1 or Tr[ρ̂2] < 1. Therefore, one can generally not expect
this tomography scheme to yield valid estimates for every possible observable.
However, this is no reason to expect no advantage from this scheme at all: Since
the data that is used for training the ansatz stems from a positive density matrix,
the training process will steer the internally represented density matrix towards
positive eigenvalues. Therefore, many observables will still be captured accurately
and thus even follow their theoretical bounds.

In summary, this is a tomography scheme, that is

• variational, just like MPS is variational. This allows the exponentially large
state to be compressed into a tractable number of parameters, making storage
of the state efficient. Furthermore, this compressed representation is what
can allow the state to be learned from fewer samples, as required for property
1 . This is a direct trade-off with property 4 , as the representable state
space is necessarily restricted.

• probabilistic and local, making observables easy to approximate using Monte
Carlo methods, as required for property 2 .

• real, allowing for standard neural network packages to be applied.

• expressive, since CNNs are known to be capable of representing quantum
mechanically interesting states.

From these considerations alone it is clear, that this scheme is sub-exponential in
classical post-processing and therefore fulfils condition 2 from the criteria given
in Sec. 2.1.1. To see how this scheme fares regarding the other criteria, it has to
be tested on some real-world tomography scenarios, which is done in the following
chapters.

2.4.3 Details on implementation

This scheme is implemented in Python, using the Jax [81] framework for auto-
matic differentiation and GPU compatibility as well as the flax library [82] for
neural networks and optimization algorithms. The Adam optimization algorithm
is contained in the flax library, which in turn makes use of jax to automatically
differentiate neural networks w.r.t. their parameters efficiently on GPUs.

The used hyperparameters are listed in Table B.1 in the appendix. For the
(C)CNN, the normalization batch size is chosen equal to the batch size. Since
the further implementation of the neural networks follows standard designs, no
additional details are given at this point.
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Figure 2.2: The speedup
of training the neural net-
works on multiple Intel
Xeon 6252 Gold CPUs on the
bwForCluster JUSTUS2 and a
single NVIDIA V100 GPU as
compared to a single CPU.

During this thesis, most of the mathemat-
ics behind POVMs from Section 2.2 as well as
Markov chains for sample generation were im-
plemented in jax. This allows for a tight inte-
gration of POVMs with the neural network li-
braries and a GPU compatible interface. Com-
putation of POVM probabilities (2.12) requires
the execution of large tensor contractions, i.e.
generalized matrix multiplications, which is one
of the tasks GPUs excel at. As stated in
Sec. 2.2.5, generating samples using Markov
chains is quite expensive numerically, as sam-
ples are generated sequentially and most sam-
ples have to be discarded. One may remedy
this by running multiple independent Markov
chains in parallel. The jax library can also
help with this, as it provides means to vectorize

code, making the concurrent execution of multiple Markov chains possible using
the massively parallel architecture of GPUs. A single NVIDIA A100 GPU at the
Juwels Booster Module Cluster [83] allows the concurrent execution of an excess
of 100 Markov chains, each performing the tensor contractions for the evaluation
of 16 qubit POVM probabilities. For 16 qubit Markov Chains, a stride of 32 and
a burn-in of 10k samples is used.

The speedup that is achieved by the use of GPUs while training a 10 qubit state
in shown in Fig. 2.2.

2.5 Ising ground states

For testing tomography schemes, one needs a class of states that can be used as
meaningful test subjects. One class of states that finds its use throughout the
thesis are ground states of the Transverse Field Ising Model (TFIM). The Ising
Hamiltonian is defined as

Ĥ = −J
∑
⟨i,j⟩

σ̂z
i σ̂

z
j −B

∑
i

σ̂x
i . (2.31)

Its ground states are an interesting class of states to consider, not only because
the Ising model is the prototypical spin-Hamiltonian, being subject of both expe-
rimental and theoretical studies. It is one of the simplest Hamiltonians one can
write down, that is not trivial but still has an analytical solution. Furthermore,
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by varying a single parameter J/B, a wide variety of states with a rich range of
properties may be achieved.

In the ”small coupling” limit J/B ≪ 1 the Hamiltonian is dominated by the
field term

∑
i σ̂

x
i , which aligns the spins along the x axis. In this limit, the ground

state is thus a product state |ψ⟩ = |+ . . .+⟩, which is uncorrelated and therefore
”simple”. Here, |+⟩ is the ↑ eigenstate of the Pauli-x operator σ̂x.

In the opposite ”strong coupling” limit, the coupling term
∑

⟨i,j⟩ σ̂
z
i σ̂

z
j dominates,

which gives the smallest energy when neighbouring spins point in the same direc-
tion along the z axis. Thus, for no external field B the ground state is two-fold
degenerate, spanned by the states |↑ . . . ↑⟩ and |↓ . . . ↓⟩. For small fields and
finite system sizes, the ground state is approximated well by the equal super-
position of both previously given states, resulting in the so called ”GHZ-state”
|GHZ⟩ = 1√

2
(|↑ . . . ↑⟩+ |↓ . . . ↓⟩) [84]. This is a highly correlated, maximally

entangled state and thus an interesting target state for neural network applica-
tions. In between, at coupling strength equal to the external field J/B = 1 lies
the so-called critical state. It marks the transition point between the above two
phases and is characterized by diverging correlation length, which makes this state
interesting as well.

If one adds periodic boundary conditions (i.e. by adding a coupling term to
the first sum that couples the first spin to the last spin), the model will produce
translation-invariant ground states. This can be useful for testing the addition of
such symmetries to the neural network ansatz.

The ground states are computed by exactly diagonalizing the Hamiltonian using
the Lanczos method [85], which is implemented in the SciPy library [86], based
on the ARPACK software [87].
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3 Results

The results of this thesis are split into three parts. The first, Sec. 3.1, attempts
to answer questions regarding the representability of quantum states within the
neural network. What states are efficiently representable? Are there physical
quantities, that influence whether a state can be represented using the network?
Studies done in this section can be thought of as the ”infinite data” case, because
it is assumed that the target POVM distribution is known exactly.

In the second part of the results, Sec. 3.2, the tomography scheme is tested under
conditions that better match those encountered on real experiments. Here finite
dataset sizes are taken into account, and comparisons to competing tomography
schemes are made.

In the third Section 3.3, the tomography scheme is applied to experimental data
from measurements for [18], that was kindly supplied by Christian Roos.

Due to the chronological order in which the following data was collected, not all
results from the first part will be applicable directly to the second, and not every
experiment from the ”finite data” section has a counterpart in the ”infinite data”
section. Furthermore, the ARCNN architecture was not yet known to the author,
at the time when the experimental data was analysed, hence here the analysis is
restricted to the CNN.

Unless stated otherwise, all error bars shown result from performing independent
repetitions of runs or experiments.

3.1 Representability - Infinite data

Asking whether a given state is representable in a neural network is a different
question from asking whether it is efficiently trainable from a (experimentally
limited) dataset. In this section, an attempt is made to gain insight into the first
question. To this end, it is assumed that the exact POVM distribution of the
target state is known, corresponding to an infinitely large dataset.

In this situation, the Kullback-Leibler divergence

DKL =
∑
a

PTruth(a) log
PNN(a)

PTruth(a)
=
∑
a

PTruth(a) logPNN(a) + const. (3.1)

between the POVM distribution Ptruth and the network encoded distribution can
be used as a loss function for training, which is equivalent to the loss function
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in Sec. 2.4.2 in the infinite data limit. The ”dataset” in this case corresponds to
the set of all possible POVM outcomes. The sum in Eq. (3.1) may be split into
batches, treating each batch as a Monte Carlo estimate.

After training, i.e. when the loss function has converged, its final value may
be used as a quantifier for how well the neural network approximates the target
distribution. This final value of the loss function is referred to as ”final DKL” or
”residual DKL”. A smaller final DKL implies a better approximation of the target
state.

Analysing the representability of the neural networks can be approached from
two different angles. The first is to fix a network architecture and apply it to
a wide variety of quantum states. Then one may look for similarities between
those states, that are represented with high accuracies. This scheme is applied in
Sec. 3.1.1.

Alternatively one may fix a quantum state of interest and optimize the network
architecture, to gain insight into what network size is necessary to represent said
state. This scheme is applied in Section 3.1.2.

3.1.1 Random states

In this section, an attempt of classifying the CNN-representable states is made, by
fixing a network architecture and training it on several thousand random states.
The random states considered here are of the form

ρ̂random = p |ψHaar⟩⟨ψHaar|+ (1− p)ρ̂random mixed. (3.2)

Here p ∈ [0, 1] is a uniformly chosen random number, |ψHaar⟩ is a Haar random
pure state [88] and ρ̂random mixed is a random density matrix generated according
to [89], that has a high probability of having full rank. While this parametrization
only covers mixtures of pure and highly mixed states, this ensures that states of
any purity are covered. These states are generated for N = 6 qubits and a CNN
with f = 6 features per layer, a kernel width of k = 6 and L = 2 layers is chosen
as a test subject. This is a network architecture with 301 variational parameters
used for approximating a POVM distribution with 4N = 4096 probabilities. It is
therefore reasonable to assume that there will be some variation in the quality of
approximation. The latter is quantified by the KL-divergence DKL (3.1) between
the POVM distribution of the random state and the network distribution after
convergence. One can then look for correlations between DKL and various prop-
erties of the random target state. The quantities that were considered are listed
in Table 3.1. ”Histogram density” here refers to the fraction of non-zero bins when
grouping the POVM probabilities into a histogram. This therefore quantifies how
many ”different probabilities” appear in the POVM distribution: for a uniform
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Figure 3.1: (a) The representability of 3000 random quantum states (3.2), ex-
pressed in terms of the final DKL, is plotted against quantities from Table 3.1. (b)
Correlation matrix corresponding to (a). Only the absolute value is shown. Co-
efficients highlighted in orange are the relevant influences on the representability.
(c/d) Same data shown as in (a/b) but including Ising states with three different
coupling strengths J/B with a weight of 3% of the entire dataset each.

distribution this quantity would be almost zero, while a value of 1 would be taken
if every outcome had a unique probability.

The resulting correlation plots can be seen in Figure 3.1(a) and 3.1(b). On first
sight, this might suggest some interesting correlations: POVM entropy, histogram
density, half-chain entropy, single site entropy and purity all seem to strongly
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Name Definition

Physical
properties

Half-chain Entropy Tr[ρ̂′ log ρ̂′] for ρ̂′ = −Tr1,...,N/2[ρ̂]

1-Ptcl. Entropy 1
N

N∑
i=1

Tr[ρ̂i log ρ̂i] for ρ̂i=Tr{1,...,N}∖i[ρ̂]

2-Point funct. 1
N

∑N
i=1

〈
σ̂z
i σ̂

z
i+1

〉
3-Point funct. 1

N

∑N
i=1

〈
σ̂z
i σ̂

z
i+1σ̂

z
i+2

〉
Purity Tr[ρ̂2]

POVM
distribution
properties

Variance ⟨P 2
a ⟩ − ⟨Pa⟩2 =

∑
a P

2
a − 1

Entropy
∑

a Pa logPa

”Histogram Density” see text

Table 3.1: Tracked quantities in Fig. 3.1 for analysing the representability of
random quantum states in the CNN.

correlate with the approximation quality DKL. A look at the correlation matrix in
Fig. 3.1b, however, reveals that most of the stated quantities also strongly correlate
with each other. The purity in particular shows almost identical correlations with
all other quantities, hinting at the fact, that it might be the quantity with most
influence over the approximation quality. In fact, purity is also the property, that
correlates strongest with DKL.

However, most of these statements should be taken with a grain of salt, which
becomes evident when including some typical pure ground states into the dataset.
Figures 3.1(c) and 3.1(d) show the same types of correlation plots, but include three
typical Ising ground states, one from each phase and one at the critical point, each
with a weight of ≈ 3% in the entire set of considered states. The inclusion of these
states gives two important insights: First of all, the random states are all very
similar. For many of the quantities of interest, the 3 Ising states show a much
wider variety in properties than the 3000 random states. This suggests that the
random states might not be the most interesting class of states and the physically
interesting states are somewhat ”special”. Note, that this also gives hope that
neural networks might be able to capture these ”special” states and find efficient
parametrizations for these. Given that these simple ground states offer a much
wider variety of properties, random states will not be used any more, from here
on.

The second new insight is that most correlations that seemed to be present for
the random states disappear, when including the Ising states. Only two quanti-
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ties out of those analysed remain with a correlation coefficient of greater than 1/2,
namely the histogram density and the purity. It is intuitively clear, that the his-
togram density correlates strongly with representability: a low histogram density
means (by definition) that many POVM outcomes have same or similar probabil-
ities. Therefore ”generalization” in this case is much simpler, only requiring the
knowledge of which outcomes have the same probabilities. This leaves the purity
as the main result of this analysis, allowing for the following statement: States with
higher purity tend to be harder to represent. This statement also holds for Ising
ground states themselves, which become easier to represent if dephasing noise is
added to the density matrix. This is shown in the appendix in Fig. A.2. Unfortu-
nately, this is not a very helpful statement in the context of this thesis, as most
candidate states for tomography will probably be almost pure, with only a small
degree of mixing.

3.1.2 Representability - Ising ground states

CNN Phenomenology

In the following two sections, the representability of the CNN is quantified by
fixing the translation-invariant Ising ground states as a class of quantum states
and analysing the network architecture that is necessary to represent it accurately.

0 1 2 3 4
J/B

10 6

10 5

10 4

10 3

10 2

Fi
na

l D
KL

Figure 3.2: The mean DKL to
the ground truth target after
training is shown for states of the
Ising model phase transition, for
a four qubit system and a CNN
with f = 4, L = 2 and k = 4.

As a first test, a small CNN architecture for
four spins is fixed, and the ratio J/B is scanned
from 0 to 5. The results may be seen in Fig-
ure 3.2, and are representative of all further
tests performed using the CNN: The states for
small physical coupling, i.e. J/B < 1 are easy
to represent in the network, meaning that the
accuracy after training is high. For strong cou-
pling J/B > 1, the network performs worse.
This matches intuition nicely: The product-like
states at small coupling result in a product-
like POVM distribution which is easily approxi-
mated using a CNN due to the exponential out-
put function. The stronger the coupling, the
more correlated the state, thus the POVM dis-
tribution is more correlated and in turn harder
to approximate.

A more interesting question is that of scala-
bility, i.e. how must the size of the network scale with the number of qubits, in
order for the state to be approximated efficiently. To this end, several architectures
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Figure 3.3: Training three typical states from the Ising phase transition for dif-
ferent system sizes, using a CNN scaling of f = N, k = N/2 and L = 4, resulting
in an O(N3) scaling in hyperparameters.

are tested for different numbers of qubits N . Hereby it is found, that a scaling of
the feature-dimension f = N , the kernel width k = N/2 and the network depth
L = 4 = const. seems to suffice, at least for small N . This can be seen in Fig. 3.3.
The DKL is constant or even decreasing in N for all example states from the 3 typ-
ical Ising regimes, hinting at a scalable representation. The scaling used in Fig. 3.3
results in a scaling of the number of parameters of O(N3) (see Eq. 2.24). Fig. A.3
in the appendix shows a scaling of O(N2) that is not sufficient for representing
these Ising ground states. For the small coupling regime however, it turns out that
even a constant number of parameters suffices to learn the state approximately, as
can be seen in the appendix in Fig. A.4.

Notice that in Figures 3.2 and 3.3 the mean and standard deviations over inde-
pendent runs are shown which is suboptimal for quantities that vary over many
orders of magnitude. In this situation a median would have been more appropriate
and would show even better results.1

It turns out, that this scaling of the CNN for GHZ states holds only for the
small particle numbers shown so far. In fact, the training of the CNN will fail
entirely for GHZ states in larger systems. Here one has to resort to the ARCNN.
This is detailed further in Appendix A.4, with a possible explanation based on the
sampling of the normalization given in Appendix A.5.

1This is because the mean will be dominated by the largest contributions, i.e. the mean DKL

is close to the maximum DKL of repeated runs.
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CNN and ARCNN systematics

These results so far are of course very phenomenological in nature. One can gain
more insight, by looking at the propagation of information in the networks itself
using Fig. 2.1. For each layer of the CNN, the dependence of a particular input site
is propagated to the next k − 1 neighbouring sites. Thus, the maximum physical
distance correlations are correctly propagated for the (C)CNN with product output
layer is given by

dCNN
max = (k − 1) · L . (3.3)

For the CNN with dense output layer this bound is not valid, as the final dense
layer mixes all physical sites, similar to an RBM. For the ARCNN, the same
logic for the spreading of dependencies applies, but no input is required to sample
outcomes of the first site, resulting in a maximum correlation length that is one
larger than for the CNN

dARCNN
max = (k − 1) · L+ 1 . (3.4)

The validity of both bounds can be empirically verified by e.g. tracking the value of
a zz correlator as a function of physical distance for different network architectures,
as is done in Fig. 3.4 and 3.5. Here the ground states of the translation invariant
Ising model are trained for critical coupling and strong coupling. These states
being translation invariant explains why the true correlators show a reflection
symmetry at distances of half the system size, since going a distance d to the right
is the same as going a distance of N − d to the left. The CCNN, as evident from
its name, has this translation invariance enforced in its architecture, explaining
why correlations are captured correctly again for distances greater than N − dmax.

In general, correlations beyond dmax are not captured correctly, due to the ar-
guments given above. However, notice that qubits separated by distances greater
than dmax are not necessarily uncorrelated. In fact, after only one convolution with
a kernel width of two, in principle all-to-all correlations are possible: following the
structure of Fig. 2.1, after one such convolution all neighbouring pairs of sites
share a dependency and are thus correlated: i.e. (a1, a2) are correlated, (a2, a3)
are correlated, and so are (a3, a4) and so on. But since both a3 and a1 share a
dependency with a2, also a1 and a3 are correlated. Following this logic, even a1
and a4 can be correlated and so can all other sites, even if they do not share a
mutual dependency on some other site. In the extreme case this effect can help the
network to generalize, like for the GHZ state in Fig. 3.4. Here, even some networks
with dmax < N capture all shown correlation correctly. This can be understood by
the rather simple structure of the GHZ state: if one knows all correlations between
one pair of qubits, one knows all correlations between all pairs of qubits, i.e. every
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Figure 3.4: The zz correlator is shown as a function of physical distance as
learned by different configurations of the CCNN and the ARCNN on an N = 16
qubit translation-invariant Ising ground state at critical and at strong coupling.
These correlations are only captured correctly for all states up to the distance dmax

from equations (3.3) and (3.4).

Regime Scaling of NN parameters Comment (supporting Figures)
J/B ≪ 1 O(1) (3.3, A.4)
J/B = 1 O(N3) (3.3, 3.4, A.3, A.5, A.6)
J/B > 1 O(N3) valid for (C)CNN if N ≤ 10 (3.3),

valid for ARCNN for all tested N (3.4)

Table 3.2: Summary of the requirements for efficiently representing 1D Ising
ground states in both network architectures, assuming the bounds from Eq. (3.4)
and (3.3) are met.

qubit is indistinguishable from any other qubit. Due to their convolutional nature,
these networks are able to capture this simplicity and exploit it.

It remains to emphasize, that the implication that the quantity dmax makes,
only goes one way: while a dmax that is too small will probably lead to a bad
representation of a state, a good representation is of course not guaranteed by a
sufficiently large dmax.

Using the formula for the numbers of parameters of the CNNs O(kLf 2) (2.24)
and the scaling f = N for the feature dimension, that is also used for Figures 3.4
and 3.5, the constraint dmax = N implies that the number of parameters scales
like O(N3), just as was empirically found in the previous section for the strongly
correlated states.

A summary of which network and which scaling is required to learn states from
the three Ising regimes is found in Table 3.2.
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Figure 3.5: Same data as Fig. 3.4. Here different hyperparameter configurations
are shown on the vertical axis and the strength of the correlation is shown as color.
The blue lines indicate the correlation bounds given by dmax from equations (3.3)
and (3.4). Beyond these lines, the captured correlations decay. Both panels show
the translation-invariant Ising critical state.
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3.2 Generalisation - Limited data

With some basic facts regarding the representational power of the CNNs out of
the way, one can now benchmark the tomography scheme of interest in a more
experimentally relevant setting. In this section, quantum measurements on various
physical systems are simulated and finite datasets are used for state reconstruction.

In order to make quantitative statements on the performance of this tomography
scheme, it is compared to two alternatives: the first is MLE (see Section 2.1.2), as
it presents the go-to choice for many small scale qubit systems [16, 18]. Secondly it
is compared to direct estimation of observables from the dataset (see Sections 2.2
and 2.2.4), inspired by [71].

The analysis is done according to the following scheme: a target wave function or
density matrix is computed exactly and its POVM distribution Ptruth is obtained.
From this distribution, Ns samples are drawn (typically Ns = 103 − 105 for 16
qubit systems) using Markov Chains (see Sec. 2.2.5). This amounts to simulating
measurements on the target state. These samples are used to train the network,
resulting in the network approximation PNN(a) of the target distribution. For
small systems, i.e. those where it is feasible, MLE is performed on the samples,
yielding a MLE-estimate for the density matrix, of which the POVM distribution
PMLE(a) is computed. One may then ask, which of these two estimates is closer
to the ground truth target distribution, using the classical infidelity2

DNN/MLE = 1−
∑
a

√
PNN/MLE(a)PTruth(a). (3.5)

This allows to quantify, which of the two estimates is better, by using the quotient
DNN/DMLE. If it is less than one, the network gives the better estimate for the
target state compared to MLE, and vice versa.
For systems where MLE is infeasible, one may instead look at the root mean square
(RMS) error of local observables

RMSNN/Data =
√〈

(ONN/Data −OTruth)2
〉

(3.6)

as a smaller RMS error on many observables implies a better approximation of the
target state. Here, ⟨·⟩ indicates the expectation value over independent datasets.

These observables can either be sampled from the training dataset itself, or from
the network-encoded distribution, from which 5·105 samples are drawn for 16 qubit
systems. In this situation the NN acts in a way of replacing the measured dataset
with a larger, network-generated one, aiming to decrease statistical measurement
noise. Here one can ask, whether the NN gives an advantage for the estimation of
observables, by looking at the quotient RMSNN/RMSData.

2This similarity measure is chosen over the previously used DKL for easier comparisons to
previous studies such as [11] during development.
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Figure 3.6: Upper: Residual clas-
sical infidelity D (3.5) of CCNN
and MLE on 1D Ising ground state
with periodic boundary conditions,
J/B = 1. Shown for different dataset
sizes Ns. Lower: Residual network
infidelity normalised to residual MLE
infidelity.
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3.2.1 Transverse Field Ising Model

As a start, this method is again benchmarked on ground states of a translation-
invariant TFIM (2.31), here using the standard CCNN. This serves as a proof
of concept in an idealized scenario, as the translation invariance is directly en-
coded in the neural network. Since experimentally prepared states are rarely ex-
actly translation-invariant, and the comparison of a symmetrized network to an
unsymmetrized reference is somewhat unfair, the use of networks with enforced
symmetries is refrained from for the later examples.

Figure 3.6 shows the method being applied to small, i.e. MLE-suitable 1D states
at the Ising critical point, for dataset sizes Ns given as a fraction of the POVM
size 4N . One can achieve a reduction of infidelity by a factor 2-5, depending on
system and dataset size. The figure shows one main trend: the network advantage
shrinks for increasing dataset size Ns. This is also an expected result, as MLE has
to outperform any variational approach in the limit of infinite dataset size. This
behaviour holds for all following systems.

In Fig. 3.7 the method is applied to a 4 × 4 Ising lattice. The histograms
show how enhancing the dataset using the NN can lead to a reduced variance of
observable estimates, and thus a reduced error. For the network advantage, one
sees two trends: An increased advantage for small datasets, similar to the previous
example, as well as an improved performance for smaller coupling strengths. The
latter result matches that from Section 3.1. If J/B becomes too large, training the
network becomes unstable on such small datasets and the advantage disappears
entirely.
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Figure 3.7: Comparing the CCNN against the plain dataset by estimating three
local observables on a 4 × 4 Ising lattice with periodic boundaries. Upper: His-
togram of said observables for independent datasets and network initializations,
with J/B = 0.3 and Ns = 10k. Middle: RMS Errors of observables for varying
coupling strengths and dataset sizes. Lower: Comparison of NN and plain dataset
in terms of the quotient of their respective RMS errors.

3.2.2 Long-range interacting ion chain with dissipation

For a more experimentally motivated [90] example, one may look at ground states
of a 16-site ion chain Hamiltonian,

Ĥ = −J
∑
i ̸=j

σ̂z
i σ̂

z
j

|i− j|1.1
−B

∑
i

σ̂x
i . (3.7)

with long range interactions, open boundary conditions and small added (≈ 3%)
dephasing noise. The latter reduces the coherences of the state, hence the target
density matrix is given by ρ̂Target = 0.97 |ψ0⟩ ⟨ψ0| + 0.03

216
1. The dephasing noise

makes the state not only relevant, as such noise is experimentally hard to avoid
[90], but it also makes use of the networks capability of representing mixed states,
as so far only pure states have been considered. Moreover, the studies on the
random states in Sec. 3.1.1 showed a better performance of the network on less
pure states, further motivating this choice of target state. The Hamiltonian only
differs from the TFIM by additional coupling terms σ̂z

i σ̂
z
j . Therefore, it behaves

very similar to a TFIM with slightly stronger coupling J/B.
Since this is naturally a 1D system, the ARCNN is best used. Here the NN
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Figure 3.8: Benchmarking the AR-
CNN by evaluating observables from
Eq. (3.8) and comparing to those ob-
tained from plain dataset, on a length
16 ion chain with 3% dephasing noise,
J/B = 0.6 and open boundaries, with
a dataset size of Ns = 10k. Dashed
lines show results of applying local
MLE directly to dataset (orange) and
to a neural network enhanced dataset
(blue). Upper: Observables according
to Eq. (3.8), Middle: residual RMS er-
ror, Lower: residual network RMS nor-
malized to dataset RMS.

1 2 3 4 5 6 7

10 2

10 1

100

101

RM
S

0.0

0.5

1.0

C n

Truth
Dataset

CNN
... + MLE

1 2 3 4 5 6 7
Correlation order n

10 2

10 1

100

RM
S(

NN
)

RM
S(

Da
ta

)

CNN vs Dataset
CNN+MLE vs Dataset+MLE

advantage is studied as a function of correlation order. This is interesting, as
higher order correlators are typically harder to estimate from samples, due to the
variance of the POVM-observable scaling exponentially in correlation order. Thus,
higher moments require a better approximation of the state, providing a sensitive
benchmark for the quality of the state representation. Specifically, powers n of the
Pauli-Z operator

Cn :=
1

16− n+ 1

16−n+1∑
i=1

〈
σ̂z
i σ̂

z
i+1...σ̂

z
i+n−1

〉
(3.8)

are looked at. Local observables, like the terms in Eq. (3.8), only depend on the
reduced density matrix of the subsystem they act on. Thus, these observables
can in principle be estimated by performing MLE on this subsystem only. This
”local MLE” is shown when applied to the pure dataset and to the NN enhanced
dataset in Fig. 3.8 in addition to the previous benchmarks. Using the NN gener-
ated dataset, one sees a reduction in RMS to a degree, that allows sampling for
correlators of three orders higher, than what is possible with the plain dataset.
When applying the local MLE to both original and NN generated dataset, this
advantage is reduced significantly, but does not disappear. However, one should
emphasize that the ARCNN is on par with MLE, at a greatly reduced compu-
tational complexity. Notice also the peak in RMS at a correlation order of 2 for
MLE, leading to an increased RMS compared to plain sampling. This is found to
be systematic, which is why this comparison to local MLE is omitted from further
studies.
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3.2.3 2D driven dissipative system

As a final system, steady states of a 4 × 4 TFIM with spontaneous decay are
considered, motivated by ongoing research into phase diagrams of open quantum
systems [91], with potential applications to Rydberg systems. These states again
make use of the ability of the ansatz of representing mixed quantum states. The
network is reverted to the standard, 2D CNN with dense output layer, since the
system is two-dimensional and not translation-invariant. Now, no symmetries
are encoded in the network. The Monte-Carlo wave function (MCWF) approach,
implemented in the Qutip library [92], is used to simulate the dynamics under
the Lindblad master equation

˙̂ρ = −i[Ĥ, ρ̂] + γ
∑
j

(
L̂j ρ̂L̂

†
j −

1

2

{
L̂†
jL̂j, ρ̂

})
, (3.9)

with Ĥ = J

N∑
⟨ij⟩

σ̂z
i σ̂

z
j + hx

N∑
i

σ̂x
i , J = 1.25γ, (3.10)

L̂j = σ̂− =
1

2

(
σ̂x
j − iσ̂y

j

)
, (3.11)

until a steady state is reached. The density matrix that is obtained using 1000
pure-state trajectories is treated as the exact target. To simulate measurements,
POVM samples are generated for every pure state from the ensemble.

This system undergoes a dissipative phase transition [91] from a |↓⟩ polarized
state at small fields hx to a strongly dephased state at strong fields. The transition
between these two phases is visible as a peak in the correlation length

ξ2z =
∑
i,j

|r⃗i − r⃗j|2
(
⟨σ̂z

i σ̂
z
j ⟩ − ⟨σ̂z

i ⟩⟨σ̂z
j ⟩
)
. (3.12)

This phase transition is shown as obtained by sampling the correlation length on
the 1D diagonal of the 2D lattice, once directly from the training data, as well as
from a NN enhanced dataset in Fig. 3.9. The network is able to capture the phase
transition, as a peak in the correlation length at hx/γ ≈ 2 is clearly visible. At the
dashed grey line, ↑ and ↓ are exchanged in the POVM that the CNN uses, ensuring
that the target state does not contain exact zeros in its POVM distribution.

For small hx, the steady state tends towards an eigenstate of the observable in
question, thus the variance of sampling this observable is significantly reduced,
hence the network has no advantage here. For the limit of large hx one can see a
huge variance in the sampled correlation length, which the CNN trades for a small
systematic error, i.e. bias. The overall effect is that the CNN bias + CNN variance
lead to a significantly smaller RMS error as compared to the plain dataset. Notice
that this bias also shrinks with the dataset size (Fig. 3.9 insets).
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Figure 3.9: Dissipative phase transition of a 4× 4 TFIM with spontaneous emis-
sion at J = 1.25γ with open boundaries. Ns = 1k (insets: 100k). Grey vertical line:
Switch ↑ and ↓ in POVM for CNN. Upper: Observables according to Eq. (3.12),
Middle: residual RMS error, Lower: residual network RMS normalized to dataset
RMS. (a) Eq. (3.12) summed only over one diagonal of the system, (b) summed
over entire system.

Depending on the observable of interest, the bias can have a more severe effect
than depicted. When computing the correlation length over the 1D diagonal, as in
Fig. 3.9(a), the corresponding sum in Eq. (3.12) is a weighted average of

(
4
2

)
= 6

connected correlators of the form ⟨σ̂z
i σ̂

z
j ⟩ − ⟨σ̂z

i ⟩⟨σ̂z
j ⟩. After sampling, one may

consider each of these connected correlators as a random variable with a variance
and a bias. For the plain dataset, this bias is of course zero. However, when
evaluating Eq. (3.12) over the entire lattice as in Fig. 3.9(b), the sum contains(
16
2

)
= 120 terms, with roughly similar variance and bias. For the sampled case,

by simple addition of probability distributions, the variance of the ”entire sum” is
thus reduced by a factor of

√
120/6 ≈ 4.5 compared to the ”small sum”. Due to

the bias, the network is not able to make use of this self-averaging effect, resulting
in a significantly reduced advantage. This can be seen in Fig. 3.9b. In fact, the
network shows an advantage when computing the correlation length for any four
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qubit subsystem (and not just the one shown in Fig. 3.9(a)), and the advantage
only disappears when looking at larger systems. Thus, the network advantage is
the biggest, if one is interested in the expectation values of individual correlators,
and might be smaller if large sums over many similarly distributed correlators are
involved as the bias inherent to the variational approach worsens the averaged
results.

3.3 Cluster states - Experimental data

Finally, the tomography scheme is tested on some real experimental data. For
this thesis, the results of a full tomographic measurement were gratefully received
from Christian Roos. The data was originally collected for [18], with the intention
of demonstrating measurement-based quantum computing. This type of quantum
computing relies on highly entangled, so-called cluster states. Concretely, the
five-qubit state

2 |ψ⟩ = −i |90009⟩+ |+1119⟩+ |9111+⟩+ i |+000+⟩ (3.13)

was prepared experimentally using ion chains. Here |1⟩ and |0⟩ correspond to the
+1 and −1 eigenstates of the Pauli z operator and |+⟩ and |9⟩ similarly for the
Pauli x operator. This state is equivalent up to local unitaries to the state

2 |ψ′⟩ = |0+++0⟩+ |1 9 9 9 0⟩+ |0 9 9 9 1⟩+ |1+++1⟩ . (3.14)

The latter state may be generated by preparing a product |+⟩ state and applying
a controlled phase gate

CPHASE =


1

1
1

−1


to qubit pairs (1, 2), (1, 3), (1, 4) as well as (5, 2), (5, 3), (5, 4). States prepared
using such product state initialization followed by pair-wise entangling gates are
commonly called cluster states.

For all 35 combinations of Pauli bases xxxxx, xxxxy, . . . , zzzzz, 100 projective
measurements were performed in the experiment, and the number of occurrences
counted for each of the 25 possible outcomes 00000, 00001, . . . , 11111. Thus the
raw data that was made available is a 35 × 25 table of counts. Upon normalizing
with the total number of counts, this data directly corresponds to 35 ·100 = 24 300
samples of the Pauli-6 POVM distribution.
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Reconstruction
Method

Negative
Log-Likelihood

Quantum
Fidelity

Classical
Infidelity

Negativity

Pauli-4 MLE 8.621 0.740 0.015 -
Pauli-6 MLE 8.605 0.843 0.013 -
Pauli-4 LI 8.358 0.833 0.023 3.15
Pauli-4 CNN 8.624 0.358 0.032 1.01
Pauli-4 CNN
(synth. Data) 8.627± 0.012 0.357± 0.033 0.029± 0.002 0.86± 0.07

Table 3.3: Results for reconstructing the density matrix for the given experimental
dataset using four different techniques, as well as CNN with f = 10, k = 4 and l = 2
trained on synthetic dataset for reference. Fidelities computed w.r.t. experimental
target (3.13). Since only one experimental dataset exists, no error bars are given.

3.3.1 Analysis of the full dataset

To ensure, that the format of the provided data is understood, it is first analy-
sed by classical means, with the goal of reproducing quantities from the original
publication. To this end, maximum likelihood estimation is performed using the
full dataset, i.e. the Pauli-6 POVM. Table 3.3 shows the quantum fidelity to the
experimental target state (3.13). This matches exactly the fidelity quoted in the
original publication of 0.843±0.005, implying that the data is understood and the
MLE algorithms are comparable.

Since the exact state prepared in the experiment is not known, but only measure-
ments resulting from it, there is no ground truth target to compare tomography
schemes against. The next best thing one can do for assessing the quality of state
reconstructions, is to inspect the likelihood function. This is quoted in Tab. 3.3
as ”Negative Log-Likelihood”. Lower number here are better, indicating that the
resulting density matrix of a particular tomography scheme is more likely to have
produced the obtained dataset. Table 3.3 also shows the results of reconstructing
the density matrix using the Pauli-4 POVM, once using MLE and once by direct
linear inversion (LI, which is not possible using the Pauli-6 POVM). To obtain
the Pauli-4 dataset, the measurement counts from the full dataset are regrouped
according to Sec. 2.2. Using MLE with the Pauli-4 POVM is worse than using the
Pauli-6 POVM, which is expected, since regrouping the data to Pauli-4 implies
a loss of information. Linear inversion, on the other hand is not constrained by
the positivity of the density matrix, which allows the likelihood to be even better
than the Pauli-6 MLE case. The trade-off is of course that the sum of the negative
eigenvalues of the density matrix (i.e. the ”Negativity”) is not negligible.
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Finally, the CNN is trained on the dataset. For 5 qubits, the density matrix
contains 1023 independent real parameters, so the network was restricted to archi-
tectures with less parameters than this, as to not overparametrize the state (which
would defeat the entire point of finding efficient state parametrization using NNs).
Still, however, the network performs rather poorly on this state. The results in
Tab. 3.3 show the best CNN that was tested, measured in terms of quantum fi-
delity. While the negativity happens to be slightly less than for plain LI, the CNN
seems to combine the negative traits from LI and the Pauli-4 POVM into one: the
resulting density matrix is negative, and approximates the target state the poorest
out of all shown algorithms, according to all measures of quality. As a reference,
Fig. 3.10 shows matrix plots of the target density matrix, as well as the resulting
density matrices from three of the four analysis schemes, confirming the previous
result.

On previous scenarios, it was seen that the network advantage is the greatest,
when operating on small datasets. Therefore, one possible explanation for the poor
performance might be that the full dataset is simply too big for the CNN to show
any improvement compared to other methods. This is tested in the next section.
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Figure 3.10: Matrix plots of the real and imaginary part of the density matrix,
shown for target state (3.13) and the results of various reconstruction methods
operating on the experimental dataset.
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3.3.2 Analysis using resampling

To test the previous hypothesis, this section looks at smaller subsets of the full
experimental dataset. This has the additional advantage that this resampling
allows for estimation of statistical error bars. Figure 3.11 shows the CNN and MLE
being applied to dataset sizes ranging from 500 up to 20 000 samples. Here, the
MLE estimate using the full dataset and the Pauli-6 POVM is treated as a ”ground
truth”, as it is the best available estimate of the experimentally prepared state.
This allows to compute absolute errors of observables and to quote fidelities. The
general trend is clear: with the exception of the zz correlator, all shown measures
of accuracy indicate that the CNN is inferior to MLE, across all dataset sizes. This
rules out the hypothesis of too large datasets.

This leaves just one explanation for the poor performance of the CNN: the cluster
state at hand simply cannot be approximated well by the CNN. This hypothesis
is reinforced upon replacing the experimental dataset by a synthetic one, as is
shown in the last row of Tab. 3.3. The fact that the behaviour of the CNN on the
experimental data is almost identical to the behaviour on synthetic data, rules out
any further experimental factors that could have been unaccounted for.

For the creation of the cluster state, an entangling gate is applied to many non-
local pairs of qubits, as described above. The CNN, however, was designed to deal
with locally spreading correlations. This could also explain the failure of the CNN
in this scenario and a non-local network might be the better option here.

An alternate explanation might be the following: The density matrix of a five-
qubit state is still quite manageable in terms of the number of free parameters. The
main idea behind neural network quantum states, is to find efficient representations
of states that would be intractable otherwise, which is simply not the case for a five-
qubit system. Often the great expressivity of neural networks only fully develops,
after a certain network size is reached. Hence the term ”deep” learning is often used.
For small systems, it might therefore be possible to overparametrize a system, but
still miss the physically interesting states, i.e. networks might need a certain
”base complexity” before they become interesting in terms of representability. The
conclusion may be drawn, that in general the advantage of this NN-QST method
lies in larger systems, that are intractable for standard methods such as MLE.
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Figure 3.11: Taking a subset of size Ns of the full experimental dataset and
training a network with f = 10, k = 4 and l = 2, and subsequently comparing
observables to (Pauli-4) MLE-estimates obtained for same datasets (HCP = Half
chain purity). With the exception of the two-point function, the network performs
worse than MLE across all dataset sizes.

49



4 Conclusion and Outlook

4.1 Summary

In this work, the task of quantum state tomography was translated to a task of
density estimation, by mapping a state’s representation from a density matrix to
its POVM probability distribution. The density estimation task was then solved by
employing a convolutional neural network as an expressive function approximator
to learn the distribution underlying a discrete, limited experimental dataset.

In this setting, a variational approximation to the target state is trained, and
encoded in the parameters of the CNN. This was motivated by recent theoret-
ical developments, framing CNNs as a more expressive generalization to similar
approaches like MPS, at favourably scaling numbers of parameters.

The resulting tomography scheme was tested in three different settings, using
two different CNN architectures, and on a wide variety of quantum states.

Initial studies on the representational power of the standard CNN were per-
formed by training state representations under the assumption of infinite data.
Investigations on random states showed, that in general purer states are harder to
approximate using the CNN. The transverse field Ising model served as a bench-
marking platform, allowing to test states ranging from product states, over critical
states to maximally entangled states. Here it was seen that Ising ground states at
smaller coupling are generally easier to represent, only requiring a constant num-
ber of network parameters. States at critical and strong coupling were found to
be efficiently representable using a network size, that scales only cubically in the
system size. This polynomial scaling indicates that property 2 from Section 2.1.1
is fulfilled.

A systematic analysis of the inner workings of the circular CNN as well as
the autoregressive CNN allowed for a deeper understanding of the propagation
of correlations within the networks, resulting in physical bounds on correlation
lengths of network-represented states.

This insight led the way to testing the networks in a tomography setting, where
only a limited (synthetic) dataset is available. To make results interpretable,
comparisons to maximum likelihood estimation were made and the errors of ob-
servables were used as a quantifier for the quality of approximations. For systems
sizes where MLE is feasible, the CNN showed a measurable advantage in terms
of state fidelity when compared to MLE, on 1D Ising model ground states. This
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shows that the proposed method can give an advantage w.r.t. to property 1 .
For system sizes of 16 qubits, an advantage in terms of RMS errors of observ-

ables was seen for 2D Ising ground states, long-range interacting noisy ion chain
ground states as well as for steady states of dissipative Ising models. For the ion
chains, the ARCNN enabled the estimation of correlation functions three orders
higher than when directly computed from measured datasets, again giving an im-
provement w.r.t property 1 . For the steady states, an advantage in measuring
the order parameter was shown, under the consideration of a caveat: A small bias
was found to manifest itself only when computing sums over all two-qubit corre-
lators, resulting in a performance penalty for the network. This implies that the
tomography scheme does not fulfil the observable universality property 3 .

As a final setting, the tomography scheme was tested on experimental mea-
surement data, provided by Christian Roos. Unfortunately, here the network was
found to perform subpar for analysing the full dataset, compared to all tested to-
mography schemes. Even for smaller datasets, the network was inferior to simple
maximum likelihood estimation, due to the target state not belonging to the class
of states that is efficiently representable using the CNN. This demonstrates that
the tomography scheme does not have the state universality property 4 , which it
(being a variational approach) was never designed to have.

This tomography scheme thus may be characterized as violating observable uni-
versality 3 and state universality 4 , but at the same time improving upon the
experimental 1 and numerical resource requirements 2 , matching the originally
stated goals. It therefore offers an interesting addition to the class of variational
tomography schemes, and can extend their range of applicability to a broader
spectrum of states.

4.2 Outlook

During a thesis like this, one learns a lot about the topic at hand, and some
optimizations to the method itself or the analysis scheme only become apparent
in hindsight. A few of these points are laid out here.

4.2.1 Improvements to the tomography scheme

Learning Pauli-6 instead of Pauli-4

The Pauli-6 POVM is often the easiest POVM to measure experimentally. How-
ever, it is not invertible, preventing the direct computation of observables from its
distribution by inversion of the T matrix. This problem was solved by grouping
POVM outcomes and turning the Pauli-6 POVM into the Pauli-4 POVM which
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was then approximated using the neural network. This regrouping of outcomes
inherently discards data.

However, invertibility of the POVM is not required for training the neural net-
work (which only requires samples from a POVM distribution and the ability of
the network to approximate the latter). Thus also the Pauli-6 POVM could in
principle be trained, and subsequently samples drawn. This training would there-
fore make use of the entire experimental dataset and the grouping of outcomes
for the computation of observables could be performed after sampling from the
network.

Since the choice of POVM can make a difference for MLE as shown in Section 3.3,
a similar difference could be expected from the neural network approach, possibly
resulting in an improved performance.

Huge networks

In this thesis, the network architecture was always chosen according to the premise
”the smaller the network the better (as long as the state is still representable)”.
This follows the thinking behind the so-called ”bias-variance trade-off”: a model
that is too small for a given task, will give biased results, while a model that is
too large will not generalize due to a high variance [93]. However, recently it was
repeatedly shown that overparameterizing, or using vastly larger networks might
be beneficial [94, 95], indicating that the Bias-Variance trade-off might not exist
for neural networks. Therefore, it could be interesting to apply significantly larger
networks to this problem.

2D Autoregressive CNN

The simple modifications to the standard CNN shown in Sec. 2.3.1 rendered the
CNN autoregressive, granting it the ability to generate exact samples and to be
exactly normalized. This made training on 1D systems much more stable and re-
sulted in a much broader range of applications. Unfortunately, this autoregressive
extension of the CNN is not straight forward in anything but 1D scenarios, as the
2D convolutions always result in some sites being uncorrelated (see Appendix A.1).
Recently, solutions to this problem have been proposed in [44]. If these have a sim-
ilar impact on the performance of 2D CNNs as the autoregressive modification has
for 1D CNNs, this would be a huge step forward.
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4.2.2 Improvements to the analysis scheme

Comparisons not only for product observables

For systems sizes where MLE is infeasible, local observables were used as a quan-
tifier for the performance of the network. However, here only Pauli strings (or
small sums thereof) were used as observables. If a given experimental system
can collect Pauli-6 measurements, it can most certainly also measure these Pauli
string observables directly, making a tomography unnecessary. These Pauli string
observables therefore only serve as a benchmark of the quality of approximation,
and not as a real-world use case of the method.

Had one chosen more general observables that are not simple products of Pauli-
operators and therefore harder to measure experimentally, a performance advan-
tage of the network could have made a strong argument for the measurement of
those observables using the scheme presented here.

Comparison to shadow tomography

Finally, a comparison to shadow tomography [14, 15] would make a lot of sense.
Shadow tomography is very similar to this tomography scheme, as it also shifts
the emphasis away from the density matrix itself and towards observables that
might be estimated from the data. This allows shadow tomography to scale much
better than e.g. MLE, being subexponential in both computational complexity and
required amount of data. In particular, shadow tomography claims superiority over
some of the NN-QST schemes cited in this work, making a comparison even more
intriguing.

4.3 Concluding remarks

One would now like to give a concrete recommendation to experimentalists on
where and when to apply this method. Yet, this remains rather unsatisfying:
Where this thesis showed success of the method using synthetic data, a direct
application to an experiment should be straightforward. This includes many Ising
type models, that are either 1D, 2D up to a certain coupling constant, or dissi-
pative. Empirically, states with a lower purity or larger system sizes show higher
success rates. In these situations, one can expect a considerably reduced experi-
mental workload, as the method can give more precise estimates of target states
than competing options, at similar dataset sizes. Conversely, smaller experimental
datasets are required in order to achieve similar error bars. However, the inevitable
possibility of experiencing a bias, makes it necessary to validate this method for
every possible new experiment individually, if not already done so in this thesis.
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Still, the main benefit of this method remains: by translating the task of to-
mography to one of density estimation, one can employ any variational function
approximator as a solution to this task. That includes the vast zoo of neural
network architectures, that keeps growing on a daily basis. Each of these archi-
tectures may have their strengths and benefits for different classes of states, thus
building the foundation for a very general and ever-growing area of application for
tomography schemes like the one presented here.
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A Additional details

A.1 Why does the ARCNN not work in 2D?

9
56
89

123
456
789

Figure A.1: Schematic representation of the naive autoregressive CNN in two
dimensions for a 3× 3 system.

Figure A.1 shows a schematic overview of the autoregressive CNN in two dimen-
sions. Instead of POVM outcomes a1, ..., a9, only the indices are shown. The 3× 3
image is again padded with ones, ensuring the size of the image remains constant.
Using a 2×2 kernel, only 2 convolutions are required to establish all dependencies,
i.e. further convolutions will not create further dependencies between cells.

The dependencies in the first row are fine: one can sample the first site outcome,
make a forward pass and the second site will only depend on this first site outcome.
This works until the third outcome has been sampled. However, site 4 will never
depend on the outcome of site 3, meaning that sites 3 and 4 are never directly
correlated. Clearly, the 2D nature of the correlation spread in the CNN and the
linear causal dependence required for autoregressive sampling are at conflict with
each other. This issue is known as the ”blind spot problem” [44] and to resolve it,
some more clever approaches such as those presented in [44] have to be used.

Another possible solution is the following: Any function Pa(a1, ..., aN), that
maps N discrete inputs to a vector of normalized probabilities Pa (a = 1, 2, 3, 4 for
most of this thesis), i.e.

4∑
a=1

Pa(a1, a2, ..., aN) = 1 ∀ai ∈ {1, 2, 3, 4},
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Figure A.2: Simulating dephased tar-
gets by adding u ·1/2N to the target den-
sity matrix (and normalizing) for a seven
qubit Ising ground state at critical cou-
pling. Trained with CNN in infinite data
limit. Stronger dephasing implies a bet-
ter approximation. (Median, Min, Max
shown).

can be made autoregressive in the following way: for c being any constant, Pa(c, ...., c)
returns the probabilities of the first site, from which a1 may be sampled. Plugging
this back in yields Pa(a1, c, ..., c), i.e. four probabilities depending on a1, from
which a2 may be sampled, etc. The resulting probability distribution is exactly
normalized and sampleable, at the cost of requiring N evaluations of P in order
to generate a sample or to compute a single N -site probability. This architecture
may be seen as a recurrent neural network, that replaces its hidden state with a
memory of all previous local outcomes. While this architecture should also work
with CNNs, this remains untested in this thesis.

A.2 The influence of purity for Ising states

To further strengthen the result from Sec. 3.1.1, stating that purity negatively
correlates with representability, one can simulate dephasing noise by adding a unit
matrix to a given target density matrix, i.e. training states of the form

ρ̂ ∝ |ψ⟩⟨ψ|+ u

2N
1. (A.1)

For u = 0, this state is pure, for u = 1 it is an equal mixture of a pure state
and the fully mixed state, and for the limit u → ∞, the state is fully dephased.
Figure A.2 shows that the representability monotonously decreases with u, for |ψ⟩
corresponding the 7 qubit Ising ground state at critical coupling.

A.3 Ising scaling and encoding types

Figure A.3 shows the scaling of the representability of the Ising model in a CNN
with an N2 scaling of the number of parameters. The final DKL increases with
particle number, showing that this particular scaling of the network is not sufficient
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Figure A.3: Training three typical states from the Ising phase transition for
different system sizes, using a network scaling of f = N, k = 2 and L = 2, resulting
in an O(N2) scaling in hyperparameters. This scaling is not sufficient for Ising
ground states. 3 encoding types are shown. The 9 qubit critical state happens to
have an exact zero (up to numerical precision) in its POVM distribution, causing
an numerical issue in the DKL loss function, hence this datapoint is missing.

to represent the Ising critical and strong coupling states. Section 3.1.2 stated, that
one cannot expect to represent a state with correlation length d if the dmax quantity
of the network is less than d. As explained previously, this result does not apply
here, as a dense output layer was used. Therefore this result is interesting.

The state with small coupling does, however, seem to be representable with this
scaling, as its error of representation is bounded. In Fig. A.4, one can see that even
a CCNN of constant size, is able to represent this state with constant error for up
to 10 qubits. Due to this state being close to a product state and having a short
correlation length, this result is not very surprising. Figure A.4 shows that the
product-like state can even be represented with a constant number of parameters,
for the tested numbers of qubits.

Figure A.3 also serves as an example to show, that the one-hot encoding from
Sec. 2.4.2 is superior to the other encoding types, even tough the differences disap-
pear for large particle numbers. Using none of the encoding types from Sec. 2.4.2
is referred to as ’image encoding’, as the local POVM outcomes 0− 3 are directly
treated as pixel values.
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Figure A.4: Training the Ising ground state with small coupling for different
system sizes, using the CCNN with of f = 2, k = 2 and L = 1, resulting in an
O(1) scaling in hyperparameters. Even this constant number of parameters suffices
to represent the given state with constant error, due to the very short correlation
length of this state.

A.4 Training process

Figures A.5 and A.6 show the evolution of the network performance during the
training procedure for the ARCNN and CCNN respectively. The target state is a
16 qubit Ising critical state with periodic boundaries, and the networks are set up
with f = 16, l = 3 and k = 5 and trained using 32k samples. Each panel in the
figures shows a different measure of accuracy or an observable. These quantities
are explained in Table A.1. Several independent network runs are shown, and
observables are also shown as computed directly from the dataset.

Notice that the loss function converges much nicer for the ARCNN than it does
for the CCNN. This also reflects in the magnitude of the gradients. In fact, the
Ising ground state at strong coupling cannot be trained using the CCNN in this
setting, while the ARCNN shows no problems. A possible explanation is the fact
that the normalization of the ARCNN does not have to be Monte-Carlo-estimated,
as required for the (C)CNN. This is further studied in Appendix A.5.

Section 2.2.4 explains why the half chain purity estimates are so noisy.
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Figure A.5: Tracking the quantities from Tab. A.1 while training the ARCNN on
a 16 qubit Ising critical state. Horizontal axis shows number of training steps (first
two plots in units, further plots in 100’s). The failure of both final 2-point functions
to converge can be explained using the correlation bounds from Section 3.1.2 and
the huge variance of the purity is explained in Sec. 2.2.4. Shaded error bars are
computed using Eq. (2.20).
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Figure A.6: Tracking the quantities from Tab. A.1 while training the CCNN on
a 16 qubit Ising critical state. Horizontal axis shows number of training steps
(first two plots in units, further plots in 100’s). The huge variance of the purity is
explained in Sec. 2.2.4. Shaded error bars are computed using Eq. (2.20).
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Name Description
Loss Likelihood function used as optimization target
|Gradient| A measure for the magnitude of the gradient of

the loss function w.r.t. the network parameters
True Fidelity (not shown)
Dataset fidelity Classical Fidelity (3.5) between NN distribution

and dataset distribution

Sx
∑15

i=0 ⟨σ̂x
i ⟩

SzSzSz ⟨σ̂z
0σ̂

z
1σ̂

z
2⟩

Halfchain Purity Purity of the reduced density matrix
of the first half of the chain

Sz(0)Sz(i) ⟨σ̂z
0σ̂

z
i ⟩

Table A.1: Descriptions of the quantities shown in Figures A.5 and A.6.

A.5 Is normalization a problem?

If one is interested in applying the tomography scheme to a more general class of
neural networks, that is not restricted to generative models, one has to ensure,
that computing the normalization of the network-encoded probability distribution
does not pose a fundamental scaling limitation. As stated in Sec. 2.4.2, the nor-
malization then has to be estimated using a Monte Carlo estimate (2.27). Since
having a normalized probability distribution is fundamental requirement for the
optimization of the network parameters to converge, it is a priori not clear, whether
replacing an exact normalization with an approximate one, hinders training per-
formance.

To test this, a CNN architecture and target state is chosen as a test subject and
the ”batch size” from Eq. (2.27) is varied. Figure A.7 shows two physical states
being examined, namely the J/B = 0.1 and J/B = 1 ground states of the 7-site
1D Ising model. The states are approximated for batches sized < 10, up to O(47).
For the case where the sample size is equal to 47, the normalization is computed
exactly, rather than sampled.

For the case of J/B = 0.1, the results might look surprising on first sight: the
performance of the network does not seem to suffer at all from sampled normal-
izations: Using as little as 10% of the POVM size, for normalizing results in the
same performance as exact normalization. This may be explained by the fact, that
this state has high overlap with a product state, resulting in a POVM distribu-
tion that is approximated very well, by a factorized distribution. Normalizing this
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Figure A.7: Investigating the influence of approximate normalization by varying
the ”normalization batch size” for two Ising ground states for N = 7 spins, f =
7, l = 4 and k = 3.

factorized distribution simply amounts to normalizing one of the factors, which
requires much less samples.

For the case of J/B = 1, one can see a penalty for a normalization batch that
is too small. This effect is one possible explanation of the fact, that the ARCNN
is the more stable and thus more powerful architecture, as it does not require the
normalization to be estimated.
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B Mathematical detours

B.1 Measuring the single-particle SIC-POVM

Any simple single particle measurement amounts to performing a number of uni-
tary operations on a qubit, followed by a Pauli-Z measurement. The latter has
two outcomes, which lie on opposing sides of the Bloch-sphere. The SIC-POVM
has 4 outcomes, which follow a different geometry on the Block sphere. It is
nevertheless possible to measure the SIC-POVM by coupling the target qubit to
an ancillar, performing a joint unitary transform U and finally measuring both
qubits in the Z-basis. The right choice of unitary transform will ensure, that every
joint 2-particle projection is mapped to a corresponding SIC-POVM measurement
on the target qubit. The unitary U can be found by solving the equation ”SIC-
POVM-Probabilities on target” = ”Z-basis probabilites on joint system”, which
reads

Tr
[
(M̂i ⊗ 1) (ρ̂⊗ |↑⟩⟨↑|)

]
= Tr [Piρ̂

′] ≡ Tr
[
PiÛ

† (ρ̂⊗ |↑⟩⟨↑|) Û
]

∀ρ̂, i
(B.1)

where Pi ∈ {|00⟩⟨00| , |01⟩⟨01| , |10⟩⟨10| , |11⟩⟨11|} are the 4 orthonormal projectors
for the joint measurement, M̂i are the single particle SIC-POVM operators and ρ̂
is the single particle target density matrix. This can be rewritten as

0 = Tr
[(
M̂i ⊗ 1− Û †PiÛ

)
(ρ̂⊗ |↑⟩⟨↑|)

]
∀ρ̂, i (B.2)

= Tr
[(
Âi B̂i

Ĉi D̂i

)
·
(
ρ̂ 0
0 0

)]
= Tr

[
Âiρ̂
]

∀ρ̂, i (B.3)

Here, the matrix in the first parentheses in Eq. (B.2) is written using four 2 × 2
block-matrices Âi, B̂i, Ĉi and D̂i. The final trace in Eq. (B.3) can only be zero for
all 2×2 density matrices ρ̂ if all Âi, i.e. the upper left block of M̂i⊗1− Û †PiÛ are
the zero matrix. This condition leads to 4 matrix-valued equations, if one makes
an ansatz for Û such as

Û =


a b c d
e f g h
i j k l
m n o p

 (B.4)
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and computes Û †PiÛ explicitly, resulting in

M̂1 ≡
1

2

(
1 0
0 0

)
=

(
|a|2 aē
āe |e|2

)
M̂2 ≡

1

6

(
1

√
2√

2 2

)
=

(
|b|2 bf̄
b̄f |f |2

)
M̂3 ≡

1

6

(
1

√
2x√

2x̄ 2

)
=

(
|c|2 cḡ
c̄g |g|2

)
M̂4 ≡

1

6

(
1

√
2x̄√

2x 2

)
=

(
|d|2 dh̄
d̄h |h|2

)
using the definitions of the SIC-POVM operators and x = e

2πi
3 . One possible

solution of this system of equations can easily be found:

Û =
1√
6


√
3 1 1 1

0
√
2

√
2x

√
2x̄

i j k l
m n o p


Demanding that Û is unitary Û †Û = 1 gives more conditions on the lower half of
Û , to which an analytic solution may be found by hand:

Û =
1√
6


√
3 1 1 1

0
√
2

√
2x

√
2x̄

−
√
3 1 1 1

0
√
2x̄

√
2x

√
2

 (B.5)

is unitary and maps the SIC-POVM for one qubit onto 4 orthonormal projectors
on 2 qubits. An independent derivation of an equivalent matrix can be found in
[98], where also a decomposition into standard gates is given.

B.2 Parametrizing positive POVM distributions

As said in the main text, the mapping between density matrices and probability
distributions is not bijective: While every density matrix has a corresponding
POVM distribution, not every probability distribution corresponds to a positive
density matrix. If a distribution corresponds to a positive density matrix, one
may call the distribution ”positive”. Fuchs and Schack show how to parametrize
the positive POVM distributions in [30] for SIC-POVMs. However these results
can easily be generalized to all POVMs as follows: Any positive, hermitian matrix
ρ̂ can be written in terms of its square root, which may be expanded using the
POVM operators:

ρ̂ = B̂2 = (biM̂i)
2 = bibjM̂iM̂j, with bi 4N real numbers. (B.6)
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Computing the POVM probabilities is straight forward:

Pa = Tr
[
M̂aρ̂

]
= bibj Tr

[
M̂aM̂iM̂j

]
= bibjcaij = ⟨b|Ca |b⟩ with (B.7)

(Ca)ij = caij = Tr
[
M̂aM̂iM̂j

]
. (B.8)

Plugging any |b⟩ ∈ R
4N into this expression results in a positive POVM distri-

bution. The caij tensor factorizes into local tensors if the POVM is a product
POVM, i.e. all indices are replaced by multiindices. So far the resulting POVM
distribution Eq. (B.7) is not normalized, but this is easily taken into account:

1 =
∑
a

Pa = bibj Tr

[∑
a

M̂aM̂iM̂j

]
= bibj Tr

[
M̂iM̂j

]
= bibjTij = ⟨b|T |b⟩ .

(B.9)

For the product-Pauli and product-SIC POVM, T is an element-wise-positive,
positive definite, symmetric matrix. This implies that the normalized |b⟩ vectors
lie on an ellipsoid. By splitting T =

√
T
√
T into two factors, the normalization

looks a bit nicer

1 = ⟨b|T |b⟩ = ⟨x|x⟩ , with |x⟩ =
√
T |b⟩ , (B.10)

i.e. the |x⟩ vectors lie on a hypersphere in a real Hilbert space of 2N qubits. One
can verify that sparse, local observables remain sparse and local when translated
to the |x⟩ language.
Looking back at the parametrization of ρ̂, it becomes

ρ̂ = xixj
√
T−1

im

√
T−1

jnM̂mM̂n. (B.11)

This is an expansion of the square root of the density matrix using the operators
M̂ ′

i =
√
T−1

imM̂m which form an orthonormal basis. This can be seen by

Tr
[
M̂ ′

iM̂
′
j

]
=

√
T−1

im

√
T−1

jnTr
[
M̂mM̂n

]
=
(√

T−1T
√
T−1

)
ij
= δij,

since T is diagonalizable and
√
T−1 =

(√
T
)−1

commutes with T .

If the M̂ ′
i are an orthonormal basis, they cannot be a POVM [30]. Thus one

could have started out by choosing any other arbitrary orthonormal basis for rep-
resenting the square root of ρ̂. Also, the parametrization Eq. (B.7) is not useful
from a numerical standpoint, because computing a single probability requires the
contraction bibjcaij, which in infeasible as caij is not sparse.
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Figure N NN type Num.
Layers L

Kernel
size k

Features/
layer f

Encoding Num.
Param.

Num.
Samples

Learn
rate

Batch
size

Weight
decay µ

2.2 CPU/GPU Speedup 10 CNN 5 4 N 1-Hot 1481 - 5e-4 10k 0
3.1 Random states 6 CNN 2 6 N Image 301 - 2e-3 4k 0
3.2 TFIM phase trans. 4 CNN 2 4 N Image 105 - 1e-3 2k 0
3.3 TFIM N3 scaling 3-10 CNN 4 ⌊N/2⌋ N Image 52-1691 - 2e-3 2k 0
3.4,
3.5

Correlation Propag. 16 see Fig. see Fig. see Fig. N 1-Hot 97-3572 32k 5e-4 5k 0.01

3.6 Small 1D TFIM 3-8 CCNN
[√

N
] ⌈√

N
⌉
+ 1 N 1-Hot 73-673 see Fig. 1e-3 4k 0

3.7 Larger 2D TFIM 4× 4 CCNN 2 2 N 1-Hot 1329 see Fig. 5e-4 5k 0.01
3.8 Ion Chain 16 ARCNN 3 6 N 1-Hot 3572 10k 5e-4 5k 0.01
3.9 Steady States 4× 4 CNN 2 3 N 1-Hot 3169 1k/100k 5e-4 5k 0.01
3.10 Experim. matrix plots 5 CNN 2 4 10 1-Hot 631 24k 5e-4 2k 0
3.11 Experim. resampling 5 CNN 2 4 10 1-Hot 631 see Fig. 5e-4 4k 0
A.2 dephased TFIM 7 CNN 2 7 N Image 456 - 2e-3 2k 0
A.3 TFIM N2 scaling 2-10 CNN 2 2 N see Fig. 21-401 - 1e-3 2k 0
A.4 TFIM const. scaling 2-10 CCNN 1 2 2 1-Hot 21 - 1e-3 2k 0
A.5 Training logs ARCNN 16 ARCNN 3 5 N 1-Hot 2996 32k 5e-4 5k 0.01
A.6 Training logs CCNN 16 CCNN 3 5 N 1-Hot 2945 32k 5e-4 5k 0.01
A.7 Scan batch size 7 CNN 4 3 N Image 540 - 2e-3 see Fig. 0

Table B.1: Hyperparameters used for each figure. In all cases we used a tanh-activation function and the (C)CNN uses an exponential
output function. [x] denotes the nearest integer function, ⌈x⌉ the ceiling function and ⌊x⌋ the floor function. Parameters for the Adam
algorithm are kept at their default values β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
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