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Simulation and Emulation of Probabilistic Quantum Spins with Neural Net-
works:

Generative artificial neural network representations of quantum states have become a
powerful variational ansatz for the simulation of quantum spin systems.

In particular, restricted Boltzmann machines rely on probabilistic inference with
Markov chain Monte Carlo methods to draw samples based on which physical ob-
servables can be estimated. In this regard, modern neuromorphic hardware for emulat-
ing spiking neural networks promises advantages over general purpose von Neumann
computers when executing spike-based neural sampling, most notably, that inference
is independent of the system size.

This thesis studies the mixed-signal neuromorphic chip BrainScaleS-2 as a platform
for probabilistic neural quantum states. The results can be grouped into three projects.
Firstly, we extended previous efforts of learning neuromorphic quantum state represen-
tations to ground states and steady states. Secondly, we developed a variational learn-
ing algorithm specific to the requirements of BrainScaleS-2 for the search of ground
states in stoquastic systems and studied its performance for the transverse field Ising
model. Finally, we examined limitations of the presented approaches and developed
links to guide future research in this area.

Simulation und Emulation probabilistischer Quantenspins mit neuronalen Net-
zen:

Generative kiinstliche neuronale Netze zur Darstellung von Quantenzustinden haben
sich zu einem leistungsfihigen Variationsansatz fiir die Simulation von Quantenspin-
systemen entwickelt.

Insbesondere beschrinkte Boltzmann-Maschinen stiitzen sich auf probabilistische In-
ferenz mit Markow-Ketten Monte-Carlo Methoden, um Stichproben zu ziehen, auf
deren Grundlage physikalische Observablen geschitzt werden konnen. In dieser Hin-
sicht verspricht moderne neuromorphe Hardware fiir die Emulation von spikenden
neuronalen Netzen Vorteile gegeniiber allgemeinen Von-Neumann-Computern durch
spike-basiertes neuronales Sampling, vor allem, da die Inferenz unabhéngig von der
Systemgrofe ist.

Diese Arbeit untersucht den neuromorphen Mixed-Signal-Chip BrainScaleS-2 als Plat-
tform fiir probabilistische neuronale Quantenzustinde. Die Ergebnisse lassen sich in
drei Projekte gliedern. Erstens haben wir frithere Bemithungen zum Erlernen neuro-
morpher Quantenzustandsreprisentationen auf Grundzustinde und stationére Zustdnde
ausgedehnt. Zweitens haben wir ein auf die Anforderungen von BrainScaleS-2
zugeschnittenes variationelles Lernverfahren fiir die Suche nach Grundzustinden in
stoquastischen Systemen entwickelt und dieses am Beispiel des Ising-Modells mit
transversalem Feld untersucht. SchlieBlich haben wir die Limitationen und Per-
spektiven der vorgestellten Ansétze gepriift und Ankniipfungspunkte fiir zukiinftige
Forschung in diesem Bereich entwickelt.
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1 Introduction

The Hilbert space of quantum many-body systems and consequently the computational
resources required to describe them grow exponentially with the system sizes making
their simulation extremely difficult. One example is the modeling of large spin systems
which promises fundamental insights into strongly correlated condensed matter and is
highly relevant for the characterization and validation of digital quantum computers
[SAM10, AM12, Prel8]. Fortunately, physical systems also exhibit symmetries and
structure that can shrink the exponential complexity and allow tractable approaches for
their description. The process of automatically discovering these patterns despite the
curse of dimensionality is a discipline of machine learning (ML) which in recent years
has found its way into quantum many-body physics [Car20]. The prevalent approach is
the use of generative models based on artificial neural networks (ANN) for representing
wave functions or density matrices and their underlying physical properties as Neural
Quantum States (NQS).

In order to represent quantum states, i.e. complex-valued probability amplitudes,
with ANNs a multitude of approaches have been proposed. Among them the restricted
Boltzmann machine (RBM) [Hin07], a stochastic recurrent neural network (RNN) in-
spired by statistical mechanics, has been extensively studied. Given access to complex-
valued parameters, RBMs can be directly trained to represent wave function coefficients
[CT17]. Alternatively, two separate networks with real parameters can be used for the
phase and amplitude components respectively [TMC™18]. For the approximation of
mixed states represented as density matrices an RBM ansatz based on purification has
been proposed [TMC'18]. A conceptually different approach directly translates den-
sity matrices or wave functions into probability distributions, for example by the use of
positive operator-valued measurements (POVM) [CTMA19], which enables the use of
real-valued RBMs as well as other kinds of generative models.

NQS have shown to be efficient function approximators that rival competing tech-
niques like tensor networks in flexibility and scalability by providing accurate and com-
pressed state descriptions using only a small number of parameters [CT17, CCX"18].
Among other applications, NQS have been successfully employed as variational an-
sitze for variational groundstate search (VGS) [CT17, BSD20, VGLH21], quantum
dynamics [CT17, CGG18, LCCC20, RSG21], and quantum state tomography (QST)
[TMCT'18, SGAT19, CTMA19, PKB*20, AMNK?20].

Arguably, these advances in numerical techniques have ultimately been enabled by
the ubiquitous availability of cheap digital computers due to Moore’s law which for the



past five decades predicted correctly that the number of transistors in a microchip dou-
bles every two years [Moo098]. Scientific computing, including quantum many-body
simulation, takes place overwhelmingly on those digital computers which are designed
according to the von Neumann architecture where a central processing unit (CPU) com-
municates with a global memory unit. When simulating physics on a von Neumann
computer the physical system is digitally represented in memory such that modifica-
tions and in particular interactions are applied indirectly by the CPU.

Today Moore’s law is drawing to an end as transistor sizes approach the nanometer
scale and development costs become infeasible [KHF18]. As a result, the interest in al-
ternative, domain specific computing devices has risen as those could finally outperform
digital computers in the long-term. In the light of modern machine learning and neu-
roscience the computations performed by neural networks are one such domain which
the field of neuromorphic engineering aims to capture in hardware [SPP"]. There are
numerous approaches for building neuromorphic computers both in terms of the level
of abstraction at which they mimic neural circuitry and the specific hardware substrate
that is employed for that purpose. Unlike general purpose computers, the core aspect of
neuromorphic designs is that neurons are physically placed on the hardware and their
functionality is inherently realized, whether in analog or digital form, using application
specific integrated circuits (ASIC), memristors or photonics [MMQG20].

In view of the success of NQS on general purpose computers, in this work we in-
vestigate the utility that current neuromorphic hardware has to offer for solving quan-
tum many-body problems. To that end we employ the BrainScaleS-2 (BSS2) chip
[SBDW20] which is a neuromorphic chip developed by the Electronic Vision(s) group
at Universitit Heidelberg. The BrainScaleS architecture covers a unique point in the
neuromorphic design space: it emulates biologically-inspired spiking neural networks
(SNN) consisting of leaky integrate-and-fire (LIF) neurons with continuous-time ana-
log circuits enabling an acceleration factor of 1000 compared to biological timescales
[SBGT10].

SNNs mimic the event-based neural communication found in brains with dynamical
integrate-and-fire neuron models such that time is explicitly harnessed as computational
resource. Loosely speaking, each neuron has an internal potential variable whose value
is the sum of postsynaptic potentials (PSP) which are caused by receiving spikes from
afferent neurons. In turn, a neuron fires a spike when it has accumulated a certain poten-
tial, called the activation threshold. Importantly, all spike signals are of identical binary
form in the sense that they only carry information about their spike times. As a result,
SNNs operate on sparse spike trains such that information processed by them needs to
be encoded to and decoded from this format. By integrating over the time dimension the
static behavior of ANNs can be recovered in what is known as rate coding, i.e. where the
frequency of spikes is interpreted as a real number. On the other hand, spiking neurons
can be more expressive than artificial ones when they encode information temporally



in relative spike timings, which is hence called temporal coding [Maa97]. Subjecting a
LIF SNN to external Poisson-distributed noise, it was shown that it is able to perform
probabilistic inference by sampling from a discrete space akin to Boltzmann machines
(BM) [PBB"]. One can understand this neural sampling scheme as a compromise be-
tween rate and temporal codes, where the collective firing rates of neuron combinations
are interpreted as a probability distribution.

Due to the recent success of (R) BMs in quantum many-body physics, it is natural
to establish a connection to neuromorphic implementations based on neural sampling.
This line of research was pioneered recently by Czischek et al. [CBB"21] who demon-
strated the viability to learn and represent small entangled quantum states in a POVM
representation through neural sampling on BSS2. This thesis continues these efforts as
follows. Chapter 2 introduces the background on how quantum spin systems can be rep-
resented probabilistically and chapter 3 details the simulation and emulation methods
based on sampling and learning with BMs, including their implementation on neuro-
morphic hardware. Chapter 4 presents results on learning neuromorphic quantum state
representations on BSS2, including for the first time for ground states and steady states.
In chapter 5 a variational learning algorithm specific to the demands of BSS2 was de-
veloped for the search of ground states and it was applied to the Transverse Field Ising
Model (TFIM) with system sizes of up to 10 spins. Limitations and prospects of the pre-
sented approaches are examined in chapter 6. We conclude in chapter 7 by summarizing
and offering perspectives for future research.






2 Background: Probabilistic Quantum
Spins

This chapter gives a brief overview of quantum mechanics and spin systems based on
[BFK ' 15, NC10, PF10, Czi20]. In addition, two concrete problems in quantum many-
body systems, namely VGS and QST, will be explained. Furthermore, the two proba-
bilistic quantum state representations used throughout this thesis will be introduced.

2.1 Quantum mechanics

Quantum mechanics (QM) is the mathematical description of non-relativistic physical
systems in terms of states, observables and how they evolve in time. The state space
of QM is a complex Hilbert space H, i.e. a complete vector space over C with a scalar
product. States are vectors |¢)) € H in Hilbert space and observables are Hermitian
operators O : H — H acting therein. In Dirac’s notation [¢) is called a "ket", which
represents a column vector, while (| € H*, is the dual row vector called a "bra".

The joint state space of two systems A and B is given by the tensor product H g =
His®Q Hp.

This thesis deals exclusively with finite-dimensional quantum systems. Consequently,
the states of these systems are spanned by bases with finitely many elements and oper-
ators are represented by matrices. One distinguishes between closed and open quantum
systems depending on whether interactions with an environment are included.

Pure states and closed systems
A closed quantum system is completely described by the state vector |¢)) and is
thus expressed as a superposition of d3; = dim H basis states

dy
) =) clv) @.1)
v=1

where we assume an orthonormal basis {|v)}. This representation is known as a pure
state and the complex coefficients ¢, = (v|1)) € C are also called the wave function of
the state.

The Born rule axiomatically connects the wave function coefficients to probabilities
of finding the system in the corresponding basis state p(v) = (¥ |v)(v[1)) = |¢,|%. Due



to normalization of this probability distribution, a pure state must be a vector of unit
length: ([¢) = 1.

As a further consequence the time evolution of a pure state must preserve probability.
Therefore, only unitary time evolution operators can be considered. The Schrédinger
equation generates a continuous unitary time evolution through the Hamiltonian opera-
tor H which is the observable describing the system’s total energy: —ihd;|v)) = H 1))
where 7 is Planck’s constant!.

Due to the inherent probabilistic nature of QM, physical quantities are characterized
in the form of expected values of observables. In the general case, dy° matrix elements
of the observable operator have to be evaluated with respect to the chosen basis in order
to calculate the expected value:

(O)y = (Y[O[) = chew (v]Of0) (2.2)

v,

Mixed states and open systems

A problem with pure states is that they do not allow predictions expressing classical
uncertainty about the quantum state. Suppose a system consists of an ensemble of
distinct pure states |¢;) where each of the possible states is present with probability
p;. This system can be summarized concisely by the so-called density matrix:

p= sz-lw»(wil 2.3)

Evidently, the density matrix is positive, Hermitian and has unit trace Tr p = 1 since
>, pi = 1. Asitrepresents mixtures of pure states, the whole construct is called a mixed
state. It of course includes pure states, in which case holds p? = p = |¢)(¢].

The expected value of O in state p also becomes a sum over mixture constituents
which can be abbreviated using the trace:

(0), = pilti|Olghi) = Tr pO (2.4)

The Schrodinger equation can be translated into the density matrix formalism and is
then called the von Neumann equation:

dp _

L — —i[H, ) 25)

It describes the unitary time evolution of the system without the exchange of energy or
particles with the environment.

"'We will set i = 1 in later chapters.
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The description of open quantum systems (OQS), i.e. systems where an exchange
with the environment takes place, is an important application for mixed states. The
total system is composed of the Hilbert space of the system of physical interest and the
Hilbert space of the environment: Ho; = Hs® Henyv. A description of the system is then
possible under assumptions about the nature of the interaction with the environment by
applying a partial trace over the environment degrees of freedom of the density matrix
of the whole system: ps = Treny Prot-

The result are so-called Master equations. The Lindblad equation is one such equa-
tion describing the time evolution of the OQS under a unitary, Hamiltonian part and
including dissipation through a set of jump operators [';, with associated decay rates v:

dp , Vi
i Lp=—i[H, p]+ Zk: E@FLIOFk —{p, T4} (2.6)

The joint dynamics are summarized into the system’s Liouvillian super-operator £ that
acts in the space of density matrices.

Interacting quantum spins

This thesis is concerned with spin-1/2 particles, commonly referred to as spins or
qubits. Since their spin quantum number is s = % they can occupy one of the two states
specified by the z-axis projection: s, € {—%, %} Thus, the Hilbert space of a single
spin has two basis vectors and is spanned by a set of operators consisting of the identity
matrix 1, and the Pauli matrices o = (0, 0, 0;). The spin operators in the respective
spatial directions are proportional to the Pauli matrices .S; = g’az-.

We define the two eigenstates of o, with maximal z-axis projection as the standard
z-basis> of H: | 1) = [0) = (1,0)T and | |) = |1) = (0,1). A pure spin state is then
characterized by two complex numbers «, 3: |¢)) = «|0) + 3|1). However, states that
differ only by a global phase factor are physically identical, thus we can choose « as a
positive real number. With the additional constraint of normalization we arrive at a two

parameter description 6 € [0, 7], ¢ € [0, 27):

|t) = cos (g) |0) + €' sin (g) 1) (2.7)

Pure spin states thus live on a two-dimensional manifold of H. Visualization in 3D by
interpreting (6, ¢) as the angles of spherical coordinates a = (sin 6 cos ¢, sin 6 sin ¢, cos )
shows that pure states form the enclosing surface of the Bloch sphere (see fig. 2.1).

2also known as the "computational basis" in quantum computing

11



Hilbert space H
2N states

physical states

Figure 2.2: Schematic of Hilbert space and the subspace of relevant physical states.

Mixed qubit states are represented by a density matrix
p € C**? which can be expanded as p = 3(1 + a - o)
with coefficients @ € R? such that |a|] < 1. Further-
more, for |a| = 1 the state is pure, which corresponds to
the Bloch sphere representation. Therefore, all points with
la] < 1 are mixed states which lie in the interior of the
Bloch sphere.

The state space of a joint system of /V qubits is exponen-
tially large: dim H = 2", In this case we can describe the
joint basis with binary vectors v = (v;)~_, with v; € {0,1}
and the corresponding basis states with the consecutive ten-
sor products |v) = @, |v;).

Figure 2.1: A pure (blue)
and mixed

However, in physical systems, most of these states carry gZ?e) on Sﬁllz
only a negligible probability due to certain structures e.g. Bloch sphere

low entanglement. Thus, the interesting region of the
Hilbert space can form a rather small corner of the whole
as depicted in fig. 2.2. Ideally, the physical subspace would scale polynomially with the
system size. In this case there is hope of finding tractable approaches of simulating the
quantum spin system.

The quantum Ising Model in one dimension, also known as the TFIM, will be used
as a benchmark of the methods developed in this thesis. It describes a chain of /V spins
with nearest-neighbor interactions that are subject to an external field orthogonal to the
interaction axis (see fig. 2.3). The Hamiltonian of the TFIM with interaction along the
z-axis and transverse field in x-direction reads

N
HTFIM == —JZ UiO'g — hZU; (28)
(i.4) =1

where J is the interaction strength, A is the field strength and (7, j) signifies nearest

12



b 4
0

Figure 2.3: Visualization of the TFIM in one dimension. A chain of three spins (green)
with open boundary conditions is shown along with their interactions in
z-direction (red) and the applied external field in x-direction (blue). The
orange arrows indicate expected values of the spin observables in the z-z-
plane.

>z

neighbor pairs. The o’ are Pauli operators in the joint state space which only act on the
single spin i: 0! = @0 %, Typically, we will consider periodic boundary conditions
such that there is an interaction between spin 1 and N. When J > 0 the model is
called ferromagnetic since aligned spins lead to a lower energy, while J < 0 is the
antiferromagnetic case where the opposite configuration is favored. We exclusively
work with the ferromagnetic case.

Figure 2.4 shows the phase structure of
the system. In the thermodynamic limit
the TFIM has a quantum phase transition
at the critical point J = h which sepa-
rates the ordered phase (h < J) where ferromagnetic
the energy is dominated by the spin-spin phase
interactions o'c’™! from the disordered |
phase (h > J) where spins increasingly 0
align with the x-axis due to the influence
of the external field o

Thus, the two relevant observables for ~ Figure 2.4: Phase diagram of the TFIM
the phase transition are the magnetization
in z-direction,

critical point

paramagnetic
phase

- h/J

_ - ——

which is also the order parameter of the transition and the two-point zz-correlation
function

1 ~i4d
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h)J

Figure 2.5: Ground state energy per site of the TFIM as a function of h/.J for N = 4.

where d is the distance between spins.

In the vicinity of the critical point the spin-spin correlations are expected to drop
off as a power law [KCH"17]: C,,(d) ~ Cy(h) exp(—d/&..(h)). At zero-temperature
the correlation length &, diverges at the critical point indicating the phase transition
point. For small, finite system sizes the phase transition point will be shifted and the
correlation lengths stay finite, but become maximal there.

The TFIM is integrable [Pfe70] such that analytical solutions for the energy spectrum
and eigenstates are available. The ground state energy for finite system sizes is given by

h?  2h kY .
EO:—%ZK L+ 5+ cos (wﬁ> with K = {—(N —1),...,N — 1} (2.11)

Figure 2.5 shows the ground state energy as a function of h/.J for N = 5 spins.

Stoquastic Hamiltonians

A Hamiltonian where all off-diagonal elements are non-positive is called stoquastic
[BDOTO7]. From this property one can show that the ground state of the system is
described by a wave function which only has non-negative real amplitudes.

Many systems occurring in nature have stoquastic Hamiltonians, including the TFIM,
the ferromagnetic Heisenberg model and also continuous systems like the quantum har-
monic oscillator.

A major advantage when simulating systems with stoquastic Hamiltonians is that
they avoid the sign problem [Bral5]. It arises whenever a state has negative or complex
probability amplitudes and causes Monte Carlo methods to require exponentially many
samples to accurately estimate observables.

14



Measurement
We have already pointed out the close connection between quantum states and
probabilities based on the Born rule. Now, we take a closer look at two types of mea-
surements that can be performed, namely projective measurements and POVMs.
A projective measurement consists of a set of projection operators P; = |i)(i| that are
constructed from an orthonormal basis {|) }. Applying this measurement to the state p
randomly obtains an outcome ¢ according to the probability distribution

p(i) = Tr Pp (2.12)

and projects the state into the respective subspace yielding p' = PipP;/ Tr(P;p) 3.

POVMs drop the requirement of measurement operators being orthogonal projectors
and are thus more general. A set of positive-semidefinite operators { A/*}, is called a
POVM if they decompose the identity: > A/* = 1. This ensures that the respective
probability distribution for a state p remains normalized:

pla) = Tr(pM") (2.13)

Notice the equivalence to a projective measurement when replacing M* with |a)({al.

Since POVM elements do not need to be orthogonal their so-called overlap matrix
Ty = Tr(M®*M®) is not the identity.

A POVM is informationally complete (IC) if the measurement distribution includes
all information about the state, i.e. it has at least d3, elements that span the space of
Hermitian operators. This is the case if the overlap matrix is non-singular, since it
allows for eq. (2.13) to be inverted, yielding the full density matrix:

p= ZT M p (2.14)

Starting from a single-qubit IC-POVM with m outcomes {M“}™ ,, one can con-
struct an N-qubit version with m® outcomes by multiplying the single-qubit elements
{M*}, ={M"®...Q M}, .. ay- The collective POVM outcomes can then be sum-
marized into a vector @ = (ay,--- ,ay). Similarly, the overlap matrix and its inverse
can be factorized into their single spin components.

In this formalism, expected values of observables turn into probabilistic expected
values

(0) = Tr(pO) = ZQop Q%) p(a) (2.15)

with coefficients

Q3 =Y Tr(OM*)T! (2.16)

3In the pure state case the expressions are p(i) = (| P;|v) = |(i]1)|? and [¢') = Pi|ab) /+/p(i) = |i) (i

15



Note that the computation of these coefficients still requires summing an exponential
number of terms. However, for local operators one need only consider the marginal
distribution of the involved spins and their respective POVM outcomes a;.

Every IC-POVM {M¢%}, has a dual { N®}, with N® = >~ T} M such that

a - ab

Tr MON® = a4 (2.17)

Distance measures for quantum states
The quantum fidelity quantifies the similarity of two quantum states. In the general
case of two mixed states p and o it is given as

F(p,0) = Tr\/Vopy/o (2.18)

In the case of a mixed state p and a pure state |1)) this expression becomes F'(p, [1))) =
|(¥)|p|1)| and for two pure states |¢)) and |¢) simplifies to the wave function overlap
F(¢), 1)) = ¢1e)]-

The quantum fidelity puts an upper bound on all observable differences which is why
it can be used as an universal indicator for how well observables agree between the
given states.

In turn, for an arbitrary POVM {M“®},, the quantum fidelity between p and o is
bounded from above by the classical fidelity between the corresponding probability
distributions:

FC(pp’po) = Z \/pﬂ(a)pa(a) > F(p,0) (2.19)

When expressing two quantum states in terms of probability distributions p and ¢
their similarity can also be measured using the Kullback-Leibler divergence (DKL).

The DKL can be viewed as a measure of distance, since it is zero when p = ¢ and
it also has no upper bound. It is defined as the difference between the cross-entropy

X(p,q) = — >, pilog g; and the Shannon entropy S(p) = — ) . p; log p;:

Dir(plla) = X(p,q) = S(p) = > _pi log% € [0, 00) (2.20)

Thus, intuitively the DKL describes the entropy of distribution ¢ relative to the refer-
ence p. Since one of the distributions serves as the reference the DKL is not a metric.
If one needs a symmetric comparison, the classical fidelity can serve as a measure of
similarity (see above).

16



2.2 Variational approximation

Due to the exponential size of the Hilbert space we need numerical approximations to
describe and simulate large quantum systems. A general feature of these methods is
the use of variation over some parameterized function space which represents the wave
function or density matrix, respectively. The variational search must be guided by a
suitable application-specific objective function. In this section we look at two domains
where variational approximations can be utilized: ground state search and quantum state
tomography.

2.2.1 Variational ground state search

The ground state is of particular interest because it describes the behavior of the quan-
tum spin system at zero temperature where quantum effects are most pronounced.
In QM VGS aims to find the ground state of a given Hamiltonian by varying the
parameters ¢ of a trial wave function [1)y) = > ¢ »|v) (Which need not be normalized).
Since the spectrum of the Hamiltonian is bounded from below by the ground state
energy F)y any state that is not the ground state must yield a higher expected value:

(V0| H |1)0)
~~— > F 2.21
(Vg|0e) = o (221

For large system sizes the computation of Ey and derived quantities becomes infea-
sible since an exponential number of terms has to be summed. Variational Monte Carlo
(VMC) addresses this issue by rewriting the variational energy as an average over a set
of sample configurations S

By = Z|c,91,|269“’ (v| H|w) = Zp(, E‘°°~ Z Bl (2.22)

9"0 vs es

Ey =

v, w

where py(v) is shorthand for the measurement distribution and EX° = >~ ¢p . Hypw/Cow
is the local energy. Note that one must be able to efficiently compute ¢y, for a given
configuration v to succeed with this method.

In order to tune the variational parameters any kind of optimization algorithm can
in principle be used. In section 3.4 we will have a closer look at the ones used in this
thesis.

The simplest type of variational ansatz is the mean field approximation, where a sep-
arable wave function |1)y) = ®;|t;) is assumed. While this reduces the number of
required parameters to linear complexity in the system size, it of course fails once in-
teraction terms start to dominate. More sophisticated ansitze need to be able to capture

17



higher-order correlations, ideally with a number of parameters that scale polynomially
in the system size.

Current work on VMC in spin systems focuses on two promising families of trial
wave functions: tensor networks [BC17, Oril9], such as Matrix Product States (MPS)
[PVWCO07] and ANNs such as RBMs [CT17] and RNNs [HIW " 21].

2.2.2 Quantum state tomography

QST is the process of reconstructing a quantum state from measurement statistics on
identically prepared systems. That is, it allows to reverse the act of measurement given
sufficient data about the outcomes.

To extract the full information content of a density matrix p a measurement with d?,
outcomes a would have to be carried out producing a distribution p(a) according to
eq. (2.13). In case of a system of N spins, the number of measurements required scales
exponentially with 4" which is infeasible to carry out in practice.

One proposal to alleviate this issue is to leverage a variational ansatz for the quantum
state py, or for an associated informationally complete probability distribution py, whose
number of parameters required to faithfully capture observables only grows polynomi-
ally with the system size. The parameters have to be optimized such that the ansatz fits
the limited observed data while encoding a close approximation to the true state. With
a probabilistic description py this can be done by minimizing a distance measure such
as the DKL between the measured distribution and the variational one. After the opti-
mization more synthetic data can be generated by sampling from py in order to estimate
observable expected values.

Modern generative methods from ML are particularly well suited for this task since
they are extremely expressive while allowing for efficient sample generation. For exam-
ple, recent work has investigated the suitability of RBMs [TMC™* 18, TM18, NFJ*20],
RNNs [CTMA19] and GANs [AMNK?20] in the context of QST.

2.3 Probabilistic formulation of quantum spins

In order to be able to use the generative methods from ML already mentioned, we have
to bring the quantum systems we are interested in into a compatible representation. This
representation is a probabilistic one.

The tetrahedral POVM

A complete description of a quantum state in terms of a probability distribution
can be obtained by measuring it in a sufficient amount of bases. For example, to do
QST and reconstruct a density matrix p with full rank, we can perform an IC-POVM
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Figure 2.6: The elements of the tetrahedral POVM visualized on the Bloch sphere.

measurement. Conversely, we can propose a model probability distribution py(a) with
parameters 6, and declare it to describe a quantum state through the IC-POVM.
In this work, we have limited ourselves to the tetrahedral POVM. Its single spin ele-
ments are four projectors spanning a tetrahedron on the Bloch sphere:
1
Mg, = —

tetra 4

(I+s,-0) (2.23)

where a € {0,1,2,3} and the directions s, = (0,0,1), s; = (2v/2/3,0,—1/3),
89 = (—v2/3,1/2/3,-1/3)), 83 = (—V/2/3, —+/2/3, —1/3) are visualized in fig. 2.6.

The resulting overlap matrix and its inverse are

1 1/3 1/3 1/3 5 -1 —1 —1

113 1 13 1/3 Lo -1 5 -1 -1
Ben =713 173 1 13| T hew= |1 215 | @2

1/3 1/3 1/3 1 1 -1 -1 5

Since all off-diagonal entries of the overlap matrix are equal the tetrahedral POVM is
also called symmetric and thus belongs to the class of SIC-POVMs.

Figure 2.7 shows the POVM distribution that is obtained for the Bell state |i)) =
(]00) + |11))/+/2 according to eq. (2.13) with the 2-spin tetrahedral POVM.

A disadvantage of parameterizing the distribution p(a) = pp(a) is that there is no
positivity constraint on the corresponding density matrix. The reason is that while 1C-
POVMs preserve the unit trace property this can be accomplished with negative eigen-
values and therefore not every probability distribution represents a valid density matrix.
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Figure 2.7: Standard tetrahedral POVM distribution of the Bell state 1)) = (]00) +
|11))/+/2 where the z-axis enumerates the 4> = 16 elements @ = (ay, as).

Figure 2.8: Schematic of the Qplex (round object) within the probability simplex (trian-
glular object). The green boundary of the Qplex corresponds to the set of all
pure states that form the surface of the orange interior set of mixed states.

This is visualized in fig. 2.8 where the probability space of physical states, termed Oplex
[FMS14, AFSZ17] is a convex subset inside the general probability simplex. One can
show that the Qplex is encapsulated by the density matrices corresponding to pure states
while its interior volume is filled by mixed states.

z-basis representation

The POVM-based state representation is not suitable for ground state search through
energy minimization due to the possibility of finding non-physical probability distribu-
tions with increasingly large negative eigenvalues.

We instead use the z-basis in conjunction with the assumption of a stoquastic Hamil-
tonian. In this case we know that the ground state we are looking for will be expressible
using non-negative real wave function coefficients only. Therefore a z-basis measure-
ment constitutes an informationally complete description since the full wave function is
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computable as the square root of the probability distribution:

oo = \/Po(v) (2.25)

The measurement outcomes v simply correspond to the dy; = 2 basis spin config-
urations {|v)}*,. Note that it is the prior knowledge about the ground state positivity
that shrinks the number of degrees of freedom by a factor of two compared to a wave
function with complex coefficients.
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3 Method: Sampling and Learning with
Neural Networks

This chapter describes our specific method based on neural networks for implement-
ing and optimizing the probabilistic quantum state descriptions introduced above. We
first discuss various neuron models before describing the Boltzmann machine, the gen-
erative neural network used throughout the thesis, and the Gibbs sampling algorithm.
Spike-based sampling is introduced as an alternative framework for performing proba-
bilistic inference with spiking neurons and the technical implementation details of LIF
sampling for BSS2 are listed. Finally, the optimization - or learning - algorithms are
described.

3.1 Neuron models

This section describes neurons, the computational units of neural networks, at various
levels of abstraction from biology, to perceptrons, to spiking neurons and the LIF model
(based on [GWKMO02)).

Biological neurons
Let us briefly look at the features of biological neural
tissue that are crucial for neural computation. Neurons are
nerve cells and as such they are encapsulated by a thin cell
membrane. As shown in fig. 3.1, the neuron’s cell body
(soma) connects the dendrites which aggregate inputs and
the axon which propagates signals via its axon terminals. A
synapse describes a gap of around 20 nm by which spikes
from the presynaptic axon terminal are transmitted to the

postsynaptic dendrite.
There is a voltage across the cell membrane which is
caused by the difference in ion concentrations inside and
outside of the neuron. This membrane voltage remembers Figure 3.1: Sketch of a bi-

axon terminal

dendrites

the influence of external stimuli and is the key variable that ological neu-
determines the spiking dynamics of the neuron. When the ron.  Image
neuron receives only few stimuli, it will quickly decay to an adapted from
equilibrium or resting potential which in humans is around [Haal2]
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—72mV. On the other hand, when enough input has been
received the membrane voltage suddenly increases (depolarization) triggering the ac-
tion potential also known as a spike. After a neuron has spiked its membrane voltage
drops quickly and stays lower than the resting potential (hyperpolarization) for a short
period of time during which it is refractory to further input.

The result of spike transmission to a receiving neuron is the induction of a PSP.
This can be either of excitatory or inhibitory nature depending on whether its spiking
probability is increased or decreased.

Artificial neurons
Artificial neurons - also called perceptrons -

resemble biology in the way that they also inte- (2) Artificial neuron

grate stimulus and subject this signal to a nonlin- @ w1

ear transformation. Figure 3.2a depicts this pro- Wo f

cess which can be mathematically described as ac- @ ws O @
cumulation of the constant input vector & by a

linear weighting (including an offset term) v = 3

> wixy, + b and subsequent application of a (b) Spiking neuron
non-linear function: a = f(u). The final resultof || || @) W

the computation is called the activation of the neu- —

ron which encodes information as a fixed number | ||| @ w2 @ f @ | |

or rate. _— w3 -

ANNSs are highly non-linear functions built out || || (z3)
of these primitive computational units. The con- —
nectivity of the ANN is a choice dependent on the  Figure 3.2: Comparing the artifi-
application, however, the typical structure involves cial and spiking neuron
at least a dedicated set of input and output neurons
which serve as the interface with the environment
and sets of hidden neurons which encode latent representations. The simplest kind
of ANN has only feedforward connections such that the neural computation is uni-
directional and structured in layers that successively transform the input signal into the
output activation via the hidden layers.

The number of hidden units of an ANN is a measure of the model complexity and
governs its expressiveness. ANNs with at least 1 hidden layer are universal function
approximators which means that they can compute any real function between input and
output to arbitrary precision given a number of hidden units that is sufficiently large
[Hor91].

Spiking neurons
A major step from artificial neurons towards a biologically realistic neuron model
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is the introduction of spiking dynamics. Spiking neuron models not only integrate their
input in space, namely from their presynaptic partners, but also in time. At the time
t of arrival inbound spikes are imprinted with the corresponding synaptic weight onto
the dynamical variable u of the receiving neuron. A firing criterion f(u), which can be
deterministic or stochastic, evaluates whether the neuron generates a spike of its own.
This behavior is illustrated schematically in fig. 3.2b where the red arrows represent the
spike arrival and generation over time.

Crucially, the variable u serves as a memory of past spike inputs which enables the
relative timing of spikes to encode information. These temporal correlations of spikes
enhance the expressiveness of SNNs compared to equally sized ANNs [Maa97]. From
this perspective ANNs can be viewed as a special case when fixed input values are
encoded as the rates of spike trains.

Leaky-integrate-and-fire neuron
The LIF neuron is a concrete case of a continuous spiking neuron model [GWKMO2].

<

< ovn In the LIF model the neuron’s membrane is modeled
as a capacitor with capacitance C,,. It can be charged by
- synaptic current stimulus 7*"(¢) while it is constantly dis-
g Cimn charged across a leak conductance g;. These properties
___ iu can be equivalently represented by the RC-circuit shown
4 infig. 3.3.

- E - According to Kirchhoff’s laws the voltage w across the
S capacitance is described by the differential equation:
Figure 3.3: Eguwalent C’mdu(t) = g(E, — u(t)) + I™™(¢) 3.1)

circuit of the dt
LIF neuron

The potential F; plays the role of the resting state which
is, in the absence of external input, approached on the time
scale of the circuit 7, = C,,/g;. For convenience one often rewrites this equation as
Tef Oyt = Uer — u With an effective membrane potential uqg(t) = E; + I5(¢).
The spike mechanism is triggered deterministically when the membrane potential
crosses a threshold ur from below:

u(tspike) = ur AN ul(tspike) >0 (32)

After the spike has been fired, the membrane potential is clamped to a reset value during
the absolute refractory period Tys:

u<tspike <t< tspike + 7-ref) = UR (33)
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In this thesis we only dealt with current-based synapses in which case synaptic weights
carry the unit of current. Thus, spike input can be written as a convolution of the synap-
tic kernel £(t) and the spike trains of presynaptic neurons S*(t) = 3, d(t — t.):

I (t) = Zwi(si *K)(t) = Zwi ZK(t —t) (3.4)

We use the exponential kernel «(t) = ©O(t) exp (—t/7syn) Where 7y, describes the
time scale during which the synaptic impact is remembered. The PSP of a spike at time
ts on the membrane potential is analytically determined as a difference-of-exponentials
[Pet16]:

PSP(t) = M@(t —ts) {exp <—t — t3> — exp (—t ; t5>] (3.5)

Om (Tsyn - Tm) Tsyn m

3.2 Generative neural networks

Let us briefly introduce the concept of generative models before discussing a specific
instance based on neural networks.

The basis of ML problems is the data set X = {x;}¥ | where x; are d-dimensional
feature vectors assumed to be independent and identically distributed (i.i.d.) according
to an unknown probability distribution p(x). The goal of ML algorithms is to recog-
nize patterns in these data to "train" a predictive model which compresses the high-
dimensional structure of the training data and ideally generalizes, i.e. offers accurate
predictions when applied to unseen data.

One type of prediction task is the creation of new data samples that are representative
of those in the training set X. Models that are capable of this task are called generative.
In other words, a generative model aims to capture the underlying probability distri-
bution pyodel(€) =~ p(x) and provide an efficient mechanism to draw samples from it
Tnew ~ Pmodel (). Thus, there are two key ingredients that need to be met:

1. expressive and efficient latent representations: the model’s internal degrees of
freedom should provide sufficient capacity to capture high-dimensional feature
correlations with a manageable amount of computational resources

2. high-quality and efficient generation: extracting new data should be fast and new
samples ought to be uncorrelated among them and unbiased with respect to the

ground truth (after training)

We will now discuss these considerations in the context of BMs.
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3.2.1 The Boltzmann machine

The BM was introduced in [AHS85] where it is described as "parallel constraint satisfac-
tion network [...] that is capable of learning the underlying constraints that characterize
a domain simply by being shown examples from the domain".

It is inspired by the statistical mechanics of Ising’s spin model [Isi25] which is why
it also described as an energy-based model. However, the interaction parameters of the
BM are considered variable with the goal of adjusting them such that the "equilibrium"
state of the system exhibits patterns that closely match a given data set of configurations.

Thus, the BM is able to solve a probabilistic inference problem and it is in fact equiv-
alent to undirected graphical models known from Bayesian statistics [HTFO09].

A third interpretation of BMs as stochastic network models for neuronal activity con-
nects them to the fields of cognitive science and ML. This connection will become
especially clear when considering its implementation with a SNN.

A BM with N units occupies the binary configurations in z = {z}¥, € {0,1}V!
by defining the classical Hamiltonian

1
ij i

with real interaction matrix W € RY¥*" and bias vector b € R" summarized as the
model parameters 6 = (W, b) 2.

As in the Ising model connections are pairwise bidirectional such that W;; = W;; and
Wi; = 0 and therefore information can flow in recurrent fashion through the network.

In the statistical physics picture the equilibrium state of the BM is analogous to the
canonical ensemble of N particles at temperature 7' = 1, where each particle can occupy
two energy states. The probability of state z thus follows the well-known Boltzmann
distribution with

po(2) = 5 e (~Fo(2) a7

where Z = ) _exp (—E(z)) is the partition sum. The energy-based nature is now
apparent since low energy samples have the highest probability mass whereas high en-
ergy ones are exponentially less probable.

Thus far, the BM is an elaborate way of expressing the pairwise covariance between
units. In order to create an expressive model that can also represent higher-order cor-
relations the units are separated into two sets like in fig. 3.4 (left). The visible units

! An alternative state space uses z € {—1, 1} which is more natural when thinking in terms of spins. Both
binary bases are linear transformations of each other and thus do not change the overall properties of
the BM.

Note that the bias can be eliminated by introducing an additional neuron with constant unit activity.
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Figure 3.4: Left: fully-connected BM, Right: restricted BM

v = {v;}} are considered input and output of the network and thus, the amount

of visibles must match the dimensionality of the data. Meanwhile the hidden units
h = {hi}f-v:’ll are latent variables enhancing the complexity of the model. The num-
ber of parameters of the BM depends critically on /NV;,. We denote the joint state space
z = [v,h] with N = N, + N},.

With this subdivision, the physically interesting model distribution over the visible
units is obtained by marginalization:

po(v) = 2 3 exp(~Fof2) (38)

3.2.2 Gibbs sampling

Calculating the partition sum or integrating out the latent variables h of the generative
model are instances of probabilistic inference problems. For large /N this is an in-
tractable computation since it comprises the summation over exponentially many terms.
Sampling techniques, in particular Markov chain Monte Carlo (MCMC), are a common
remedy enabling efficient probabilistic inference.

A Markov chain is a sequence of states from a finite set S where the transition from
one state s to the the next s’ is governed by a stochastic operator 7'(s’|s). Starting in
a state so the next entry is sampled according to s; ~ T(s|sg) and so forth. If this
stochastic process has no unreachable states (irreducibility) and does not enter deter-
ministic cycles (aperiodicity) the entries of the Markov chain approach a fixed point
distribution p(s) = >, T'(s|s")p(s") which is independent from the initial condition s.

The goal of MCMC methods is to choose 7" such that the desired distribution p(s) is
obtained. A sufficient, but not necessary design choice for this is to create a reversible
chain by demanding what is known as detailed balance: T'(s|s")p(s') = T'(s'|s)p(s)Vs, s'.
This condition ensures that probability flux is conserved locally and implies that the
global fixed point exists. Given a suitable transition operator 7" one can perform proba-
bilistic inference by generating sufficiently long Markov chains and recording samples
of the relevant variables.
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Algorithm 1: Gibbs sampling for BM with N units, drawing Ngample Samples
per Nepain Markov chains.

1 sample list S = {};
2 forc e {1, -, Nepain } do

3 | initial configuration z' € {0,1}; // random or from data set
4 | forse{2,---, Nampl} do

5 choosei € {1,--- ,N}; // randomly or fixed order
¢ | | compute po(ail=iit) = o(us):

7 sample z7 ~ pg(zz»|zii_1);

8 add 2° = ({71, 20 20,25 ey D 0 S

Nsample 'Nchain .
s=1 s

9 return S = {2°}

Gibbs sampling [GG] is a particular MCMC algorithm which relies on the efficient
computability of conditional probabilities. Algorithm 1 describes Gibbs sampling for
simulating the equilibrium state of a BM, given parameters 6. In every iteration the
Gibbs sampler chooses a binary variable z; and updates its value to a random sample
from the conditional probability given the remaining variables: Z; ~ py(z;|2\;). For the
BM the conditional probability of one unit given the rest is a logistic function

1
1+ eXp(Zj Wiij + bl)

po(z = 1]z\;) = = o(u;) (3.9)

where u; = > ; Wijzj + b; is the total input to unit . By analogy to how neural
networks process their input, o is often called an activation function.

There are some caveats to Gibbs sampling, just like with any MCMC method. De-
pending on the starting configuration the initial samples of a burn-in phase might have
to be discarded to avoid bias. Also running multiple Markov chains can be useful when
dealing with islands in multi-modal distributions. Another inconvenience is that for
fully-connected BMs, like shown in fig. 3.4 (left), it takes at least N Gibbs steps to
completely exchange a configuration, which slows down mixing and produces long
auto-correlation times [FI114].

This is one reason that motivates the architectural choice of the RBM [Smo&86] as
depicted in fig. 3.4 (right). In an RBM visible and hidden units form the layers of a
bipartite graph such that the intra-layer weights become zero and only the interactions
between them remain: W & RNv*Nn,

Thereby, individual hidden (visible) units become conditionally independent of each
other p(hlv) = vaz”l p(hj|v) which is a major advantage since it allows for parallel
block Gibbs updates of each layer as described in algorithm 2.
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Algorithm 2: Block Gibbs sampling for RBM with N, visible and N, hidden

units drawing Ngample Samples.

1 sample list S = {};

2 initial configuration v* € {0, 1}V; // random or from data set
3forsin2, .- Neample do
4 sample h® ~ py(h|v*™1); // hidden block update
5 | sample v° ~ py(v|h®); // visible block update
6 | addz®=[v° h’|toS;

Nsample .

7 return S = {z°} 777,

3.3 Spike-based sampling

In the last section we have seen how our generative model, the BM, could work on a gen-
eral purpose computer. In this section a spike-based sampling algorithm that employs
networks of LIF neurons is discussed, making it especially suited for implementation
on neuromorphic hardware. We introduce the necessary technical details of the BSS2

chip and how to perform LIF sampling with it.

3.3.1 Neural and LIF sampling

Two challenges come to mind immediately, when thinking
about sampling with SNNs:

1. How can the continuous state of membrane potentials
{u} of the SNN be identified with the discrete sam-

pling space {z}?

2. How can stochasticity be introduced into determinis-
tic SNNs (e.g. based on eq. (3.1)) such that sampling
from the desired distribution p(z) occurs?

Neural sampling

Regarding the first point, there exists a natural choice
for interpreting the activity of a spiking neuron as binary
random variables z; € {0, 1} by identifying the spike as a
transition z = 0 — z = 1 and flipping back at the end of
the neuron’s refractory period 2 = 1 — 2z = 0. Thus, a

z (1,1,1,0) (1,0,1,0)
29 E 5
z [
24 |:

Figure 3.5: Mapping from

spikes to bi-
nary configu-
rations

spike is mapped to a rectangular pulse in the neuron state as visualized in fig. 3.5.
To deal with the second challenge, early versions of neural sampling used intrinsically
stochastic neurons with simplified interactions (see Buesing et al. [BBNM11]).
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The sampling process consists of reading out the network state over time, where, like
in Gibbs sampling a neuron’s state is chosen based on its conditional distribution. How-
ever, the full transition dynamics are more complicated since they have to incorporate
the deterministic refractory mechanism.

A central property of this neural sampling framework is the local computation of the
state log-odds by a variable that is identified with the neuron’s membrane potential:

plzr = 1z\w)

up = lo
b & p(zr = 0|z\x)

(3.10)

For a BM this translates into the same activation function as in eq. (3.9). The state
updates of other variables thus act like a rectangular PSP on the potential uy(t) = by +
Zij\io Wiiz;(t) with a synaptic "time constant" 7y, = T,.r. From these prerequisites one
can design and validate a suitable, irreversible, transition operator for a Markov chain
that samples from a BM.

The crux of this sampling method is that neurons efficiently communicate their state
to each other through spikes and influence their connection partners accordingly. This
begs the question as to how one could realize such a sampler on neuromorphic substrates
with more realistic neuron models.

LIF sampling

Unlike the above mentioned abstract neural sampling with stochastic neurons,
Petrovici et al. [PBB", PBB"16] introduce a framework with deterministic LIF neu-
rons.

There are some biological implausibilities of the abstract model that make a direct
implementation with LIF neurons difficult. For instance the reset mechanism for the
membrane potential is absent and spike transmission is instantaneous. However, the
most important aspect is the intrinsic stochasticity which stands in contrast to in vitro
neurons [MS95] and the LIF model.

The approach in [PBB™] is to create a stochastic LIF neuron that obeys eq. (3.10) (up
to linear transformation) by subjecting it to external noise input. In the brain this activity
could stem from the larger cortical area that specific functional units are embedded in.
This noise is Poisson-distributed with rates v and originates from a balanced number of
excitatory and inhibitory sources .

As a result the neurons are elevated into a high-conductance state (HCS) such that
the membrane time scale is much smaller than the synaptic/refractory one: C,,/q;, =
Tm <K Tsyn = Tref- This ensures that when freely evolving, the membrane potential
u (see eq. (3.1)) closely follows the effective counterpart u.¢ which now includes the
noise input in addition to the leak and recurrent network input.

Under these assumptions u.g was shown to follow an Ornstein-Uhlenbeck process (OU)
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Figure 3.6: Membrane trace of u (blue) and u.g (red) in the HCS. Grey areas show
refractory periods, pink areas illustrate the Gaussian distribution of u.¢ due
to Poisson noise influence. (Taken from [Pet16])

[UO30]:

1
du =

(@ — uea(t))dt + odWW; G.11)

Tsyn

where W, is the Wiener process (Gaussian random walk). Intuitively speaking, this
means that the steady state distribution of the membrane potential, outside of refractory
periods, is Gaussian distributed with mean u = £} + 7y, Zp wyVp/ g1 and variance
0% = Tyyn ), Wav,/2g; where index p denotes the noise source.

In a rather involved calculation, [PBB™] goes on to show that the activation function
of a LIF neuron approximates a logistic function in the mean effective potential:

= =0
p(ze = i) = o (—“’“ - “k) (3.12)

The offset @) characterizes the point where p(z;, = 1) = 0.5. Implicitly, a tempera-
ture of 7" = 1 is introduced such that the scaling factor « has the physical interpretation
of the Boltzmann constant. With this description a translation between parameters in
the LIF sampling implementation and the abstract parameters of the corresponding BM

becomes possible.

For biases this is especially easy as they transform with b, = (4 — u?)/a. Weight

translation should take the impact of spikes from presynaptic neurons into account when
comparing the domains. In [PBB™16] this is done by equating the integral of the PSPs:
U)ij/Oé = OTref PSP(t)dt = VV’L'jTref-

Under these assumptions previous work has shown to be able to approximate arbitrary
distributions, achiving DKLs ~ 102 — 10~ when comparing with Gibbs sampling up
to O(1000) neurons [LMB™ 18, Bau20].
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Figure 3.7: (a) analog part of BSS2, HICANN-X (taken from [CBB*21]), (b) schematic
of BSS2 (taken from [GBC"20])

3.3.2 Sampling on neuromorphic hardware

While the idea of dedicated hardware that implements neural functionality dates back
to the 80’s [Mea89], the recent interest in neural networks fueled by deep learning
in conjunction with advances in neuroscience have lead to a "cambrian explosion"
[HP19] in the number and diversity of available neuromorphic hardware systems.®> The
architectures reach from purely digital systems like SpiNNaker [PPG' 13, MHF19]
and Intel’s Loihi to [DSL"18] to mixed-signal types like the BrainScaleS hardware
[SBGT10, SBDW20] developed by the Electronic Visions group at Universitidt Heidel-
berg of which we exclusively used the BSS2 version [SBDW20, GBC"20, BCP™21].

Technical specifications of BSS2

The BSS2 chip is depicted in fig. 3.7a. The system is an ASIC consisting of an ana-
log core, named High Input Count Analog Neural Network (HICANN-X), digital co-
modules for readout and configuration and additional plasticity processing units (PPU)

3this diversity is further exaggerated by the ubiquitous use of the word "neuromorphic"
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which enable the on-chip execution of local learning rules. A host computer can com-
municate and configure BSS?2 via a field-programmable gate array (FPGA). A schematic
of those components is shown in fig. 3.7b.

The analog core can implement up to 512 current based physical LIF neurons* and
an array of 256 synapse drivers. We configure the chip to implement an all-to-all con-
nectable network of 256 neurons. In particular, this matches two neighboring synapses
to implement signed synapses. The resolution of the analog synaptic weights is 6-bit
plus the sign, i.e. wyy, € {—63,---,63}, that of biases is 10-bit by, € {0,---,1023}.
These values map to the synaptic strength in nA and leak potential in mV in an assumed
monotonic fashion with an unknown scaling factor depending on the chip configuration.
This will be discussed below.

The chips analog nature allows for circuit time constants that are 10° — 10" times
faster than biology shifting them from the ms to the ps scale and justifying the name
accelerated neuromorphic computing.

On-chip analog-to-digital converters (ADC) allow for reading out state variables, of
which we only used membrane voltages of the neuron circuits. Spikes are detected
individually by digital neuron backends and communicated as time stamped events for
external handling.

Implementation: HXSampling software and calibration
The Python backend for LIF sampling on BSS2 is called HXSampling and was
provided by Sebastian Billaudelle, Benjamin Cramer and Andreas Baumbach.

It features the possibility for setting up networks of arbitrary connectivity with up to
64 (192) logical neurons for version 1 (version 2) of the BSS2. The reduction of logical
network sizes below the total of 256 neurons is a result of the 64 logical noise sources
that occupy some of the available synapse drivers. The associated Poisson-distributed
spike trains are generated on-chip, reducing the required communication bandwidth.

Before running an experiment, a chip ID and the associated FPGA have to be spec-
ified. This setup needs to be calibrated which entails setting the following parameters:
leak Ej, reset ug, threshold ur, membrane time constant 7,,, synaptic time constant
Teyn, Membrane capacitance C),, refractory period T7,.¢ and two technical parameters
determining the gain factor for the synaptic input circuitry, /g7 and bgyy.

Calibration parameters have changed over time as the BSS2 system evolves. The
following is a set of typical calibration parameters for version 2 provided to calix :
E; = ug = 801sb®, up = 1201sb, 7, = 0.5 s, Toyn = Tret = 10 s, Igsfr? = 3501sb,
Cy, = 101sb, bgyn = 6001sb.

With such a calibration configuration, the selected setup can be calibrated, which

“actually the more general class of AdEx-IF neurons can be implemented, see [BG05]
SThe calibration framework developed by Johannes Weis.
%]sb stands for "least significant bit" and is for our purposes arbitrary.
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Figure 3.8: (a) Visualization of synaptic weight matrix of an RBM with additional noise
connections in version 1 of BSS2 (taken from [CBB*21]), (b) Measured
activation functions by scanning the bias of individual neurons. Fitting a
logistic function yields a good approximation and symmetric deviations. For
technical reasons offsets of the activation function are randomly distributed.

produces a reusable file which is required to initialize a HXSampler object. It estab-
lishes a connection to the chip and provides a high-level wrapper for specifying weights
and biases, running experiments and retrieving the spike-based samples. To initialize
HXSampler, further noise and sampling parameters have to be chosen.

The following are our standard noise settings (see table B.2). The noise weight
Whoise = 15 — 25 specifies the synaptic strength of the noise synapses which stimu-
late the network neurons with a noise rate of v, ~ 80kHz. The noise multiplier
Muoise = 4 specifies the number of inhibitory and excitatory sources that are connected
to each network neuron. The specific connectivity is randomly chosen from the two
pools of 32 sources providing excitatory and inhibitory input respectively. Figure 3.8a
shows the layout of the complete network matrix.

Finally, the sampling parameters have to be specified (see also table B.2). The chip
runtime 7" = 0.1s is the typical time for which the LIF sampling process is emulated.
The amount of samples extracted from running the chip once is determined by the sam-
pling interval dt = Tiet/2 = 5 s, i.e. N:;f;fe = |T/dt] = 20000. In most experiments
chip execution is repeated and samples are aggregated over repetitions in order to mit-
igate problems discussed in section 6.1. The respective parameter for the number of
repetitions is Npeps, such that the total number of samples is Ngumpte = Nreps - N:;f;fe.

One can check the calibration by measuring activation functions and verifying that
they look reasonable, i.e. approximately symmetric. In fig. 3.8b such a measurement is
shown where the leak £ is scanned which is the parameter that implements the bias of
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the sampling neurons.

3.4 Learning algorithms

In this thesis, we have employed both gradient-based and gradient-free optimization
algorithms to optimize the BM for quantum patterns. Both types minimize an objective
function C'(#): for QST the DKL with respect to a target data distribution is minimized,
in the case of VGS the expected value of the Hamiltonian serves as the cost metric.

Starting from random variational parameters, i.e. network weights and biases, an iter-
ative scheme improves the solution step by step until a convergence criterion is met. Ini-
tialization of network weights are typically done by symmetric random sampling around
zero from a uniform random distribution with half-width wipi, wi; ~ U(—Winit, Winit)»
while bias parameters very initialized at the repective inflection point of the neurons’ ac-
tivation function b, = bg. For neuromorphic hardware a typical value is wj,;; = 50 Isb,
with wy.x = 631sb marking the maximum value of network weights For software
RBMs the value typically assumed values much smaller than one I/Vlmt 0.1.

3.4.1 Gradient-based

The gradient of the BM

Let’s briefly look at how patterns can be learned with the gradient of the BM. The
derivative of the distribution py(v) encoded by a BM with respect to a weight W;; is
given by

Jlog pg(v) _ Z

oW, ZZ = (2% )po(hlv) = (Zi%))po() (3-13)

U

The first term can be interpreted as expected value when the visible units are clamped
to v, whereas the second term describes an average for the free running BM. An analo-
gous expression holds for a bias by.

This expression determines how to adjust the weights in order to enhance the prob-
ability of configuration v. Doing this for a given set of patterns S = {'v =, in pro-
portion to their frequency in the underlying distribution p*(v) is called the maximum
likelihood method.

The inference problem of finding optimal parameters 8* by minimizing the negative
log-likelihood over models 6 is equivalent to minimizing the DKL:

0" = argming[— Zp ) log pg(v)] = argming[Dgr(p*||pe)] (3.14)
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The gradient of the DKL with respect to W;; and by, is straightforward when combined
with eq. (3.13),

ODkr(p*llpe) _ —Zp*(v)ak)gp@(v) _

o v, —((2i21 ) po(hlv)) o (v) T (2iZ ) py(z) (3:15)

{v}

where the first term turns into a double average sampling v from the true distribution p*
and h from the conditional model py(h|v). The first term is often referred to as a wake
phase, where the network perceives the environment p*, while the second describes the
sleep phase, where it is decoupled from the environment.

The above gradient can be used to implement a local learning rule since every unit
only requires knowledge about its neighboring connections. In contrast to learning rules
involving global network information, local updates are biologically plausible and thus
especially suitable for on-chip implementation in neuromorphic hardware.

Stochastic gradient descent
We denote the full gradient with respect to the model parameters with Af =
VyC(#) from now on. In our case stochasticity is an inherent part of the cost func-
tion due to the sampling process involved.
Vanilla gradient descent is the standard approach of updating the parameters in the op-
posite direction of the gradient vector at the current position in parameter space, thereby
lowering the cost:

ee-i-l A 96 - neAee (316)

Since the gradient only provides local guidance, it is advisable to scale its components
according to the roughness of the cost landscape. The scaling factor n is called the
learning rate. It determines the step size, corresponding to the resolution at which the
cost surface is being probed and bounds the number of steps that need to be computed
to reach convergence. We typically employed a exponentially decaying learning rate
Nes1 = Te - Yir SUch that 1/(1 — ;) sets a time scale of optimization steps. Our standard
parameters are: 77 = 1, 1, = 0.999 (see table B.3). For software RBM simulations the
learning rate was typically smaller by a factor of 10.

There are countless improvements and extensions of the standard gradient descent.
One of the most widely used schemes is adaptive moment estimation (ADAM) [KB17].
ADAM is a first-order method that estimates mean m, and variance v, of the gradient
by exponential running averages with respective decay rates 3; and [s:

o 1 -5
Mes] & ————Me + AR (3.17)
g 1 — B
52 ﬁQ 2
Vet < =5 Ve + 7 —52A9 (3.18)
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Here A6? is the component-wise square of the gradient.
The parameters are updated according to the inverted relative error of the gradient

me
v/ Ve + €EADAM

where expan 18 a small positive value.
Since |Af,/,/v.| < 1 the update implicitly implements an adaptive step size for every
parameter that becomes small for noisy gradients and large for low relative error.
Standard hyperparameters for ADAM are listed in table B.3.

0, < Ocir (3.19)

Natural gradient descent

A "natural" extension to simple gradient methods are ones that incorporate knowl-
edge about the curvature of the cost landscape. Natural gradient descent (NGD) is a
method for likelihood-based models that estimates the Fisher information matrix (FIM)
[PB14]. The FIM is the negative expected value of the Hessian thereby providing
information about the curvature of the optimization landscape. NGD ideally results
in faster convergence, however, it is still a gradient method and therefore there is no
guarantee to find a global optimum. Let us denote the derivative of the log-likelihood
Ok(v) = Ok log pe(v). Then, the FIM is the expected covariance matrix of Oy (v):

i = (Ok(v)Ow (0)) py(v) — (O1())py(0) Ok (V) py o) (3.20)
= (Ok log po(v) 0y log pp(v)) (3.21)

where we have used that (O (v)) = 0 > _, log pg(v) = 0.
The natural gradient parameter updates are obtained by inverting I and applying it to
the gradient A6:

Ot = 6° — I T AG° (3.22)

Second-order information does not come for free: more samples are needed to esti-
mate the FIM of dimension R%™¢” | which increases the computational effort. Addition-
ally, the matrix inversion usually requires elaborate regularization techniques.

It should be noted that [CT17] used a method called stochastic reconfiguration for a
direct wave function representation with complex RBMs. This method is equivalent to
NGD when dealing with probabilities and real parameters.

3.4.2 Gradient-free: Differential Evolution

Evolutionary algorithms (EA) are a large class of gradient-free optimization methods
that roughly borrow from the principle of biological evolution. A population {9}?;?1
of trial solutions ("individuals") is proposed. Initially, they are randomly selected and
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subsequently evolved by crossover and/or random changes ("mutation"). Trial vectors
are compared based on a fitness function /' ("selection").

One instance of an EA is the global optimization algorithm called Differential Evolu-
tion (DE) which works by combining vector differences in each iteration [PSLO5]. For
updating trial vector 6 three other trial vectors a, b, c are randomly chosen from the
population. These three vectors are combined to 6’ that replaces 6 if F'(6') > F(0).
The construction occurs component-wise with a fixed crossover rate of C'R and differ-
ential weight DW:

o — { a; + DW(b; —¢;) if CR<u~U(0,1) (3.23)

0; else

After a termination criterion is met the trial vector with the highest F'(8) is returned.
The DE strategy described above is called "rand/bin" due to the random choice of the
support vector a and the binomial crossover of new trial components.

Since no assumptions are made about /' this method is especially suited for opaque
non-differentiable systems, e.g. physical experiments.
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4 Towards Neuromorphic Quantum State
Tomography

This chapter shows our results on learning to represent known target quantum states
with BMs using both conventional Gibbs sampling as well as LIF sampling on BSS2.

It is a continuation of the recent work of Czischek et al. [CBB'21], where the
BSS2 chip has been used to learn Bell states |¢pen) = (|00) + |11))/v/2 demon-
strating that the SNN is able to capture their non-classical correlations. They further
encoded the N-particle generalization, the Greenberger-Horne-Zeilinger (GHZ) state,
W&, = (J0Y®N 4 [1)®N) /y/2 for N = 3and N = 4 particles showing that the method
struggles to scale when dealing with these larger states. We reproduced these experi-
ments and improved upon them. Furthermore, we have explored the representability of
ground states and steady states of the TFIM.

4.1 Learning target states - the brute force method

Although QST is about sample efficiency in this thesis we did not use experimental nor
synthetic data sets. Instead we have assumed infinite data, i.e. perfect knowledge of the
target distribution p*(v).

In this case one can get rid of the expected value over the data set in eq. (3.15) by
expanding the first term with py(v). This eliminates the conditional probability and
allows for rewriting the expression as expected value of the joint distribution over a
reweighted target p*/py(v):

AWij = ((2i2))py(hlo))p-(v) — (2i%))pe(2) (4.1)
T C) LA\ CON A (42)
=) Po(v)
*(v
— <ZZZJ29E’U§ >P9(Z) — <Zizj>p9(z) (43)

(G ) =) o
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An analogous expression is obtained for the biases:

Aby = < (i 92:; . 1) zk>pg(z) 4.5)

This learning rule thus provides a method to learn a target distribution without the
need of a "wake" phase, where the states of neurons would be clamped. While this is
sufficient to explore the representability of small quantum state distributions there are
important drawbacks. First, replacing the conditional expectation comes at the cost of
knowing the fraction p* /py(v) for every configuration v with non-negligible contribu-
tion. In the many-body limit this is exponentially costly both in terms of measuring
sufficiently accurate target distributions p*(v), as well as densely sampling the model
pe(v). That is why we came to call these types of learning rules brute-force. Another
important consequence is that the appearance of the joint model distribution in the ex-
pected value combines information from all visible units thereby turning the previously
local learning rule into a global one.

The complete procedure for learning target states in this manner is described in algo-
rithm 3. After the calibration and initialization of BSS2, the DKL is minimized by al-
ternating between on-chip LIF sampling and turning the gradient estimation on the host
computer into parameter updates with the respective optimizer o. This is a type of in-
the-loop learning in contrast to potential algorithms that make use of on-chip learning
capabilities. Also, note that the model distribution is estimated from the same samples
as the gradient itself.

Algorithm 3: Gradient-based in-the-loop learning of target state p* for Nepoch
steps. At every step Ngample configurations are generated using BSS2.

1 calibrate chip setup ; // BSS2
2 provide target p*(v); // Host
3 initialize parameters 6, ; // Host
4 foreec {1, - -, Nepoen} do

5 configure parameters 6. on chip ; // BSS2
6 | sample model data S = {z}2""™" ~ py(2) ; // BSS2
7 | create histogram py(v) = m >reslvs =] // Host
8 | calculate gradient A, = 0p Dy (p*(v)]|pe(v)) ; // Host
9 | update parameters 0.1 < 0. — 1.0(Af,) ; // Host
10 generate samples after convergence ; // BSS2
11 evaluate metrics and expected values ; // Host

Choosing the optimization method
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Besides the above gradient-based algorithm we looked into using evolutionary al-
gorithms, specifically DE, as an alternative optimization method. These gradient-free
methods are suitable for blackboxes, i.e. systems that are not differentiable or whose
gradient is unknown and thus can not be optimized with gradient descent. In general the
BSS2 can be seen as such a blackbox, however, for the specific case of LIF sampling we
know that the SNN approximates a BM and thus gradient-based methods are applicable,
too.

In fig. 4.1 an exemplary comparison between learning curves of DE and ADAM the
DKL over the course of training are shown. The target state is the Bell state |¢gey)
probabilistically expressed with the tetrahedral POVM such that the visible layer con-
tains /V,, = 4 units. In this encoding the 4 POVM outcomes for each spin correspond to
the joint configurations of two neurons in the BM. The employed RBM architecture has
N}, = 4 which is providing more parameters Nparams = 16 + 4 + 4 = 24 than the 15
degrees of freedom in the two-qubit density matrix. For both ADAM and DE we used
the standard optimizer parameters given in table B.3 except for a reduced population
size of N, = 24.

We directly compare the learning progress with cost function evaluations N, which
in the case of ADAM is equal to N¢pocn. Every function evaluation entails drawing
Nsample = 60000 samples with standard sampling settings (see table B.2). While there
might still be better hyperparameters to improve the performance of DE, the point of
showing this plot is that the gradient-based method is orders of magnitudes more effi-
cient in converting function evaluations into useful parameter updates. This is expected
due to the extra information about the cost landscape enabling it to quickly reach a final
of DKL ~ 5-1073.

Based on these results we decided to use gradient-based optimization for the remain-
der of our experiments.

What happens when training with sampled gradients?

In order to assess the learning process of algorithm 3 we did numerical experiments
where we trained RBMs with Gibbs sampling. Again, we used the Bell state’s SIC-
POVM distribution as a simple example with N, = N, = 4. Figure 4.2(a)-(c) shows
the learning curves of DKL as well as classical and quantum infidelity for increasing
Nsample- The total number of samples was collected distributed over 16 Markov chains.
Thus, the number of samples per visible configuration increases is a power of ten. In the
left panels the orange points are the DKLs based on the sampled distribution at every
epoch. The blue points (left) and the curves on the right panels are based on the exact
distribution which is still feasible to calculate for this small system.

One can observe that the sample DKL initially drops until it converges at around
1000 epochs to a value given by the finite sample size o< 1/Ngample. In contrast the
metrics based on exact calculation using the RBM parameters continue to improve with

41



N, eval

0 250 500 750 1000 1250 1500 1750 2000
0.250 A
2 0.225
Q
0.200 - ™
0-175 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140
0.3
= 0.2 A
X
Q
0.1 1
00 i T T T T T — T T — |ﬂ T
0 250 500 750 1000 1250 1500 1750 2000
epoch

Figure 4.1: Example of training BSS2 on the Bell state with DE (top) and ADAM (bot-
tom). Equivalent number of function evaluations Ny, are shown (1 per
epoch for ADAM, O(N,,) per epoch for DE).
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the sample-based gradient estimates. This shows that even a low number of samples is
sufficient for obtaining informative updates. However, having more samples per update
seems to improve the quality of the gradient resulting in faster learning which can be
seen when looking up the number of epochs required to reach a fixed DKL.

4.2 Results for state representation

In the following sections we show the results of learning a variety of quantum states on
BSS2, from product to entangled state, from pure to mixed state and from ground to
steady state. All states have in common that they are related to the state space of the
TFIM.

4.2.1 The spectrum of TFIM ground states

By changing the ratio between spin coupling and external field 4 /.J in the TFIM one can
move between its paramagnetic and ferromagnetic phase. For A/.J > 1 the ground state
approaches a product state where all spins are aligned in field direction. On the other
end, for h/J < 1 the ordered phase exhibits a degeneracy between all spins aligning
in positive or negative z-direction akin to a GHZ-like state. For h — 0 this degeneracy
is spontaneously broken in favor of one possibility. In this sense, the ground states
of the TFIM interpolate between the extremes of uncorrelated product states |¢/Y) =
(10) 4+ ]1))/+/2)®N and strongly-correlated entangled states [1)3,).

Figure 4.3a shows the Shannon entropy of the distributions obtained for different
ground states of the TFIM (N = 4) for both the SIC-POVM and the z-basis. For
comparison the entropy of a uniform distribution p,,; are also shown for each case. For
the SIC-POVM the uniform distribution represents the maximally mixed state ppixed =
4~NT where all four POVM elements have identical projections. In the z-basis the
uniform distribution is the equal superposition |¢f ).

The relative entropies between the ground state encodings and the respective uniform
distributions are shown in Figure 4.3b. For the SIC-POVM the distribution stays quite
close to a uniform distribution with a minimum when approaching h/J = 0. In con-
trast at this point the z-basis distributions are very peaked since two configurations are
dominating for & — 0 and thus there is a large relative entropy.

Naively, one could assume that BMs are better at representing distributions with
higher Shannon entropy, the uniform distribution being the easiest one and worse at
lower entropies, the delta distribution being the hardest. The reasoning is that one ini-
tializes the parameters randomly close to zero and a BM with constant or even zero
parameters would indeed perfectly encode a uniform distribution. On the other hand, it
is outright impossible to represent delta distributions where configurations with vanish-
ing probability mass occur, due to the positivity of the Boltzmann factor. We will see
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Figure 4.2: Numerically learning the Bell state with an RBM with N, = 4. Left: Com-
paring the Dy when Gibbs sampling and when analytically computing the
marginal distribution py(v). The parameter updates are based on sampled
gradients where Ng,mple 1s the number of samples per epoch. Right: Fidelity
and quantum fidelity exactly calculated based on the RBM parameters.
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Figure 4.3: (a) Shannon entropy of the TFIM ground state (N = 4) expressed as mea-
surement distribution in the z-basis and in the tetrahedral POVM frame as
a function of h/J (excluding h = 0). Dashed lines indicate entropies of
respective uniform distributions py,;. (b) DKL between p and p,y;.

by example that at least for the POVM representation this is not valid.

4.2.2 Product states

Product states are characterized by the property that their wave functions |¢) = [1;) ®
|1p2) or their density matrices factorize: p = p; ® py. For spin systems that are in a
product state over each site, the degrees of freedom grow linearly with V.

Intuitively, a description in terms of a probability distribution should exhibit this prop-
erty as a factor distribution: p(v) = Hi\; p(v;) which in the case of the BM distribution
could be achieved by switching off the interaction W = 0. Then the relative importance
of each site is given by the visible biases. This is sufficient in the z-basis representation
where each neuron represents one spin. For the SIC-POVM where one spin is mapped to
two binary units the factorization should be over marginals pg(v) = vazl Do, (V2i, U2i11)-

Figure 4.4 shows the example of learning the product state [¢) = |1)®Y with SIC-
POVMs and an RBM architecture with NV}, = 10, sampling N,¢p,s = 5 times per step.

With 10 hidden units we can represent systems up to six spins with a DKL < 107,
Since Ny, is fixed, the ratio Nparams/ 4N goes down exponentially, from 2 for N = 2 to
0.02 for N = 6. Thus, all RBMs except for the smallest are underparameterized when
assuming a generic state. Note that the quantum fidelity shown in fig. 4.4b is not a good
measure in case of the SIC-POVM, since negative eigenvalues lead to fidelities larger
than one.

Figure 4.4c and fig. 4.4d show the magnetizations (o,) = > _;{c?)/N and correlators
Cua(d) = > (oioi*?) /N for the largest state |1)®®. The light blue shade indicates

a
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the variance over sites. Despite the large DKL these observables lie close to the exact
values. However, deviations exist as in case of observables in x- and y-direction which
lie systematically above the exact values.

4.2.3 Entangled states

Entangled systems, in contrast to product states, exhibit strong correlations. The Bell
pairs |¢+) = (|01) £ ]10))/v/2 and |¢.) = (|00) & |11))/+/2 are prime examples
of entangled quantum states. In fact, they are maximally entangled since when one
spin is measured, the state of its partner is known with certainty. It is well-known that
these states exhibit correlations that are classically forbidden since they violate Bell
inequalities [Bel64].

Intuitively, the strong quantum correlations are expected to carry over to the prob-
abilistic description which would manifest as correlated spike patterns in the SNN. If
this is so the finite correlation strength in an analog system like BSS2 could potentially
curtail the representability of such states.

We reproduced experiments of [CBB*21] where the Bell state |¢pen) = |¢4) and
its N-particle generalization [¢)Y};,) was encoded on the BSS2 system. Besides the
RBM two other architectures were used. The partially-restricted BM (PRBM) has addi-
tional intra-layer interactions between visible nodes. The two-layer BMs (dubbed "deep
BMs", DBM) shown in fig. 4.5 retain the intra-layer restriction and add an additional
hidden layer that only interacts with the first.

Figure 4.5: BM with two restricted hidden layers (DBM)

The number of parameters Np,:ams depends differently on the number of hidden units
for each architecture as shown in table 4.1.

Learning the Bell state (|00) + [11))/v/2
Figure 4.6a compares four architectures in learning the Bell state based on the
number of parameters required to reach a certain DKL. The number of hidden units
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Table 4.1: Total number of parameters as function of the number of visible /V, and hid-
den NV}, units per architecture.

RBM PRRBM DBM

Nparams | NoNp + N | Ny(N, +1)/2+ NyN, + N | NyNp, + Ny Ny, + N

(a) (b)
——— @ RBM o ® A
o®A PRBM Lo-1 __. o i
1 ® DBM, N, =5 &, ] ?
> A DBM, N, =10 | ] %
102 ? Y 1072 5 +
| [y ¢ A 5
50 100 150 50 100 150
Nparams Nparams

Figure 4.6: Learning the Bell state with different architectures. Statistics are over 5
training runs drawing Ngumple = 2 - 10° samples per epoch.

were chosen from N, € {2,...,10}. In case of the DBMs only N, was varied in two
realizations with N, € {5,10}. Per epoch N,.,s = 6 standard sample runs were per-
formed. The data shown are median values with 15%/85" percentiles across 5 training
runs.

We observe that all architectures are able to reach DKL = 6 - 10~3. However, for
this the shallow networks (RBM, PRBM) require only around 50 parameters, while the
DBMs need £ 100. This is surprising when assuming that a larger number of parame-
ters translates directly to representational power. However, one possible explanation is
that the h;-layer constitutes an information bottleneck for the ho-layer for Ny, < Np,,
such that the additional hidden units can not be fully utilized. Accordingly full rep-
resentational power would be reached at N, = N, = 5 with Npgrams = 59 and
Ny, = Np, = 10 with Npyrams = 164. The additional parameters in the PRBM seem to
be put to use since its curve does not deviate significantly from that of the RBM.

The quantum fidelity is shown in fig. 4.6b despite not being a good measure when
using SIC-POVMs. However, in contrast to the learning behavior for the product state
in fig. 4.4b here it nicely approaches one from below. Due to this correlation with the
DKL it seems reasonable to assert that a fidelity of around 98% can be achieved. In any
case, we are interested in the capacity to correctly capture observables which is shown
for larger systems below.

48



(a) (b)
10 @A ® =RBM 3x107t{_ @
1@ ® DBM, N, =5
- ] ® A DBM, Ny, =10 1z 9, 10! @ ‘
X 6x 1072 \

® A 4 O

° e lr“

e/ 10~ - Al

100 200 300 100 200 300

4 %1072 1

N, params N, params
Figure 4.7: Learning the GHZ state with different architectures. Final mean of single
run with Ngapple = 4 - 10% samples per epoch is shown.

The GHZ state (|000) + [111))/+/2

For the GHZ state we ran the same experiment with NV, € {5,10,15,20} and an
increased number of N,.,s = 12 sampling repetitions. Figure 4.7 shows the resulting
parameter dependence of DKL and quantum fidelity.

The gap between RBM and DBM curves is again visible, reaching around DKL ~
4-1072 and F ~ 90%. This is half an order of magnitude worse compared to the equally
sized product state.

One aspect of working with a constantly evolving system like BSS2 is that the out-
come of experiments also varies over time. Due to the numerous adjustments on dif-
ferent software and hardware levels it is difficult to infer which exactly are responsible
for a certain observation in the user accessible observables. Figure 4.8 which exempli-
fies these effects in the learning capability of the GHZ state aggregates over all these
changes.

One finds that over the course of the year 2020 there was a significant improvement in
terms of the DKL and fidelity reached for a fixed number of hidden units. We attribute
the main improvement to a chip replacement that happened in October and to the switch
from chip version 1 to version 2 which happened in late November. The reference are
data from Czischek et al. [CBB*21] taken in April.

Despite the improvement, we cannot overlook the saturation of the DKL which starts

at N, = 30. This is not to be expected from equivalent numerical simulations and is
connected to technical limitations of LIF sampling on BSS2.
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Figure 4.8: DKL and quantum fidelity after learning the GHZ state with an RBM with
N}, hidden units over the course of the year 2020 (April 2020 are the data
from [CBB™21]

The hardness of four entangled spins (|0000) + [1111))/v/2

To further examine the scaling for strongly entangled states, we looked at [1)¢,).
Figure 4.9 shows a single experiment with N, = 30 and N,.ps = 24, thus doubling the
number of samples for the network size where performance saturated for the GHZ state.
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Figure 4.9: Learning the GHZ-like state |¢)¢y,) with an RBM with N, = 30 and
Nieps = 24.

Still the metrics further deteriorate only reaching DKL ~ 107! and F' = 70% which
is almost an order of magnitude worse than the equally sized product state. Even though
the ansatz is overparameterized, it turns out to be harder to learn GHZ states than it is
to learn product states with with an underparameterized model. This suggests that the
SIC-POVM distriutions of entangled states indeed exhibit more complex correlations.

Despite the worse DKL, magnetizations and correlators are learned well and quickly.
One observes that compared with the product state example the variance between sites
is smaller. Instead the noise between training steps is quite large, in particular, for the
z-direction.
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4.2.4 Ground states of the TFIM

Product states and strongly entangled states are the extreme ends of a spectrum in terms
of correlation strength. We will now turn to the intermediate regime, specifically, we
will look at the ground states of the TFIM at the quantum critical point h/.J = 1.

The result for learning the N € {3,4, 5} ground state expressed with the SIC-POVM
is shown in fig. 4.10. An RBM with N}, = 40 was used with N,.,s = 10 sample
repetitions.

For N = 3 one finds a DKL similar to that for the GHZ state. However, a DKL =~
107! is only reached with N = 5, roughly suggesting that the ground state is easier to
represent than GHZ states, while it is harder than product states.

Again we find a correlation between DKL and quantum fidelity which hints that the

ground state and its observables are better represented here compared to the equally
sized GHZ state which shows lower fidelity.

1011 ; 1.0‘}
§6x1025{ { = 097 }

4 x 1072 0.8 - *

Figure 4.10: Learning SIC-POVM representation of the TFIM ground state at the crit-
ical point with an RBM, N}, = 40, Ngmple = 2 - 105. Single runs with
statistics over last 200 epochs.

4.2.5 Steady states of the TFIM

So far, we have only dealt with pure states. Since SIC-POVMs are built for a general
mixed state setting we have employed them to represent steady states of the TFIM.

For this we assumed a Lindbladian time evolution as in eq. (2.6) with local jump
operators I'y, = o~ and homogeneous decay rates 7, = <. The steady state p, is
reached in the long time limit as the unique eigenstate of the Liouvillian operator with
eigenvalue zero: Lp, = 0. As initial state we chose the product |1)®Y. With these
settings we used the default steady state solver of the QuTiP library [JNN12] to obtain
the target states.
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Figure 4.11 shows results for the critical point /.J = 1 and y = 0.5. The architecture
is an RBM with N}, = 30 and N,eps = 10.

As in the previous cases the DKL increases quickly when going to larger systems
while keeping N, fixed reaching a DKL ~ 10~! for N = 6. While magnetizations are
well captured, the two-body correlators for y- and z-direction deviate significantly from
the numerical values. This is not an outlier when viewing the full set of experiments
that we have done which cover dissipation rates v € {0.25,0.5,0.75,1.0}.

4.2.6 TFIM ground states in the z-basis

Using the SIC-POVM we have only been able to learn systems with very limited sizes.
There are many reasons for this which we will discuss in more detail in chapter 6. For
now we will instead replace the representation and view the TFIM ground states in the
z-basis as pure states with non-negative real amplitudes. With this simplification the
number of spins /V corresponds exactly to the number of visible units N,. By definition
this representation encodes well-defined quantum states and hence the quantum fidelity
is a valid distance measure.

Using an RBM with N;, = 20 hidden units and N,p,s = 10 sample repetitions we
targeted the TFIM ground states with N € {3,...,10}. Thus, system sizes N > 6 are
underparameterized with respect to the number of wave function coefficients.

Figure 4.12 shows that the representation stays well below a DKL = 10~! and above
a fidelity of F' = 99% for the largest system with N = 10. In the next chapter, we take
this good representability as the basis for a neuromorphic implementation of VGS.

10-3 E

Figure 4.12: Learned z-basis representation of the TFIM ground state at the critical
point with N = 20, Ngmple = 2 - 10°. Single runs with statistics across
last 200 epochs.
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4.3 Discussion

In this chapter we got an impression of what is currently possible in terms of quantum
state representations with BSS2.

We found that the Bell state, as a simple benchmark for SIC-POVMs, can be learned
very accurately with just NV, = 4 hidden units, with the maximum representation qual-
ity of larger system sizes quickly degrading. Since we have not exhaustively scanned
the regime of large number of hidden units (> 30 - 40) there is still a possibility that
marginal improvements can be made.

However, we cannot hide the fact that, for example, the GHZ state is not learnable
with a DKL of less than 1072 even when in the overparameterized regime and provid-
ing thousands of samples per configuration. Suboptimal mixing behavior is also not a
plausible explanation, since samples were aggregated across multiple Markov chains by
repeated sampling experiments.

This suggests that the underlying limitation is not related to the theoretical representa-
tion power of the BM that is being emulated. Instead, the cause seems to lie in technical
limitations of the sampling process on BSS2 which become more severe in the case of
large target distributions and/or many hidden units.
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5 Searching and Finding Ground States

In the following chapter we will present our results on utilizing the BSS2 chip for vari-
ational ground state search. First, the straightforward gradient-based learning algorithm
for the z-basis state representation is discussed. Based on software simulations with
Gibbs sampling we compare the first-order gradient method to the natural gradient and
discuss the difference between 01 and —11 representation. With BSS2 in the loop we
apply our method to the TFIM, evaluating the energy difference and relevant observ-
ables for the phase transition. Throughout a RBM ansatz was used where the visible
units are directly mapped to spin configurations.

5.1 An energy minimization algorithm for
BrainScaleS-2

In the previous chapter we focused on representing known target distributions by min-
imizing its DKL to the state encoded in the BMs. In this chapter we will apply almost
the same algorithm to learn a target state that is, in principle, unknown for large system
sizes, namely the ground state of a given Hamiltonian H.

In the following we assume H to be a stoquastic Hamiltonian such that its ground
state wave function has real and non-negative amplitudes. Then our variational ansatz
for the ground state by a probability distribution over the z-basis does not loose phase

information: [ip) = >, +/pe(v)|v). For our purposes, pg(v) = p(v) is the marginal
distribution of the BM emulated by the SNN on BSS2 and as such is normalized.

The objective function which we minimize is the variational energy of the encoded
state [1g): C(0) = Ep = (19| H|1bg) The derivative of Ejy with respect to a connection
parameter IV;; is readily obtained:
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0w, Eo = 0w, > \/p(0)p(v') Hyyr (5.1)

= Z M ]L?va’awijp(v) (5.2)

Z (Z 2 zip(v Z zlz]p > (5.3)
= Z Z Eloczlz]p Z Eep( Z 2i25p(2') (5.4)

Zl

= Z ELOC — Ey) 22;p(2) (5.5)

= (B~ Bp) 2z (5.6)

p(2)

Analogous to the above, the derivative with respect to bias parameters by, is given by:

On B = { (B = By) ) (5.7)
p(2)

From eq. (5.2) to eq. (5.3) we have used the symmetry of the Hamiltonian. In eq. (5.4)
the local energy Fi°° = >, Hywry/p(v’)/+/p(v) is introduced and the variational
energy appears in eq. (5.5) due to the relation Ey = Y Evp(v).

To deal with the numerical problem of a vanishing entry pyg(v) we have introduced
a small parameter ¢ which essentially introduces a bias towards a uniform distribution:
EX¢ =" Hyy\/Do + €/+/Dw + €. This is typically choosen as e = 1072,

With this expression we adapt the target learning algorithm 3 by replacing the gradient
calculation to obtain algorithm 4 which performs VGS. Note that the local energy is
calculated by means of the full histogram of visible configurations such that the same
caveats in terms of scalability apply. Also the variational energy is a global quantity of
the model and as such this learning rule can not be expressed in terms of local updates.

In order to track the accuracy of the algorithm, the exact ground states |t)) and their
energies Fj are obtained with exact diagonalization. While low energy deviations |E —
Ey| are an indication that the algorithm has found the ground state, we also consider the
DKL between the exact target distribution and the encoded distribution and their state
overlap, i.e. the quantum fidelity.

Stochastic reconfiguration vs ADAM
In the previous chapter, we had already excluded DE, the gradient-free optimizer
and selected the ADAM optimizer instead due to its efficiency and fast convergence.
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Algorithm 4: Gradient-based in-the-loop learning of variational ground states
for Nepoch steps. At every step Ngample cOnfigurations are generated using BSS2.

1 calibrate chip setup ; // BSS2
2 provide Hamiltonian f; // Host
3 initialize parameters 6, ; // Host
4 foree {1, - -, Nepoen} do

5 configure parameters 6. on chip ; // BSS2
6 sample model data S = {z}éVS‘"‘mplc ~ po(2); // BSS2
7 | create histogram py(v) = m Yseslvs =] // Host

loc __ p(v')+e .

8 | calculate local energy E.0° = >, Hy PO // Host
9 calculate gradient A, = 0y Fy ; // Host
10 | update parameters 0., < 0. — Ne0(A6,) ; // Host
11 generate samples after convergence ; // BSS2
12 evaluate metrics and expected values ; // Host

However, in previous publications, stochastic reconfiguration (SR), which for our
approach is equivalent to natural gradient descent (section 3.4.1), has often been used in
the context of energy minimization, in particular, in the case of complex RBMs [CT17],
[BSD20]. We have therefore also tested this optimizer in software for our approach with
real RBMs where SR is equivalent to NGD.

Figure 5.1 shows both optimizers employed in algorithm 4 to the TFIM with N = 5
at the critical point. To regularize the Fisher matrix, we used Tikhonov regularization
[TGSY95] with an initial €6, = 1 X 10~* and a decay of Treg = 0.99. We used stan-
dard parameters for ADAM, Gibbs sampling and initialization (see appendix B) and for
both optimizers an exponential learning rate schedule with initial value n = 0.1 was
employed. A RBM with N, = 5 slightly overparameterizes the problem in order to just
compare optimization performance.

Indeed, we find a faster convergence of the natural gradient method, both for exactly
calculated updates and for those estimated with samples. ADAM requires about an
order of magnitude more steps to achieve the same absolute energy errors per spin.

In both cases, we see possible convergence scattered over orders of magnitude of
energy difference. This highlights the weakness of gradient-based methods to get stuck
in local minima. In the ADAM learning curves, there is a characteristic step in the first
O(100) steps of all runs that we had not seen in case of target learning ground states.
This seems to be an extended flat region of the energy landscape to which first order
methods are susceptible, while the second-order natural gradient is not. However, in
some natural gradient runs we also see plateaus and step-like learning curves, albeit at
much lower energies, indicating that a qualitatively similar problem can occur there.
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Figure 5.1: Learning the ground state of the TFIM with parameters N = 5, h/J = 1
using a RBM with N, = 5. (a) Natural gradient descent and (c) ADAM
with exact updates (10 initializations) and (b), (d) respectively with Gibbs
sampling (3 initializations).

When optimizing based on sample estimates, the energy error is bounded by the
amount of samples that are used every epoch, in this case at AE/ /N ~ 1 x 1073, Thus,
only the energy landscape above this barrier plays a role. This is why we again see the
step-feature in case of ADAM, while it is invisible to the natural gradient.

We were able to successfully use both methods to learn ground states on BSS2. An
exemplary comparison between the two is shown in fig. 5.2 where the ground state
for N = 4 and h/J = 1 was learned with RBMs of similar, overparameterized, size
and comparable Ngample. Standard optimization parameters were used for ADAM (ta-
ble B.3), while NGD used an initial €,,; = 1 X 10~*, a regularization decay of Vreg =
0.999 and a learning rate of n = 0.5.

While NGD learns faster in the beginning it still takes over 500 epochs to converge to
AE/N =~ 1073. ADAM, on the other hand, is stuck in its plateau for the first few hun-
dred epochs, but when it finally starts to converge further, it improves quickly, reaching
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Figure 5.2: Comparing NGD (left) and ADAM (right) for searching the ground state at
N =4, h/J = 1 with BSS2. Comparable models and sample numbers were
used.

equal performance in fewer number of steps.

For larger systems we observed that both NGD and ADAM take more steps to con-
verge. However, NGD is also slower in terms of wall-clock time due to the additional
burden of sampling and inverting the FIM.

Therefore we decided against using NGD which has the further disadvantage that the
regularization parameters might depend on the system size requiring additional finetun-
ing.

Differences between neural- and spin-units

In principle, it is not important which numerical values are attributed to the binary
states in the BM, since these can be converted into each other with the help of a linear
transformation. If one speaks of neural units 2,e.ra1 € {0, 1} is meant, if it is about spins
Zspin € {—1, 1} is natural.

We have tested both possibilities for algorithm 4 in numerical simulations. The
ADAM optimizer with standard parameters (table B.3) is used for both settings and
parameter updates as well as distributions are calculated exactly for TFIM N = 5,
h/J = 1 with a RBM with N;, = 5. Both simulations were repeated 10 times with
standard initialization.

While we again see plateaus for "neural units" during the first 1000 epochs, these
disappear in case of the "spin units". As a result the "spin unit" BMs converge much
faster, comparably, to NGD.

Thus, while the computational power is not changed by switching representations,
the properties of the energy landscape are evidently changed favorably for this specific
optimizer.

The "neural units" are natural for the LIF emulation of BMs. This is because the ac-
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Figure 5.3: Learning the ground state at N = 5, h/J = 1 using a RBM with (a) "neu-
ral units" {0, 1} and (b) "spin units" {—1,1}, N;, = 5, exact updates and
distributions, 10 initializations.

tivity of spiking neurons ranges between silent ("zero") and bursting ("one"). However,
one can still utilize "spin units" while calculating gradients and bookkeeping param-
eters on the host computer. When configuring the hardware one just has to translate
Zneural = O-S(Zspin + 1)

We have tested this approach and found it to work as expected to converge slightly
faster for small systems (/N < 4). However, for larger systems no gains were observed
and the translation sometimes completely failed to converge. We concluded that the
additional conversion is not worthwhile.

5.2 Results for the TFIM

In this section we present results on applying the algorithm introduced above to search
for ground states of the TFIM. First, we focus on learnability in terms of system sizes
and required model capacity. We then proceed to evaluate relevant observables to the
phase transition of the TFIM.

Finding ground states at the critical point

In section 4.2.6 we had seen that we can represent ground states up to at least
N = 10 in the z-basis with BSS2. Employing algorithm 4 we checked whether it is
possible to reach these representations when minimizing the energy.

In fig. 5.4 the number of spins N is increased from N = 3to N = 10 for h/J =1
while keeping the number of hiddens (roughly) fixed. Learning is performed with an
RBM with N, = 40 and Ngmple = 2 - 10° samples are drawn in each epoch for N =
{3,...,8} and respectively N}, = 50 and Nyympie = 4-10° for N' € {9, 10}. Even though
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Figure 5.4: Median energy difference and infidelity over last 200 epochs after conver-
gence of ground state search at the critical point. For N € {3,...,8} N, =
40 and Ngmple = 2 - 10° and for N € {9, 10} N;, = 50, Ngmple = 4 - 10°.
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Figure 5.5: Learning curves of energy difference and infidelity for ground state search in
the TFIM at the critical point. For N € {3,---,8} N;, = 40 and Ngmple =
2-10° and for N € {9, 10} N;, = 50, Ngmple = 4 - 10°.

the increased number of hidden neurons and samples for sizes N = 9, 10 was necessary
to ensure convergence of the learning algorithm, compared to N < 9 the RBM has less
parameters than the number of wave function coefficients (509 < 22 and 560 < 210).

Again a quantum fidelity greater than 99% can be achieved and even up to 99.9%
for systems N < 6. However, the curve did not move noticeably downward despite
the use of twice as many neurons as compared to fig. 4.12. This hints again at the
underlying limitations which cause the representability to decrease with larger systems
and distributions.

Looking at the learning curves in fig. 5.5 we recognize the plateaus predicted by our
numerical simulations. These cause the optimization to take progressively longer as the
system grows. Note that the number of epochs was cut at 1500, although up to 2500
steps were calculated for N = 9, 10.

Since the fidelity imposes a bound on all expected value errors it is reasonable to ex-
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Figure 5.6: (a) magnetization and (b) two-body correlator Cy,(d = 1) during learning
of the TFIM ground state with NV = 10.

pect good agreement of the learned observables. Figure 5.6 verifies this for NV = 10 with
magnetizations and two-body correlators in x- and z-direction. Note that the expected
values in y-direction are identically zero with zero variance since we are working with
real valued wave function coefficients.

Dependence on the model complexity

In order to assess the required number of hidden units for a good variational repre-
sentation depending on the system size we have performed a grid search over (N, N,,) =
({3,...,8},{5,10,20}) drawing Nample = 2 - 10° samples for 1500 epoch each.

The results are shown in fig. 5.7 in terms of median energy error per spin and fidelity
over the last 200 epochs. While N, = 5 is sufficient to accurately describe the systems
for N < 6, above that a sharp drop in fidelity to below 90% and respective increase in
energy error is observed. Increasing to N, = 10 enables the model to also capture the
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Figure 5.7: Median energy difference and infidelity after convergence for ground state
search in the TFIM at the critical point. For N € {3,--- .8}, N}, €
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Table 5.1: Parameter settings for learning different h/.J.
h/J 0.1 {05]09 10125 5.0 1100

Neample/10° | 2 2 4 2 2 2 2
Ny, 50 | 30 | 40 | 40 | 30 | 20 | 30
Nparams 458 | 278 | 368 | 368 | 278 | 188 | 278

ground state of N = 6 with F' > 99%, while N, = 20 is required for N = 7, 8.

One would think that more hidden units could decrease the slope of the green curve
(N, = 20) further, also bringing the large systems above 99.9% fidelity. However,
comparing with fig. 5.4 where N, = 40 was used there is no significant difference
in either energy error or fidelity, suggesting that model capacity is not the dominating
limiting factor.

Probing the quantum phase transition

Above we have established that the ground state can be learned well at the critical
point. However, due to finite size effects the actual phase transition point can be shifted.
Thus, we further tested our approach at additional points along the h/J dimension,
specifically h/J € {0.1,0.5,0.9,1,1.25,5, 10} in order to observe the quantum phase
transition between the ferromagnetic and polarized regimes.

For each data point slightly different network topologies and sampling parameters
were used which are summarized in table 5.1. Note that these parameters were not
optimized and most models are overparameterized and likely oversampled. For A = 0.9
more samples were required in order to learn the symmetric ground state.

In fig. 5.8 the two key observables indicative of this transition are shown, namely,
the magnetization (o, ) and the correlation length of zz-correlations ¢,,. As the field
strength goes from 0.1 to 10 the ground state becomes increasingly polarized in z-
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Figure 5.8: Diagram of the phase transition between ordered and disordered regime.
The x-magnetization (solid) and fitted correlation length &,, (dashed) are
shown. In the former case errors are standard deviations over the last 200
learning steps, in the latter case error bars indicate the standard deviation of
the parameter fit.

direction.

The x-magnetizations were averaged over the last 200 epochs of learning showing
good agreement with the exact solution (solid line).

In fig. 5.9 the spin-spin correlations in z-direction C,, are shown as a function of
the spin distance d and one can see non-vanishing correlations due to finite size except
in case of the almost fully polarized state at h/J = 10 where the spin interactions are
dominated. The correlation lengths &, are extracted by fitting the data points of each
field strength with the following function (shown as dotted lines),

C..(d) = Aexp (—d/¢..) + B (5.8)

where the additional parameters A and B account for finite sizes effects.

The fit parameters &, , and their standard deviations are shown in fig. 5.8 together with
the corresponding theoretical values (dashed line). Due to finite size effects we observe
that the correlation length has a maximum at h/J ~ 1.25 marking the phase transition
point and closely matching the theoretical prediction. While the points h > 0.9 agree
well with both observables, (0,) and &,., the points at h = 0.1,0.5 have significant
deviations for the correlation length.
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Figure 5.9: The correlator C,, as a function of spin distance d. The exponential corre-
lation decay is characterized by fitting the length scale &, ..

The reason for these deviations is that the symmetric ground state distribution of the
wave function becomes harder to learn for h — 0 as it then increasingly approaches
a GHZ-like superposition of the two extreme configurations |1)®Y and |0)®". Unfa-
vorably, such a distribution requires both highly synchronous activity (large excitatory
weights) and synchronous inactivity (large inhibitory weights). This hardness mani-
fested itself in an increased need for samples at h/.J = 0.9 in order to well represent
the symmetric ground state. The points below, h/J = 0.1,0.5 are even further in the
ferromagnetic phase which makes learning these strong correlations prohibitive. This
can be seen in fig. 5.10b where the overlap with the symmetric ground state is signif-
icantly decreased. In contrast, fig. 5.10a shows that the relative energy error is, with
AE/|Ey| =~ 1073, in line with the remaining points. This behavior can be understood
from looking at the learned variational states.

The final distributions at h/J € {0.1,0.5,0.9} are compared in fig. 5.11a. It reveals
that while the symmetric ground state is learned at h/.J = 0.9, at lower fields a sym-
metry broken distribution is obtained that favors the correlated activity of all visible
neurons.

While in fig. 5.11b the points h/J = 0.9, 5 match the theory curves well, the sym-
metry broken distributions at low h/.J only agree with the outer parts of the positive
branch as the occupancy of non-extreme z-magnetization shrinks. The remaining mag-
netization states are sampled with a roughly constant probability of 10~ corresponding
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Figure 5.10: (a) Relative energy error and (b) infidelity as a function of h/.J

to O(1) samples. As a result the largest absolute deviations from the symmetric ones
occur at m = 4 which holds almost all the probability mass compared to less than half
in case of the symmetric solution.

Spontaneous symmetry breaking occurs in the TFIM when approaching 2 — 0 where
the energy gap between the two states vanishes enough that small fluctuations of the sys-
tem are of the same order of magnitude and trigger the local collapse of the superposition
into one of the two configurations [0)®" and |1)®V.

Where those fluctuations come from and when symmetry breaking sets in depends
on the specific substrate that simulates/emulates the TFIM. In our case the standard
parameter initialization seems to be biased towards the |1)®" symmetry broken dis-
tribution setting up a minimum in the energy landscape which is already favored for
h/J = 0.1,0.5. However, we found that the symmetry can also be broken in favor of
the |0)®¥ state by lowering neuron activity with negative biases.

5.3 Discussion

In summary, we have presented a proof-of-principle of neuromorphic VGS for stoquas-
tic quantum spin systems on BSS2. With our method we have analyzed the TFIM phase
transition and found good agreement with theory up to N = 10. However, there are a
few points that constrain the broader applicability of this method.

First, we found that scalability becomes independent of the number of hidden units at
around N, = 20 — 30 indicating that an unknown problem is restricting the accessible
system sizes. We examine possible technical causes in section 6.1.

Secondly, learning the symmetric ground states became harder as the field strength
h was decreased to the point where we observed spontaneous symmetry breaking as
outcome of the optimization. The main problem stems from the state encoding in the
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Figure 5.11: Symmetry breaking for low £ (a) in the learned distributions and (b) in the
distribution of z-magnetization.

z-basis such that extreme correlations are required to represent the ground state in this
regime. A possible solution would be to choose a different encoding either on the level
of the quantum basis or in terms of the spike coding.

In addition, we assumed the Hamiltonian subject to the ground state search to be
stoquastic. This assumption is a strong simplification as it excludes quantum systems
where a sign problem can occur. In order to make our ansatz more general we would
need to also model the phases of the wave function coefficients, e.g. with an additional
SNN like in [TMC™ 18]. Importantly, the POVM ansatz is not suitable without progress
on the question of positivity.

Finally, the presented method is not scalable from the algorithmic perspective due to
the reliance on the full set of wave function coefficients. However, the choice of this
algorithm is indebted to the current limitation to in-the-loop learning with BSS2 and
the lack of a full theory of LIF sampling. Indeed, with the capability of implementing
local learning rules on-chip the global learning rule presented in algorithm 4 could be
approximated with methods like event-driven constrastive divergence [NDP' 14], pre-
dictive coding [WB17] or direct feedback alignment [CPGR 19, LZZ"20]. Furthermore,
given an accurate prescription to translate hardware parameters to LIF parameters to BM
parameters one could efficiently compute the wave function coefficents without the need
of exponentially many samples like in [CT17].
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6 Limitations and Prospects

In the previous chapters we have seen how to represent quantum states (chapter 4) and
how to find ground states (chapter 5) with the BSS2 chip. However, there are several
challenges that limit the applicability of our methods and in particular their scalability.
In this chapter we will look specifically at the technical limitations imposed by the BSS2
chip and the implications for further work on QST and VGS. Finally, we present an idea
for steady state search in a dissipative OQS utilizing marginal POVM distributions. This
is one of the approaches we have explored to improve the algorithmic scalability of our
learning methods.

6.1 Limitations of the BrainScaleS-2 chip

Low precision parameters

On the BSS2 system the analog weights have 6-bit values with an additional sign
bit implemented by the physical separation between an excitatory and inhibitory synapse.
The biases are 10-bit values which is the resolution at which the leak potential £; can
be configured.

These design choices are not arbitrary, but reflect various trade-offs between chip
resources like the size of analog and digital memory that stores these parameters, the in-
herent variability of analog circuitry and the precision required by applications. Viewed
from the application side we are interested in whether and how much the performance
of LIF sampling is affected.

All else being equal a lower parameter precision leads to a more course grained
space of representable distributions. A continuous random distribution is then increas-
ingly less probable to be well representable as the resolution is decreased. We per-
formed a simple numerical experiment where we randomly initialized RBMs (V, = 20,
Nj, = 40) with different weight magnitudes (dynamic range) wy,,x and compared the
parameters drawn from the continuous distribution with the distributions obtained by
various degrees of discretization. The weights are discretized to equidistant values on
the interval [—wWmax, Wmax)- For 1-bit only the two interval edges are possible. For x-bit
discretization with z > 1 the grid of possible values spans 2% — 1 states containing O.
Note that all biases were set to the center of the activation functions and kept at 10-bit
precision.

Figure 6.1a shows how the discretized distribution exponentially approaches its con-
tinuous origin as the precision of the parameters is increased.
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When we do this same experiment on BSS2 (fig. 6.1b) we can obviously only increase
the resolution up to 7-bit. Also instead of exact distributions we perform LIF sampling
for a network of N, = 8, N, = 20. We again find a quick decrease in DKL which,
however, plateaus at 6/7-bit precision.

The lack of decrease from 6-bit to 7-bit is surprising since the number of possible
states per weight has again doubled. On the other hand, we recognize that at that point
we have reached the typical regime of DKL ~ 10~2 where the sampling precision satu-
rates for large networks. In that view, one conclusion is that at the maximum precision
of 7-bit LIF sampling is not limited by parameter precision.

It is worth noting that the number of hidden units was fixed here and no training was
performed in order to isolate the effect of low precision weights. Thus, parameter pre-
cision might still affect the overall training trajectory or be more important for smaller
hidden layers.

From the perspective of representability of neural networks, increasing the number
of hidden units is another argument for why low precision weights are not an absolutely
limiting factor. Indeed, there is a lot of work on quantized neural networks, artificial
[CBD14, SWCN] or spiking [PPS™12], and it has been shown that while low precision
parameters usually lose a modest amount of accuracy, this loss can be compensated
for by increasing the network size while retaining advantages in energy efficiency and
memory requirements [HAT16].

Boltzmann approximation

The LIF sampling scheme for Boltzmann distributions that we discussed in sec-
tion 3.3.1 is an approximation Gibbs sampling for BMs. By setting equal the integrals
of the PSPs of both domains and using the regression parameters obtained by fitting
the activation functions, one can translate weights and biases from the LIF to the BM
domain.

However, the basis of this translation is the assumption that every spike has the same
influence (proportional to the synaptic weights) on membrane potentials of receiving
neurons and that this impact does not extend for longer than 7. But the PSPs are
(almost) exponential for LIF neurons in the HCS thus extending their influence beyond
the refractory period. This overshoot causes the impact of spikes to depend on the
previous membrane history undermining the translation calculation '.

From a practical viewpoint the translation is further complicated by the precision of
the chip calibration and its inherent variability.

In fig. 6.2 we show the DKL between LIF sampling on BSS2 and the translated
analytical BM distribution for small network sizes. One can not compare the relative
entropies between system sizes. However, it is evident that the translation is a crude

'[PBB*16] uses short term plasticity to compensate for this. While such circuitry is available on BSS2
it was not calibrated for our usecase yet.
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Figure 6.2: Comparing distributions of the LIF sampler and its abstract BM translation
for network size N measured by the D1 (pum||pLir)

approximation based on the absolute values of the DKL.

Thus, as expected, it follows that the LIF network on BSS2 only samples from an ap-
proximation of a Boltzmann distribution. While extended models have been developed
that go beyond the initial LIF theory [Giir18, Bau20], so far a detailed description of the
approximation error, yet alone a correction of distribution is missing.

This limits the possibilities of BSS2 as a co-processor for fast sampling of BMs since
it is not compatible with numerical methods that work in the BM-domain. For example,
many quantum Monte Carlo methods rely on reweighting [CT17, CPGG19, LCCC20]
where (unnormalized) probabilities of specific configurations need to be evaluated. In
the case of RBMs these correspond to Boltzmann factors, i.e. the energy functional, that
would be efficiently computable given the weights and biases of the network. For ex-
ample, were accurate translations possible algorithm 4 would become scalable because
calculation of the local energy would not have to rely on the full visible distribution any-
more. Instead, one could explicitly sum over all terms that are coupled to a configuration
v by the sparse Hamiltonian.

Another limitation concerns the gradients which we also calculate based on the Boltz-
mann assumption. Those will as a result be slightly wrong in every iteration building up
an additional optimization error, which is currently impossible to quantify.
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Figure 6.3: Effect of sampling interval dt¢ (left) and autocorrelation function of states z
(right) in a simulation of LIF sampling (Taken from [Bau20]).

Autocorrelation of LIF sampling

In order to compare LIF sampling to other MCMC methods it is desirable to pro-
vide a notion of when the continuous process has evolved to a new, uncorrelated sample
state. In other words, how long is the autocorrelation time of the state variables z?

Since z are directly connected to the membrane potentials via eq. (3.10) it is con-
ceivable that the autocorrelation time is the dominating time scale of changes in u. In
the HCS this is the synaptic/refractory time as 7,,, < Tgyn = Trer (roughly 10 ps). This
estimate is shown to be valid in fig. 6.3 (right) 2.

In practice it is thus advantageous to choose the sampling interval on the order of
magnitude of 7,.r. But which is the optimal value for d¢? Figure 6.3 (left) empirically
shows that the sample correlations start to affect sampling efficiency when choosing
dt < 0.57;r. On the other hand choosing values dt > 7, is a waste of samples since
a new uncorrelated sample is already available. Theoretically, one can determine the
optimal value by making use of the Shannon sampling theorem [Sha49]. It states that
a signal with maximum frequency of f can be perfectly reconstructed with a sampling
interval of at least 1/2f. In our case the signal corresponds to the network state z()
whose maximum frequency is given by the inverse of the refractory period 1/7,¢. Thus,
the optimal interval between samples is dt = Ty.t/2 &~ 5 us which is our standard choice
(see table B.2).

It should be noted, that due to BSS2’s accelerated dynamics this is not a limitation, but
rather a strength, when it comes to quickly producing many samples. On the other hand,
if you want to use BSS2 not in isolation but as part of a larger system, its particularly
fast dynamics could be a downside in terms of synchronizing the communication.

2the kinks are an additional, but unrelated problem caused by a bursting network neuron
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Figure 6.4: Dying neurons while learning the ground state for N = 7 via a RBM with
Ny, = 30.

Dying neurons and parameter instabilities
BSS2 as a whole is still under development. As such errors, bugs and noise are
unavoidable.

Here we just highlight two problems that were still present in version 2 of BSS2
which is what the majority of experiments in this thesis are based on.

The first is an issue dubbed "dying neurons" which is a behavior where neurons stop
spiking at some point during training. This behavior interferes with optimization and,
ironically, leads to spikes in the learning curve. If hidden units fail in this way (and still
enough remain) the network can recover as shown in fig. 6.4, where the three spikes
mark the death of three different neurons (which afterwards stay silent until the chip
and the connection to it are restarted). If a visible unit fails this is not recoverable since
half of the spin configurations can not be expressed anymore. In this case the training
has to be restarted.

The second issue is hypothesized to originate from a type of parameter instability.
It manifests itself during individual sampling runs where parameters are supposedly
shifting during the sampling duration. Accordingly, the encoded distribution is altered
such that the maximum useful sampling time is limited.

In fig. 6.5 the effect on the DKL after learning the Bell state is shown. The data show
median and 15%/85"-percentiles of 10 sampling experiments each of duration 7' = 3s.

The red curve tracks the DKL between the model distributions of all trial runs across
sampling time. The initial decrease indicates that trials are consistently sampling from
the same distribution. In version 1 of BSS2 this curve would level off at around 0.1s
which is a sign that parameters have shifted differently between trials. Version 2 de-
creased these variations and as a result the trials at least stay consistent up to O(1s).

The blue, yellow and green curves show the DKL with the target state by aggregating
differently sized subsets of the 10 experiments. First of all, we notice that there is no
major difference between the curves which confirms that trial-to-trial differences are
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negligible. The DKLs drop until around 0.3 s to around 10~% in agreement with the
final DKL observed after training. However, continuing the sampling increases the
DKL again. Since we have excluded trial-to-trial variation as an explanation this must
be caused by a shift of the implemented model distribution and hence the configured
parameters.

Increasing this parameter stability of long sampling experiments through improved
hardware is important because it would enable to cut down the overhead time of recon-
figuration between the repeated sampling process that is currently used and enable the
sampler to overcome the current inherent lower bound in terms of DKLs.

# samples
103 104 105
—¥— # repetitions = 1
# repetitions =5
—¥— # repetitions = 10
—&— between repetitions

1071
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Figure 6.5: Final DKL after learning the Bell state as function of sampling time/number
of samples. All points are based on 10 sampling experiments of 3 s length.
Blue, orange and green show statistics (median, 15/85-percentiles) over a
subset of 1, 5 and all 10 runs with respect to the target distribution. Red
shows the DKL between sampling distributions of the 10 runs.
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Time spent "in the loop"

All results in this thesis have been obtained by in-the-loop learning, i.e. while
sampling was performed on the BSS2 chip, the evaluation of observables and gradients
was performed by the connected host computer.

One advantage of in-the-loop training is that one can process the whole network read-
out thus enabling the implementation of global learning rules like in algorithm 3 and
algorithm 4 3. In principle, one can even stop learning at any time and resume at a later
time if the configuration can be transferred to the later execution. The corresponding
drawback is the communication latency when reading out spikes and configuring the
chip.

Figure 6.6 shows the relative time chunks that are spent during each epoch and sam-
pling experiment. To be comparable to the durations provided in [CBB*21] we have
chosen an equally sized network performing VGS for the TFIM with N = 4 and em-
ploying an RBM with N;, = 24. An epoch consists of a parameter update where con-
figuration of the chip takes place, N,,s sampling experiments and the evaluation of
gradients and observables. Individual sampling experiments comprise the raw chip run-
time, the spike readout and subsequent conversion to samples.

| |
0.3

-

| |
0 0.1

time [s]

Figure 6.6: Duration of different steps for in-the-loop training (here: VGS for N = 4
with N, = 24 to make it comparable to [CBB*21]). A full epoch consists
of configuring parameters (blue), multiple sampling experiments (red) and
the evaluation of gradients and observables on the host computer (lila). One
sampling experiment consists of BSS2 chip runtime (turquoise) and sample
readout (grey)

The configuration time is a fixed cost while readout as well as evaluation scale lin-

3and also that there is a user-friendly high-level Python interface.
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early with the chip runtime. While the chip runtime is independent of the network size,
the readout depends linearly on it and evaluation goes with the number of samples.
Overall the extra time of in-the-loop learning is not a real limitation on current research
since it only takes around 20% of the total training time, which could be improved upon.
Compared to the ~ 80% reported in [CBB*21], (SI, fig. 5d), this is already a large im-
provement which stems primarily from getting rid of the FPGA buffering and optimized
evaluation code.

6.2 Exploiting marginal POVM distributions

In this section preliminary results are presented on an alternative variational approach
for learning steady states of OQS. The idea rests on the factorizability in the [C-POVM
framework. When dealing with low-order interactions, like is the case for spin Hamil-
tonians, one can trace over the non-interacting spins and thereby, for each interaction,
achieve an exponential decrease in the size of the required variational probability dis-
tribution. While this is not possible for wave functions due to their complex nature, the
normalization of POVM distributions allows for leveraging this property.

We start out with the Lindblad master equation, eq. (2.6), which can be re-expressed
in probabilistic terms by expanding the density matrix into a set of IC-POVM operators
M®suchthat p =) _, ppM “Ta_bl. The master equation and respective Liouvillian then
read,

dpa :

= zb: LabPb = Zb:(Aab + Bap)ppy With (6.1)

Aqp = —i Tr(H [N°, M*]) (6.2)

Bap=Y_ % Tr(20u NPTLM® — TIT{ Ny, No}) (6.3)
k

where Nb =Y~ MeT,,!.

L is a real matrix such that )", Laspy, = 0, preserving probability mass. For time-
independent Hamiltonians and strong enough dissipation rates the time evolution of the
system has a single fixed point, the steady state py:

dp
2, =ILn, =0 6.4
]t|f 1% (6.4)

The steady state can thus be directly found by calculating the unique eigenvector of
L with eigenvalue 0. One approach to achieve this is to define an optimization problem
via the norm of the master equation that can be solved by making a variational ansatz
pe and searching for a state that minimizes the update ||y||.
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In order for the optimization to work on BSS2 in a scalable fashion we have to be
able to calculate the loss function and the gradient from samples only.

This restriction prohibits the use of the one-norm ||pg|l1 = >, | Y=, Lasp§|, since the
outer sum can not be sampled without reweighting by a dense sampling of the whole
distribution. However, we will see that by using the two-norm and assuming a local
Hamiltonian, we can circumvent this problem. Hence, we seek to solve

ps = argminy|| Lpy||3 = argmin,p,L” Lpy = argmin, Z P& Lba LpeDs (6.5)

abc

We abbreviate the squared Liouvillian that appears as A = LTL = ATA 4+ ATB +
BTA+ BTB.

As in previous chapters we are assuming a BM (see eq. (3.7)) to model the POVM
distribution such that the gradient with respect to a weight connection reads

dpg a .a
AW, = Z (Z Nabpy — Hp9||§> ZiZjDz (6.6)

z=[b,h)] a

This expression would suffice to implement the brute force scheme where the expo-
nentially large POVM distribution pg§ is densely sampled at every update step. However,
given that the Hamiltonian consists of low-order interactions one should be able to lever-
age the linearity of the POVM formalism and restrict expectation values to the relevant
marginal distributions.

In general, a r-local Hamiltonian is one where interactions between up to r spins are
present:

H = Z Jitooiin Dig iy e Z Jij2i; + Z Jidi (6.7)

W1 yenyin ij

where J are are the interaction coefficients and Y are product r-body interactions.

We consider at most spin pair interactions, i.e. r = 2 with ¥;; = o' ® ¢/ where o'
is an arbitrary Pauli matrix acting on spin 4. Inserting this Hamiltonian with up to 2"
order into A the first term reads:

AbaAve =Y JijJu Tr (o'0? [N, MP]) Tr (o*o! [N°, MP]) + (6.8)
ijkl

> 270 Tr (007 [N®, MP]) Tr (o% [N, M]) + (6.9)
ijk

> JidiTr (of [N, M) Tr (o7 [N©, MP]) (6.10)
ij
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While we can say that the first line contains the 4-body terms, the second the 3-body
terms and the third the 2-body terms, we need to factorize each term in order to make
use of marginal distributions.

All operators inside the traces can be readily factorized M® = @, M, N® = @,, N’
and o = ®,02 %, Thus the trace-terms can be written in the form

Tr(oio; [N®, M?]) = Tr(®,0% 0] N M — ®,0% 0] M N°") (6.11)
= [[ (ool N by — T Te(ohod MmN (6.12)

= ( [[ ©N*M)- DY, (6.13)
nFIFE]
with D2, = ( [[ Tro"N"M* — [ Tro"M*"N)  (6.14)
ne{i,j} ne{i,j}

The first factor can be rewritten as product of Kronecker delta’s using eq. (2.17).
Naming the second factor above D;‘j” , we can express the first summand of L'L com-
pactly:

ApaAve = Jijdi( ] Sante [ Obwen) Dy Dt + 2" & 3% terms  (6.15)
ijkl ntij ntk#£l

To obtain AT A we still have to sum over b. In the case of i # j # k # [ this
is especially easy since the constraints put in place by the §’s completely determine b
from a and c:

1. b, =a, =c,Yn & {i,j,k, 1}
2. b, =a,forn=kAn=1

3.b,=c,forn=iAn=%k

Hence, the sum over b can be omitted by directly computing b from a and c. The
sums over a and c will also be restricted to the combinations obeying constraint 1.

One can also see this by summing out over b while contracting the ¢’s. Consider an
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example term where N = 3,7 = 1and j = 2:

Z( 11 5ambn5am,bm> Dy Die (6.16)

b n#i,m#£j
Z 5a2,b2 6&3,[)3 5[)1,61 5b3,03 (6.17)
b1,b2,b3
A(Tro' N M™ —Tro' MU N")(Tr o N M — Tro M®N™)  (6.18)
= Oanb2 01,1 0as,c Dllngc = Oag,cs Z Oy ¢ Dllm Z Oaz,by Dl2)c (6.19)
b1 bo
= 6a3,C3(Tr0'1NCIMa1 — Tl"O'lMalNcl)*(Tr o2Ne M2 — Ty O,QMang2)
(6.20)

When one or two pairs between the sets {i,j} and {k,[} coincide, the sum over
doubled variables b, does not vanish since they are not coupled to a and c. However,
since there are at most two coincidences, this sum only amounts to at most four terms.

Given a sample as we would like to know which configurations it couples to in each
term.

When neglecting coincidences, in the first term of AT A the above constraints reduce
the number of coupled configurations & = (c;, ¢;, ¢k, ¢;) to at most 4* = 256 (128 at
one, 64 at two coincidences). Similarly, the second term and third terms of AT A reduce
the sum to variables ¢ = (¢;, ¢j, ¢x) and € = (¢, ¢;) respectively:

ZAbaAbcpc Z JZ]Jkl Z p Ci, ij Ck, Cl) Z DZJaDlgi (621)

igkl CiyCj,CkCl

+3 200k > ple e Z Dy Dk, (6.22)
ijk Ci,Cj,Ch

+D > pleie) Z DbaD{,c (6.23)
ijk CisCj

Here the sum over b, is meant as sum over the double occuring indices. Note that these
also lower the order of the needed marginal distribution. Given a sample as we can now
calculate [A” Apmarginal o

The other three terms in A can in principle be treated in a similar fashion. After re-
placing the remaining outer sum of the minimization objective with a sampling average
one obtains:

. 1
Hp9§H - ZpaAacpc - N Z [Apmarginal]as (624)

as

Instead of densely sampling the exponentially large POVM distributions it suffices to
sample all marginals up to 4" order. The total number of probabilities that have to be
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represented is thus:

44 (JD + 43 (g) + 42 (];[) € O(N*) (6.25)

In addition, a generative model could be employed to try to capture these with an even
better scaling in terms of the number of model parameters.

Thus, using marginal POVM distributions could enable an efficient search for steady
states. We have not tested this idea numerically yet due to time limitations. However, it
seems plausible that a working algorithm can be built from the above blueprint. Whether
the method will be efficient in practice remains to be seen.
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7 Conclusion & Outlook

A summary of the last three chapters might be: exploring the viability of expressing
quantum spin states with SNN-based generative models that approximate (R)BMs, em-
ulated on a specific neuromorphic chip, namely BSS2.

Following the previous results by Czischek et al. [CBB"21], in chapter 4 we found
that for both the POVM and the z-basis representation one can accurately learn small
system sizes of N < 6 and N 3 10, respectively. Thereby, the highly entangled GHZ
states proved to be more difficult to accurately represent than equally sized product
states, ground states and steady states of the TFIM. Beyond these small systems the
technical limitations of BSS2 discussed in section 6.1, especially analog parameter
drift and dying neurons, prevented a high-fidelity encoding.

Knowing that progress in mixed-signal neuromorphic hardware will eventually make
these limitations disappear, in chapter 5 we developed a method for searching ground
states of stoquastic Hamiltonians. Testing on TFIM spin chains of sizes up to N = 10
we confirmed good agreement with theory with the exception of when spontaneous
symmetry breaking occurs at low field strengths h.

Both of the approaches, for QST and VGS require access to the full visible state dis-
tribution which grows exponentially with the system size. Independent of the hardware
specific issues, there is a need for lifting this algorithmic limitation. One attempt to do
so for the specific problem of global steady state search, presented in section 6.2, makes
use of marginal [C-POVM distributions.

Regarding both types of limitation, there are several ways for addressing them in
future research. Today there already exist a number of purely digital neuromorphic
systems like SpiNNaker-2 [MHF19] and Loihi [DSL*18] for the efficient large-scale
emulation of LIF networks. These systems are deterministic by design and thus allow
studying the scalability of the presented methods independent of the instabilities expe-
rienced on mixed-signal or analog neuromorphic hardware. Furthermore, digital neuro-
morphic systems could also help to bridge the gap between the Boltzmann domain and
the LIF domain in terms of parameter translation since the additional inaccuracy due
to variation in analog hardware parameters vanishes. Thereby, the direct calculation of
Boltzmann factors from the weight and bias parameters could become feasible and thus
alleviate the need for densely sampling the visible distribution.

Another promising idea for better algorithms is the use of local learning rules. There
are two reasons for this. First, it has been shown that global gradient-based update
rules, like error backpropagation in feedforward ANNs, can be approximated by local
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learning rules. Relevant techniques are predictive coding [WB17] and direct feedback
alignment [CPGR19, LZZ20]. An example for training RBMs with a local learning
rule is contrastive divergence [Hinl2] of which an event-driven version has been pro-
posed [NDP™ 14]. The second reason is that local on-chip learning is widely supported
by most modern neuromorphic platforms and would thus also eliminate the overhead of
in-the-loop learning approaches.

Finally, algorithmic improvements could be enabled by novel encodings of NQS with
SNNs. For example, recently, a new learning rule for SNNs based on first-spike encod-
ing has been demonstrated on BSS2 [GKB*21]. In addition, a straightforward idea for
encoding not only the amplitudes, but also phases of the wave function would be to
use additional output units or even a second network like in [TMC™ 18]. Lastly, phasor
networks represent an avenue for encoding complex numbers with SNNs. It was shown
that these networks, which consist of resonate-and-fire neurons with complex dynami-
cal variables, can be implemented by integrate-and-fire SNNs and can robustly leverage
spike-timing codes [FS19]. If successful, these approaches to representing complex val-
ues in SNNs could enable the extension of the presented VGS method to non-stoquastic
systems and even pave the way for entirely new applications in quantum physics.
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Ea 80 Isb Parameter | Value
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Tsyn 1S Vnoise 80 ki
Tref 10 Us M hes 4
e 350 Isb . 310
Chm 10 1sb =P
bsyn 600 Isb Table B.2: LIF sampling settings for
HICANN-X
Table B.1: Calibration parameters for
HICANN-X
Optimizer Parameters
gradient descent | n; =1, vy, = 0.999
ADAM 61 =0.9, 52 =0.999, eapam = 1078
NGD €reg = 1074, Vreg = 0.99
DE CP =0.7, DW = 0.5, N, = 10 X Nparams
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