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Abstracts Niklas Euler

Certification of High-Dimensional Entanglement in Ultracold Atom Systems:

Quantum entanglement has been identified as a crucial concept underlying many intriguing phenomena
in condensed matter systems, such as topological phases or many-body localization. Recently, instead
of considering mere quantifiers of entanglement like entanglement entropy, the study of entanglement
structure in terms of the entanglement spectrum has shifted into focus, leading to new insights into
fractional quantum Hall states and topological insulators, among others. What remains a challenge
is the experimental detection of such fine-grained properties of quantum systems. Here we present a
method to bound the width of the entanglement spectrum or entanglement dimension of cold atoms
in lattice geometries, requiring only measurements in two experimentally accessible bases and utilizing
ballistic time-of-flight (ToF) expansion. Building on previous proposals for entanglement certification
for photon pairs, we first consider entanglement between two atoms of different atomic species and
later generalize to higher numbers of atoms per species and multispecies configurations showing multi-
partite high-dimensional entanglement. Through numerical simulations of a Fermi-Hubbard system we
demonstrate that our method is robust against typical experimental noise effects and that the required

measurement statistics is manageable.

Zertifizierung von hochdimensionaler Verschrankung in ultrakalten Atomsystemen:

Quantenverschrinkung wurde als Schliisselkonzept der Quantenmechanik identifiziert, das essentiell fiir
die Erklarung von einer Vielzahl von physikalischen Phanomenen ist. Insbesondere in der Festkorper-
physik konnte Verschrénkung mit topologische Phasen und Vielteilchen-Lokalisierung in Verbindung ge-
bracht werden. In den letzten Jahren wird daher Verschrinkung nicht mehr nur anhand von reinen Ver-
schrankungszeugen untersucht, sondern vermehrt auch durch die Analyse des zugrundeliegenden Ver-
schrankungsspektrums selbst. Dies fiihrte unter anderem zu neuen Einsichten in topologische Isolatoren
und in den fraktionalen Quanten-Hall-Effekt. Der experimentelle Zugang zum Verschrénkungsspek-
trum und zu anderen hochaufgelosten Eigenschaften von Quantenzusténden bleibt bis jetzt jedoch
iiberaus herausfordernd. In dieser Arbeit présentieren wir eine neue Methode, um die Breite des Ver-
schrankungsspektrums von Systemen von kalten Atomen in optischen Gittern abzuschétzen. Dafiir
bendtigen wir Messungen in nur zwei experimentell zugénglichen Basen und nutzen hierfiir sogenannte
“time-of-flight”-Messmethoden (ToF). Angelehnt an einen Vorschlag aus der Quantenoptik fiir ver-
schriankte Photonenpaare beginnen wir mit zwei verschrankten Atomen und generalisieren das Ergeb-
nis dann fiir Vielteilchen-Konfigurationen in zwei oder mehreren Spinzusténden, welche dann echte
Vielparteienverschriankung aufweisen. Abschlieffend demonstrieren wir anhand numerischer Simulatio-
nen eines Fermi-Hubbard-Systems die Stabilitdt des hier vorgestellten Verfahrens hinsichtlich iiblicher

experimenteller Fehlerquellen und endlicher Messstatistik.
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1. Introduction Niklas FEuler

1. Introduction

Of all concepts and constructions unearthed since the introduction of quantum mechanics,
quantum entanglement is perhaps the most counter-intuitive for us classical humans. It has
no counterpart in any classical description of nature and therefore sets apart what is “classi-
cal” and what is inherently “quantum”. Initially, the idea of nonlocality - “spooky action at
a distance” - was subject of controversial debate in the scientific community, so instead mod-
els based on hidden variables were conceived to explain the strange observed correlations in
remote measurements |1|. This changed decisively with a landmark paper by Bell |2]| which
demonstrated how quantum mechanics and local hidden variable theories lead to measurable
differences. He concluded that “some mechanism” must exist that would allow remote influence
between particles that had interacted before - the first description of what would later be called
entanglement. Since then quantum entanglement has been identified as a key aspect in the
understanding of a plethora of physical phenomena, such as the dynamics of disordered spin
systems [3|, the thermalization in closed systems [4, 5|, or even in the context of the black hole
information paradox [6]. But entanglement is not just some scientific property of quantum mat-
ter far removed from practical application in any real world scenarios. Over the last decades,
a branch of novel quantum technologies has emerged, which utilize entanglement as a physical
resource |5, [7]. Notable examples of successful implementations are quantum key distribution
[8H10] for entanglement-enabled quantum cryptography, and quantum teleportation [11H13| as

well as superdense coding |14} |15] for advanced quantum communication techniques.

In recent years, much attention has been directed towards the effects of entanglement in con-
densed matter, where it has been linked to topological properties of quantum states |16, |17] and
quantum phase transitions [18-20], among others |21|. Investigating these many-body systems
directly is oftentimes too challenging due to limited experimental control and measurement
capabilities. Furthermore, exponential growth of the Hilbert space generally prohibits scalable
numerical simulation. In the low entanglement regime tensor network states provide an efficient
approach to investigate many-body systems with discrete local degrees of freedom, but they
are not suitable for states with high-dimensional entanglement [22]. A common approach to
simulate complex quantum systems is to construct simpler synthetic systems called quantum
simulators which mimic, or emulate, the dynamics of the system of interest. Over the last
two decades, cold atoms in optical lattices have evolved into the leading platform for quantum
simulation of condensed matter systems [23-29]. Through the application of external fields,
model parameters can be tuned within a broad regime, ranging from strong repulsive to attrac-
tive interactions, equipping the system with an ideal framework to simulate high-dimensional
quantum states with single atom resolved readout [30-33|. The capability to detect entangle-
ment in these platforms is crucial for the investigation of aforementioned processes, but is a

challenging undertaking, as determining if a general quantum state p is separable can be proved
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to be NP-hard [34]. Many experimental implementations can in fact only indicate (“witness”)

the existence of entanglement in a state qualitatively [35].

In this work we want to go beyond simple witnessing and instead make statements on the inter-
nal entanglement structure. The standard measure of entanglement for bipartite pure quantum
states pap = [¥)X¥] is the entanglement entropy defined as S(pa) = S(pp) = — S.—, pi log p;
with the reduced density matrix pa = Tra(pap) (pp analogously) and its eigenvalues p; [5].
Even though in many cases much can be learned from this quantity, it contains less informa-
tion than the full eigenvalue spectrum from which it is derived. Therefore, more recently the
eigenvalue spectrum itself has been used extensively to investigate the role of entanglement in
different phenomena including fractional quantum Hall states [36], topological insulators and
superconductors [37], 1D-systems in the scaling regime [38|, emergent irreversibility |39, 40|,
and in many-body localization transitions |41} 42|, leading to new insights. Furthermore, the
ability to prepare and certify high-dimensional entanglement would enable the use of algo-
rithms utilizing quantum states with higher dimensions, leading to quantum speedup [43}-45|.
The number of non-vanishing terms in the eigenvalue spectrum is known as the entanglement
dimension or Schmidt rank of the state. It represents the number of terms needed to faithfully
represent the wave function in the product Hilbert space (with generalizations established for
mixed states). Standard methods to obtain the entanglement dimension for cold atom systems
available today are based on full state tomography (FST) or on efficient fidelity measurement
schemes, for which the number of required measurement bases scales with the local Hilbert
space dimension L like ~ L or ~ L? respectively [35]. Recently, new variational approaches to
learn the entanglement Hamiltonian and thus the entanglement spectrum have been explored
[46, 47]. These methods are restricted to states well modeled through few parameters, or al-
ternatively, to states for which the entanglement Hamiltonian is a sum of local operators. Any
results from these methods can only be interpreted as entanglement information for pure states;
for mixed states the entanglement Hamiltonian has no immediate meaning for the entangle-
ment of the state. This renders these methods impractical in the high-dimensional regime,

where many wave function contributions are needed to faithfully represent quantum states.

We propose an alternative approach to certify entanglement in ultracold few-body atom sys-
tems. Our method is inspired by earlier findings for entangled photon pairs in different po-
larization states [48]. In that work the authors construct a bound on the state fidelity to a
highly entangled reference state. This approach provides a powerful tool as one can define a
set of fidelity thresholds with each threshold corresponding to a matching minimum entangle-
ment dimension of the measured state [49]. Bounds on the fidelity to the reference state thus
naturally translate to bounds on the entanglement dimension of the prepared quantum state.
Omne can construct such a bound by measuring in only two mutually unbiased bases (MUB)
i), and |i) , ie. Vi,j: (i|j), = L™, simplifying experimental procedure significantly. Im-

plementation of two such MUB measurements for cold atom systems is a challenging problem.
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Our main contribution is to derive a fidelity lower bound that only requires position and mo-
mentum correlation measurements, independent of system size. Both bases can be accessed
experimentally by measuring the atom positions in situ and after time-of-flight expansion |33,
50|, techniques which have been recently demonstrated [51]. The bound can be used as de-
scribed above to bound the entanglement dimension of experimental states. We find that this
protocol can be applied for bipartite systems with multiple particles per species (party) and
in a multipartite setting. One might expect that a bound based on the fidelity to a reference
state gives satisfactory result only for experimental states close to that reference, i.e. for states
whose reduced density matrix spectrum is similar to that of the reference state. Our findings
indicate, however, that the entanglement dimension that is certified when using the maximally
entangled state as reference can be understood as the number of macroscopic eigenvalues in the
prepared state. The bound turns out to be robust against typical experimental noise sources
and its tightness decreases only linearly with the noise strength, i.e. with the purity of the

prepared state.

The observed entanglement dimension can also be used to make further statements about the
experimental quantum state under investigation. We demonstrate that our method can indicate
disorder in the periodic potential landscape and thus localization effects, even if the disorder
fluctuates from shot to shot. This seems counter intuitive at first, as each shot is one probe of
a changing probability distribution, but we show that only localization effects can decrease the

fidelity without loss of bound tightness.

The remainder of this thesis is structured as follows. We first go over the theoretical basics
needed later for our main result in Sec2l Based on that framework we then formulate a method
to measure fidelity bounds for a pair of two entangled atoms in a lattice potential and explain
how to extract entanglement information from it in Sec. [3] We give some remarks on used
numerical methods for data processing and simulation in Sec. [d Following up we establish the
robustness of our method under realistic experimental conditions using numerical simulations
in Sec. ] Subsequently, we generalize the method to multiple indistinguishable atoms per
species (Sec. @ and to a multipartite setting, where more than two different atomic species are
entangled (Sec. [7]), sharing genuine multipartite entanglement. Conclusions and discussion of

our results are provided in Sec. [§
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2. Theoretical Foundations

In this chapter we introduce some of the basic theoretical concepts and features used extensively
throughout this work. We start with some remarks concerning quantum entanglement and how
it can be quantified using the Schmidt decomposition in Sec. 2.1 Subsequently, in Sec. we
derive the nature of single particle wave functions in periodic potentials and explain how they
can be used to construct many-body Hamiltonians. We conclude this section with some details

on the Fermi-Hubbard Hamiltonian, a toy model of condensed matter we later apply our model

to, in Sec. 2.3

2.1. Quantum Entanglement

Quantum systems can differ in many ways from the classical systems that surround us in our
daily lives. The state of a classical system can in principle be known to any given precision,
and all conceivable properties of it, such as position or momentum, exist independently of each
other at all times [52]. Einstein, Podolsky, and Rosen called such properties “elements of reality”
[1], expressing their belief that quantum particles follow the same deterministic principles.
They showed that quantum mechanics is incompatible with local realism; remote systems that
interacted in the past could influence each other at a distance. Their counterproposal of local
hidden variables which govern the dynamics of the systems would be disproved by Bell almost 30
years later, showing that no classical framework could explain the correlations observed between
distant systems after prior interaction [2]. Countless experiments have since then conclusively
backed up Bell’s findings and demonstrated that the rules of quantum mechanics apply [53].
The mechanism for this remote influence is called quantum entanglement, a concept pertinent
to compound quantum systems. In the following we introduce the mathematical framework

used to describe entanglement and give an outline of how it can be quantified.

We consider two distant quantum systems |V, ) and |¥,). Prior to any interaction, these systems
have no knowledge of each other and can be described completely independently using some

local bases |a;) and |5;),

LAED TSR SES AL )

with some basis coefficients a; and b;. One can, however, describe both systems at the same
time as a separable tensor product state |Wo) = |V,) ® |¥,). We now let these systems interact
through some local interaction. In general, a simple product of the wave functions does not

deliver an adequate description of the system after the interaction anymore. Instead, the two



2. Theoretical Foundations Niklas FEuler

individual wave functions get replaced by one compound wave function written in a tensor basis

of the two individual bases as shown below [54],

=3 cijla) @18;) 2)

i=1 j=1

In this picture the wave function can only be written as a product of the two systems, if all but
one of the ¢;; coefficients vanish. A state where this is possible for at least some basis is called
a product state or separable. If instead more than one coefficient takes non-zero value for all

basis choices, the two wave functions are said to be entangled with each other.

Each tensor product basis derived from two full (orthonormal) basis sets of the two local Hilbert
spaces H 4 and Hp gives in principle a full description of the compound wave function. However,
for each state |¥,,) € Ha ® Hp on the tensor product of the two local Hilbert spaces, there
always exists a special, but generically not unique basis choice called Schmidt decomposition
[55]. It minimizes the number of non-vanishing coefficients ¢;;, which we later show to be a
helpful property. We now demonstrate how the Schmidt basis can be constructed. Here we
restrict us to the simple case of equal local dimensions (L = K) [7, p.109]; a full proof for

arbitrary local dimensions can be found in [56].

We start with Eq. and interpret c;; as the matrix elements of a generally complex ma-
trix C. This matrix can be decomposed using the singular value decomposition, which reads
C =UXV, where U and V are unitary matrices and X is a diagonal non-negative matrix.

We therefore are able to replace ¢;; going forward as

ab) = Z Z Uik ki V) | i) @ |5;) - (3)

ij=1k=1

The matrix elements w;; and vy; can be taken as the basis coefficients of two transformed local
orthogonal bases ‘dk> = S ug |a;) and ’Bk> = Zle vk |5;). The remaining non-negative
matrix elements of the diagonal matrix A\, := oy, are commonly called the Schmidt coefficients

and act as the basis weights of the new tensor product basis,

o) = Sy o ) ”

Using this decomposition we find a basis where each basis element )dk> ® ‘ Bk> is characterized
by only one index instead of the previous two for the two subsystemse. The maximum number

of terms is hence reduced from L? to L. Since the local bases &k> and ’ Bk> are orthogonal,
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no other basis choice can be found which reduces the number of non-negative \; even further.

Oftentimes, one refers to the set of coefficients A, as the entanglement spectrum.

Whereas a Schmidt decomposition can be found in the above fashion for all bipartite pure
quantum states, no straight-forward generalization to higher-dimensional partitions exist [57].
Certain states like the GHZ-state and its generalization however can be written in an analogous
way. We cover this topic in more detail in Sec. [7.1]

The Schmidt coefficients are well suited to describe the entanglement of bipartite quantum
states as they give a complete picture of the probability distribution between the Schmidt basis
elements. Furthermore, there exists a clear recipe on how to obtain the coefficients, which allows
comparison between different systems. However, in many cases it is sufficient to utilize simpler
qualitative or quantitative measures of entanglement derived from the Schmidt coefficients
instead. One of the standard entanglement measures is the entanglement entropy S(A\?) =
— 3% A2 log A2 |5]. For separable states holds S = 0, whereas maximally entangled states
with local dimension L have S = log, L. While these entanglement measures are informative,
they do not hold the full information contained in the full set of Schmidt coefficients. In recent
years, much effort has been made to investigate the coefficients directly through numerical
simulation as well as experiments [36-42]. Obtaining the coefficients experimentally however is

a challenging task and requires a lot of physical resources.

Alternatively, one can measure the number of non-vanishing Schmidt coefficients, also known
as Schmidt rank or entanglement dimension Dgy. Per definition, for separable states Dy = 1.

Conversely, any state with more than one entanglement dimension is considered to be entan-
gled.

The concept of entanglement, and with it a generalization of the Schmidt rank, can also be
translated into the framework of mixed quantum states. Mixed states are “noisy” quantum
states consisting of a mixture of pure components. It is therefore not possible to assign a single
state vector to them, but rather one needs to write them in the formalism of density matrices.
The density matrix of a pure state |¢) is simply given by p = [1))(1)|. General mixed state need
to be written as a mixture of several pure components, p = > p; [;)(v;| with >, p; = 1 [5].
The decomposition of a given density matrix into pure states is in general not unique, which
complicates a clear definition of entanglement for mixed bipartite quantum states in contrast
to the pure states outlined above. A mixed quantum state is considered to be entangled iff no
decomposition into product states exist. Solving this problem has been proved to be a NP-hard
problem |5, 134].

This ambiguity of decomposition convolutes the definition of a Schmidt rank for mixed states:
Every decomposition has different pure components with unique Schmidt coefficients and

Schmidt rank. As a consequence, one typically defines a Schmidt number Dey(p) for mixed
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states using a convex roof construction. It is defined as the maximum Schmidt rank Dey (1))
among all pure components v; of a mixed state, minimized over all possible decompositions |5,
58|,

Dent(p) = min{max[Dens ()] } (5)
decomp. ¢

The entanglement spectrum therefore is not a good entanglement quantifier of mixed states,

but the Schmidt number still is. For the remainder of this work we will use the term entangle-

ment dimension when talking about pure as well as mixed states, where in the latter case the

generalized Schmidt number is meant.

The main contribution of this work is the development of a new method to extract the entan-
glement dimension of cold atoms in optical lattice potentials. The derivation of the details of

this result is discussed in Sec. Bl

2.2. Single Particle Wave Functions in Periodic Potentials

Solid state materials have the defining feature of being centered around a periodic lattice
structure consisting of ions. This lattice acts as a periodic potential on the free electrons
available in the material and is the foundation for the characteristic electronic properties of solid
state matter [59]. Experimental probes into these materials have been found to be immensely
difficult due to naturally occurring imperfections and fast-paced dynamics [25]. Numerical
simulations of these systems well in the many-body regime are also prohibitively complex
and hence restricted to the sparsely populated few-body regimes or subjected to confining

simplifications [22].

Over the past 20 years, a third scientific avenue originally conceptualized by Feynman [60] has
made significant progress and is now at a stage where reliable results can be produced with high
frequency: Quantum simulation. Instead of probing real solid state materials, one sets up a
synthetic system in the laboratory, designed to capture (what is believed to be) the essence of the
real system under investigation [28]. Cold atoms in optical lattices have been used extensively
to simulate the dynamics typically found in condensed matter with great success [23-29]. The
system is built around an optical lattice to resemble a periodic ion structure and is thus able to
reproduce much of what is observed in real solid state materials. Typical experiments use atoms
which are ~ 10° — 10°® times heavier than electrons, have been cooled to the O(107? K) regime,
and utilize optical lattices with lattice site spacings a factor of ~ 10® wider than natural ionic
lattices [33]. All these differences combined yield dynamics several orders of magnitude slower in
the synthetic system, giving sufficient time for in-depth observation |61, 62|. Experimentalists

can then reintroduce new features such as interactions and tune the system parameters over
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a wide range, making the system a platform for comprehensive simulation applications. We

discuss a common system choice and its realizations in the following section in more detail.

Even though many of the complications like impurities and lattice vibrations are removed from
the dynamics of a synthetic system, deriving many-body wave functions in such a complex
potential landscape is still a non-trivial task. For deep potential wells it is sensible to expand
the wave function in terms of a single particle basis localized on the lattice sites, known as
the Wannier basis [63]. We first derive this set of localized basis functions for a given periodic
potential in typical experimental applications and in a second step construct the desired Hamil-
tonian based on these functions. Any Hamiltonian with local interactions can in principle be
developed in terms of single particle wave function tensor products, and thus the dynamics of

the spatial wave function can be studied in detail.

There are several ways to implement periodic potentials in the lab available to experimentalists
today. The most common and straightforward method works by producing a standing wave of
laser light, which then induces an electric dipole moment in the atoms through the inhomoge-
neous AC stark effect [24, 27]. Utilizing several laser sources in parallel opens up a wide variety
of lattice geometries of different dimensionalities, so even complex crystal structures can be
realized [27, [33]. By choosing either a red-detuned or blue-detuned wavelength with respect
to the atom transition frequency, the potential can be made either attractive or repulsive [24].
The strength of the potential is proportional to the intensity of the laser field, yielding the

following form in one dimension,

V =V, -sin®(k - x), (6)

with the lattice spacing d = A\/2, the wavenumber k; = w/d, and the amplitude V5 > 0
depending on the laser intensity and atom polarizability [28|. This lattice in combination with
confining potentials in the other two dimensions forms the potential landscape of the experiment
investigated in this work. An alternative approach is given through the use of microtraps, called
optical tweezers. These traps can be created and manipulated individually and allow for very
close positioning of adjacent lattice sites [33|, but are a source of uncorrelated potential noise,
which can impact atom populations tremendously as we show later. Through arrays of optical
tweezers it is possible to create potentials of the form of Eq. @ with a site-dependent amplitude
Vo(z). This gives experimentalists a precision tool to alter state populations. We will explore
this possibility at a later point in Sec.[5 In the following we deduce the form of the single-atom
wave function in a periodic potential of the form of Eq. @ The Hamiltonian describing the

dynamics of the system is given by

—h?* 02 _
H:%@—%'Sln2(kﬁl'l‘). (7)
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The potential clearly is of the form V(z) = V(x + nd) with n € N and the lattice separation
d and thus has the same periodicity by construction as the underlying lattice. Using Bloch’s
theorem, one can rewrite the eigenstates of this Hamiltonian as a phase factor times a function

of the lattice period,

VUng(2) = exp(iqx) - ung(x), (8)

with the band index n and the lattice momentum ¢ [59|. Since u,,(x) is a periodic function, it

can be decomposed into its Fourier components as follows,

Upg(x) = Jll)rgo ZAchq exp <2m' . %) : (9)

Here we write the infinite sum as the limit of some index j; in numerical implementations one
can introduce a cutoff jyax to deal with the infinities [64]. Combining this wave function ansatz

with the Hamiltonian of Eq. , one arrives at the full Schrédinger equation given by

_h2 2
lim <_8_ — Vo -sin®(k; - ) — Eqn)

j—oo \ 2m Ox?

exp(iqr) - ZJ: ch . €XD (27”' : %)] = 0. (10)

p=—j

In the following we neglect all higher bands and assume that only the lowest energy band n = 1
is occupied and omit the band index n going forward. We continue by resolving the derivative

and replacing sin(z) = [exp(iz) — exp(—iz)]/2i to obtain

J—00

[ J
lim |exp(igx) - Z ch exp(Qixk:lp)]

L p==]J
( ) (11)
q\" Ik Vo . .
-4 (2]9 + E) : 2ml +7 lexp(2izk;) + exp(—2izk;) — 2] — E, p =0.
E
\ =br

Reorganization of the exponential functions and division by exp(igz) leads to a simplified
version of the equation, where we pulled out the eigenenergy and separated it from the other

terms as shown below,
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Figure 1: Wannier basis of a triple-well. 1.5 1

The basis shape is approximately Gaussian,

but each wave function is negative in the 5 107

vicinity of adjacent lattice sites to ensure or-

thonormality. Grey line in the background is 27

a sketch of the lattice potential, where finite .

0.0
1 ' | 2

size effects have been neglected.

x/d

}E?och{

p==J

(2p + q) E,. — %] exp(2izkp)
j (12)
+ %{exp[%mkz(p — )] + exp[2izk;(p + 1)] }} = £, Z chexp(2ixkp).

p==—J

This still somewhat cumbersome equation is cleared up by first multiplying with exp(—2ixzk;p’)
and then integrating over x. In this way, all exponentials are replaced with Dirac delta functions

respectively,

Finding the Fourier components of the lattice-periodic part of u,(z) is thus a tridiagonal eigen-
problem which can be solved through exact diagonalization [64]. The so obtained Bloch func-
tions are highly delocalized as they are invariant under translation with a lattice vector; they
are not a viable basis choice to develop highly localized atom states in. By instead applying
a quasimomentum Fourier transformation to the Bloch wave function basis set, one obtains a

localized basis of eigenfunctions of the single-atom Hamiltonian called Wannier basis |27, |64]

w;(x) = w(r — x;) \/_ Z exp(—iqx;) Yy (z), (14)

qeBZ

with w;(x) being the Wannier basis function of site ¢. In one dimensions this explicit choice

of phase factors is guaranteed to yield a maximally localized basis function, but for higher

10
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dimensions with non-separable potentials finding the optimal phase factors is a non-trivial
problem and remains under investigation |28, |65]. The function shape is well approximated by
a Gaussian close to the center of the lattice site, but shows deviation as soon as the function
reaches into the next lattice site. In that region the actual Wannier function is negative (shown
in Fig. [1]) so that the overlap integral [ dz w;(x)w;(z) = &;; observes the required orthonormality

condition.

2.3. Fermi-Hubbard Model

With the localized single particle Wannier wave functions derived in the previous section in
place, one has a complete basis set to describe single particle dynamics in lattice potentials.
These functions however can also be utilized for the investigation of many-body quantum sys-
tems. By developing the corresponding Hamiltonian in terms of the tensor product basis of
single particle Wannier functions, one can map the interactions and dynamics of the Hamilto-

nian to a set of local basis functions in a natural way.

One common choice of a relatively simple yet feature-rich system description for interacting
fermions in a lattice is the Fermi-Hubbard model [66]. It assumes a deep periodic potential
and thus strong localization on the lattice sites, known as “tight binding”, which justifies the
expansion in localized basis functions. Additionally, only the lowest energy band is filled in such
a configuration [64]. The model includes tunneling with magnitude J only to adjacent lattice
sites, as next-to-nearest neighbour wave function overlap is severely suppressed due to the strong
localization. Furthermore, through application of external magnetic fields, one can induce an

attractive or repulsive atom-atom contact interaction. The dynamics are schematically depicted

in Fig. 2

Vo

A A iU

Figure 2: Schematic of Fermi-Hubbard model in an optical lattice. Fermions can tunnel
between adjacent site with tunneling strength .J (or t) and have a contact interaction of strength

U. The wave function can be expanded in terms of localized single particle Wannier functions
[28].

Both tunneling and contact interaction are captured by the Fermi-Hubbard Hamiltonian

11



Niklas Euler 2. Theoretical Foundations

1'{[ = —JZ Z(é‘zi'-’a.cj’o' —+ hC) + U Z ﬁiiﬁiTa (15)
o i,j i

with the tunneling strength .J, interaction strength U, creation (annihilation) operator é;o_ (Gio)
for an atom on site i and spin state o € {1, |} and their corresponding atom number operators
1;), N4. Only adjacent pairs of lattice sites are considered in the second sum of the tunneling

contribution. The interaction strength U is given by [24]

dma
U= g dz Jw(z) |, (16)
with atom mass m and scattering length a. By varying the magnetic field in the vicinity
of the Feshbach resonance of the two atomic species present, one can tune a, and therefore
also the interaction strength U [67]. Since the atoms are in different spin states, they can
be distinguished by their different atomic transmission frequencies. It is hence possible to
resolve single atoms using fluorescence imaging, which enables the needed accuracy to measure

fine-grained properties of quantum states [33].

The whole system is then characterized by the ratio U/.J, where negative values correspond to
attractive and positive values to repulsive interactions. A two-body ground state wave function
representation for a lattice of L = 6 sites, two atoms, and an attractive interaction (U/J = —12)
is depicted in Fig. (a) in Sec. . We choose this specific model implementation to test our
entanglement bound based on its simplicity, experimental feasibility, and widespread use in
numerical modeling |27} |64], but other configuration with bosons or higher bands could also be

analyzed.
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3. Bound on Entanglement Dimension

In this work we show that it is both feasible and insightful to experimentally determine the
entanglement dimension of cold atom systems in lattice potentials. We first focus to introduce

the basic idea of our method here and add model extension in later sections.

Any bipartite product Hilbert space is bounded by the size of the smaller of the two local
Hilbert spaces, kpax = min[dim(H4), dim(Hp)] =: L, which we take to be finite and identical
in this work. One can choose a maximally entangled state (MES) of that Hilbert space with

equal coefficients for all L terms,

1 L
) wps = ﬁ : 1;::1 [mm) . (17)

This highly entangled state has the maximum entanglement dimension DJ%* = L and acts as
an entanglement reference to which experimentally prepared states p can be compared. The
two subsystems are given by the two atom positions in the lattice; later we can exchange
the single atoms with more complex systems of atoms. The maximally entangled state of
the Hubbard Hamiltonian therefore represents a superposition of atom pairs on the same site,

equally distributed among all sites.

The fidelity of the experimental state p to the maximally entangled reference state

Flp, Wries) = 7 - {mm] p|nn) (18)

m,n=1

implies a convenient state distance measure to compare the two states, as it is bounded in
dependence of the entanglement dimension of p. One can explicitly construct a set of bounds

By on the fidelity to the maximally entangled state F'(p, ¥ygs), given by

F(p, Yues) < Br(Wves) = —, (19)

e~ =

where k is the entanglement dimension of the experimental state [49] 68]. This inequality also
holds for general mixed states occurring in real physical implementations through the Schmidt
number (see Sec. . The violation of this relation for any p and given k therefore indicates
that p is entangled with a dimension of D¢y = k 4 1 or higher. The set of thresholds is
immediately clear from the local dimension L and does not require complicated computations.
This not only gives a robust entanglement witness since the lowest threshold B; = L~! already

indicates entanglement, but also bounds the width of the entanglement spectrum and hence

13
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gives insight into the internal entanglement structure. We will show this in Sec. on the
example of localized states where the number of macroscopic eigenvalues can be related to the
entanglement dimension. Additionally, one can use the fidelity to construct lower bounds on the
entanglement of formation as has been shown in [48 69|, establishing F'(p, ¥ygs) as a versatile
source of information about the entanglement content of p. On the other hand, a fidelity
measurement, comes at significant experimental complexity, in general requiring measuring in

L + 1 different bases for a L dimensional local Hilbert space [48].

Our method bounds the fidelity from below, but always uses only two measurement bases,
independent of the local Hilbert space dimension. We now go on and explicitly construct this
bound ﬁ(p, UnEs)-

It is insightful to split the fidelity [Eq. (18)] into two terms,

L L
mm|ﬂ|mm> {mml| p |nn)
F(p, Uyps) = Y ~———F+ ) 7 (20)
m=1 m,n=1
il y
Fz:h

dividing the contributions into state populations (left sum) and two-particle coherences Fqp,
(right sum). The state populations of the two distinguishable species, here labeled as 1 and |
with their corresponding number operators n4 and 0|, can be obtained by spatially discretizing
the joint density distribution (i4(z)i(z2)). This distribution can be probed directly through
single particle resolved fluorescence imaging, allowing for an exact in situ measurement |33}, |51,
70]. A representation of (f+(x;)f(x9)) for the ground state of a Fermi-Hubbard Hamiltonian
with L = 6 at U/J = —12 is displayed in Fig. [3(a) (for more details on the numerical model
implementation see Sec. . Each grid point represents a contribution to the two-particle state
p. The signals on the diagonal represent double occupation probabilities, whereas off-diagonal
elements correspond to configurations with atoms on different sites [Fig. [3(b)]. The wave
function envelope is determined by the underlying Wannier basis of the lattice and depends on
the lattice depth V{ and site spacing d [64].

Such direct experimental readout is not available for the two-particle coherences F,,, but one
can construct a bound on the coherences from below by measuring in a second basis. A natural
choice for cold atoms is the momentum basis, as the required basis change equivalent to a Fourier
transformation can be efficiently achieved by letting the atoms propagate in a weak harmonic
potential for t = T'/4 with T being the trap oscillation period |33} 51]. This is possible, since
the eigenfunctions of the quantum harmonic oscillator, the Hermite polynomials, are also the
eigenfunctions of the Fourier transformation. For the specific propagation time ¢ = T'/4, the
eigenvalues coincide. Through repeated application of this procedure to an ensemble of states,

the momentum correlation function (fi4(k1)f(ks)) can then be probed. The joint momentum
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Figure 3: (a) Position space representation of the two-particle ground state wave function
U(xy,x9) for L = 6 lattice sites with lattice spacing d. (b) Graphical representation of both
particles occupying the same lattice site (top) or adjacent lattice sites (bottom) with the respec-
tive signals in (a). (c) The lattice momentum correlation function (i (k1) (ks)) corresponding
to the position space wave function of (a). All values smaller than 1 x 107 in both (a) and (c)

have been masked.

distribution to the position distribution shown in Fig. a) is presented in Fig. (c) We start
to construct the corresponding mathematical transformation operator by stating the effect on
the localized Wannier functions of the lattice potential. The basis function for the nth lattice
site can be expressed as w(x — nd) due to the translation invariance of the lattice. Any shift in

position space causes a phase factor in momentum space, so one obtains

Flw(x — nd)|(k) = w(k) exp(indk) (21)

for the single-atom wave function in momentum space . The fermionic number operator in
momentum space can therefore be expressed in the position space basis {|j) |j € {1,..., L}} as
n(k) = |w(k)|? Zﬁmzl |m)(n| explidk(m — n)]. The full expectation value (fi+(k1)j(k2)) in the
density matrix picture is given by the trace over the product of the two momentum number
operators and the density matrix, (fix(ky)n(k2)) = Tr{i(k1)n,(k2)p}. Finally, by exploiting
the cyclic property of the trace, one arrives at the following representation of the momentum

correlation operator expectation value, given by

L
(D (k1) (ko)) = Z Gt (K1, k) - (mn| p[m/'n’) (22a)
mmnm’ n/ =1
Gomnameny (K1, k) = |W(ky, ko) |* - exp{—id - [(m — m/ k1 + (n — n')ky]}. (22b)
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Each coherence is weighted by ¢pnmn (K1, k2) [Eq. (22b))], containing the Fourier transformed
Wannier envelope w(ky, k) = w(k;) - w(k2) and a phase factor obtained during the Fourier
transformation [70]. Above given description naturally decomposes into a basis of trigonometric

basis functions of the two lattice momenta k; and ko times the Wannier envelope,

(g (k1) (ko)) = |[W(ky, ka)|? Z Re(gap) cosld(aky + Bk2)] — Im(ga. ) sin[d(ak, + Bka)] 7,
(a.B)eM

(23a)
:{( g)ef{0,....,L -1} x{—-(L—-1),...,.L—1} |a>0V 3 >0}, (23b)

-« min(L,L—_3)

9o —QZ Y. Amalp|m+a),(n+ ). (23¢)

n=max(1,1-_)

The basis weights Re(gas) and Im(g,s) in Eq. are sums over the real and imaginary
parts of the coherences of the density matrix p. Each coefficient g4 is defined by the pair of
numbers («, ) € M which identifies the admissible “gap pair” of lattice sites between (mn| and
|m/n’) for coherences (mn| p|m'n’) to be summed over for that specific coefficient, as shown in

Eq. (23c). Using that p is Hermitian, we rewrite the sum of relevant coherences F,, introduced

in Eq. as

s dmmlpln) _ g mml pjnn) + {pml plmm) _ 5~ 2Re((mim] p o)
m,n=1 L m,n=1 L m,n=1 L 7 (24)
AN m<n m<n

demonstrating that it can be replaced by a sum over the real parts of coherences in the upper
(or alternatively lower) triangular part of p. This fact is encoded in the set definition of M

given in Eq. (23b) by forcing the leading non-zero digit of («, 5) to be positive.

Obtaining the coefficients g,s is not directly straightforward, as the basis of cosine and sine
function introduced in Eq. (23a)) is non-orthogonal due to the envelope |w(k1, k2)|?> modulating
the periodic basis functions |51]. Projecting the measured distribution onto the basis function

set therefore yields smeared out coefficients Re c,3 and Im cqg,

RQ(CQB) = dk’ldkg <ﬁ¢(k’1)fl¢(k’g)> . |U~}(k’1, k2)|2 . COS[d(Oék’l + ﬁkﬁg)], (25&)

——

m(cas) = | dkydks (i (k1 )ity (ko)) - [0(ky, ko)|? - sin[d(aky + Bhy)], (25b)
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where each weight also contains small contributions coming from other cosine or sine basis
elements respectively. These additional contributions are proportional to the overlap integral
of the two basis functions. It is however possible to explicitly construct the linear transformation
Q that maps the actual basis weight distribution G to the measured coefficients Re(cqp) and

Im(cap) contained in c,

C=QaG, (26)

where each matrix element @Q,,, is given by the respective overlap integrals of the mth and
nth basis functions [51]. We prove in Sec. that these integrals factorize since the Fourier
transformed Wannier envelope factorizes; consequently one only has to compute a small number
of 1D integrals linear in the number of lattice sites in order to compute Q. The actual basis

weights g, are then extracted by inverting @ and rewriting Eq. as

G=Q'C. (27)

The two projection integrals in Eqgs. and (25b)) can be evaluated in a simplified way using
Monte Carlo importance sampling techniques. By treating the momentum correlation function
as a multivariate probability density, it can absorbed in the redefinition of the integration
variable. We elaborate on this procedure in Sec.

At this point one has obtained access to the basis weights g,3, which are sums over certain
subsets of coherences of p. However not only the two-particle coherences relevant for Fig,
in Eq. are contained within the basis weights g.z, but also different-site two-particle
coherences not contributing to the fidelity F'(p, Uygs). The next step is therefore to subtract a
bound of these non-contributing coherences. We note that any general density matrix element

is bounded from above by using Cauchy-Schwarz inequality

Re({mn| p m'n')) < | (mn] plmn') | 'S \/Goin’] p ) (mn] pm), (28)

using only already measured state populations and thus adding no new experimental complexity.
For pure states the right inequality in Eq. is tight as can be easily seen by inserting any
pure quantum state, but grows more loose with increasing mixedness of the state. In the two-
atom case presented here the set of (v, 8) € M, which carries relevant two-particle coherences,
reduces to a = =16 € {1,..., L —1}. The desired sum of relevant coherences can then be
extracted by subtracting the bounds in Eq. for all non-contributing coherences from the

sum of relevant basis coefficients,
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L mm| p |nn) L 2Re((mm] p |nn
Z< [p| Z; (( ol >)>

L L -
m,n=1
m#n m<n
L1 L—5 (29)
Re(gss) V{m'n/| plm/n’) (mn] p [mn) -
—2 = Foonlp, U

m#n

with m ' =m+3J n' =n+J

where the second sum of the last expression includes all single occupancy coherences. Together
with the same site populations displayed in the first sum of Eq. we formulate the complete
experimentally accessible bound for the fidelity of the experimental state p to the maximally

entangled state Wyggs as

L
mm mm ~
Z |p‘ > +Fcoh(pa \IIMES) (30)

m=1

,07 ‘IJMES =

Inserting this bound in Eq. yields

F(P, Unps) < F(p, Yags) < Br(Yygs), (31)

analogous to the result for entangled photon pairs obtained in Ref. [48].

To summarize experimental protocol, the implementation of this readout scheme entails the
preparation of two atomic species in a periodic potential and consecutive single atom resolved
readout of the position space correlation distribution (fi4(z1)n;(22)). The signal is discretized by
identifying the atom positions obtained in each shot with a pair of lattice sites, which yields the
populations (mn| p|mn) entering in Egs. and ([30). The momentum space distribution is
probed through ballistic time-of-flight expansion, resulting in an effective Fourier transformation
of the wave function. From the measured momentum correlation function (fi+(k1)i(ks)) the
coefficients c,p are obtained by projecting onto above specified trigonometric basis functions.
Practically, this is done by summing over the basis functions evaluated at the momentum
samples (see Sec. . The corrected expansion coefficients g,g are obtained from these sums
via Eq. and inserted into Eq. , which yields the desired lower bound on the MES fidelity
Eq. . The statistical requirements for confident certification are discussed in Sec. and

a study of the robustness of the protocol with respect to typical experimental noise effects is

given in Secs. [5.2) and [5.3]
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4. Numerical Methods

Several numerical methods and techniques have been developed or adapted for the simulation
of the extraction method shown in the previous section. In this chapter we want to illustrate
some of key algorithms and implementations that make computation even for bigger system
sizes possible. For the sake of simplicity we shall explain these methods for the simple case of
two atoms. In later Secs. [6] and [7] configurations with more atoms are introduced, for which we
give some remarks on how to generalize to these higher particle numbers. We start with the
Monte Carlo scheme for the evaluation of basis coefficients in Sec. followed by the sampling
method chosen for synthetic data generation in Sec [1.2] Concluding this chapter we discuss
how the computation of the basis element overlap matrix @ can be simplified in Sec. [4.3]

4.1. Scalable Numerical Simulation of Momentum Correlations

The extraction of information from the momentum correlations of the many-body wave function
is at the heart of the method presented in this thesis. It is therefore necessary to evaluate the
momentum correlation function efficiently to obtain the basis weights g,s of the trigonometric
basis functions defined earlier in Eq. . Since the full density matrix p of the simulated
state is always known, one can take a direct route in numerical simulations: Obtain the exact
weights from the density matrix and multiply them with corresponding trigonometric basis
functions to construct the joint momentum distribution. For the small systems presented so
far, the resulting distribution and the needed basis functions can easily be discretized on a
grid, allowing for simple and fast computation of the required projection integrals presented in
Eqgs. . However, with the generalizations developed later in Secs. @ and , bigger systems
with higher particle numbers can in principle be analyzed. Each additional particle increases
the dimension of the discretized grid by one. Such a grid with a number of grid points Ngiq
in each dimension has a total of (Ngiq)" grid points for N atoms. Considering a resolution
of Ngia = 1000, for N = 2 atoms the size of the grid is in the O(MB) range, which poses
no computational challenge on modern computer systems. For N = 4 the complexity changes
dramatically already, as the grid size jumps to the O(TB) range, which is barely accessible to
state-of-the-art supercomputers, but still possible. But systems with N = 6 at the latest pose
an insurmountable challenge due to their characteristic O(EB) size range, clearly demonstrating
that discretization is an infeasible approach for systems even remotely representing many-body

dynamics.

A more natural method much closer to experimental procedure is given by drawing samples
from the momentum correlation function and using them in a Monte Carlo integration of the
projection integrals. There are several advantages compared to discretization which we give

in the following. Most importantly, numerical sample production requires significantly less
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computer memory resources, as only the samples have to be stored, and not the full grid. For
N = 6 atoms and a sample size of Nggmple = 1 X 105, this means a size reduction in computer
memory by a factor of ~ 1 x 10'3, which places the resource demands again in the O(MB)

range!

But besides this very compelling argument, there are other reasons to utilize Monte Carlo
methods. Classical Newton-Cotes integration techniques on discretized functions have fast
error convergence in low dimensions, but become less efficient in higher dimensions [71|. The
integration error term of the commonly used trapezoidal rule, a stepwise linear approximation
through trapezoids, scales with the total atom number N like onc ~ 1 /Ngég [71]. Contrarily,
Monte Carlo methods are slower than Newton-Cotes techniques in low dimensions, but do not
scale with the dimensions of the integral, yielding oye ~ 1/ \/m [72]. They are thus on par
for integrals with NV = 4 dimensions and have favourable scaling for even higher configurations.
It should be noted that one can choose better approximations like the Simpson’s rule, exact for
polynomials up to rank three, which perform better or equal for up to N = 8 atoms |71]. These
methods however come with greater computational complexity, and only increase the threshold
above which Monte Carlo based methods prevail. Monte Carlo methods should therefore be
applied to few-body and many-body systems. For the sake of simplicity, we demonstrate our
Monte Carlo approach below for N = 2, even though discretization techniques are faster at

that dimensionality.

Finally, an analysis based on numerical samples mirrors experimental implementations, which
also do not have access to the full momentum correlations. In experimental setups the momen-
tum correlations are probed one experimental shot at a time. Observed errors and problems
in Monte Carlo simulation results are hence more in line with what can be expected from

experimental data.

In the original formulation, the aforementioned projection integrals from Egs. (25]) over the full
momentum space contain the correlation function, the Fourier transformed Wannier envelope

|w(ky, k2)|?, and the respective trigonometric cosine or sine function,
Re(cag) = /dkldkg <fl¢(l€1)fl¢<k2)> . |’U~}(/€1, k2>|2 . COS[d(Oé/Cl + ﬁkg)], (323)
Im(Cag) = /dkldkg <ﬁ¢(k§1)ﬂ¢(l€2)> : |U~J(l€1, k2)|2 . sin[d(akl + Bkg)] (32b)

It is in principle possible to evaluate the full integrand through a crude uniform Monte Carlo
sampling approach [72], but the momentum correlation function is highly peaked and the co-

sine and sine are oscillating functions. This causes a so-called sign problem, meaning that
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the highly fluctuating integrand requires unattainable high sample numbers necessary for inte-
gral convergence. By instead treating the non-negative and normalized momentum correlation
function as a multivariate random variable distribution and drawing samples from it, several
goals can be achieved simultaneously. First, by going from a uniform random distribution
to the momentum correlation function (fi4(k1)i(ks)), we can move the appearance of the
latter in the integral into the differential of a new integration variable G(kq,ks) as follows,
dkydks (04 (k1)1 (k2)) = d®G(ky, k). The resulting integrals in their simplified form are thus
given by

Re(cag) = / Gk, ko) [ 1Ry, k)2 - cosld(aky + Bhy)], (33a)

Im(Caﬁ) = /dQG(kl, k’g) |U~J<]{51, k2)|2 . sin[d(ak:1 + Bk’g)], (33b)

with trivial generalization to higher dimensions. The evaluations of the momentum correlation
functions have effectively been shifted away from the integral itself to sample generation. In
numerical simulations, much care has to be taken to deal with this problem accordingly, as
the numerical complexity has not been decreased so far and the problem is just dealt with in
another step of the computation. We give more detail on the sample generation step in the

next section.

Quantum simulation experiments on the other hand work inherently different compared to
numerical simulations. The quantum simulator does all necessary computations to produce
real random samples of the needed momentum distribution (4 (ky)fy(k2)). All experimental
samples can therefore be used directly for the integration, making the Monte Carlo formulation

numerically more efficient. This demonstrates the built-in advantage of quantum simulators.

Moreover, there is another crucial side effect caused by the redefinition of the integration
variables. The integration error is also proportional to the square root of the integrand’s
variance oy ~ V/Var [72]. In the original formulation of the equations in Eqs. ([2), the
momentum correlation function fluctuates heavily and thus is a major contribution to said
variance. Moving the correlation function to sample generation therefore decreases the variance
and improves the convergence rate. The redefinition of the integration variable in Monte Carlo
integration with the aim to reduce the variance is a common technique known as importance
sampling |72]. Here, this effect coincides with our main goal of efficient integral computation
through experimental data. We discuss the question of how the remaining integrand scales with
the system size later in Sec. in more Detail. In summary, applying Monte Carlo techniques
gives better scaling at high dimensions compared to Newton-Cotes types methods while at

the same time reducing computer memory requirements, making them the favorable choice in
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this situation. The successful application depends on the efficient sample generation, which we

discuss in the following.

4.2. Synthetic Data Generation

As discussed in the previous section, computation of projection integrals based on random
samples is the only feasible way for the simulation of few-body and many-body systems. Ex-
perimentally, these samples are produced by measuring the actual momentum correlation func-
tion of the prepared quantum state through ToF expansion, but a way to efficient numerical
sampling is a priori unclear. The distribution from which the samples are drawn, the momen-
tum correlation function (f4+(k1)ny(ks)), is known analytically. Each basis weight g,s of the
trigonometric basis functions can be extracted from the density matrix, and the corresponding
frequencies are determined by the number of lattice sites (and later also by the number of
atoms). For the larger systems investigated in this work (see Secs. @ and , up to ~ 3 x 10*
individual frequency terms contribute to the momentum correlations. This results in a highly
peaked functional landscape with structure sizes distributed over several orders of magnitude. A
crude Monte Carlo Hit-or-Miss sampling approach which bounds the correlation function there-
fore yields very poor sample acceptance rates. But also more sophisticated variance reduction
methods like the previously discussed importance sampling [72] face significant issues. The high
number of trigonometric function contributions effectively hide the location of peak structures,
which makes finding an appropriate transformation immensely challenging, especially in high

dimensions.

We therefore follow a different approach and compute our synthetic data by iteratively com-
puting the marginal probabilities for each atom. The marginal probabilities are obtained by
integrating out all remaining unknown particle momenta except one, yielding a one-dimensional
probability distribution. This function can then be discretized for subsequent sample genera-
tion. Once a sample has been drawn, the next marginal can be computed, now with one more
fixed variable. By repeating this step, all momenta can be fixed, until a full sample of all atom
momenta is obtained. This autoregressive sampling process is also know as ancestral sampling

[73], referring to how each momentum k; only depends on its ancestors {kq,...,k;_1}.

We now develop a simple functional form of the marginal probability density function (pdf)
for the two-atom case. After the derivation we give some comments how this derivation can be
adapted to more atoms. The marginal probability density p(k;) of the first particle is obtained

by integrating over the full phase space of the momentum of the second particle ks € R,
pln) = [ b Gy )i () (34
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By inserting the expansion into trigonometric basis functions from Eq. (23a)) into Eq. (34)), one

obtains

p(ky) = /dl@ | (ky, ko) |? Z Re(gap) cosld(aky + Bka)] — Im(ga,p) sin[d(aky + Bks)]
(a,8)eM
(35)

Next, one expands the trigonometric functions in terms of complex exponentials and pulls the
terms containing k; out of the integral. We split the marginal pdf p(k1) = pre(k1) + pm (k1) as

follows for the ease of notation,

prein) = 3 NI oxian) [k ath) P expliase)

2
(a.p)eM (36a)
+ exp(—idak) /dkg | (k) |2 exp(—idﬁk:g)] ,
_ ~ 2
prain) = 32 NI o [ ats k) expliash)
(a.B)EM (36h)

— exp(—idaky) / by [0 (ks) 2 exp(—¢d5k2)] |

We note that the integral domains in Egs. (36a)) and (36b]) are symmetric and that the Wan-

nier envelope squared [w(k{)|? is an even function due to the lattice symmetry. Using these

properties and transforming the integration variable k£ := —k5, we obtain

prelh) = 3 Re(gaﬁ)Qlw(kl)P exp(idaks) /dk @ (k>|2exp(idﬂk) +26Xp(—z'd5k)
e » . (37a)
+exp(—z’d04k1)/dk‘w(k)‘gexp(—zdﬂk);— exp(1dfk) |
Pi(kr) = = Im(ga;).m(k?l”? explidak,) /dk |w(k)|2exp(idﬁk) —l—;xp(—idﬂk}
aB)EM ¢
— exp(—idak,) / k) R+ exp(idﬁk)] |
(37b)
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In the next step, we rearrange the exponentials to group terms containing k; and terms con-

taining k together, which gives

: (idak,) + exp(—idak,)
Pre(k1) ZRe o) |0 (k1)[? [eXp ;
o (38a)
[ i (1) P 2RUAOR) eXP<—idﬁk>]
2 )
dak;) — dak
Prm (k1) ZZ—Im Gos) |0 (k1)|? [exp(z aky) Q;XP( idak,)
o (38b)
. /dk (k)2 2LA0K) + eXp(—z‘dﬁk)]
5 .

The above stated expressions can trivially be rewritten using trigonometric functions. Finally,
by bringing the real and imaginary parts back together, we derive the final closed form of the

marginal probability density function of the first momentum,

Z (k1)) | Re(gap) cos(dak;) — Im(gas) sm(dakl)] /dk |w(k)|? cos(dBk).  (39)
(a,B)EM

For the purpose of sampling, it is convenient to transform the pdf into its corresponding cu-
mulative distribution function (cdf) form. The cdf P(k;) is defined as the primitive function
of p(ky), such that P(k;) M2 1. One can also define the cdf in terms of an integral equation
given by

P(ky) = / " p(k)  with ky € R, P(ki) € [0, 1]. (40)

Since probability density functions are strictly non-negative, cumulative distribution functions
are monotonously growing. Any momentum k; € R with non-vanishing probability can there-
fore unambiguously be mapped to a cdf value P(k;) € [0, 1]. Numerically inverting P(k;) yields
P~1:]0,1] = R, an unambiguous map from the interval [0, 1] to the real numbers. Evaluat-
ing P~!(z) at a uniform random variable x distributed like X ~ U0, 1] then yields a random
variable distributed according to the marginal pdf p(k;) [74]. Since uniform (pseudo)random

numbers like X ~ U[0,1] are easily produced on computers, this method can naturally be
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implemented and yields a (pseudo)random variable correctly distributed according to p(k;), a

method known as inversion sampling [75].

Once a sample of k; has been drawn, one can compute the conditional probability distribution

p(kz2|k1) by simply fixing k; as shown below,

p(kalky) = (i (k)i (k7)) (41)

k=1 fixed
The full sample of particle momenta is therefore generated iteratively. The first, unconditional
distribution is universal for every sample and has to be computed only once. However, since
the second distribution is conditional on kj, p(ks|k;) has to be recomputed for every drawn

sample of k.

This iterative computation of marginal distributions can also be scaled up to higher particle
numbers in the same way. One starts with the unconditional first probability density, which is
computed by integrating over all other momenta {k, ..., k,}. Once a sample for k; is produced,
one can compute p(kq|k;) by fixing k; and integrating over {ks, ..., k,}, and so on for the other
marginals. This step can be iterated until all but the last momentum are fixed for the final
marginal probability density. Figure [ illustrates this behavior for a system of four particles.
Every row represents the sampling process for one particle momentum with the pdf in the left
column and the cdf in the right column. Each sampling process starts with the same distribution
shown in Fig. (a); all subsequent distributions depend on the drawn explicit sample realizations
(here exemplary shown through orange markers). The distributions become increasingly more
peaked as more and more particle momenta are fixed and fewer allowed options are left for

momentum realization.

4.3. Efficient Computation of Overlap Matrix Q

At first glance, calculation of the basis overlap matrix Q [see Eq. ] is one of the most
computationally complex tasks in the data post processing of this work. As defined above, the
matrix contains the overlap integrals of the trigonometric basis of Eq. . Each basis element
is modulated by the Fourier transform of the Wannier envelope |w(k1, k2)|?, which complicates
the otherwise analytically accessible computations and makes this basis non-orthogonal. As
a consequence, in general all matrix elements @,,,, can hold non-zero values. For the biggest
system sizes with up to N = 6 atoms in a lattice of L = 6 sites, up to ~ 3 x 10* basis elements
have to be considered, resulting in O(10%) matrix elements. The dimension of each of these
integrals is equal to the particle number. Direct computation of O(10?) 6-dimensional integrals

takes up substantial resources and makes on-demand computation infeasible. We show in the
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Figure 4: Examplary ancestral sample production for a system of four atoms. In every step [(a)
to (d)] of the sampling process, one of the four momenta is drawn from the corresponding pdf on
the left column. Each distribution depends on all previous samples (marked by the orange mark-
ers). This process is implemented using the related cdf P(k) (right column). A random number
z is drawn from X ~ U[0, 1] and matched to a momentum through P(k) =z = k = P~(z).

The pdfs become more and more peaked the more momenta are fixed.
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following that the integrals can be factorized into independent 1D integrals, which only need

to be computed once.

There are three different types of overlap integral matrix elements that appear in Q: Those
with two cosine functions, those with two sine functions, and those with one cosine and one

sine,

e = /dkldkg | (ky, ko) |* cosld(aky + Bka)] cos[d(a’ky + B'ks)], (42a)
s / dkydks |k, k)| sinfd(aky + Bks)] sin[d(a’ky + k)], (42b)
frin = /dkldkg |’LZJ(]€1, k2)|4 COS[d(Oék’l + ﬁk‘g)] sin[d(a'k1 + Blk'g)] (42C)

The above notation identifies state m with the coefficient pair («, ) and state n with (o/, 8').
We begin with Eqs. (42al) and (42b) and split up the trigonometric functions into complex

exponentials, which then read

e _ /dk:ldk:g (5 (k, k2)|4exp[id(ak1 + Bka)| + exp[—id(aky + Bk2)]
mn ) 2
43a
explidatks + Fh)] + exploid(ehy + k)
2 )
s _ /dkldkg (ks kz)‘4exp[id(ak1 + Bko)| — exp[—id(aky + Bk2)]
| o (43b)
explid(a’ky + B'ks)] — exp[—id(a'ky + §'ks)]
2i '
By multiplying out the product and introducing a™ = a + o’ and o~ = a — o/ with analogous
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definitions for % and 3~ for brevity, we arrive at

~ 4
= /dklde M{ exp [id(a_k:l - /B_kg)} + exp[—id(a_kl + B_kg)]
(44a)
+explid(a ki + BYks)] + exp|—id(a™ky + fTks)] },

= /dk’ldk’g M{ exp [z’d(a‘k‘l - 5_1{52)} + exp[—z’d(a‘kl + ﬁ_kg)]
(44b)
—explid(aky + 87 ky)] — exp[—id(aky + k)] }

We again utilize symmetry and apply the same transformation first used in Eq. to see that
the integrals do not depend on the sign of the exponentials. As a consequence, two integral
pairs can be formed, evaluating to the same result, adding a factor of 2 in return. Each of the
two remaining exponential terms can now be factorized and computed independently. Since
the Fourier transform of the envelope also factorizes by construction, the integral decomposes

into separate integrals for each momentum as follows,

=3 / ke [ (k)[* exp (ida k) / ks [ (k)| exp (id B k)
1 (45a)

+§/dk1 | (k1)|* exp (ida k) /dk‘Q | (ko) |* exp (idBTks),

s = %/dkl @ (ky)|* exp (ida k) /dk2 @ (k)|* exp(idB~ k2)
| (45b)

= / ke [ (k)[* exp (idath) / ks [ (ko)[* exp (id 5™ k).

To simplify these integrals once more, we again use the symmetry of the domain and that

|w(k)|* is even due to lattice symmetry to dismiss the odd part of the complex exponentials.
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This only leaves real valued cosine terms,

mn = ;/dlﬁ | (k1) cos(da k:l) /dkg |w(ks)| cos(dﬂ k;Q)
1 (46&)
2 /dkzl (k)| cos(da+k1)/ )|* cos(dBTks),

= ;/dkl | (k1)|* cos(da kl)/ )|* cos(dB~k»)
1 (46D)
2 /dkl |U) kl COS(dOZ+k'1) /dk’g |U) kg COS(d/8+k2)

The individual 1D integrals in Egs. (46a) and depend only on the four different combi-
nations at,a~, 873~ of the coefficients o, o/, 3, 8" of the two basis elements. The number of
possible values these coefficients can take is small and depends only linearly on the size L of
the lattice. There is no dependence on the number of atoms, as each additional atom simply
results in more terms with ks, 0ky, ..., which take the same values as a, 3, ..., and so on. It
is hence efficient to compute all possible integrals [ dk |w(k)|* cos(da*k) once in the beginning
and simply take the product of the results whenever needed for the computation of matrix

elements.

Finally, we calculate the overlap Q7 between a cosine and a sine basis element. Mirroring our

previous derivation, we expand the cosine and sine in exponentials,

|4exp[id(ozk:1 + Bko)| + exp[—id(aky + Bks)]
2

.exp[id(o/kl + B'ky)] — exp[—id(a/ky + B'ks)]
21 ’

o = / ksl [, o)
(47)

Two out of the four terms cancel out when the exponentials are multiplied out. This leaves

[id(aky + 81 k)] — exp[—id(a™ k) + k)]

44
|4sin[d(a+k1 + ks (48)
2

cs _/dkldk2|w(k1,k2)|4eXp

mn

= /dkldl@ (ki , ko)

=0,

due to the integral of an odd and an even function over a symmetric domain. Thus, two basis

elements have non-vanishing overlap if and only if they both are weighted by the real or the
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imaginary part of their respective basis coeflicient g,s and g,p. Consequently, the real and

imaginary parts effectively decouple and can be handled independently.

Although one can reduce the computational complexity significantly through the methods out-
lined above, it is clear that the number of matrix elements of @ still scales with the square of
the local Hilbert space dimension of the system. For two atoms and L lattice sites, this corre-
sponds to Ng ~ L? scaling, but for systems with 2N atoms, the scaling changes to Ng ~ (]@)2
(see Sec. [6)). In the low density limit N < L, using Stirling’s approximation, one can see that
Ng ~ L*N /N'? ~ (eL/N)*N /N, so we indeed have exponential scaling in particle number and
polynomial scaling in the lattice size for fixed N. Data for high particle numbers therefore
remains prohibitively difficult to process, even though experimental access to these systems

may be available.
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5. Certification Robustness Under Realistic Experimental

Conditions

In the following we apply our fidelity bounding scheme to a Fermi-Hubbard system of two atoms
in an optical lattice of size L = 6. The goal of this section is to determine the robustness of our
bound with respect to noise sources found in typical experimental environments. All numerical
fit parameters referenced in this and the following sections are listed in Tab. [I] in appendix [A]
We choose a sufficiently deep lattice with Vj = 8E,. to be well within the tight-binding regime.
The ground state of this configuration for attractive interactions (U/J < 0) has the maximum
entanglement dimension D.,; = 6 and thus is a fitting test case for this entanglement detection

scheme. We give a description of how such a state could be prepared in appendix

Through exact diagonalization we find that the fidelity of the ground state to the maximally
entangled state F(p, Umps) [Eq. (17)] increases with growing attractive interaction (blue line
in Fig. , but the ground state does not converge to Wygs (F'(p, Ymrs) < 1). For this config-
uration, knowing the available fidelity would enable us to certify 5 out of the 6 entanglement
dimensions for moderately attractive interactions [F(p, Yygs) > Bs for U/J < —6]. The ap-
parent fidelity offset is caused by the finite system size of the lattice: Populating central lattice

sites is energetically favoured [see Fig. [6f(a)].

The ground state therefore has a probability distribution which is significantly different com-
pared to the flat double occupancy distribution of the maximally entangled state. We find that
by artificially lowering the depth of the two outmost lattice sites for fixed U/.J, this observed

discrepancy between the two states can be reduced such that double occupation probabilities

Figure 5: Scaling of the fidelity F' and the
fidelity bound F for different interaction-to-

tunneling-strength ratios U/J for pure (r =
0) and dephased (r € {0.05,0.15}) states.
The By, thresholds are the horizontal dashed

lines such that fidelities above any Bj indi-

0.8

=
D
1

cate at least k41 dimensional entanglement.

Both F and F increase with growing attrac-

ﬁdelity F to ‘IIMES
o
NS

. tive interaction strength before saturation.
0.0 The tightness of F' decreases with increasing
U/J mixing rate r. All simulations are conducted

at L = 6 with 2.5 x 10 momentum space

and 1 x 10* position space samples.
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are evenly spread between all sites [Fig. [6[b)]. At U/J = —12 we report that lowering the po-
tential of the boundary sites by an energy shift of AE/J = —0.165, the fidelity is increased from
F(p,Vnrs) = 0.787 to F(p, Vmes) = 0.957, which therefore raises the certifyable entanglement
dimension to the maximal value of D, = 6. As pointed out earlier, only the fidelity bound is
experimentally accessible, but for pure states we find our bound to be tight, as expected (blue
markers in Fig. [5)). Using our protocol therefore delivers the same tightness of certification as
could be achieved with precise knowledge of the actual state fidelity /. We stress that the value
obtained through the state fidelity does not necessarily coincide with the actual entanglement

dimension, as the fidelity itself only delivers a lower bound.

Figure 6: Lattice potential configurations

for L = 6 in units of the recoil energy FE.

(left) and the respective double occupancy Fyps = 0.787 0.6

probability distributions for the ground state gi

(right) at U/J = —12. The dashed lines indi- 0.3

cate the potential baseline depth Vj (orange) 8‘? :;
and the uniform probability distribution of 0:0 §
the maximally entangled state Wygg (red). « oo Fos %
In all three cases the state has maximum en- Eg 0.5 E’
tanglement dimension of Dey, = 6. (a) Even :T; 0.4 %
unaltered lattice potential. The same site E . 8; §
population is heavily centered on the central a 01 3
lattice sites. One can certify up to Dey = 5. g 0.0 ~§
(b) Lattice with increased potential depth S0 _‘ Fuygs = 0.527 ;—0.6 :%
at the outlying sites, resulting in a uniform . _ :gi —.:
distribution among all lattice sites and full 1 5_0.3 §
certification of Dey = 6. (c) Lattice with o UL *;‘02 *
energy fluctuation Ag ~ N(0, (0.08J)?) on ] U :8(1)

1 23456 1 23456
lattice site L

each lattice site. The same site population
shows strong localization and is far away

from Wygs. Only Dy = 4 can be certified.

In the following subsections we introduce three different error sources and imperfections dur-
ing state preparation and measurements of F and discuss their impact on our entanglement
certification capabilities: Sampling statistics, dephasing noise, and fluctuations of the depth of
individual lattice sites. We discuss the first two imperfections more generally in Secs. and
[b.2] as they are not specific to any explicit implementation of a quantum system but rather
appear universally in quantum experiments. Lattice disorder on the other hand is the limit-
ing system specific challenge for realizations with optical tweezer arrays, which we consider in

Sec. We conclude our investigation of the fidelity bound behaviour under real experimental
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conditions with an analysis of the lattice size scalability in Sec. 5.4

For the simulation results presented above in Fig. [5, we have already included the first two error
sources, namely state dephasing and limited measurement statistics. Experimental realizations
of quantum states are in general not pure states [¢y), but face mixing and decoherence. A
simple model to account for this perturbation is to replace |¢y) with a dephased density matrix
p=(1—r)|YoXtbg| +7 - L2 - 1 with the mixing parameter r related to the state impurity
p = 1 — p, washing out the probability distribution. We simulate three different levels of
dephasing in ground states here: No dephasing in blue (r = 0, p = 0), light dephasing in orange
(r = 0.05, p =~ 0.095), and strong dephasing in green (r = 0.15, p &~ 0.270). It is clear from
the shown data that the asymptotic value for F(p, Uygs) decreases with growing dephasing for
strongly attractive interactions (U/.JJ — oo). Furthermore, the fidelity bound F(p, ¥ygs) also
loses tightness, meaning that the certifiable entanglement dimension decreases even further.
The second error, measurement statistics, is connected to the operative procedure of quantum
experiments. There the joint momentum and position probabilities are each probed repeatedly
and the full distributions are consecutively reconstructed from the samples. The accuracy of
reconstruction depends on the available measurement statistics, and limited data introduces
statistical fluctuations. This can be seen on the produced bound markers, especially for the
pure ground state in blue. This data set has no bias, so the bound F (p, Yygs) is in principle
tight. The markers, however, are distributed around the expected value of F(p, Vygs), with a
standard error indicated by the error bars. We discuss the systematic effects of both errors in

more detail in the following subsections.

5.1. Sampling Statistics

In experimental setups, both the joint position space distribution (n4(z1)n;(x2)) and the mo-
mentum space distribution (n4(ki)ny(ks)) are iteratively reconstructed by repeated sampling.
Finite sample numbers are the cause of observed statistical errors in our fidelity bound calcu-
lation. In this section we systematically explore the scaling of the standard error of the mean
of our bound F(p, Uyg) with regard to the sample size to determine how many samples are
required for acceptable error margins. The position space distribution can be obtained directly
in discretized form with L? different outcomes, whereas the momentum space distribution is
continuous in k; and &y and needs to be processed via Monte-Carlo integration, demanding more
samples. We therefore put special emphasis on the momentum distribution in the following

and fix the number of position space samples to Nyos = 1 x 10%.

To analyze scaling properties with regard to available measurement statistics, we compute
the fidelity bound F' for a wide range of synthetic momentum space sample sizes N;. The
results for different values of r € {0,0.05,0.15} are presented in Fig. [7a). The average of the
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distribution (dash-dotted lines) coincides with the true state fidelity at p = r = 0 (blue data
set), but decreases with rising mixedness r. The standard error of the mean oz(N) of the
distribution for different impurities and sample numbers is shown in Fig. |z|(b) We report no
significant dependence of o (Ns) on the impurity and find a power-law behaviour with exponent
b = (—0.505 £ 0.017) [Fig. [f|(c), computed with the r = 0 data set|. This is consistent with
the expectation of Monte Carlo error scaling oye ~ 1/4/N;. We conclude that 1 x 10% position
space samples and 1.2 x 10* momentum space samples are sufficient to reduce the standard

error of the mean to oz < 0.01, independent on the state impurity.

When the fidelity lower bound is used to certify the entanglement dimension of the experimental
state, statistical requirements for faithful certification solely depend on the distance to the next
threshold value By. Fidelity bound values directly in the middle of two By lines maximize this
distance and have the highest margin of error, whereas fidelities close to thresholds call for
ever increasing sample sets to provide the needed accuracy. The measured bound value can
be monitored on the fly to adapt the number of samples taken in order to fulfill statistical

requirements.

Our data indicates that surprisingly low sample numbers can be sufficient for robust entangle-
ment detection. For example, the distance to the next relevant threshold Bs (red dashed line
in Fig. El(a) for the pure ground state at U/J = —12 is (F) —Bj > 50, even at only Ny = 2000
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samples, a statistically significant statement. The fidelity to the MES drops with decreasing
attractive interaction strength, and with it the distance to the next lower fidelity threshold.

Sample set sizes should thus be increased for less attractive interaction strengths.

5.2. Quantum State Dephasing

We find linear dependencies between the mixing parameter r and both the fidelity F' and fidelity
bound F (Fig. . The bound declines steeper with growing impurity than the actual state
fidelity; the linear fit slopes are a = —0.76 (fidelity) in contrast to a = —1.15 4+ 0.03 (fidelity
bound). Consequently, the tightness gap widens linearly with a slope of ag,, = 0.39 + 0.03
with r. The state fidelity is not subjected to any random noise, so the fit errors are at floating
point precision and can be neglected. Our bound certifies the same entanglement dimension as
could be certified with the actual fidelity for most of the investigated impurity regime r < 0.25
and with only one dimension less in the regime 0.1 < r < 0.16 (Fig. [§). These results show

that tight certification of high-dimensional entanglement remains possible even for highly mixed

states.

09 1 B, e Aoy B Figure 8: Systematic linear dependency of
" 08 dp T TTE T ¥ fidelity bound £ |  both F' and F' on the state mixing parame-
E o _ ter r at U/J = —12. Since the true fidelity
3 ] F'is not submitted to any noise sources, lin-
&; 06 ear regression errors [O(1 x 10719)] are solely
E 0.5 4==—= caused by machine precision and are omitted
= 04 _?E:; Z E:(l)zg):cg.(()g;g?(()jss + 0.004) here. We use a lattice with L = 6 and gener-

AL UL UL NI ate 2.5 x 10* momentum space and 1 x 10%
0.00 0.05 0.10 0.15 0.20 0.25 o
mixing strength = position space samples.

5.3. Lattice Potential Disorder

The third noise source we investigate is linked to imperfections in the lattice potential. This
type of perturbation typically arises in experiments with arrays of optical tweezers, where the
relative intensities, and thus depths, of the individual tweezer traps are difficult to stabilize.
We introduce a modified Hamiltonian based on Eq. , which includes normally distributed

potential depth fluctuation for each lattice site,

I:[AV = ﬁ —+ ZAV;(ﬁu + ﬁiT)7 AV; ~ N (O, (Jav>2) , (49)
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Figure 9: Scaling of the infidelity F =1 — F
as a function of the lattice depth standard de-

viation Joy at a mixing strength of r = 0.1.
Linear growth is found for both F and F for
potential fluctuations with Joy > 0.02. Hori-

infidelity F to Wygs

zontal dashed lines indicate thresholds B, re-
formulated in the infidelity picture, meaning
F < By = Dey > k. The simulation is con-
ducted at U/J = —12 and 2.5 x 10* momen-

tum space and 1 x 10% position space samples. 0.00 0.(

¥ true infidelity F l? fit
X infidelity bound F — F fit

)5 0.10 0.15
JO’V

Only data points contained in the solid part of

the line are included in the fit.

with the tunneling strength J as energy scale. It should be noted that the fluctuations are
modelled to be uncorrelated, a realistic assumption in the case of optical tweezer arrays, but not
necessarily for optical lattices. The ground state of an imperfect array shows strong localization
of the wave function and decreased fidelity to the reference state Wygs, as seen in Fig. [6]c).
There the composition of the localized state is quite different compared to that of Wygg with
two major and two smaller double occupation probabilities approximately equal to the square of
the state’s Schmidt coefficients \;. Even though significant differences exist, one can still certify
an entanglement dimension of Dygs = 4, corresponding to the four macroscopic components
of the spectrum. This fact demonstrates the wide applicability of our method, as we can detect
all significant components of the entanglement spectrum of a state not close to the reference.
In particular, it allows us to track the reduction of entanglement due to disorder-induced pair

localization, as we discuss in the following.

In the highly attractive regime of U/J = —12, the states with both atoms at the same lat-
tice site have a contribution of 95.7% to the pure undisturbed ground state populations. It is
therefore a reasonable simplification to treat the atom pair as a single quasiparticle placed in a
lattice. The observed ground state localization is then in agreement with the predictions of An-
derson localization for disordered potentials, where the occupation probability is exponentially
suppressed when going away from the localization center [76]. For 3D systems, such localiza-
tion appears for disorder strengths above a certain critical value E., but is always expected
to manifest for lattices in 2D or 1D for any non-zero potential disorder |77]. The localization
length heavily depends on the strength of disorder. To investigate the effect of lattice instabil-
ity during state preparation on the state fidelity, we simulate state mixtures of 5000 individual
disorder realizations configured according to Eq. . We find that the infidelity FF = 1 — F
of the prepared state grows linearly with increasing potential depth fluctuation Joy, shown in

Fig. [0l The displayed errors are obtained through bootstrap sampling of the random ground
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state configurations. Both £ and F agree well with numerical fits with slopes az = 1.99 4+ 0.03
and ap = (2.04 +0.06) for values Joy > 0.02. The slopes of both fits do not deviate signifi-
cantly from each other. This means that even with strong disorder present in the system, our
bound does not significantly loose tightness compared to a disorder free configuration. This is
a remarkable result, as the investigated state is a mixture of thousands of individual disorder
realizations. Furthermore, one can explain the constant difference Ar = 0.042 £ 0.007 between
bound and true fidelity entirely through the mixing level of » = 0.1, yielding an expected
contribution of Apgepn = 0.039 £ 0.003 (see Sec. . Consequently, our bound remains tight
and certifies the same entanglement dimension or Schmidt number as the true fidelity for the
majority of sample points. Deviations can reasonably be expected only in the direct vicinity of

threshold crossings.

The breakdown of the fit at small disorder strengths can be ascribed to the finite size of the
lattice. For very weak disorder, the localization length is greater or at the same order of
magnitude as the lattice itself. In this regime, the infidelity therefore only grows slowly with
increasing disorder strengths, until single disorder centers can be resolved at the scale of the
lattice size. The Jo, = 0 data point additionally marks the critical point of the localization
phase transition in 1D, so anomalous behaviour fits to the applied Anderson localization picture.
This indicates that small disorder strengths do not significantly decrease the fidelity F'(p, Vngs),

and thus also our bound remains constant initially.

The simple linear trend in combination with the apparent certification robustness concerning
disorder opens up another interesting use case of our fidelity bound: Disorder detection. If the
dephasing strength in the experimental state can be estimated, one can gain insight if and how
much the lattice potential is disordered. We note again that such assessments are possible, even
though knowledge is gained with shot-to-shot changes in the random lattice disorder realiza-
tions. Furthermore, if the disorder can be controlled experimentally, one can even determine
the disorder strength at which localization length and system size are comparable. This can be

achieved by simply looking for the change in scaling behavior presented above.

5.4. Lattice Size Scaling

Scalability of entanglement certification with respect to the lattice size L is of significant con-
cern for experimental implementations. With the aim to systematically investigate this depen-
dency, we fix U/J = —12 and simulate F(p, ygg) for different lattice sizes. The results for
a system with finite sampling statistics and dephasing noise again show power law decrease
of the fidelity with growing lattice size, as shown in Fig. (a). The fidelities and fidelity
bounds asymptotically approach constant values for L. — oo, depending on the state mixing

strength r. Consequently, certified entanglement dimensions continue to grow as L — oco. The
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exponent b for the true fidelities F' remains approximately constant with increasing mixing
ratio, varying only between b(r = 0) = —2.123 + 0.003 and b(r = 0.15) = —2.101 £ 0.003.
Contrarily, a more significant spread can be found for the bounds F with exponents between
b(r = 0) = —2.14 & 0.14 and b(r = 0.15) = —1.64 £ 0.08. The scaling behaviour of our bound
thus depends on the level of dephasing.

The addition of lattice disorder complicates the system immensely. From previous data (see
Sec. we expect localization into dimers, but the dependence on the lattice size is not
immediately evident. Our investigation of a lattice with fixed disorder Jo, = 0.05 shows
an exponential fidelity drop-off ~ exp(—bL) with scaling factor b. Again the scaling stays
approximately constant for the true fidelity, fluctuating only between b(r = 0) = 0.0523 +
5x 107* and b(r = 0) = 0.0534 + 3 x 10~%.  On the other hand, one can see a trend in
the bound scaling with b(r = 0) = 0.0569 &+ 8 x 10~* and F(r = 0.15) = 0.0735 4+ 6 x 10~*
(Fig. [10|(b)). All fits agree very well with greater lattice sizes, but significantly underestimate
the fidelity in double and triple-well configurations. We explain this behavior with finite size
effects: The localization length of the system is longer than the system itself for these very
short lattice chains. One can therefore never resolve a localization center fully, and all sites

carry non-vanishing populations, leading to higher fidelities.

Since the decision surfaces By, scale like By ~ L™! in contrast to the exponential fidelity scaling,
the certified entanglement dimension decreases to Dy, = 1 for L — co. Consequentially, after
an initial increase of certifiable entanglement, the entanglement dimension accessible through
the bound starts to decline. Based on the reported fit we extrapolate a maximum certifiable
entanglement dimension at a disorder standard deviation of D, = 7 for pure states at Jo, =
0.05 and of D, = 5 for the r = 0.15 dephased state.

With above simulations we demonstrated that ordered and disordered lattices show significantly
different behaviour when more and more lattice sites are added. This observation motivates
again the usage of our bound F' (p, ¥ygs) as an indicator of disorder. The differences between the
two systems and with it the strength of our bound as a disorder witness gets more pronounced
with increasing system size. Conversely, finite size effects prohibit this use case for smaller

lattice configurations.

Finally, we consider the dependency of the standard error oz(L) on the lattice size, again
with fixed sample numbers. For this purpose we analyze the numerical resampling errors from
Fig. (a); they are at display in Fig. . For lattice sizes L > 2, the standard error fluctuates
around o &~ 4.5 x 107, with no discernible differences between mixing rates r. The double-
well configuration is a corner case of the model, as only one basis coefficient g;; is needed to
extract the entanglement information. This fact in combination with the very small number of
allowed modes and all coherences being on the same order of magnitude explains the smaller

error size of o5 ~ 3.3 x 1072, The number of samples needed for some level of accuracy is
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Figure 10: Lattice size dependency of the fidelity. (a) Scaling of the fidelity F' of the ground
state of a flat optical lattice as a function of the number of lattice sites L and the mixing
parameter . Numerical data including statistical noise fits well to power-law behaviour. The
certifiable entanglement dimension continues to grow with increasing lattice size, as the fidelity
asymptotically approaches its infinite system size value. (b) Log-linear plot of the fidelity
for a disordered lattice of size L with fixed disorder strength Jo, = 0.05, showcasing an
exponential fidelity decay. The number of entanglement dimensions accessible to certification
has a maximum of Dy = 7 before decreasing again with growing system size. The numerical
fits have been computed using data points with L > 4 (non-dotted lines). Statistical error bars
on the fidelity F'(L,r) are barely visible. Dashed lines indicate the entanglement dimension
boundaries By. Both configurations are evaluated through 2.5 x 10* position space and 5 x 10*

momentum space samples at U/J = —12.
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Figure 11: Scaling of the standard error of 5.0 1 X
the fidelity bound F (p, WnEps) at fixed sample x ¥ x 7 x ¥ % X
] XX X
size for the mixing rates r € {0,0.05,0.15}. o 5 $ > X XX %
X
Except for L = 2, we do not observe a clear : 0] %
data trend for any mixing rate. The data 5;2
points displayed are the statistical errors from © 3.5 1 % X r=0
Fig. [10)(a); the simulation is conducted at 1% 3 :zg(l)g
U/J = —12 with 5 x 10 momentum space 3.0 == L N
2 4 6 8 10 12 14
and 2.5 x 10* position space samples. lattice size L

thus largely independent of the size of the lattice; scaling up to bigger lattices is therefore not

statistically prohibitive.

In summary, both pure state dephasing and lattice fluctuations cause a linear decrease of the
true fidelity of the state F and of our fidelity bound . Whereas the bound tightness is loosened
by growing dephasing with a linear dispersion between F and F, it remains tight regarding
lattice potential fluctuations. The statistical noise properties follow the expected Monte Carlo
scaling ~ 1/ \/m; very moderate samples numbers of ~ 1 x 10* both in momentum and
position space are sufficient for all investigated lattice sizes. The bound is therefore robust in
respect to typical noise sources and the entanglement certification capability is comparable to

that of the true state fidelity; only linear correction terms apply.

40



6. Multiple Particles per Species Niklas Euler

6. Multiple Particles per Species

In the context of quantum simulation of condensed matter physics problems, the two-atom
configuration discussed so far presents a somewhat unphysical low density limit. Eventually,
one would like to access the entanglement structure near half filling (total atom number 2N
equal to the number of lattice sites L) where true many-body effects emerge. However, our
method still relies on the measurement of coefficients of a trigonometric basis, the size of
which scales with the local Hilbert space size, so exponentially in particle number. The true
many-body regime hence stays out of reach for the scheme presented in this work. Nonetheless,
studies of few-body cold atom systems in the last decade have revealed that few-body dynamics
approaches the many-body limit even at very moderate particle numbers [78,|79]. They are thus
interesting candidates for quantum simulation and in extension entanglement certification, and
give experimentalists capabilities beyond that of simpler two-particle systems like entangled
photons. Recent success in the preparation and control of indistinguishable atom systems
motivate this ansatz [80, |81]. In this section we extend our method to the case of multiple
atoms per species and present numerical simulations of 2N = 4 and 2N = 6 atoms in total. We
find that the needed measurement statistics remains manageable for small few-body systems,

but grows rapidly for higher atom numbers.

6.1. Theoretical Considerations

Systems in which the number of atoms per species is increased to N > 1 can conveniently
be described in a second quantization picture with different Fock modes. These modes are
labeled by the particles” spin and their lattice positions, and are occupied by a given number
of particles. For the fermionic atoms in the Fermi-Hubbard model, only one atom per spin
state can populate each lattice site due to Pauli exclusion. The resulting dimension of the local
Hilbert space, i.e. the Hilbert space available to each species, which determines the maximal

entanglement dimension, changes to

s (L
pmax _ [ N atoms : 50
ent per party (N> ( )

where L is the lattice size. A half filling configuration therefore maximizes the reachable
entanglement dimension with D™#*(N = [/2) = L!/[(L/2)]?, whereas a full lattice is described
by only one contribution and thus has no interspecies entanglement. The wave function of the
MES for a configuration filled with N + N atoms, here shown for the case of 2 4+ 2 atoms,

becomes
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L

|0) s = —L) > Imana) ® [mpens), (51)
N mg,n;=1

m;<mg
with normalization according to the Hilbert space size. In this notation |mana) ® |mgng)
designates the Fock state where the two particles of species A occupy lattice sites ma and np

(with ma < na) and the atoms of species B occupy sites mp and ng.

The general approach of bounding the fidelity to the MES to bound the Schmidt number
remains the same. On the one hand, since still only two different species are present in the
system, all experimental tools for single atom and spin resolved detection can still be applied.
On the other hand, the theoretical framework has to change significantly to account for the
indistinguishability within the subsystems. While state populations can be extracted in a
straightforward extension to the two-atom case, the coherences in Eq. are not accessible
directly in the second quantization picture. The momentum correlation function now depends
on 2N atom momenta, but the decomposition of a bipartite state used earlier is only well
defined for two dimensions or two atom momenta. This apparent impasse can be overcome by
changing to a first quantization interpretation where any Fock state contribution has several
counterparts corresponding to label permutations. One can see this in the following example

of two atoms per spin state with four terms in first quantization,

1st. Quant.
—_—

1
(DA, ®3)a, ® L)g, @205, = 1), @ B)4, ® [2)5, @ V),

—[3)a, @ Ma, @[ Lp, @ 2)p, +13)a, @[1)a, @ [2)5, @ [1)g,),

13), © [12), 5

where explicit atom labels have been introduced on the right-hand side, keeping track of the
possible permutations within the two subsystems A and B. The resulting wave function also
has to be normalized with a factor of (N!)~! and antisymmetrized under atom exchange within
each subsystem. The experimental detection of the state on the left-hand side of Eq. can
be interpreted as the detection of any of the states on the right-hand side with equal proba-
bility, as the labels are purely artificial and label exchange holds no physical meaning. Thus,
through the inherent label exchange symmetry, any result measured in second quantization
can be counted as a measurement for each of the first quantization populations, with proper
normalization required. Applying this interpretation allows one to measure the momentum
correlation function of all 2N atoms, (04(ka,)...04(kay )0y (ks,) .. .0y (ksy)), which in turn
can be described in a basis analogous to the two-body case [Eq. ] As the extraction of
coherences is considerably more involved than before, we give a high level explanation of the

procedure here; for a full mathematical description of a general N + N atom configuration see

appendix [C|
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Having measured the momentum correlation function of all 2N atoms, one must first identify
the coherences contributing to F'(p, ¥ygs). Since every state contribution in second quantiza-
tion has (N!)? counterparts in first quantization (N! permutations in each subsystem), each
coherence therefore is represented by (N!)* different terms, each with the same absolute value.
This value is connected to the corresponding coherence in second quantization by the normal-
ization constant (N!)~2 introduced in Eq. (52), which again is equal for all coherences. The

4 can therefore be obtained straight-

absolute value of the second quantization coherences c¢**
forwardly as || = (N!)?|c*t|. Averaging over all available (N!)* coherences aides in the
reduction of statistical noise. The fidelity bound is then constructed analogously to the two-
atom case where the non-contributing coherences can be upper bounded through measurements

of the state populations in second quantization.

Some comments regarding computational complexity are in order. Scaling up the system size
requires significant computational resources, both for synthetic data generation and data pro-
cessing. We in fact expect exponential scaling in both aspects; these issues are partly covered
in Sec. [d, but we give closing comprehensive discussion of the matter in Sec. [§] But also the
demands on the measurement statistics increase for systems with more atoms; here the scaling
is not so clear. Our data processing is based on Monte Carlo techniques, which do not inher-
ently scale with the number of atoms in the system, but scaling can be introduced through the
variance of the joint momentum distribution. We investigate these statistical scaling properties

in the following section.

6.2. Numerical Results

We simulated a configuration of 242 particles in a lattice of 5 sites, yielding a maximum
entanglement dimension of D™ = (g) = 10 [Eq. (50)]. To be able to relate the behaviour of
this few-body system with that of two atoms, we repeat the interaction strength sweep shown
in Fig. |5l Our numerical data shows that the fidelity to the MES for U/J — —oc is lower by
AF = 0.1 depending on the level of dephasing, see Fig. (a), but is otherwise qualitatively
comparable. This effect is another expression of Pauli exclusion: Atoms of the same species
increase the distance between each other to not restrict tunneling pathways. Finite size effects
on the other hand penalize occupation of outlying sites. Both effects combined lead to a very
non-uniform distribution of dimer populations and the reduction in fidelity. Despite the lower
fidelity, the maximum certifiable entanglement D, = 7 realized for U/J < —8 exceeds the
two-atom case due to higher density of entanglement dimension thresholds B,. Consequentially,
the gap between entanglement dimension certifiable through the bound and through the actual

fidelity is wider for 2 4+ 2 atoms.

For fixed interaction strength, it is again possible to increase the fidelity of the state by altering
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Figure 12: Numerical results for entangle-
ment dimension certification of 2 + 2 indis-
tinguishable atoms in a lattice with L = 5.
(a) Scaling of the fidelity F' and the fidelity
bound F for different interaction-to-tunneling-
strength ratios U/J for pure (r = 0) and de-
phased (r € {0.05, 0.15}) states. (b) Scaling
of the infidelity I = 1 — F as a function of

the normalized optical lattice depth fluctua-

tion Jo, at r = 0.1. The data is adequately
described through a linear fit for Jo, > 0.04
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the lattice potential. Since the local Hilbert spaces are no longer spanned by single atom states,
but instead are described by a multiple atom basis, changing the potential of one lattice site
affects several few-body contributions. This prevents precision changes to specific site double
occupation probabilities, but we find that an overall improvement of fidelity from F'(p, Upyps) =
0.591 to F(p, Ungs) = 0.704 at U/J = —12 and r = 0.1 is still possible. We achieved this by
decreasing the potential depth on sites two and four by an energy offset of AE/J = 0.101. The
resulting fidelity is therefore expectedly lower than that achievable for a two-atom configuration

on a lattice of equal size with F'(p, ¥ygs) = 0.867.

With the introduction of disorder to the uniform lattice potential, localization effects can again
be observed in the state populations. Like in the two-atom case, simulated infidelities F are
well described through a linear fit in the strong disorder regime Joy > 0.04, as observed in
Fig.[12b). We find fit slopes a = 1.49 £ 0.02 and a = 1.66 & 0.05, with a resulting small linear
dispersion trend with slope aéﬁ) = 0.1740.06 between bound and true infidelity. Consequently,
over the full range of the fit regime, our bound looses AF' = 0.02 in tightness.

The linear regime is smaller than that reported for only two atoms, where all data with Jo, >
0.02 follows linear growth. This can in parts be explained again with the localization length of
the system. We investigate a smaller lattice (L = 5 in comparison to L = 6 for two atoms), and

consequently only smaller localization lengths can be resolved. However, with the addition of
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two indistinguishable fermions, the internal structure of the wave function changes as well. Pauli
exclusion forces the state populations to disperse over the whole lattice, and single localization
centers do not impact the wave function so significantly anymore. The result is a regime of

almost constant fidelity for weak to moderate disorder strengths.

We repeated the above simulations on the same lattice configuration with L = 5, but now with
3+ 3 atoms; the results are given in Fig. (I3, The outcomes are qualitatively and quantitatively
comparable, especially for the U/.J sweep shown in Fig. [13[(a). Our investigation of the disorder
scaling shows a greater difference in the linear scaling with a dispersion of aéfr’) = 0.28 +0.09
[Fig. (b)] Interestingly, there is no change in the size of the weak disorder regime, in which
the infidelity and the bound deviate from the linear fitting model describing the behaviour at
stronger disorder strengths. From the explanation applied above, one would expect this regime
to extend to even higher disorder strengths, as at least three out of the five sites are occupied.
The local dimension of this lattice however remains unchanged, as D33* = (g) = (g) = 10, due
to the finite size of the lattice. We therefore conclude that finite size effects again suppress any

further shift in infidelity.
The statistical errors of the 3 + 3 atom case are increased by a factor of ~ 2.2 with respect

to the previous 2 + 2 configuration, but we also doubled the position and momentum sample

set size for the simulation. Disregarding the change in position sample size momentarily, one
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can correct the error scaling using the Monte Carlo error ~ 1/ \/m to obtain an estimated
increase of ~ 3.1 for the standard error of the mean. On the other hand, going from 1 + 1
atoms to 2 4+ 2 while keeping the lattice size and the sample numbers fixed increases the
standard error by a factor of ~ 1.9. This indicates that adding a pair of atoms at least doubles
the standard error of our fidelity bound, a strong indication of exponential scaling. On can
compensate this effect by taking four times the sample size. It is therefore the number of
atoms and not the local dimension which quantifies the expected statistical fluctuations in the
experiment. A systematic analysis of bigger systems would be needed to make statistically

significant quantitative statements about scaling in that regard.

Our analysis shows that entanglement certification is theoretically and experimentally possible
for few particles per atomic species, without adding further experimental steps. The theoretical
framework has to be extended by using a first quantization description to handle indistinguisha-
bility between the atoms. We certify up to D¢y = 7 in our lattice with L = 5. Simulation
data indicates only shallow linear scaling of the bound tightness deviation with the disorder
strength. Statistical errors on the other hand heavily depend on the number of atoms; our
limited data suggest exponential growth of the standard error with the atom number. This
approach is thus not scalable to the many-body regime, but configurations with a few atoms

per species are realistically achievable.
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7. Multipartite Entanglement

In the previous chapter we showed that when extend to few-body systems of multiple fermions
per atomic species, our method still succeeds in the certification of high-dimensional entan-
glement with only small losses in bound tightness. This is a surprising result, considering the
investigated state’s inherent mixedness and complexity. Since only two spin states are popu-
lated, the system is fully described by the atom number NV, the interaction strength U between
atoms of the two states, and the tunneling strength .J, so the same experimental toolbox can

be used as for the initial two-atom fillings.

When instead more different hyperfine spin states are populated, a plethora of experimental and
theoretical complications that have to be taken care of arise, but one gains the ability to certify
genuine multipartite entanglement in return. In the following we first formulate the theoretical
foundations needed for the classification of multipartite entanglement and then describe a pos-
sible setup for tripartite entangled states as a platform balanced between complexity gain and
manageable experimental complications. Finally we present simulation results of entanglement

certification for three atomic species in an optical lattice of five sites.

7.1. Multipartite Entanglement Foundations

Whereas bipartite entanglement of pure states is fully developed theoretically, many questions
are still open concerning the characterization and certification of multipartite entanglement.
For states consisting of three entangled parties, two sets of non-equivalent states sharing gen-
uine tripartite entanglement have been identified, those equivalent under local operations and
classical communication (LOCC) to the GHZ state and those LOCC-equivalent to the W state
[5, 182, [83]. Because of this nonequivalence of entanglement, the Schmidt decomposition is no
longer defined for general target states. Theoretical physicists therefore have to resort to differ-
ent methods to obtain and describe the entanglement structure of multipartite quantum states.
Numerous different approaches have been proposed to define canonical forms of tripartite and
multipartite states with minimal number of non-zero coefficients. However, to uniquely define
any given quantum state through these methods, a number of parameters significantly higher
than the local Hilbert space dimension is required [57, |69, 84, 85|. For some states, most

notably also for generalizations of the GHZ state to higher local dimensions,

k

|¢>ABC = Z Ai |i>A ® |i>B ® |Z>C ) (53)

=1

the state contributions follow the same basic pattern of matching basis indices also found in

the original Schmidt decomposition. No basis transformation can therefore reduce the number
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of terms used for the representation of Eq. any further [5, [86]. One can now define a
multipartite entanglement dimension based on the above described non-reducibility with the
properties of an entanglement monotone in analogy to that of bipartite states 87|, also with a
maximum value of D2 = dimHa. A generalized GHZ state with equal contributions on all

sites given by

) SHZ % 3 (54)

therefore represents a suitable generalization of the maximally entangled state [Eq. ] as a
reference state. It should be noted that this state is not maximally entangled in the sense that is
has the maximum number of terms needed to represent general tripartite states, but rather has

the highest number of terms possible for it to also have a generalized Schmidt decomposition.

The entanglement dimension of an experimental state p can be bounded by a set of fidelity
thresholds By to that reference state analogous to Eq. , opening up in principle the same
certification route taken for bipartite entanglement. We prove the existence of these bounds in

appendix [D] The extension of the algorithm [Egs. (22a]) to (29))] to include three or more atoms
can be done in a direct way. For details see appendix [E]

7.2. Experimental System Requirements

There are several different possible cold atom implementations in which multipartite entangle-
ment can be realised. Here we choose a generalized Fermi-Hubbard system with three distinct
atomic species. The interaction strength between two different spin states in Fermi-Hubbard
system implementations is usually regulated through the use of a magnetic Feshbach resonance
[33, 67]. When a third spin state is added to the system, each of the three possible atom
pairs is now governed by their individual interaction strength U;;. To experimentally realize
control over a mixture of three different spin states similar to that possible over two atoms,
an isotope with three overlapping Feshbach resonances connecting three low energy eigenstates
can be used. One possible choice is Li, for which Feshbach resonances for the three lowest
energy states at 690, 811, and 834 G are experimentally accessible and have been realized before
[88-90]. Since all three Feshbach resonances are magnetic, it is no longer possible to control
the individual interaction strengths independently, but rather all three values Ui, Uss, and Uy
are tuned at the same time through shifts of the external magnetic field. For field strengths up
to 527 G all three scattering lengths are negative, delivering a broad regime of attractive inter-
actions between all atom species. Preparation of states close to the aforementioned reference
state [Eq. ] is thus in principle possible. A three-particle extension to the Hubbard model

Hamiltonian can be constructed as |90],
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with o, 01,09 € {1,2,3} denoting the different hyperfine states.

We base our numerical simulation of tripartite entangled systems on precise scattering lengths
for °Li published in reference [91]. From these measurements we derive U/J values for dif-
ferent magnetic field strengths gauged to fit the interaction strength data of U;3 reported in
[51] [Fig. [14](a)] to establish experimental comparability. This allows access to the interac-
tion strength triplet for a wide field strength regime and thus enables one to repeat previous

investigations for tripartite systems.

7.3. Numerical Results

To assess the effect of the new intricate triplet structure of interaction strengths, we perform
a sweep across the accessible range of magnetic field strengths B. The result is presented in
dependence of Usz in Fig. [L5|(a). All presented true fidelities F(p, Unps) are again computed
through exact diagonalization of the Hamiltonian. The signal found at U;3 ~ —3.8J relates
to a narrow s-wave Feshbach resonance at B = 523G [magnified in Fig. [14b)], which was
earlier reported in references (92} [93]. The observed fidelities are of similar magnitude as values
reported for the 2+ 2 atoms configuration in Fig. (a), with slightly higher fidelity bounds for
the tripartite configuration in the highly attractive regime (F’TRI ~ 0.507 £ 0.005 in comparison
to Fhip = 0.389 £ 0.012 at U = U = —12 and = 0.15).

In contrast to our findings for the configurations of indistinguishable atoms, we report a much
stronger impact of lattice potential disorder on tripartite entangled states at the same interac-
tion strength U = Uy3. At U/J = —12 (which equals to B =399 G), Joy = 0.02, and r = 0.1,
our simulation indicates a reachable fidelity bound of F2+2 = 0.47 £ 0.01, whereas for the U/J
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Figure 15: Numerical results for entangle- ) 22:

ment dimension certification of a tripartite §0.5j
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triplet Uy = —3.67, Uy = —12, and Uy = —6.66 a fidelity of only Frpr = 0.343 & 0.008 is
obtainable, a considerable regress. The three strongly attractive interaction strengths drive the
atoms in triple-occupation states, which dominate the pure ground state at these values of U/J
with 96.62% triple-occupation (trimers) and 3.35% double-occupation (dimers) contributions.
In a lattice with non-vanishing disorder, the wave function therefore localizes solely around one
or two lattice sites. Such bunching is prohibited for bipartite indistinguishable lattice fillings,
where Pauli exclusion enforces a maximum of two atoms per site, see Sec. [ Systems with
weaker attractive interactions are not so heavily affected, as the atoms are not converging as
strongly. This property comes at the cost of lower fidelity at very low disorder strengths, since

single-occupation and double-occupation probabilities rise accordingly.

We therefore choose a more disorder-robust system and simulate a disorder strength sweep for
a tripartite configuration at Uyy/J = —0.16, U3/J = —6, and Us3/J = —3.91 near the zero
crossing of Uyy/J, with the results displayed in Fig. (b) In contrast to all earlier investigated
systems with linear dependencies, our simulation indicates exponential decay of the true fidelity
and fidelity bound (or asymptotic exponential growth for the infidelities). We find numerical
fits ~ exp(—bJoy) with exponential scaling factor b = 9.3 4+ 0.8 for the true infidelity and
b =10.6 + 1.3 for our infidelity bound. However, for very small disorder strengths Jo, < 0.01,
one again observes deviation from the fit; the infidelities are higher than predicted. We suggest

that the lack of Pauli exclusion in tripartite configurations is the cause of this behavior. It
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is clear that the infidelities in all other configurations cannot continue to grow linearly for
~  Joy—oo 1.

Jo, — o0, as they are bounded by F The linear growth is therefore a valid
description only for a finite disorder regime, after which asymptotic growth must set in. As
discussed above, all three atoms can converge on the same lattice site, making the system more
susceptible to localization effects. We therefore conclude that the simulated disorder regime
simply includes a short growth phase in the beginning, well modeled through a linear fit, as

well as asymptotic behavior for higher disorder strengths.

Over the course of the disorder interval under investigation, our bound again has a loss of
Az < 0.06 in tightness. This value is slightly higher compared to the bipartite systems discussed
above, but A still is much smaller than the distance between two adjacent fidelity thresholds
Bj11—Bj. Consequently, we do not expect the loss in tightness between the true fidelity and the
fidelity bound caused by lattice fluctuations to decrease the certified dimension by more than one
compared to the true fidelity. At vanishing disorder, robust certification of three-dimensional
tripartite entanglement is possible, and for the highest simulated value Jo, = 0.15, still two-
dimensional tripartite entanglement is certified. We therefore witness multipartite entanglement
for the entire investigated disorder regime. Even at high disorders, the contribution from lattice
disorder to bound tightness is less or at the same order of magnitude than the contribution
from state dephasing. However, the reduction in true fidelity through disorder dominates all
other considered error sources. It should therefore be possible to experimentally observe trimer
localization, if pure state dephasing can be brought under control. If the state dephasing
gets too strong, it again becomes unclear if the observed low fidelity bounds are caused by

localization or dephasing effects, unless full fidelity estimation measurements are conducted.

ol



Niklas Euler 8. Conclusions

8. Conclusions

We presented a new method to bound the fidelity of few-body states of ultracold atom systems
to a maximally entangled state. Large overlap or similarity between the two states indicates
the presence of high-dimensional entanglement in the experimental state. The fidelity as a
measure of that overlap can therefore be used to derive bounds on entanglement quantifiers of
the experimentally realized state, such as the entanglement dimension or the entanglement of
formation. Our approach requires only position and momentum space measurements, avoiding
costly full state tomography. We provided a detailed study of the statistical significance and
tightness of this bound under realistic assumptions about experimental measurement statistics
and noise sources, showing that the experimental cost is manageable and the bound remains
tight for certain classes of mixed states. Especially states highly mixed due to lattice potential
fluctuation retain their bound tightness to a high degree. Dephasing noise has been identified
to cause linear decline in tightness for our fidelity bound. Consequently, this bound can also
be used as a witness of disorder in the lattice potential, utilizing the exponential scaling of the
fidelity with regard to potential fluctuations. By including tailored modifications to the lattice
potential, we were able to show that the maximal entanglement dimension can in principle be
certified for pure ground states of this two-atom system. We extended our method to multipar-
tite systems and configurations with several occupations per spin state, requiring adaptations
to the coherence extraction framework. The impact of disorder on the few-body wave function
depends heavily on the configuration of spin populations in the system. Bipartite systems are
more robust and have linear scaling with disorder, whereas tripartite systems localize stronger
with exponential scaling due to trimer formation. With these extensions and measures in place,
our method gives experimentalists a powerful tool for the detection of entanglement and its

structure in few-body systems.

Our research is placed among a long line of publications either working on more efficient state
tomography schemes, or, leaving tomography out as a middle step, direct fidelity approxima-
tion methods. The need for such efficiency improvements is clear, as the number of different
measurement bases necessary for a full state tomography is quadratic in local Hilbert space
size, so that even single-digit particle numbers are enormously challenging to measure and
process [94]. Much work has been invested in procedures based on compressed sensing |95
96|, a method that attempts state tomography with substantially fewer measurements based
on classical techniques. It has already proven effective for experimental systems up to seven
qubits [97]. Further alternatives are maximum likelihood estimation [98|, Bayesian tomography
methods [99], local measurement based readout schemes [100], or tomography based on artifi-
cial neural networks [101], among a plethora of others [102, 103]. For the direct approximation
of the fidelity, variational methods [104] and random Pauli string measurements [105, |106]| are

noteworthy approaches. Almost all of these approaches work best for states p with low rank,
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well described through matrix product states. These methods lose their numerical advantages
in the strong presence of entanglement. It is precisely this regime for which we have devel-
oped our method; the number of necessary measurement repetitions is largely unaffected by

the entanglement present in the state and explicitly works for highly entangled states.

In comparison to other experimental platforms, our method for cold atoms takes an approach
based on accessible measurements that have been recently realized. In quantum optical setups,
entanglement in photon pairs can be realized through different pairs of transverse propagation
modes. Arbitrary spatial mode basis transformations can be readily implemented through the
extensive experimental tool box of quantum optics. This gives experimentalists a more direct
route to fidelity approximation that requires only the measurement in two MUBs [48|. Such a
basis transformation of cold atom quantum states would require implementation of individually
tuned tunneling strengths J;, a highly non-trivial undertaking. We therefore see our method

as a compromise between realistic experimental conditions and data processing simplicity.

In the following we briefly discuss model assumptions and discuss their validity in the inves-
tigated regime. In the construction of our bound, we assume negligible interactions during
ballistic expansion. One can question this premise based on the non-zero scattering lengths,
especially for multispecies scenarios as depicted in Fig.[14] This is especially significant in early
stages of the expansion when atoms are not yet separated [24]. Rapid change of system param-
eters is known to cause excitation of higher energy bands [107], so speeding up the expansion
phase is only viable within limits. Recent experiments for double-well and triple-well lattices
have established experimental regimes in which these effects are restrained, but they should be
studied in greater detail for potential experimental configurations [32, 80]. Similarly, assuming
initial occupation of only the lowest energy band can be discussed depending on the lattice
depth V5. The band structure is gapped for Vo > 2.33E, |24], so since our simulations were

conducted at Vy = 8E,., neglecting other energy bands is a reasonable model choice.

Scalability is always one of the central concerns for methods and algorithms in quantum simula-
tion; we therefore now summarize earlier findings and give some concluding remarks regarding
that issue. One has to differentiate between three distinct aspects: The scaling of the sample
size needed for sufficiently small statistical errors, the data processing complexity, and finally,
the computational complexity of synthetic data generation. For the first part, we found no
dependence of statistical errors on the lattice size L, but potentially exponential scaling with
the particle number; here more data is needed. It is therefore clear that many-body systems
remain out of reach for this method, but smaller few-body systems are feasible. We report that
~ 1 x 10* samples in position and momentum space are enough to reduce errors to oz < 0.01

for systems of two atoms.

The data processing routine used in this work consists of several steps: Projection of the sampled

momentum distribution onto modes of the momentum basis expansion, basis change via Q! to
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correct for basis element overlap, and coherence extraction. We showed that the computational
bottleneck of this approach is the computation of @, as its size scales exponentially with
the atom number N. Furthermore, the number of basis coefficients we need to extract also
scales exponentially with N, and the projection integral computation scaling depends on the
suspected exponential scaling of statistical requirements regarding N as well. On the other
hand, we demonstrated that the local Hilbert space size, and thus processing complexity, is
only polynomial in the lattice size. It should be noted that the complexity of the entanglement
spectrum itself scales with the local Hilbert space dimension, and so any procedure that extracts
the spectrum has to have at least that scaling. We only extract the width of the spectrum,
it is therefore unclear, if subexponential scaling can be achieved. Again, true many-body
systems remain inaccessible to our method, but few-body systems, also in sizable lattices, can

be processed as shown in this work.

Last, we consider synthetic data generation. We chose an autoregressive sampling strategy
by sampling one momentum at a time, depending on all momenta sampled before. As a
consequence, each distribution except for the first has to be computed on the fly. The number
of contributions to the joint momentum distribution again scales exponentially in the particle
number. Therefore, going to bigger system sizes adds significantly more complexity to the
computation of the marginal momentum probability distributions. Synthetic sampling rates

slow down accordingly, making computation on computer clusters advisable.

Experimental sampling on the other hand does not face this issue, since the hard computation
is done on the quantum simulator device through ToF expansion. Imaging of momenta is then
typically realized through fluorescence imaging, where all momenta of one atomic species are
captured at a time. Subsequently, there is no inherent connection between sampling rate and
system size, which allows a comparably much faster sample production in bigger few-body
systems. This demonstrates that simulating the dynamics of few-body systems classically is
a hard problem; using quantum hardware instead is more efficient and yields better sampling

rates.

Building upon the results shown here, it is a promising idea to apply the concept of measuring
in two complementary bases to other physical platforms with periodic properties. Trapped
ions are a potential candidate for implementation, as control and readout mechanisms show
similarities to cold atoms in periodic optical lattices. But other basis pairs might also offer new
approaches to certify entanglement in different systems. Alternatively, pushing the certification
scheme even further and investigating multipartite systems with several occupations per atomic

species is another interesting research question to look for emerging many-body behaviour.
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A. Fitting Parameters

A. Fitting Parameters

Table 1: Table of fitting parameters

Fitting Parameters

Fig Description Fitting Model N 0 .
7(c) | Sampling Statistics o7(Ng) = alN? 1.0470-3% -0.505£0.017 -
Dephasing Ii' F(r) = ar +b -0.76 £ 2e-16 0.787 %+ 3e-17 -
Dephasing F -1.154+0.03 0.788 £0.004 -
0 Disorder f: Flo) = a0 + b 1.99 £0.03 0.262 £ 0.002 -
Disorder F 2.0440.06 0.304 4+ 0.006 -
Order F' (r = 0.00) 0.902 £ 0.002 2.123+0.003 0.767 £ 6e-5
Order F(r = 0.00) 0.95+0.09 2.144+0.14 0.766 £+ 0.003
(a) Order F' (r = 0.05) F(L) = aLl b+ 0.906 £ 0.002 2.115+0.003 0.729 + 6e-5
Order F(r = 0.05) 0.94+0.06 1.94+0.09 0.697 £+ 0.003
Order F' (r = 0.15) 0.916 £ 0.002 2.101+£0.003 0.652 £ 5e5
Order F(r = 0.15) 0.931+0.05 1.64£0.08 0.565 £ 0.005
Disord. F' (r = 0.00) 0.969 £ 0.005 0.0523 = He-4 -
Disord. F (r =0.00) 0.990 £+ 0.008 0.0569 + 8e-4 -
(b) Disord. }j (r =0.05) F(L) = qe—" 0.926 £+ 0.005 0.0523 4+ 6e-4 -
Disord. F (r = 0.05) 0.946 £0.010 | 0.0621 £0.0012 -
Disord. F (r = 0.15) 0.836 + 0.002 0.0534 + 3e-4 -
Disord. F (r =0.15) 0.848 £0.005 0.0735 & 6e-4 -
12b) 2 + 2 disord. }? Flo) = a0 +b 1.4940.02 0.362 £ 0.002 -
2+ 2 disord. F 1.66 £0.05 0.491 £0.005 -
b) 3 + 3 disord. ]z Flo) = a0 + b 1.478 £0.015 | 0.3640+0.0013 -
3+ 3 disord. F 1.76 £0.08 0.468 +0.008 -
b) Tripartite disord. }j F(o) = ae + ¢ -0.366 +£0.011 9.3+0.8 0.802+0.014
Tripartite disord. F -0.412+0.015 10.6 +1.3 0.897 +0.022
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B. Preparation of High-Dimensional Entanglement

One can test the entanglement certification protocol presented in this work by applying it to
a highly entangled state as a benchmark and reference point. To ensure rapid experimental
repetition rates, such a state should be preparable within a short period of time compared to
typical experimental lifetimes in the order of seconds to even minutes [24, (62, [108]. Furthermore,
the preparation should require as few steps to realize as possible in order to streamline the
process and reduce noise sources. We offer here one possible scheme to produce such a state of
two atoms in an optical tweezer array. Our simulations of a lattice with L = 5 indicate that
fidelities to the maximally entangled state of theoretically up to ~ 95% are possible through

this protocol. In the following we outline the necessary experimental steps in more detail.

One starts with both atoms loaded in the same deep optical tweezer. This trap will later act
as the central lattice cite of the array. In the beginning of the ramp, all other tweezers are
tuned to have a very shallow potential such that tunneling away from the initial site is heavily
suppressed. By slowly lowering down all other trap potentials to the level of the central site, the
quantum state can be transferred adiabatically to the ground state of the final tweezer array
configuration. The two outlying sites can optionally be lowered even further to produce a flat

dimer population distribution; we apply this technique here for even higher fidelities.

® 10 e e g ety ppuppe iy
§ 0.8 Jom =t e e e
% Figure 16: Adiabatic ramp close to the
o [ Y ground state for a lattice of size L = 5. (a)
E 0.4 - _________________________ Fidelity F(p, ¥ygs) of the experimentally re-
é 0‘2_5 _________ exp. state alized state p to the maximally entangled
R .L.;'. _ .._.'-.g.m.m.ld S“‘f“l state Wygs. The approximate level of the
0 20 060 80 100 ground state is reached after ¢ ~ 55.6/J,
™ thme Jt with small oscillations afterwards. (b) Dou-
< L0 ' ?111:11 :11:((: ble occupancy probability for the central site
2 0.8 central site and for each of the inner and outer sites,
-g ().6-% — "~ ground state respectively. Initially only one atom tun-
g nels away from the central site, but eventu-
§ o - ally both atoms oscillate as a dimer between
i; 0.2 '_ '''''''' / e i T boundary and center sites.
B e e s
0 20 40 60 80 100
time Jt
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However, such an ideal loading procedure can only be approximately reached in real experi-
ments, as the energy gap between ground and first excited state approaches zero at the same
time as the difference in potential depth between the central and the adjacent sites vanishes.
Every realistic imperfect preparation scenario therefore inevitably leads to energy transfer and

subsequent excitation of higher states in the system.

One potential ramp process is depicted in Fig. [16] The initial fidelity in Fig. [16[a) is low at
F(p, Vygs) ~ 0.2, as the atoms both occupy one out of the five potential lattice sites. Up until
Jt < 30, the fidelity begins oscillating rapidly, as energy is pumped into the system through the
ramp of the microtraps. However, by looking at the dimer populations displayed in Fig. [L6|(b),
it is clear that no significant shift of dimer population to other sites takes place in that time
frame. Still, the central dimer population diminishes, meaning that first only one of the atoms
starts to oscillate between the central sites and adjacent sites. After these initial single-particle
oscillations, dimer population start to form again on the adjacent sites, and with some time
delay also on the outlying sites. Simultaneously, one observes a sharp increase of F'(p, ¥ygs),
as the double occupation probability distribution rapidly approaches an even spread. It reaches
its maximum at ¢ ~ 55.6/.J, after which the fidelity stays almost constant at ~ 90% — 95%.
Dimer populations on the other hand show different dynamics: The dimer populations oscillate
between the central site and the outlying sites, with the time average of each site corresponding
approximately to the ground state expectation value. We can therefore conclude that this

scheme produces a highly entangled state close to the ground state of the lattice.
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C. Details on Indistinguishable Atom Bipartite

Entanglement Certification

Here we give a more rigorous description on how to extract the relevant coherences from the
full 2/N-particle momentum correlation function. The state populations of the Fock states can
be measured directly in situ and pose no additional theoretical challenges in comparison to
the process outlined in Sec. [3] Single particle resolved imaging is challenging for higher atom
numbers, but experimental tools available today allow for high-fidelity measurements in the
few-body regime [81]. We therefore omit their contributions here and focus on the coherence
part of the fidelity F.,,. The aim of this appendix is to give the mathematical framework
needed for indistinguishable particle coherence extraction in a way that can be easily imple-
mented for actual data processing. In the experiment the corresponding correlation function
(fp(ka,) .. Dp(kay )y (kp,) ... 0 (kg )) is obtained by probing the wave function after free ToF
expansion, which subjects the many-body quantum state to an effective Fourier transforma-
tion. To understand its effect on the density matrix p, each of the 2N individual components of
the tensor product wave function have to be explicitly labeled and transformed. The resulting
formula is given in Eq. and contains a sum over all ket state site indices of both sub-
systems a;, b. and their bra state counterparts a;, b;. Each coherence is multiplied with their
individual weight function ¢4, u (kay,-- -, ksy) [Eq. (C.1b)], containing the 2N-dimensional
Fourier transformed Wannier envelope |w(ka,, . .., k,)|?, and a phase factor. The latter stems
from the translation of the Wannier envelope in position space for different lattice sites and
the fact that Flg(x —§)] = g(k) - exp{—ikd} for any integrable function g(x). The full relation
between the density matrix elements and (4(ka,) ... 04 (kay )0y (kp,) ... 0 (ksy)) is thus given

as

(fiy(ka,) .. Dy (kay )iy (ks,) ... 1y (ksy)) Z% vy (kays k) - ar, . byl plad, . )

at,..,an,b1,....by=1
! / / /
Q] 5@l ,07 5,0y =1

(C.1a)

Pay..try (Kays - kpy) = [0 (ka,, ... key)? exp(—ld Z — ay)ka, + (b — b))kp ) (C.1b)

This sum can also be decomposed into trigonometric functions of the 2N momenta of all atoms
as shown in Eq. . The basis consists of pairs of matching cosine and sine functions, where
each pair is uniquely identified by a set (aq,...,an,B1,...,0ny) € M defining one possible
lattice site gap configuration for the 2N atoms in the system. The basis function pairs are

weighted through their coefficients Re(ga,... y) and Im(ga,. gy). Deriving a mathematical
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description of g,, .. g, is crucial and will be discussed later. The decision rules for which sets
m € M have to be considered are specified through the set definition of M in Eq. and
are a generalization of the rules specified in Eq. to the case of 2N atoms. These rules
ensure that (aq,...,an,B1,...,08) € M = (—aq,...,—an,—f1,...,—Bn) ¢ M by forcing
the first non-vanishing coefficient to be positive. This measure prohibits counting coherences
twice. Consequently, only matrix elements in the upper triangular of the density matrix are
included in the sum. The decomposition into trigonometric basis functions and the set M

read

(fig(ka,) .. Dy (kay )iy (ks,) . 0y (key)) = [0(ka,, ... ksy)[?

N N
Z Re(gal,,ﬂN) + COS (d Oéz'kAi + 61/{3]31) — Im(galnﬂN) . SiIl (dz Oéi]{?Ai + ﬁﬂf]&)] 5
i=1

meM i=1

M:{Sal,...,aN,ﬁl,...,ﬂN)e{O,...,L—l}x{—(L—l),...,L—l}QN*l

S

-~

::(717"'7721\7) (CQb)
Vi€ {2, 2N}y >0v3je{l,... 2N —1}, j <ist. >0}.

As stated above, the basis weights of the trigonometric functions are the real and imaginary
parts of some coefficients g¢,,. g,. Using the initial formulation of (n4(ka,)...0n (ks )) in
Eq. , the coefficients can be expressed as the sum over the coherences connected to
their specific set (a1, ...,an,B1,...,8y) € M as defined in Eq. (C.3a). For example, the set
(1,...,1) € M describes all coherences between any two states where all atom positions in the
ket-state have moved one lattice site to the right with respect to the bra-state. For two atoms
all terms included by any set («,5) € M are physical coherences, but this no longer holds
for the 2/N-atom generalization. One can see this on the example of (0,1,0,1) € M and the
corresponding coherence (1112 p[1213). The ket |1213) describes a physical state, but the bra
(1112| includes two fermions in the same state on lattice site one, which is forbidden by Pauli
exclusion. These unphysical terms are zero by definition and we could ignore them safely, but
for clearer notation we define a set G, g, of physical coherences in Eq. to exclude all
unphysical coherences. The set rules of G,,. g, implement the proper lattice site gaps in the

first two conditions and enforce all lattice site indices to to be different in each subsystem and
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state in the last four rules,

Jon.. iy = 22 {ai,...,by|play,...,by) with g:=(ay,...,bn,a},...,by), (C.3a)

9€Ga; .8y

%MM:{MM“JM%PWMQGQWWMM Vi,j € {1,... N} with i % j
(C.3b)

This basis is non-orthogonal like its two-particle analogue due to the Wannier envelope. Instead
of measuring g,,, .. g, one measures the smeared out coefficients c,, . g,. These have to be
transformed via Q! to obtain the correct weights and remove contributions caused by small

overlap between any two basis functions,

G=Q 'C. (C.4)

Analogous to the two-atom case, matrix elements of Q) are given by the respective basis function
overlap integrals. We note at this point that one can take a different route here: By replacing
single basis function with sums over all label permutations of basis elements, it is possible to
return to a second quantization picture. We do not go into detail here, but especially for higher
atom numbers, doing so can reduce numerical complexity and the size of Q. For simplicity we

continue in our first quantization picture in this appendix.

After obtaining the correct basis weights g.,. s,, Wwe can now go on and construct a bound
on the off-diagonal terms of the fidelity Fi..n, making them experimentally accessible. The
general approach remains identical: First one has to identify and sum over coefficients that
carry contributing coherences, and subsequently subtract bounds of all coherences contained
in those coefficients not actually appearing in the fidelity. Equation (C.5al) is the desired lower

bound on the coherence part of the fidelity, based on the coherences g,,. g, extractable from
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the 2/N-particle momentum space correlation function,

Feon (P, ‘I’MES) =

Z Re(ga1...6N) i 22 \/(a/177b/]\f|p|a/177b/]\[> <a17---7bN|p|a1a-~~>bN>

meM (]I\}) . (N‘)2 (a1,...,bN,0] ,...,b%) (]I\lf) ’ (N')2 ’
€Gay..8y méal...BN

(C.ba)

M = {(0417---704N»Bl7---76N) eM ‘ Zai = Zﬁi AGay... iy 7 @}, (C.5b)

G = {(al, o bnydly o Uy) € Gy py | Vai 3y st a; = by AVal W, s.t. al = b,

A (Fa; Fd) sta; = al v 3B, st b =1), d,5 € {1, .,N}}.

(C.5¢)

The first sum of the bound in Eq. runs over elements of the subset M C M , which
contains the elements of M with contributing coherences. We define M implicitly in Eq. ,
where two conditions on elements of M are given as follows. Firstly, the sum over all «
coefficients of subset A must be equal to that of the [ coefficients of subset B. This can
be understood by again looking at the two-atom case: There, double occupation states are
connected via o = f =: ¢ for all indices such that only coherences with dimer populations
in A and B like (mm/|p|nn) appear. With the introduction of label permutations in first
quantization, one-to-one matching of a to [ coefficients is no longer an option, as different
coherence realization can have different label permutations. One example for a 2 4 2 system
with L = 4 is the coherence (2332| p|4343) with (2,0,1,1) € M, equivalent to (2323| p|3434)
in second quantization and corresponding to (1,1,1,1) € M. The sums over the difference of

label indices for each subsystem however must still be equal,

D= (0 —a) =36 —b) =3 B (C.6)

as the labels can be rearranged in the sum to have the same order in both subsystems. Re-
stricting M in this way is not yet sufficient, as there are sets which fulfill this requirement, but
still do not hold relevant coherence. To see this consider e.g. a lattice of three sites and the set
(1,2,1,2) € M. All four possible coherences mapping between existing sites, (1111|p|2323),
(1121] p |2333), (2111] p|3323), and (2121| p|3333), contain at least one unphysical bra or ket.
We therefore define the subset @al,.ﬂN C Ga,..py of all relevant physical coherences needed

for FLop [see Eq. (20)] in Eq. (C.5d) and require any set of coefficients (aq,..., By) € M to
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have a non-empty set éalmﬂN =+ & attached to it. By doing so, one can circumvent summing
over basis coefficients that do not actually hold necessary coherences. If the whole term is not
removed manually, one would simply subtract a coherence bound for every possible coherence
contained in that specific coefficient g,, s, in Eq. . Keeping terms that could hold phys-
ical coherences, but in fact do not, would therefore have an avoidable negative impact on the
fidelity bound.

The set éalmﬁN chooses potentially contributing coherences with the first two conditions of
Eq. by matching atom positions one-to-one disregarding specific label positions in both
subsystems for bra and ket state. Besides the states prohibited by Pauli rule already taken care
of in the definition of G, . g, in Eq. , one must now also consider coherences of the form
(abed| p |bacd) where the only change is label permutation in one subsystem. The two states
therefore look identical in second quantization and thus qualify as a state population. It is
necessary to exclude these terms as state populations are explicitly taken out of the coherence
part Fuop [Eq. ] Conditions three and four in Eq. are designed to make sure these
states are excluded by demanding physical change of at least one atom position between initial

and final state.

With the sets M and ém_,ﬂN in place, the next step is to construct the bounds for co-
herences that are not contributing to the fidelity and thus are not in éalmﬁN' The second
sum in Eq. hence runs over all non-relevant coherences (ay,...,by|plda, ..., by) with
(ay,...,bn,a}, ... ) € Gay. gy ) éal,,_gN where we subtract the same bound constructed ear-
lier through Cauchy-Schwarz inequality [Eq. (28)]. Finally normalization has to be adapted:

Firstly, the local Hilbert space size increases from L to (f,), requiring adaption of the general

normalization factor. Secondly, each relevant coherence is replaced by (N!)* equivalents in first
quantization. They are indivudally weighted with a normalization factor of (N!)72, yielding a
total increase of (N!)?, as we sum over all of them. By dividing by this additional factor we

reach the final normalized result stated in Eq. (C.5al).
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D. Tripartite Entanglement Dimension Bounds

Here we extent the concept of entanglement dimension bounds to tripartite reference states with
generalized Schmidt decomposition in close analogy to the original proof for bipartite states

given in [49]|. The proofs are analogous in most parts, but we include them for completeness.

We start with an expression of maximum state overlap of our D-dimensional reference state
according to the definition of multipartite entanglement dimensions given in [87] and some

d-dimensional probe state |¢4) given in the same tensor basis |kim),

D 2 D D 2
F;= max Elm| Y im Ai lidd) || = max (kl2) (1]7) (m|i) cipmi| - (D.1)
< k%: 1kl ) (; [$a) zz:; k,l,zrn:zl N

We use that (i|j) = (j|i) = d0;; and rewrite Eq. (D.1) by adding a trace and sorting basis

elements, such that

2

(D.2)

F,= maX

Tr<BTZAy )

with the operator B = ¢y |k) (m| (I] . Next one adds the rank d-projector P, and by the cyclic
property of the trace obtains

2 2

(D.3)

F; = max = max|Tr| BT i P
Q= 2 na. ( Z |2) (4 (i d>

: Tr<PdBTZA i) <y>

By applying the Cauchy-Schwarz inequality for this picture, | Tr (ABT) > <Tr (AAT) Tr(BBT),

we can separate contributions from probe and reference states as follows,

Fy < maxTr (B'B) Tr PdZA2 Y [3) (i| Py ). (D.4)
[pa) w_/
=1

We expand the first term like

64



D. 'Tripartite Entanglement Dimension Bounds Niklas Euler

D
Tr (B'B) = Tr | ymChim |1) (mlk) k) (m] (1] | = hipmcrim = 1 (D.5)
~ k,l,m=1

=1

and by inserting Py = ijl |7)(7| where we select the basis elements with the highest values of

Aj we obtain the same result as for the bipartite case with

d
Fy <) A, Vijwithi<jst ) >\ (D.6)

=1

Since we find equality for

(D.7)

this bound is in fact tight. We proved the existence of the bounds for a pure state |¢4), however
due to the convexity of the fidelity, mixed states would just lower the bound further. This fact
makes the bound applicable to generally mixed states p [49).
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E. Details on Multipartite Entanglement Certification

Extending the original scheme for entanglement certification for multipartite entanglement is
straightforward, but tedious. Here we briefly want to give a starting point of how such an
expansion can be done and present the final bound ﬁcoh. Like before, we decompose the
momentum correlation function of three atoms (fiy (k1 )n2(k2)n3(k3)) in terms of coherences and

consider phases picked up due to the Fourier transformation. The tripartite description then

reads
L
<ﬁ1(]{]1)f12(k2)ﬁ3<k3)> - Z (ba...c’(kh k27 k3> : <CLbC‘ p |a/blcl> ’ (Ela)
a,b,c=
/ b/ Cl :11
Pa...ct (K1, k2, k) = [w0(ky, ko, k3 exp{—zd a—a )k 4+ (b—=0)ky + (c— Cl>k3]}-

(E.1b)

We label the three distinguishable atom species {1, 2, 3} with their respective lattice site indices
{a,b,c} and {d’, V', '} for the bra and ket states. This description can be expressed analogous
to Eqgs. in trigonometric basis functions of all three lattice momenta ki, ko, and k3. Special
care has to be taken to avoid double counting by adapting the set M of of admissible lattice
gap sets to again enforce (a, 8,7) € M = (—a, —f,—v) ¢ M. This is necessary to do to get
the full reconstruction of the momentum correlation function, since the actual coefficients gqg
have to be obtained from the full distribution of measured coefficients c,s, first. The redefined
set M for three atomic species is given in Eq. (E.2b). All remaining steps outlined in Eqgs. (24)
to (28]) can be adapted analogously such that one arrives at the final result for the bound of

the coherence contributions as follows,

L1
Re( a't/'d| pla'tc) {abel| p labe
Fcoh P, Unis) = Z 9555 22 \/ ¥ - ') {abel p |abe)
6=1 a,b,c=1 (Eza)

a#be#c
with @ =a+6 bV =0+6 ¢ =c+9,
M ={(a.8,7) e {~(L-1),....L =1} |
a2O/\(B20\/04>0)/\(’y>0\/67éOVQ>0)},

L—« min(L,L—B) min(L,L—7)

Jagn =2) Y Y. labelpllata)b+pB)(e+). (E.2¢)

a=1 b=max(1,1-8) c=max(1,1—7)

(E.2b)
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