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Abstract

Wilsonian renormalization group theory (WRG) is applied to the spin-1 Bose gas both
in the thermal and in the symmetry-broken polar phase. After deriving the mean-field
phase diagram, the concept of WRG is outlined in terms of a 1-loop perturbative expan-
sion. In the thermal phase, all relevant flow equations are derived and analyzed for their
fixed point behavior and critical exponents. To describe the thermal phase transition,
the symmetry is broken explicitly to determine the action for the condensed polar phase.
Utilizing this action, flow equations in the polar phase are computed including the renor-
malization of the condensate density. A general scheme is established to investigate the
flow equations in a cut-off independent manner at fixed macroscopic density. We find cut-
off independent critical temperatures as well as the decrease in condensate density towards
criticality. Nevertheless, anomalous scaling is observed in most couplings impeding con-
vergence and physical predictions. This is addressed by introducing anomalous couplings
for the temporal and spatial derivatives for which additional flow equations are derived.
As a consequence, cut-off dependencies disappear and predictions for all couplings are
obtained. However, singularities turn up in the flow equations halting the flow and raising
difficulties in convergence behavior.

Zusammenfassung

Wilsons Renormalisierungsgruppe (WRG) wird auf das Spin-1 Bose Gas sowohl in der
thermischen als auch in der symmetriegebrochenen polaren Phase angewandt. Nachdem
das Mean-field Phasendiagramm hergeleitet wurde, wird das Konzept von WRG im Rah-
men einer 1-Loop perturbativen Entwicklung eingeführt. In der thermischen Phase werden
alle relevanten Flussgleichungen berechnet und auf Fixpunkte und kritische Exponenten
hin untersucht. Um den thermischen Phasenübergang zu beschreiben, wird die Symmetrie
explizit gebrochen und die Wirkung in der kondensierten polaren Phase bestimmt. Mit
dieser Wirkung werden Flussgleichungen in der polaren Phase unter Einbeziehung der
Renormalisierung der Kondensatdichte errechnet. Ein allgemeiner Ansatz, um Flussglei-
chungen unabhängig vom gewählten Cut-off bei fester makroskopischer Teilchendichte zu
berechnen, wird eingeführt. Wir beobachten sowohl Cut-off unabhängige kritische Tempe-
raturen als auch den Abfall der Kondensatdichte nahe dem kritischen Punkt. Trotzdem
wird anomale Skalierung in den meisten Kopplungskonstanten beobachtet, welche Kon-
vergenz und physikalische Vorhersagen verhindert. Durch die Einführung anomaler Kopp-
lungskonstanten in den Zeit- und Ortsableitungen und die Berechnung der entsprechenden
Flussgleichungen kann diese anomale Skalierung beseitigt werden und wir erhalten Cut-off
unabhängige Vorhersagen für alle Kopplungskonstanten. Bei Berücksichtigung der anoma-
len Kopplungskonstanten treten hingegen Singularitäten in den Flussgleichungen auf, die
zu Problemen im Konvergenzverhalten führen.
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Chapter 1

Introduction

Since the prediction of Bose-Einstein condensation (BEC) [1, 2] which describes the macro-
scopic occupation of the lowest energy eigenstate below a certain critical temperature and
its subsequent discovery in 1995 both in sodium 23Na [3] and rubidium 87Rb [4], there
has been great interest in further research of this macroscopic quantum state. The first
experimental designs still relied on magnetic trapping to confine the dilute atomic vapor
and thereby retained the atoms in one hyperfine spin state. This approach suppressed
possible spin-spin interactions which first became conceivable after the creation of a BEC
in an optical trap that did not constrain the atoms any longer [5]. Including spin degrees
of freedom, a variety of different ground states arises in which the Bose gas can condense
depending crucially on the type of interaction itself. This becomes apparent when com-
paring the symmetry group of a spin-0 Bose gas U(1) to the one of a spinor Bose gas
SO(3) × U(1) together with the fact that every condensed ground state corresponds to
the breaking of a particular symmetry. Furthermore, including external magnetic fields
becomes decisive due to the linear and quadratic Zeeman effect that changes the energy
gap between the magnetic quantum number m = 0 and the two side modes at m = ±1
in the case of a spin-1 Bose gas. Spinor Bose gases exhibit interactions not only between
equal species of magnetic quantum number but also between different ones. Here one has
to highlight especially the spin changing collisions which, in a spin-1 gas, can change two
m = 0 atoms in one m = 1 and one m = −1 atom or vice versa. Such scattering has
been observed both for 23Na and for 87Rb in [6–8]. For further reading on the variety of
different research performed in spinor Bose gases we refer to the reviews [9, 10].
This thesis will be restricted to interacting spin-1 Bose gases without an external potential
but including the quadratic Zeeman shift. Therefore, we start by introducing the Hamil-
tonian for a spin-1 Bose gas. The possible spin-spin interactions in particular create a
more sophisticated s-wave interaction structure compared to the spin-0 gas. Furthermore,
the magnetic spin quantum number that labels the three distinct Zeeman states leads to
the dependence of the gas on external magnetic and microwave fields. For the analysis of
BEC we work out the mean-field phase diagram at zero temperature where our notation
will already be adopted such that it suits the application of Wilsonian renormalization.
The introduction further contains a brief crash course in thermal quantum field theory to
establish key concepts that are employed later when performing the renormalization.
Chapter 2 commences with a general introduction into renormalization techniques, and
in particular Wilson’s. This will then directly transition to the explicit application on
the thermal spin-1 Bose gas action. After performing the two pivotal steps of Wilsonian
renormalization group (WRG), i.e. mode elimination and rescaling, the flow equations for
all couplings in the thermal phase will be computed. These computations aim to give a
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Chapter 1. Introduction

comprehensive presentation of the application of WRG. The obtained flow equations will
then be analyzed regarding their fixed points and the corresponding critical exponents.
They will not be discussed further as the goal of this thesis is to describe the thermal
phase transition into the condensed polar phase.
In Chapter 3 we acknowledge that the thermal flow equations do not suffice to tackle
condensation and we will thus straightforwardly extend the previous computations to the
symmetry-broken regime. By breaking the symmetry explicitly and following the outline
of WRG as in Chapter 2, we determine flow equations in the polar phase. The technical
caveats, like the renormalization of condensate density and relations between the couplings,
will be discussed in detail. This set of flow equations will then be analyzed for 23Na where
we first discuss the cut-off dependent initialization that yields a flow towards cut-off inde-
pendent results at a fixed macroscopic density. We observe a crucial dependence of the
critical temperature on the quadratic Zeeman shift at low densities that allows to tune
the spin-1 towards a spin-0 gas. The outcome of the flow equations gives a prediction
for the critical temperature and the condensate density. However, a strong influence of
anomalous renormalization is observed that leads to cut-off dependencies and different
scaling dimensions than expected.
Having in mind the deficiencies of the computation without anomalous renormalization,
we explicitly determine flow equations for all four anomalous couplings in Chapter 4. Tak-
ing them into account when evaluating the flow, resolves the previously observed cut-off
dependence and convergence to zero of most couplings. However, new difficulties such
as singularities in the flow equations for large flow parameters arise whose resolution is
postponed to future works.

1.1 Spin-1 Hamiltonian

As we focus on interacting Bose gases with total spin F = 1, this introductory section will
introduce the Hamiltonian for such a system and show how the new spin-spin interactions
are incorporated. The total spin of an atom is determined by its electron spins, orbital
angular momentum of the electrons and nuclear spin. Both 23Na and 87Rb have possible
F = 1 total spin states and are widely used in BEC experiments making the restriction to
spin-1 systems plausible. Subsequently, the mean-field phase diagram of the Hamiltonian
is determined giving a first insight in the possible ground states of the spin-1 system. The
presentation and the notation is oriented at the two reviews by Kawaguchi and Ueda [9]
and Stamper-Kurn and Ueda [10].
The Hamiltonian Ĥ, describing a spin-1 Bose gas in d spatial dimensions, consists of
three distinct contributions. The kinetic behavior of a non-interacting gas in an external
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1.1. Spin-1 Hamiltonian

potential Ûext(r) is described by the so-called Gaussian part

Ĥ0 =
∫

dr
F∑

m=−F

Ψ̂†
m(r)

(
− ∇2

2M
+ Ûext(r)

)
Ψ̂m(r) . (1.1)

The gas consists of N indistinguishable bosons with mass M and is described by field
operators Ψ̂m(r) where the index m indicates the magnetic spin quantum number that
ranges from −F to F . This index is dropped later and the field vector Ψ̂(r) is introduced
that contains the 2F + 1 individual field operators. In the operator formalism the field
operators obey the canonical bosonic commutation relations. The total particle number
operator N̂ is defined as

N̂ =
∫

dr Ψ̂†(r)Ψ̂(r) =
∫

dr n̂(r) (1.2)

with n̂(r) being the particle density operator.
The second contribution to the Hamiltonian is the interacting contribution that, besides
the density-density interactions which are also present in a spin-0 system, also allows for
spin-spin interactions. Determining the interacting contribution involves a few assump-
tions that are discussed in greater detail in [10] and will be briefly annotated here. Due
to the typically low densities in Bose gases, two-body scattering is sufficient to describe
the interaction. Such scattering consists of two subtypes, i.e. a short-range and a long-
range part separated by a length scale r0 where the latter one is dominated by magnetic
dipole-dipole interactions. Such long-range scattering is neglected throughout this thesis
and only short-range interactions are included.
For ultracold gases the thermal de Broglie wavelength Λth exceeds the mentioned sep-
aration scale Λth ≫ r0 and therefore only partial waves with combined initial angular
momentum Lpair,in = 0 collide. Next, we assume the interaction potential for the short-
range collisions to be rotationally invariant. At vanishing external magnetic fields this
holds true exactly; however, this assumption also applies for field strengths on the order
of the normal Zeeman regime, i.e. the ground state hyperfine structure. This rotational
symmetry ensures the conservation of the total angular momentum which is the sum of
the total orbital angular momentum L̂pair and the internal angular momentum F̂pair. We
already found that the initial angular momentum is zero for cold collisions and thus the
initial total angular momentum is just Fpair,in. Generally, both contributions are not
conserved separately as dipolar relaxation can lead to the exchange of angular momen-
tum between the orbital and the internal term. However, in the so-called “weak-dipolar
approximation” such spin-orbit couplings are discarded and the separate conservation of
both angular momenta is assumed, signifying that the outgoing state is also an s-wave.
Finally, mixing between different total hyperfine states, e.g. hyperfine relaxation from
F = 2 to F = 1, is not taken into account.
To conclude, the interactions in a dilute and cold Bose gas are dominated by s-wave scat-
tering. In contrast to the spin-0 system, this does not only occur in the Fpair = 0 channel
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Chapter 1. Introduction

but also in the higher spin channels. They are further limited by spin statistics as the
exchange of two particles in the many-body wave function yields a factor of (−1)Fpair+2F

in the spin part and of (−1)Lpair in the orbital part which must combine to a total factor of
(−1)2F . Therefore, the sum Fpair +Lpair must be even; thus, in case of s-wave interactions
Fpair is even individually. In the case of F = 1, only the channel Fpair = 0 and Fpair = 2
are used for scattering. The description of these channels contains the different s-wave
scattering lengths aFpair that can be determined experimentally for 23Na (a0 = 47.36 aB,
a2 = 52.98 aB) [9, 11] and 87Rb (a0 = 101.8 aB, a2 = 100.4 aB) [12] with aB being the
Bohr radius. This conclusion of dominant s-wave scattering results in the interaction
Hamiltonian [13, 14]

Ĥint = 1
2
∑
i ̸=j

δ3(ri − rj
) ∑

even Fpair

4πℏ2aFpair

M
P̂Fpair (1.3)

when applying the pseudo-potential method [15]. The sum runs over all particle pairs
where the double counting is corrected by the prefactor of 1

2 . Every atomic pair is then
mapped by the projection operator P̂Fpair into the possible spin channels with even Fpair.
Using the completeness relation, the projection operators can be summed to the tensor
product between two identity operators 1̂ which act on a single particle:

1̂ ⊗ 1̂ =
2F∑

Fpair=0
P̂Fpair . (1.4)

The tensor product ⊗ indicates the application to either the first or the second particle
of the pair. The spin operator acting on the atomic pair F̂pair = F̂ ⊗ 1̂ + 1̂ ⊗ F̂ can be
decomposed into single particle spin operators F̂ . This decomposition proves useful to
compute the squared spin pair operator

F̂ 2
pair = F̂ 2 ⊗ 1̂ + 1̂ ⊗ F̂ 2 + 2F̂ ⊗ F̂ (1.5)

where the boson pair is an eigenstate regarding the three squared operators. This property
can be exploited by applying the above operator relation on the previous completeness
relation and extracting the tensor product of two spin operators

F̂ ⊗ F̂ =
2F∑

Fpair=0

(1
2
Fpair(Fpair + 1) − F (F − 1)

)
P̂Fpair . (1.6)

So far our reasoning applies to all integer spins, but from now on we restrict the discussion
to spin F = 1. One can recall that only even total angular momentum is possible in s-wave
interactions due to quantum statistics. This enables us to rewrite 1̂ ⊗ 1̂ = P̂0 + P̂2 and
F̂ ⊗ F̂ = P̂2 − 2P̂0 as the projection into Fpair = 1 has to be excluded. The interaction
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1.1. Spin-1 Hamiltonian

potential (1.3) can thus be rewritten in terms of identity and spin operators

Ĥint = 1
2

∫
dr
[
c0 :

(
Ψ̂†(r)Ψ̂(r)

)2
: + c1

∑
ν=x,y,z

:
(
Ψ̂†(r)FνΨ̂(r)

)2
:
]
. (1.7)

Here, the interaction potential is already presented in terms of field operators in its sec-
ond quantized form where the : represents normal ordering as the Hamiltonian is still in
operator form. The first contribution are density-density interactions with the coupling
constant c0 that appear due to the identity operator, whereas the tensor product of two
spin operators leads to spin-spin interactions with coupling constant c1. As both interac-
tions can occur in either the Fpair = 0 or the Fpair = 2 channel, their couplings can be
expressed in terms of the two s-wave scattering lengths for both spin channels

c0 = 4πℏ2

M

a0 + 2a2
3

, c1 = 4πℏ2

M

a2 − a0
3

. (1.8)

The spin matrices (Fν)mm′ =
〈
1,m

∣∣F̂ν

∣∣1,m′〉 are determined using the matrix elements
of the spin operator in the single particle spin basis:

Fx = 1√
2


0 1 0
1 0 1
0 1 0

 , Fy = i√
2


0 −1 0
1 0 −1
0 1 0

 , Fz =


1 0 0
0 0 0
0 0 −1

 . (1.9)

In (1.7) we found the description of s-wave interaction in a spin-1 Bose gas and thus
assembled the second contribution to the Hamiltonian. The third one stems from the fact,
that for F = 1 the energy of the particles in the two magnetic quantum states m = ±1
can be tuned using the linear and the quadratic Zeeman effect which is absent for spin-0
bosons. The corresponding operator is

ĤZ =
∫

dr
F∑

m=−F

Ψ̂†
m(r)

(
pFz + qF 2

z

)
Ψ̂m(r) . (1.10)

The linear Zeeman coupling p = −gµBBz contains the Landé factor g, the Bohr mag-
neton µB and the magnetic field Bz that is aligned along the z-axis. The spin matrix
Fz incorporates the opposite energy shift for the m = ±1 states and the invariance of
the m = 0 state. In contrast to the linear Zeeman shift that is solely caused by the
external magnetic field, the quadratic Zeeman coupling q = qB + qMW can also be tuned
using an external microwave field. The magnetic contribution qB = (gµBBz)2

∆Ehf
depends

quadratically on the linear Zeeman coupling and is inversely proportional to the hyperfine
energy splitting ∆Ehf . For 23Na this splitting is ∆Ehf/h ≈ 1.8 GHz and for 87Rb one
has ∆Ehf/h ≈ 6.8 GHz [9], whereas the Landé factor for both atoms in the F = 1 state
is g = −1

2 . The external microwave contribution is controlled independently using an
off-resonant microwave dressing field [16]. This individual tuning of the quadratic Zeeman
coupling motivates the later neglect of the linear Zeeman shift in the phase diagram and
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Chapter 1. Introduction

in the subsequent flow equations. Besides, the linear Zeeman effect can also be removed
by transforming into a new frame of reference that rotates with the Larmor frequency
around the z-axis.
Having introduced the three contributions, the full Hamiltonian for a spin-1 Bose gas in-
cluding Zeeman effects is Ĥ = Ĥ0 + Ĥint + ĤZ. As the Wilsonian renormalization is later
computed in the coherent state path-integral formalism, one has to replace the field oper-
ators by corresponding C-vector fields Ψ(r) and thus can also drop the normal ordering
that appeared in (1.7).

1.2 Mean-field phase diagram

Typically, the mean-field phase diagram is determined by straightforwardly minimizing
the energy functional of the Hamiltonian. As we will later apply WRG on the spin-1 Bose
gas, one needs to acknowledge that throughout the renormalization four-point couplings
renormalize individually and cannot be determined by the s-wave scattering lengths any-
more. Especially when the symmetry is broken explicitly in Chapter 3, the ground-state
has to be expressed in terms of more general coupling constants. Therefore, we will already
introduce and employ them when working out the mean-field phase diagram. At first, the
interaction Hamiltonian is expanded into the components of the field vector

Hint =
∫

dr
[
c0
2

|Ψ0|4 + c0 + c1
2

(
|Ψ1|4 + |Ψ-1|4

)
+ (c0 + c1)

(
|Ψ0Ψ1|2 + |Ψ0Ψ-1|2

)
+ (c0 − c1)|Ψ1Ψ-1|2 + c1

(
Ψ2

0Ψ∗
1Ψ∗

-1 + Ψ∗2
0 Ψ1Ψ-1

) ]
. (1.11)

From a WRG perspective, all couplings in front of a distinct field term may renormalize
independently starting from its initial value. This is incorporated by rewriting the above
expansion in terms of a set of generalized four-point couplings g(4)

ijkl

Hint =
∫

dr
1∑

ijkl=−1
g

(4)
ijkl Ψ∗

i (r)Ψj(r)Ψ∗
k(r)Ψl(r) . (1.12)

However, the expansion also exhibits an indistinguishability between the two incoming
particles in an s-wave scattering as well as for the outgoing ones. This reflects the arbitrary
labeling of particles. Also, the exchange of incoming and outgoing particles leads to
an indistinguishable result as all s-wave scatterings happen in both directions. These
symmetries are implemented by enforcing some interchange rules

g
(4)
ijkl = g

(4)
kjil = g

(4)
ilkj = g

(4)
jilk (1.13)

for the indices of the four-point couplings. As we still assume a non-vanishing linear
Zeeman shift p there are seven different non-zero four-point couplings resulting from the
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1.2. Mean-field phase diagram

expansion (1.11). Their initial values (in a renormalization scheme) can be easily read off
as

g
(4)
0000,in = c0

2
, g

(4)
1111,in = c0 + c1

2
, g

(4)
-1-1-1-1,in = c0 + c1

2
,

g
(4)
0011,in = c0 + c1

4
, g

(4)
00-1-1,in = c0 + c1

4
, g

(4)
11-1-1,in = c0 − c1

4
,

g
(4)
010-1,in = g

(4)
10-10,in = c1

2
. (1.14)

As couplings do not alter in mean-field computations, we can just work out the ground
states in terms of the four-point couplings instead of the scattering lengths. All four-point
couplings that cannot be constructed by using the interchange relations and the initial
values shown above are zero initially. At this point one should also note that neglecting
the linear Zeeman effect p = 0 leads to an indistinguishability of the m = 1 and the
m = −1 state as both are shifted equally by the quadratic Zeeman effect. This reduces
the seven distinct couplings to only five, as then g

(4)
00-1-1 = g

(4)
0011 and g

(4)
-1-1-1-1 = g

(4)
1111. This

will be used later when the WRG is performed including only the quadratic Zeeman shift.
To derive the mean-field phase diagram, the field operators are replaced by the correspond-
ing mean-fields in the full Hamiltonian. Besides, the external potential Uext(r) is dropped
as we only consider free Bose gases in this thesis. As foreshadowed, also the linear Zeeman
effect p is neglected since the detuning of Zeeman states can be performed using microwave
fields that only affect the quadratic Zeeman shift. Assembling this yields the mean-field
Hamiltonian

H =
∫

dr
[
Ψ†
(

− ∇2

2M
+ qF 2

z

)
Ψ +

1∑
ijkl=−1

g
(4)
ijkl Ψ∗

i ΨjΨ∗
kΨl

]
(1.15)

from which the ground states are now derived. Spatial arguments of the fields are dropped
here for simplicity.
In cold Bose gases the particle number is a strictly conserved quantity; hence, the system
must be treated in the grand canonical ensemble where the particle number is kept constant
using a Lagrange multiplier µ. This so-called chemical potential is subtracted from the
Hamiltonian K = H − µN to insert the constraint. Assuming a uniform and stationary
ground state implies that the variation δK = 0 must vanish. Computing this explicitly
yields

δK =
∫

dr
1∑

ab=−1

[
δΨ∗

a

(
δab(qa2 − µ) + 2

1∑
cd=−1

g
(4)
abcd Ψ∗

cΨd

)
Ψb + c.c.

]
= 0 . (1.16)
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Chapter 1. Introduction

As the variation is arbitrary, one can read off six equations, i.e. the time-independent
Gross-Pitaevskii equations,

0 =
1∑

b=−1

(
δab(qa2 − µ) + 2

1∑
cd=−1

g
(4)
abcd Ψ∗

cΨd

)
Ψb (1.17)

which define the ground states. In order to solve these equations it proves insightful to
expand the Gross-Pitaevskii equations explicitly

0 =
(
q − µ+ 2g(4)

1111|Ψ1|2 + 4g(4)
0011|Ψ0|2 + 4g(4)

11-1-1|Ψ-1|2
)
Ψ1 + 2g(4)

010-1Ψ2
0Ψ∗

-1

0 =
[(

− µ+ 4g(4)
0011(|Ψ1|2 + |Ψ-1|2) + 2g(4)

0000|Ψ0|2
)
eiφ0 + 4g(4)

010-1Ψ1Ψ-1 e
−iφ0

]
|Ψ0|

0 =
(
q − µ+ 4g(4)

11-1-1|Ψ1|2 + 4g(4)
0011|Ψ0|2 + 2g(4)

1111|Ψ-1|2
)
Ψ-1 + 2g(4)

010-1Ψ2
0Ψ∗

1 . (1.18)

Using the particle density n = Ψ†Ψ, we will now derive the different solutions of these
equations. From the second equation two possible constraints can directly be deduced
when separating Ψ0 in its absolute value and its phase φ0. Either the absolute value |Ψ0|
equals zero or the large bracket vanishes. Take note that the above equations become
simpler when inserting just the density-density and the spin-spin coupling instead of using
generalized couplings as done in [9].

Ferromagnetic phase (F)

If |Ψ0| = 0, two solutions are found in case of Ψ1 or Ψ-1 being zero. This corresponds
to the ferromagnetic ground state that has only occupancy in either the m = ±1 state.
Besides the field vector, the energy density ϵ and the spin expectation value per particle
f are also computed for all ground states

ϵ = q

n
Ψ†F 2

z Ψ + 1
n

1∑
ijkl=−1

g
(4)
ijkl Ψ∗

i ΨjΨ∗
kΨl , fi = Ψ†FiΨ

n
. (1.19)

The total phase of the ground state cannot be determined using the time-independent
Gross-Pitaevskii equations; however, it is irrelevant for the ground state itself. Thus, only
three absolute values and two phases are determined which implies that the sixth equation
fixes the chemical potential µ. For the ferromagnetic ground state the computation is still
fairly short and leads to two different fields that behave alike when no linear Zeeman shift
is present

Ψ =
√
n


eiφ1

0
0

 , f =


0
0
1

 or Ψ =
√
n


0
0

eiφ-1

 , f =


0
0

−1

 . (1.20)
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1.2. Mean-field phase diagram

Both global phases φ1 and φ-1 can be chosen freely. The magnetization parallel or an-
tiparallel to the z-axis explains why this phase is called ferromagnetic. Next, the chemical
potential and the energy density are found as

µ = q + 2ng(4)
1111 , ϵ = q + ng

(4)
1111 . (1.21)

Which of the two superselection sectors is reached for a strictly vanishing linear Zeeman
shift in a sufficiently large Bose gas is random and induced by fluctuations. Thus, in an
experimental setup no superposition of these two states is expected.

Antiferromagnetic state (AF)

If |Ψ0| = 0 and both other components are non-zero, one reaches the antiferromagnetic
state. In this ground state both non-zero Zeeman states are equally occupied

Ψ =
√
n

2


eiφ1

0
eiφ-1

 , f =


0
0
0

 . (1.22)

Again, both phases appearing in the side modes can be chosen independently and arbitrar-
ily. Due to the equal occupancy, the magnetization also turns out to be zero even though
the side modes are occupied. This can be different when the linear Zeeman shift is turned
on [9]. For the chemical potential and the energy density one finds

µ = q + n
(
g

(4)
1111 + 2g(4)

11-1-1

)
, ϵ = q + n

2

(
g

(4)
1111 + 2g(4)

11-1-1

)
. (1.23)

Both these ground states found so far are not the ones that are of main interest in this
thesis. Thus, their properties will not be investigated further and we will move on to the
other two ground states where |Ψ0| ̸= 0.

Polar phase (P)

Having only an occupation of the m = 0 mode and two empty side modes leads to the
most simple case, the so-called polar phase. From the defining equations one obtains the
field vector and the magnetization

Ψ =
√
n


0
eiφ0

0

 , f =


0
0
0

 . (1.24)

Apparently, as the susceptible side modes are not occupied, no magnetization emerges in
this ground state and the global phase φ0 is arbitrary. The chemical potential and the
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Chapter 1. Introduction

energy density are

µ = 2ng(4)
0000 , ϵ = ng

(4)
0000 . (1.25)

As the polar phase is resembling the ground state of a spin-0 Bose gas, it will be used for
the later analysis of the thermal phase transition into this condensed phase. This means
that through cooling, the macroscopic occupation of the m = 0 mode, i.e. the condensate
density, will emerge at a critical temperature Tc and increase under further cooling. The
critical temperature as well as the condensate density are expected to exhibit relations to
the spin-0 results.

Easy-Plane phase (EP)

It can be checked that no ground state exists where only one of the side modes is occupied
alongside the zero mode. Thus, the easy-plane phase has occupations in all three Zeeman
states and therefore is the most complex ground state. At first, the phases can be worked
out by finding the constraint 2φ0 = φ1 + φ-1 that leads to the definition of φz = φ0 − φ1

or equivalently φz = φ-1 − φ0. After clarifying the phases, the Gross-Pitaevskii equations
can be reduced to equations for the absolute values of the three field components. Using
the first and the third equation in (1.18) the equality |Ψ1| = |Ψ-1| of the absolute values
is found. This yields the field vector and the magnetization

Ψ = eiφ0


e−iφz |Ψ1|

|Ψ0|
eiφz |Ψ1|

 , f = 4|Ψ0||Ψ1|√
2n


cosφz

sinφz

0

 . (1.26)

Apparently, the easy-plane phase is the only ground state that exhibits an orthogonal
magnetization in the x-y-plane, explaining its name, whereas all other magnetizations
align with the z-axis. The absolute values of the field components are given by

|Ψ0|2 = (4g(4)
0011 + 2g(4)

010-1 − g
(4)
1111 − 2g(4)

11-1-1)n− q

8g(4)
0011 + 4g(4)

010-1 − 2g(4)
0000 − g

(4)
1111 − 2g(4)

11-1-1
,

|Ψ1|2 = (4g(4)
0011 + 2g(4)

010-1 − 2g(4)
0000)n+ q

16g(4)
0011 + 8g(4)

010-1 − 4g(4)
0000 − 2g(4)

1111 − 4g(4)
11-1-1

. (1.27)

Since these equations determine the absolute values, one finds the constraint that the
squared field component must be positive because otherwise an imaginary absolute value
appears. This limited regime of existence for the easy-plane phase becomes important
when later determining the mean-field phase diagram. Also, the chemical potential and
the energy density become more tedious in the easy-plane phase and can be expressed in

10



1.2. Mean-field phase diagram

terms of the field components

µ = (8g(4)
0011 + 4g(4)

010-1)|Ψ1|2 + 2g(4)
0000|Ψ0|2 ,

ϵ = 1
n

(
2q|Ψ1|2 + g

(4)
0000|Ψ0|4 + (2g(4)

1111 + 4g(4)
11-1-1)|Ψ1|4 + (8g(4)

0011 + 4g(4)
010-1)|Ψ0|2|Ψ1|2

)
.

(1.28)

Together with this state, all four distinct ground states of the spin-1 Bose gas have been
found. If one restricted the discussion to mean-field or Gaussian approximations, one could
insert the respective initial value (1.14) for all four-point couplings and would obtain the
results from [9] where they also included the linear Zeeman shift that is of no importance in
this thesis. In the next step the mean-field phase diagram at T = 0 will be determined.

Phase diagram

The actual phase diagram is found by determining the ground states for which the energy
density is minimized. This becomes especially difficult when trying to distinguish between
the ground states using all five four-point couplings. Therefore we express the energy
density in terms of the initial values of the four-point couplings as they would be in a
mean-field approach without renormalization. The general expressions above were mainly
introduced for later renormalization calculations that are in terms of generalized couplings.
The energy densities in terms of the mean-field couplings c0 and c1 appear to be

(F) : ϵ = q + nc0
2

+ nc1
2
,

(AF) : ϵ = q + nc0
2
,

(P) : ϵ = nc0
2
,

(EP) : ϵ = nc0
2

+ (2nc1 + q)2

8c1n
. (1.29)

Apparently, the term nc0/2 is irrelevant when determining the ground state since it appears
in every expression. This is sensible as c0 describes the density-density interactions in the
system and they are not affected by the different spin structures of the ground states. Thus,
the two relevant couplings that determine the ground state diagram are the quadratic
Zeeman shift q and the spin-spin interaction coupling c1.
In Figure 1.1 the construction of the phase diagram is presented. On the left, the areas are

colored according to their energetically favorable phases which means antiferromagnetic
phase for q < 0 and c1 > 0, polar phase for q > 0 and c1 > 0 and easy-plane phase for
q > 0 and c1 < 0. Only for q < 0 and c1 < 0 an additional separation line appears at
q = 4nc1 separating a small wedge of easy-plane phase from the ferromagnetic phase.
Already when the field vector of the easy-plane phase was presented, it was mentioned
that this phase has a limited area of existence which becomes clearer when computing the
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Chapter 1. Introduction

Figure 1.1: Mean-field phase diagram for the spin-1 Bose gas including the four distinct
phases: Antiferromagnetic (AF), Ferromagnetic (F), Polar (P) and Easy-
Plane (EP). On the left the color scheme highlights which phase is energet-
ically preferred in the respective regime. The black-hatched area indicates
where the easy-plane phase cannot exist. On the right the final phase di-
agram is plotted that combines the energetic favorability with the area of
existence for the easy-plane phase.

field components in terms of the initial couplings c0 and c1

|Ψ0|2 = 2nc1 − q

4c1
, |Ψ1|2 = 2nc1 + q

8c1
. (1.30)

Since the absolute value of the field component must be real, the easy-plane phase can
only exist when the squared expectation values are positive for both distinct components.
This yields that the easy-plane phase cannot exist for |q| > |2nc1| and conflicts with the
red areas underneath the black-hatched regime in Figure 1.1. For the red wedge at q < 0
one finds that the ferromagnetic phase is the second most favorable phase and for the
wedge at q > 0 the polar phase becomes the energetically favorable phase. Inserting this
constraint, one ultimately finds the standard phase diagram of spin-1 Bose gases with one
phase per quadrant with the additional polar wedge in the easy-plane quadrant.
In the phase diagram, we observe that the sign of the spin-spin coupling c1 determines
which ground states are reached. Taking into account the previously presented scattering
lengths for both 23Na and 87Rb, one finds that sodium has c1 > 0 whereas rubidium
has c1 < 0. Thus, tuning the quadratic Zeeman shift should yield a transition from the
antiferromagnetic into the polar ground state for sodium and from the ferromagnetic into
the easy-plane and ultimately into the polar phase for rubidium. Tuning also the linear
Zeeman coupling, the different spin domains for 23Na have been experimentally observed
in [7] and for 87Rb in [6].
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1.3. Field theoretical preparation

1.3 Field theoretical preparation

In the following chapter we will start applying WRG to spin-1 Bose gases and therefore
some terminology of thermal quantum field theory should be introduced. This section
does not aim to substitute a proper introduction into this topic, as it can be found in [17],
but rather introduces the main objects that will later be used. Additionally, we state the
spin-1 action as well as our conventions concerning Fourier transformations.
It was already mentioned that the spin-1 Bose gas is treated in the grand canonical en-
semble to ensure particle number conservation. In statistical physics the central object
determining the thermodynamic observables is the partition function Z that consists of a
summation over all microstates weighted with a probability factor. In terms of operators,
the partition function is

Z = Tr e−β(Ĥ−µN̂) . (1.31)

The trace corresponds to the summation over all Fock states, i.e. the microstates, and
β = 1/(kBT ) with kB being the Boltzmann constant that is set to one. By introducing an
imaginary time τ ∈ [0, β] and the second-quantized fields Ψ(τ, r), the partition function
can be rewritten using the coherent state path integral

Z =
∫

DΨ(τ, r)DΨ∗(τ, r) e−S[Ψ(τ,r),Ψ∗(τ,r)] . (1.32)

In order to introduce complex time, one must demand periodic boundary conditions in the
fields Ψ(0, r) = Ψ(β, r) in the bosonic case. We can directly infer from this periodicity that
the Fourier-transformed field has discrete frequencies ωn = 2πn/β, the so-called Matsubara
frequencies. The path integral differential DΨ can be defined rigorously after discretizing
imaginary time and space. In the path integral an action S has been introduced that
results from a Legendre transform of the Hamiltonian

S[Ψ(τ, r),Ψ∗(τ, r)] =
∫ β

0
dτ
(∫

dr Ψ†(τ, r)(∂τ − µ)Ψ(τ, r) +H[Ψ(τ, r),Ψ∗(τ, r)]
)
.

(1.33)

The Hamiltonian is obtained, as mentioned previously, by replacing the field operators
by the second-quantized fields. If a Wick rotation to real time t = −iτ is performed and
periodic boundaries are removed, one recovers the standard many-particle path integral
from quantum field theory at zero temperature but with temporal dependencies.
For the spin-1 Bose gas the action is obtained by inserting the previously discussed Hamil-
tonian in (1.33) neglecting once more the linear Zeeman effect and the external potential

S =
∫ β

0
dτ
∫

dr

Ψ†
(
Zτ∂τ − Zx

∇2

2M
− µ+ qF 2

z

)
Ψ +

1∑
ijkl=−1

g
(4)
ijkl Ψ∗

i ΨjΨ∗
kΨl

 . (1.34)
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For simplicity the field arguments have been dropped here. Besides the already discussed
terms, two matrices Zτ and Zx have been introduced that will become relevant in Chapter 4
when anomalous renormalization, i.e. the renormalization of the derivative couplings, will
be included. These two matrices are diagonal and contain the anomalous couplings Zτ,i

and Zx,i

Zτ =


Zτ,1 0 0

0 Zτ,0 0
0 0 Zτ,1

 , Zx =


Zx,1 0 0

0 Zx,0 0
0 0 Zx,1

 . (1.35)

Both in mean-field and Bogoliubov approximations these anomalous couplings are just
one as will be their initial value in later renormalization schemes. They account for the
momentum-dependent contribution to the self energy, i.e. the effective description of the
propagator. The neglect of the linear Zeeman shift implies that the anomalous couplings
for the indistinguishable m = ±1 states must be equal.
Wilsonian renormalization is typically performed in frequency and momentum space; thus,
our Fourier conventions are introduced at this point as

Ψ(τ, r) =
∑∫

k

Ψ(ωn,k) e−i(ωnτ+kr) ,

Ψ(ωn,k) =
∫

r
Ψ(τ, r) ei(ωnτ+kr) . (1.36)

Here, we employed the conventions
∫

r =
∫ β

0 dτ
∫

dr and ∑∫
k = 1/β

∑
ωn

∫
dk /(2π)d. The

summation over Matsubara frequencies instead of an integration is a relic from the periodic
boundary conditions of the bosonic fields. Taking the limit to T = 0 restores a proper
integral over frequency as the periodicity is enlarged to infinity. For later purposes it
proves useful to further define the delta functions∫

r
ei(ωn−ωn′ )τ ei(k−k′)r = δ(k − k′) ,∑∫

k

ei(τ−τ ′)ωn ei(r−r′)k = δ(r − r′) (1.37)

using the conventions δ(r− r′) = δ(τ − τ ′)δ(r − r′) and δ(k− k′) = (2π)dβδ(k − k′)δωnωn′ .
Having clarified our Fourier transformations, these can be applied to transform the action
into frequency and momentum space using the single particle energy ϵk = k2/(2M) and
the field abbreviation Ψ(k) = Ψ(ωn,k):

S =
∑∫

k

Ψ†(k)
(
−iZτωn + Zxϵk − µ+ qF 2

z

)
Ψ(k)

+
∑∫

k1,k2,k3,k4

δ(k1 + k3 − k2 − k4)
1∑

ijkl=−1
g

(4)
ijkl Ψ∗

i (k1)Ψj(k2)Ψ∗
k(k3)Ψl(k4) . (1.38)
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1.3. Field theoretical preparation

The delta function in the interaction terms ensures energy-momentum conservation in the
two-particle scattering processes. We have now introduced the required framework by
introducing the thermal path integral and the spin-1 action enabling us to continue with
an introduction to WRG in the next chapter.
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Chapter 2

WRG - Thermal Phase

After having introduced the spin-1 Hamiltonian and analyzing its mean-field phase dia-
gram, we skip the discussion of Bogoliubov approximations and directly continue with
the main method of this thesis, i.e. Wilsonian renormalization group (WRG). Results
from the Bogoliubov expansion around the non-zero mean-field will be recovered later, as
in the symmetry-broken phase effectively a perturbative expansion around the Gaussian
Bogoliubov action is performed. However, before WRG is applied in the condensed phase
it should be motivated, introduced and illustratively applied to the thermal spin-1 Bose
gas. Doing so, will require the thermal path integral as well as the action for the spin-1
gas that were both introduced in the previous chapter. The results of this chapter will be
extended later into the polar phase in order to describe the phase transition between the
symmetry-broken and the thermal phase.

2.1 Background

The discovery of renormalization group theory was to some extent motivated by the urge
to understand the appearance of infinities within theories like quantum electrodynamics
(QED). By realizing the difference between physical, meaning measurable, and bare, mean-
ing immeasurable, quantities, a big conceptual step was done to thoroughly introduce the
concept of scale into the physical theories [18, 19]. It was realized that, for example, the
charge of an electron depends on the energy scale at which it is measured. Normally,
this happens on a macroscopic scale, whereas the QED Hamiltonian naturally lives on
a microscopic scale. From this, the concept of a renormalization group flow has already
been foreshadowed, in other words, the dependence on scale of every coupling.
Besides these considerations made for QED, also in magnetic systems, e.g. the Ising model,
first renormalization approaches were developed that successfully described scaling rela-
tions close to criticality. This critical scaling and the corresponding critical exponents are
of particular interest due to universality, i.e. the alike critical behavior of microscopically
different models. It is found that at criticality the symmetries of the system mainly deter-
mine its behavior and not its microscopic details. For the Ising model this was first done
using Kadanoff’s block-spin transformation [20].
Shortly after Kadanoff, Wilson published his seminal papers [21–23] where he introduced
renormalization group theory differentially, explained the same scaling laws as Kadanoff
and derived critical exponents for the Ising model using this new method. The derivation
of critical exponents consists of the search for fixed points of the flow equations, which
describe the change of couplings under the WRG procedure, as they correspond to critical
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points of the system. Doing a so-called ϵ-expansion in the dimensions, the critical expo-
nents become accessible as we will see later [24]. This new method was also successful
solving the Kondo-problem, i.e. the anomalous increase in electrical resistivity of magnet-
ically impure metals at ultracold temperatures [25]. A detailed historic overview over the
discovery and the development of renormalization group theory can be found in [26] where
Wilson also phrases the concept of renormalization in his own words:

The ”renormalization-group” approach is a strategy for dealing with problems
involving many length scales. The strategy is to tackle the problem in steps,
one step for each length scale. In the case of critical phenomena, the problem,
technically, is to carry out statistical averages over thermal fluctuations on
all size scales. The renormalization-group approach is to integrate out the
fluctuations in sequence, starting with fluctuations on an atomic scale and
then moving to successively larger scales until fluctuations on all scales have
been averaged out. [26]

This contains the main idea of renormalization group theory, namely the process of zoom-
ing out and absorbing microscopic details, i.e. fluctuations, in changed couplings and
eventually reaching an effective theory describing the system macroscopically.
After Wilson’s approach to renormalization that is commonly implemented perturbatively,
further improvement was undertaken especially in the development of functional renor-
malization group theory [27, 28] to also understand strongly interacting theories and go
beyond the asymptotically converging ϵ-expansion.
As this work focuses on ultracold spin-1 Bose gases that are weakly interacting, we will uti-
lize the WRG and perturbation theory to investigate the symmetry-broken polar ground
state. So far, WRG has only been described verbally, but lacks the rigorous mathematical
framework that is presented in the subsequent section.

2.2 Wilsonian renormalization

Having motivated and understood the underlying idea of WRG one has to translate this
into a technical frame of equations that comprises the integration over microscopic de-
tails on several length scales. This is performed in two steps where the so-called mode
elimination integrates out the microscopic fluctuations at short wavelengths, i.e. large mo-
menta, and absorbs the appearing terms in new couplings. Afterwards, the action must
be transformed into its initial form in the rescaling step. The presentation will follow the
introduction of WRG in [29].
Before one is able to start with WRG, the action must be regularized, meaning a global
ultraviolet (UV) momentum cut-off Λ0 is introduced. This is essential, as the action for
the spin-1 Bose gas is not valid up to arbitrary momentum. The s-wave approximation
that is employed to describe the interaction in a pseudo-potential is only applicable up
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2.2. Wilsonian renormalization

to momenta on the order of the inverse scattering length a0. Hence, a cut-off Λ0 = k/a0

is introduced with k ≈ 1 being the cut-off parameter to classify different cut-offs in later
sections. This regularization removes UV divergences from our model, whereas the in-
frared (IR) divergences are taken care off by the iterative application of WRG itself.

Mode elimination

In order to integrate out the microscopic fluctuations, a smaller new cut-off Λ < Λ0 is
introduced that separates the microscopic fluctuations at large momenta above Λ from
the retained “macroscopic” regime below Λ. To implement this new cut-off, the Fourier-
transformed Bose fields Ψ(ωn,k) are split into a larger and a smaller contribution

Ψ(ωn,k) = Θ(Λ − |k|)Ψ(ωn,k)︸ ︷︷ ︸
Ψ<(ωn,k)

+ Θ(|k| − Λ)Ψ(ωn,k)︸ ︷︷ ︸
Ψ>(ωn,k)

. (2.1)

Here we use the Heaviside step function Θ(x) as separation function leading to a dis-
tinct microscopic and macroscopic momentum shell. Applying this splitting on the action
S[Ψ,Ψ†] leads to a decomposition into a purely smaller S<[Ψ<,Ψ†<] and a purely larger
part S>[Ψ>,Ψ†>] as well as a third, mixed contribution S<>[Ψ<,Ψ†<,Ψ>,Ψ†>] contain-
ing both larger and smaller fields. The first two terms structurally resemble the initial
action and can be split further into a non-interacting S0 and an interacting part Sint sep-
arately.
Throughout the WRG procedure, the macroscopic behavior is not altered as an effective
macroscopic description is computed. Therefore, the partition function Z, i.e. the ob-
ject determining all macroscopic properties, remains invariant under WRG. This allows
performing the integration over the larger fields in the path integral expression for the
partition function (1.32):

Z =
∫

DΨDΨ† e−S[Ψ,Ψ†,g]

=
∫

DΨ<DΨ†<DΨ>DΨ†> e−S<[Ψ<,Ψ†<,g]−S>[Ψ>,Ψ†>,g]−S<>[Ψ<,Ψ†<,Ψ>,Ψ†>,g]

=
∫

DΨ<DΨ†< e−S<[Ψ<,Ψ†<,g<] . (2.2)

The new cut-off leads to a splitting in the path integral differential DΨ = DΨ<DΨ> and
the mentioned decomposition of the action, which are both performed in the second line
of (2.2). As it was already foreshadowed that new couplings will emerge in the mode
elimination, it proves useful to append a coupling vector g to the arguments of the action.
In our particular case of a spin-1 Bose gas action this vector g =

(
Zτ,i, Zx,i, q, µ, g

(4)
ijkl

)
contains all couplings that were mentioned in the previous chapter. The actual mode
elimination takes place in the third line where the large modes are integrated out and
absorbed within a new set of couplings g<. The aim is now to obtain this new set as the
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changed couplings later determine the flow equations. Dropping the field arguments, the
new smaller action can be expressed analytically as

S<[g<] = S<[g] − ln
(∫

DΨ>DΨ†> e−S>[g]−S<>[g]
)
. (2.3)

The structure of this equation directly reveals, that the logarithm is the change that
emerges and is added to the initial coupling constants. The argument of the logarithm
resembles a new partition function over a microscopic spin-1 Bose gas containing macro-
scopic source fields. Thus, the change is structurally similar to a free energy of the new
partition function that is added to the previous, smaller action. From this resemblance we
can directly infer that in our later diagrammatic approach only connected diagrams are
responsible for the renormalization of any coupling. This conclusion stems from the linked
cluster theorem, that every free energy is the sum over all connected vacuum diagrams
plus a negligible energy constant where in our case the macroscopic source fields are glued
to the vacuum diagrams.
In general, the functional integral over the larger fields is not solvable analytically as in-
teraction contributions beyond Gaussian order are involved. Hence, in WRG one utilizes
perturbation theory to compute the leading terms. The Taylor expansion up to second
order is performed around the Gaussian part of the larger action in the interacting and
mixed parts∫

DΨ>DΨ†> e−S>−S<> ≈
∫

DΨ>DΨ†> e−S>
0

(
1 −

(
S<> + S>

int

)
+ 1

2

(
S<> + S>

int

)2
)

= Z>
0

(
1 −

〈
S<> + S>

int

〉
0

+ 1
2

〈(
S<> + S>

int

)2
〉

0

)
. (2.4)

In the first line, the Taylor expansion is performed where second order physically means
that all diagrams containing up to two vertices are taken into account. This is sufficient
to cover all 1-loop diagrams that will be taken into account later as the spin-1 action only
consists of two-body scattering. In (2.4) the free partition function of the larger action
Z>

0 =
∫

DΨ>DΨ†> e−S>
0 is introduced to rewrite the expansion in free expectation values

over the larger action. These are defined for an observable O as

⟨O⟩0 = 1
Z>

0

∫
DΨ>DΨ†>O e−S>

0 . (2.5)

To determine the change of the couplings, the logarithm of the Taylor expansion is taken.
This leads to the above mentioned negligible energy constant that renormalizes the overall
energy constant f0 in the action which is zero initially. The change of this constant is

f<
0 = f0 − ln

(
Z>

0

)
(2.6)

in case of a 1-loop approximation, but is negligible as explained. Next, the expansion
to second order must also be applied to the logarithm of (2.4) yielding the final 1-loop
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expression for the action after mode elimination

S<[g<] =S<[g] +
〈
S<>[g] + S>

int[g]
〉

0

+ 1
2

(〈
S<>[g] + S>

int[g]
〉2

0
−
〈(
S<>[g] + S>

int[g]
)2
〉

0

)
. (2.7)

The subtraction in the second line reflects the fact that only connected diagrams contribute
as argued before. The expectation values in this equation are the key objects that have to
be determined later in order to read off how the couplings change. Adding the expectation
values is equal to absorbing the microscopic details in new couplings.

Rescaling

The second step in WRG after mode elimination is the so-called rescaling. As renormaliza-
tion aims to find an effective description of the system, the action after the renormalization
should have the same structure as the initial one. Before the correct rescaling relations
will be derived, a dimensional analysis is performed for the spin-1 action (1.38) to find
the expected scaling dimensions of all couplings, i.e. their engineering dimensions. In
general, the rescaling relations must be determined for every model individually because
they depend on the dimensionality of the couplings. For the spin-1 gas, the dimension
of momentum and position is [k] = 1 = −[x]. Additionally, the dynamical scaling expo-
nent z sets the dimension of the temperature. The dimensionality of the complex time is
thus found to be [ωn] = z = −[τ ] using (1.38). The action itself has zero dimension as
well as the mass and the dimension of the spatial anomalous couplings are chosen to be
[Zx,i] = 0. Putting this together leads to an engineering dimension of [µ] = [q] = 2 for the
chemical potential and the quadratic Zeeman shift. Next, the Bose fields have engineering
dimension [Ψ(x)] = d+z−2

2 in spatial coordinates and [Ψ(k)] = −d+z+2
2 in momentum co-

ordinates. For the temporal anomalous couplings one derives [Zτ,i] = 2 − z and ultimately
the dimension of the four-point couplings are

[
g

(4)
ijkl

]
= 4 − d − z = ϵ. These engineering

dimensions already suggest the scaling dimensions that will later be found; however, as
this thesis also covers anomalous scaling, a more subtle derivation of the rescaling relations
must be performed.
To recover the structure of the initial action, the momentum is rescaled such that the
initial UV cut-off Λ0 is reinstalled. This is achieved using the scale factor b = Λ0/Λ to
rescale momentum, frequency and the fields accordingly

k′ = bk , ω′
n = bzωn , Ψ′

i(k′) = ζ−1
b,i Ψ<

i (k) . (2.8)

The Bose field rescaling factor ζb,i contains both the dimensional rescaling that is deter-
mined by the engineering dimension as well as the wave function renormalization that
appears when including anomalous renormalization. Plugging these rescaling relations
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Chapter 2. WRG - Thermal Phase

into the Gaussian part after mode elimination yields

S′
0[Ψ′,Ψ′†] =

∑∫
k′

|k′|<Λ0

1∑
i=−1

ζ2
b,ib

−d−zΨ′∗
i (k′)

(
b−2Z<

x,iϵk′ − ib−zZ<
τ,iω

′
n + g

(2)<
ii

)
Ψ′

i(k′) . (2.9)

We replaced the chemical potential here by a generalized two-point coupling g
(2)<
ij to

work out the general rescaling relations. Later this can be simplified to find the correct
rescaling of µ and q. From the expression one could technically start reading off the
rescaling relations. However, first the field rescaling factors as well as the dynamical scaling
exponent must be determined. This is done by demanding that the spatial anomalous
couplings renormalize to one as well as Zτ,0

1 != Z ′
x,i = ζ2

b,ib
−d−z−2Z<

x,i ,

1 != Z ′
τ,0 = ζ2

b,0b
−d−2zZ<

τ,0 . (2.10)

Inserting these three constraints fixes the two field rescaling factors and the dynamical
scaling exponent in terms of the changed anomalous couplings after mode elimination.
One finds

z = 2 +
lnZ<

τ,0 − lnZ<
x,0

ln b
, ζ2

b,i = bd+z+2

Z<
x,i

. (2.11)

If the mode elimination does not exhibit anomalous renormalization, the dynamical scal-
ing exponent is just z = 2. The inverse dependence of the field rescaling factor on the
anomalous couplings implies that the scaling dimension might differ from the previously
determined engineering dimension that is found in the exponent of the scale factor. Read-
ing off the rescaled two-point coupling from (2.9) results in

g
(2)
ii

′ = b2 g
(2)<
ii

Z<
x,i

. (2.12)

In case of the Gaussian action in (1.38) that does not contain anomalous renormalization
at 1-loop order as we will show explicitly later, the above rescaling relation simplifies to
µ′ = b2µ<.
Besides the Gaussian part, the interacting part of the action also needs to be rescaled to

S′
int[Ψ′,Ψ′†] =

∑∫
k′

1,k′
2,k′

3,k′
4

|k′
i|<Λ0

bd+zδ(k′
1 + k′

3 − k′
2 − k′

4)
1∑

ijkl=−1
ζb,iζb,jζb,kζb,lb

−4(d+z)

× g
(4)<
ijkl Ψ′∗

i (k′
1)Ψ′

j(k′
2)Ψ′∗

k (k′
3)Ψ′

l(k′
4) . (2.13)
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2.3. Thermal phase flow equations

To rescale the delta function we make use of the relation δ(b k) = b−1δ(k). The rescaling
relation for the generalized four-point couplings is

g
(4)
ijkl

′ = bϵ
g

(4)<
ijkl

(Z<
x,iZ

<
x,jZ

<
x,kZ

<
x,l)

1
2
. (2.14)

After performing the rescaling, the renormalized couplings are obtained that can now
be used in the effective field theory. Technically, it does not prove useful to compute
the renormalized couplings directly by determining the change as demanding momentum
integrals can appear. This argument will become clearer in the explicit calculation that
is performed afterwards. Therefore, one typically introduces a flow parameter l = ln b
and takes derivatives of the renormalized couplings with respect to this parameter. This
removes the momentum integrals and allows for a straightforward computation of the
derivatives. The obtained set of coupled differential equations is subsequently solved using
numerical routines, e.g. Mathematica’s NDSolve routine which is utilized in this thesis.
From the definition of the dynamical scaling exponent z it becomes clear that if anomalous
renormalization is included, it changes as well and thus results in a flow equation

l ∂lz = 2 − z + ∂l lnZ<
τ,0 − ∂l lnZ<

x,0 . (2.15)

Having another look at the rescaling of the Matsubara frequency leads to the renormalized
temperature T ′ = bzT and its corresponding flow equation

∂lT = (z + l ∂lz)T . (2.16)

In order to determine the other flow equations we need to evaluate the expectation values
in (2.7) explicitly to find the changed couplings after mode elimination. In this chapter
this will be worked out in the thermal phase where no macroscopic occupation of any
ground state is present.

2.3 Thermal phase flow equations

Following the outlined roadmap of WRG, we now compute the flow equations for the
spin-1 gas in the thermal phase. At first, the field separation (2.1) must be applied to the
action. This is done separately for the Gaussian S0 and the interacting Sint part of the
action (1.38). For the Gaussian contribution we make use of the relation Ψ<

k Ψ>
k = 0 and

obtain

S0[Ψ,Ψ†] =
∑∫

k,|k|<Λ0

Ψ†(k)MthΨ(k) =
∑∫

k,|k|<Λ0

(
Ψ†<(k)MthΨ<(k) + Ψ†>(k)MthΨ>(k)

)
= S<

0 [Ψ<,Ψ†<] + S>
0 [Ψ>,Ψ†>] . (2.17)
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Chapter 2. WRG - Thermal Phase

The matrix Mth is defined for the Gaussian part in the thermal phase as

Mth = −iZτωn + Zxϵk − µ+ qF 2
z . (2.18)

Take note that throughout this thesis the linear Zeeman shift will be discarded as motivated
earlier. The single particle energy ϵk = k2/(2M) is used and the chemical potential is now
treated as a diagonal matrix µ = diag(µ1, µ0, µ-1). This is necessary as the initial value
of the chemical potential renormalizes differently in the different Zeeman states. We
further know that µ1 = µ-1 and that the quadratic Zeeman shift should be treated as an
external parameter that only rescales as the external magnetic or microwave field is tuned
individually. For Gaussian actions the splitting always leads to a separation into a larger
and a smaller Gaussian action and no mixed terms appear as in (2.17).
In contrast, for the interacting part of (1.38) a mixed term appears besides the purely
larger and smaller contribution. One explicitly finds

Sint[Ψ,Ψ†] = S<
int[Ψ<,Ψ†<] + S>

int[Ψ>,Ψ†>] +
∑∫

k1,k2,k3,k4
|ki|<Λ0

δ(k1 + k3 − k2 − k4)
1∑

ijkl=−1
g

(4)
ijkl

×
(

2Ψ∗<
i (k1)Ψ<

j (k2)Ψ∗<
k (k3)Ψ>

l (k4) + 2Ψ∗<
i (k1)Ψ<

j (k2)Ψ∗>
k (k3)Ψ>

l (k4)

+ Ψ∗<
i (k1)Ψ>

j (k2)Ψ∗<
k (k3)Ψ>

l (k4) + 2Ψ∗<
i (k1)Ψ>

j (k2)Ψ∗>
k (k3)Ψ>

l (k4) + c.c.
)
.

(2.19)

In this computation the various permutation rules for the four-point couplings (1.13) were
used to simplify the result. From now on, the third summand above is denoted as the
mixed action S<> that turns up after the field splitting.

Correlators

In order to solve the expectation values appearing in (2.7), the free correlator between two
fields must be calculated. The path integral definition of the two-point correlator is

〈
Ψ∗

a(k1)Ψb(k2)
〉

0 = 1
Z0

∫
DΨDΨ† Ψ∗

a(k1)Ψb(k2) e−S0[Ψ,Ψ†] . (2.20)

Note that the indices of the Bose fields range over the magnetic quantum numbers −1, 0
and 1. A consequence of the perturbative approach in WRG is that correlators can be
computed analytically over the Gaussian action. Later, the free correlators are computed
with respect to larger fields; thus, limiting the momenta to Λ < |ki| < Λ0. However, in the
subsequent derivation no caveats occur concerning the momentum regimes and therefore
the initial Gaussian action is used.
The standard method to solve such path integrals is to introduce a current J(k) as a linear
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2.3. Thermal phase flow equations

term in the action. This way, the correlator can be rewritten as a functional derivative of
the partition function of the modified action

〈
Ψ∗

a(k1)Ψb(k2)
〉

0 = δ

δJa(k1)
δ

δJ∗
b (k2)

1
Z0

∫
DΨDΨ† e−S0[Ψ,Ψ†]+∑∫ (J†(k)Ψ(k)+Ψ†(k)J(k))

∣∣∣∣
J=0

.

(2.21)

Since the source current is introduced arbitrarily, it must be set to zero afterwards to
recover the proper correlator. This path integral can be solved by transforming to real
fields and currents and introducing the real current J T(x) =

(
Re JT(x) , Im JT(x)

)
. In

momentum space this current can be written as

J T(k) =
(

JT(k)+J†(−k)
2 , JT(k)−J†(−k)

2i

)
(2.22)

and fulfills the relation J ∗(k) = J (−k) because J (x) is a real current. The six components
of this vector are labeled using a ∈ {1, . . . , 6} to avoid confusion with the different labeling
of the Bose field and the respective current. Solving the path integral in (2.21) in spatial
coordinates and then transforming back into momentum space gives

〈
Ψ∗

a(k1)Ψb(k2)
〉

0 = δ

δJa(k1)
δ

δJ∗
b (k2)

e
∑∫ J †(k)M−1

k
J (k)

∣∣∣∣
J =0

. (2.23)

The 6x6 matrix Mk describes the Gaussian action when the fields are expanded into their
real and imaginary contribution and can be constructed using Mth. In the thermal phase
this matrix is

Mk =

Zxϵk − µ+ qF 2
z −Zτωn

Zτωn Zxϵk − µ+ qF 2
z

 . (2.24)

To solve the path integral and obtain (2.23), the matrix Mx in spatial coordinates must
be symmetric under transposition. Otherwise the solution formula for Gaussian path
integrals does not apply. The symmetry is given, as transposition changes the direction of
the derivative operator i∂⃗ T

τ = i ⃗∂τ which is corrected by partial integration leading to the
minus sign that is needed for symmetry. It is also apparent that (2.24) can be inverted as
is demanded in (2.23).
To actually compute the functional derivatives they must be transformed to derivatives
with respect to the real current. This is achieved by making a standard transformation in
the derivatives

δ

δJa(k1)
δ

δJ∗
b (k2)

=
∑∫
k,k′

6∑
m,n=1

(
δJm(k)
δJa(k1)

δ

δJm(k)

)(
δJn(k′)
δJ∗

b (k2)
δ

δJn(k′)

)

= 1
4

(
δ

δJ2−a(k1)
− i

δ

δJ5−a(k1)

)(
δ

δJ2−b(−k2)
+ i

δ

δJ5−b(−k2)

)
. (2.25)
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Chapter 2. WRG - Thermal Phase

Employing this transformation in (2.23) and computing the derivatives results in the
thermal two-point correlator

〈
Ψ∗

a(k1)Ψb(k2)
〉

0 = δ(k1 − k2)δab
1

iZτ,aωn + Zx,aϵk1 − µa + a2q︸ ︷︷ ︸
Ga(k1)

. (2.26)

The sign in front of ωn is irrelevant as we will always perform Matsubara sums which allow
us to flip this sign anyway. Later, only the relative sign between two propagators becomes
important. Above, the diagonal propagator Ga(k) was introduced for later calculations.
Note that the terms two-point correlator and propagator will be used interchangeably in
the course of this thesis.
In the denominator of the diagonal propagator one recovers the excitation modes of the
Bose gas in the thermal phase depending on the magnetic spin quantum number

ωa(k) = Zx,aϵk − µa + a2q . (2.27)

Having found the correlator, the expectation value of a single field can be proven to vanish〈
Ψa(k1)

〉
= 0 when setting the currents to zero as expected in the thermal phase. The

anomalous correlator
〈
Ψa(k1)Ψb(k2)

〉
= 0 vanishes as well but bear in mind that breaking

the symmetry later will reintroduce this anomalous correlator.
When computing the expectation values in (2.7) also higher order correlators appear. But
due to the vanishing expectation value of a single field, Wick’s theorem can be applied
to decompose every correlator into two-point correlators. According to this theorem, all
correlators over an odd number of fields equal zero and over an even number can be
decomposed. Also, within the thermal phase, all correlators with unequally distributed
conjugated and non-conjugated fields will be zero, due to the vanishing anomalous cor-
relator. Throughout this thesis, only the decomposition of the four-point correlator is
required

〈
Ψ∗

aΨbΨ∗
cΨd

〉
0 =

〈
Ψ∗

aΨb

〉
0
〈
Ψ∗

cΨd

〉
0 +

〈
Ψ∗

aΨ∗
c

〉
0 ⟨ΨbΨd⟩0︸ ︷︷ ︸

=0 (in thermal phase)

+
〈
Ψ∗

aΨd

〉
0
〈
Ψ∗

cΨb

〉
0 . (2.28)

The arguments of the fields were dropped here, since they are irrelevant when performing
Wick’s decomposition. With the propagator at hand, the relevant expectation values can
now be determined.

Expectation values

When working out the expectation values, one already knows that all disconnected and
2-loop diagrams can be dropped, as a consequence of the structure of mode elimination
and our order of perturbation. We can already deduce that the term

〈
S<>[g] + S>

int[g]
〉2

0
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2.3. Thermal phase flow equations

in (2.7) is irrelevant because it only consists of disconnected diagrams and acts as counter-
term to ensure connectedness. S>

int[g] is also dropped directly since this term is only
involved in disconnected or 2-loop diagrams as can be checked in a diagrammatic analysis.
The linear expectation value

〈
S<>[g]

〉
0 is computed first. Take note that the correlators

are always computed over larger fields, whereas the smaller fields are not altered and can
be moved out of the expectation values. Working out all delta functions and Kronecker
deltas gives

〈
S<>[g]

〉
0

=
∑∫

k1,k3
|k1|<Λ<|k3|<Λ0

1∑
ik=−1

4g(4)
iikk Ψ∗<

i (k1)Ψ<
i (k1)Gk(k3) . (2.29)

Here, the relation g
(4)
ijkk = δijg

(4)
iikk for the four-point couplings was used. As we perform

perturbative WRG, Feynman diagrams suggest themselves to be a graphical representation
of the calculations performed. The above results can be depicted as a 1-loop diagram with
two external legs corresponding to the two smaller fields

〈
S<>[g]

〉
0

∝ . (2.30)

The numerous Feynman diagrams in the course of this work will usually be presented
without the magnetic quantum numbers that could be added to work out numerical factors
graphically. Moreover, external legs in the diagrams, i.e. smaller fields, can be understood
as the macroscopic fields that are left after mode elimination. In contrast, the internal
propagators contain the short wavelength microscopic fluctuations that are integrated out
as they are not directly observed in a macroscopic analysis. The appearing loop momenta
are integrated over in the regime between the two cut-offs. Their dependence on external
momentum is crucial since it will later lead to anomalous renormalization.
So far, the loop in (2.30) is independent from external momentum, i.e. momentum carried
by the external legs, and thus no change in the derivative terms of the action appears at
1-loop order. Later, it will become clear that the above diagram solely determines the
change of the two-point couplings; thus, yielding the result that the anomalous couplings
Zτ,i and Zx,i do not renormalize. This also applies to the similar Ginzburg-Landau-Wilson
action describing the Ising model at long wavelengths.
Computing the quadratic contribution

〈(
S<>[g]

)2〉
0

works conceptually similar. Again,
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all apparently irrelevant diagrams are dropped and the explicit derivation results in

〈
S<>[g]2

〉
0

= 4
∑∫
ki,k

′

|ki|<Λ<|k′|<Λ0

1∑
ijkl=−1

δ(k1 + k3 − k2 − k4)Ψ∗<
i (k1)Ψ<

j (k2)Ψ∗<
k (k3)Ψ<

l (k4)

×
1∑

mn=−1
Gm(k′)

(
4g(4)

ijmng
(4)
klnmGn(k′ + k4 − k3) + g

(4)
imkng

(4)
jmlnGn(k2 + k4 − k′)

)

+ 16
1∑

ijkl=−1
g

(4)
ijkl

∑∫
ki,k

′
j

|ki|<Λ<|k′
j |<Λ0

δ(k1 + k3 − k2 − k′
5)δ(k′

5 − k4)
1∑

o=−1
g

(4)
lloo

×
(
Ψ∗<

i (k1)Ψ<
j (k2)Ψ∗<

k (k3)Ψ<
l (k4)Gl(k′

5)Go(k′
6) + c.c.

)
. (2.31)

This expression can be simplified further by investigating both terms in detail. It is worth
having a look at the diagrammatic structure of the second summand in this expectation
value as it contains the following two 1-loop diagrams

〈
S<>[g]2

〉
0

∝ + . (2.32)

Focussing on the right vertex shows that the loop momentum is again independent from
external momentum as the propagator connects to the same vertex. Thus, the momentum
of the external leg k4 directly passes on to the momentum of the internal propagator k′

5

connecting both vertices. This type of structure is forbidden due to energy momentum con-
servation since all external legs have momentum smaller than Λ because they correspond
to smaller fields. In contrast, the correlators are between larger fields with momentum
larger than Λ. This is also featured in (2.31) where the delta function δ(k′

5 − k4) appears
connecting a larger with a smaller one. To conclude, this delta function is just zero and
the second summand in the expectation value vanishes.
In terms of Feynman diagrams, only two similar diagrams contribute at 1-loop order to
the change in the four-point couplings

〈
S<>[g]2

〉
0

∝

k2

k1 k3

k4k′ + k4 − k3

k′
+

k2

k4 k1

k3k2 + k4 − k′

k′
. (2.33)

Due to energy momentum conservation, the loop momentum now depends on exter-
nal momentum leading to anomalous renormalization in terms like k2Ψ∗

i ΨjΨ∗
kΨl and

ωnΨ∗
i ΨjΨ∗

kΨl. The corresponding couplings for these terms; however, have negative engi-
neering dimension and are irrelevant in terms of renormalization. Hence, these anomalous
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2.3. Thermal phase flow equations

contributions for the four-point interaction are neglected throughout this thesis and the
propagators are expanded to zeroth order around ±k′. This means dropping all exter-
nal dependencies to make the loop independent from external momentum. Taking these
considerations into account, the result (2.31) can be shortened to

〈
S<>[g]2

〉
0

= 4
∑∫

k1,k2,k3,k4
|ki|<Λ

1∑
ijkl=−1

δ(k1 + k3 − k2 − k4)Ψ∗<
i (k1)Ψ<

j (k2)Ψ∗<
k (k3)Ψ<

l (k4)

×
∑∫
k′

Λ<|k′|<Λ0

1∑
mn=−1

Gm(k′)
(
4g(4)

ijmng
(4)
klnmGn(k′) + g

(4)
imkng

(4)
jmlnGn(−k′)

)
. (2.34)

Having computed both expectation values enables us to read off the change due to mode
elimination for the couplings.

New couplings

From the structure of (2.7) one finds the change dg of the coupling vector. Together with
the initial coupling vector, the new couplings are determined by

g< = g + dg . (2.35)

At first, the new two-point couplings are worked out using the expectation value (2.29).
For the change of the chemical potential µ0 we find

dµ0 = −4
∑∫

k
Λ<|k|<Λ0

(
g

(4)
0000G0(k) + 2g(4)

0011G1(k)
)
. (2.36)

Be aware, that the neglect of linear Zeeman effect leads to the equality G1(k) = G-1(k)
as well as the reduction to five distinct four-point couplings. The above relation is found
by computing the prefactor of the Ψ∗

0Ψ0 term. For the change in the side-mode chemical
potential µ1, the change of the terms proportional to Ψ∗

1Ψ1 and Ψ∗
-1Ψ-1 is read off as

dµ1 = −4
∑∫

k
Λ<|k|<Λ0

(
g

(4)
0011G0(k) +

(
g

(4)
1111 + g

(4)
11-1-1

)
G1(k)

)
. (2.37)

The quadratic Zeeman shift q is only rescaled according to its dimension but no change in
the parameter appears. Besides the two-point couplings, also the change in the four-point
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couplings can be computed using (2.34) which leads to the general result

dg(4)
ijkl

′
= −2

∑∫
k

Λ<|k|<Λ0

1∑
mn=−1

Gm(k)
(
4g(4)

ijmng
(4)
klnmGn(k) + g

(4)
imkng

(4)
jmlnGn(−k)

)
. (2.38)

The change is denoted with a prime here, because it contains several terms contributing
to the same coupling like dg(4)

0011
′

and dg(4)
0110

′
. These individual terms can differ but the

permutation rules in (1.13) should still hold after mode elimination. The reason for (2.38)
not obeying these constraints is our usage of index notation that introduces an unphysical
distinction between indistinguishable couplings. Thus, the actual change of the physical
couplings is the sum of all contributing changes normalized by the number of possible
permutations. This yields

dg(4)
iiii = dg(4)

iiii

′

dg(4)
iijj = 1

4

(
dg(4)

iijj

′
+ dg(4)

jjii

′
+ dg(4)

ijji

′
+ dg(4)

jiij

′ )
dg(4)

010-1 = 1
4

(
dg(4)

010-1
′
+ dg(4)

0-101
′
+ dg(4)

10-10
′
+ dg(4)

-1010
′ )
. (2.39)

After these considerations, the explicit change for all five distinct four-point couplings can
be determined. For the interaction with four m = 0 bosons one obtains

dg(4)
0000 = − 2

∑∫
k

Λ<|k|<Λ0

(
4g(4)

0000g
(4)
0000G0(k)G0(k) + 8g(4)

0011g
(4)
0011G1(k)G1(k)

+ g
(4)
0000g

(4)
0000G0(k)G0(−k) + 2g(4)

010-1g
(4)
010-1G1(k)G1(−k)

)
. (2.40)

Similarly, one obtains

dg(4)
1111 = − 2

∑∫
k

Λ<|k|<Λ0

(
4
(
g

(4)
1111g

(4)
1111 + g

(4)
11-1-1g

(4)
11-1-1

)
G1(k)G1(k)

+ 4g(4)
0011g

(4)
0011G0(k)G0(k) + g

(4)
1111g

(4)
1111G1(k)G1(−k)

)
(2.41)

for the coupling of four m = ±1 particles. For both couplings above, the averaging
procedure in (2.39) was not required since all particles involved had the same magnetic
quantum number. Besides these interactions, also two couplings describing scattering
between two bosons in different Zeeman states are computed. These interactions do not
change the magnetic quantum numbers of any particle. For the scattering between m1 = 0
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and m2 = ±1 one finds

dg(4)
0011 = − 4

∑∫
k

Λ<|k|<Λ0

(
g

(4)
0011g

(4)
0011G0(k)

(
G1(k) +G1(−k)

)
+ g

(4)
0000g

(4)
0011G0(k)G0(k)

+ g
(4)
0011

(
g

(4)
1111 + g

(4)
11-1-1

)
G1(k)G1(k) + g

(4)
010-1g

(4)
010-1G0(k)G1(k)

)
(2.42)

and for m1 = 1 and m2 = −1

dg(4)
11-1-1 = − 4

∑∫
k

Λ<|k|<Λ0

(
g

(4)
11-1-1g

(4)
11-1-1G1(k)

(
G1(k) +G1(−k)

)
+ g

(4)
0011g

(4)
0011G0(k)G0(k)

+ 2g(4)
1111g

(4)
11-1-1G1(k)G1(k) + 1

2
g

(4)
010-1g

(4)
010-1G0(k)G0(−k)

)
. (2.43)

In the two results above, diagrams with different magnetic spin number carried by the
two propagators appear for the first time. The fifth coupling g

(4)
010-1 represents the only

spin-mixing scattering process with two initial bosons in the m = 0 state and two outgoing
particles in the m = 1 and m = −1 state. Such a scattering process is also possible in the
reverse direction as included in (2.39). Its corresponding change under mode elimination
is

dg(4)
010-1 = − 2g(4)

010-1
∑∫

k
Λ<|k|<Λ0

(
8g(4)

0011G0(k)G1(k) + 2g(4)
11-1-1G1(k)G1(−k)

+ g
(4)
0000G0(k)G0(−k)

)
. (2.44)

All computed changes could also be derived using only diagrammatic language to derive
the combinatorial factors. Such an approach proves beneficial to verify the computed
results. The derived changes for the five distinct four-point couplings will now be utilized
to derive their respective flow equations. For this purpose, the appearing Matsubara sums
must be resolved in the next section.

Matsubara sums

In all results for the coupling changes presented above, one summation and one integral
over frequency and momentum is left. It has already been explained that the momentum
integration will be eliminated by ultimately describing WRG in terms of flow equations.
Thus, we are left with computing the summation over the Matsubara frequencies which
can be resolved using a standard approach. By understanding the summation as a result
of applying the residue theorem to a contour integral that encircles a function with poles
on the imaginary axis at every Matsubara frequency ωn, the summation can be rewritten
as such an integral. The required function is obtained by multiplying the function in the
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Matsubara summation with an according weighting function that is usually expressed in
terms of Bose-Einstein distributions. After this reformulation, the integration contour
can be deformed such that two separated loop integrals appear over the left and the
right complex half-plane respectively. In order to perform this deformation, the weighting
function must be chosen to ensure convergence to zero of the two semicircle integrals that
are added. The two resulting integrals can now be computed using the residue theorem
again since through the deformation the poles at the Matsubara frequencies were excluded
and the poles of the initial function in the infinite series were included. As the latter
function usually possesses a finite number of poles, their residues can be computed to
then ultimately find the result for the Matsubara series. In practice, the employed results
presented in the course of this thesis were obtained using computer algebra systems such
as Mathematica.
All summations that appear in the above changes will be expressed in terms of the Bose-
Einstein distribution

nB(ξ) = 1
eβξ − 1

. (2.45)

To start, the summation over a single propagator in the thermal phase (2.26) is evaluated.
This yields just a single Bose-Einstein distribution

1
β

∑
ωn

Ga(k) = 1
β

∑
ωn

1
iZτ,aωn + ωa(k)

=
nB
(
Z−1

τ,aωa(k)
)

Zτ,a
. (2.46)

As Bose-Einstein distributions will appear throughout this thesis, it is worth abbreviating
them as na(k) = nB(Z−1

τ,aωa(k)) where the excitation mode ωa(k) depends on the investi-
gated phase, e.g. the thermal phase. The anomalous coupling Zτ,a within the distribution
can be discarded in the thermal phase as we already explained the absence of anomalous
renormalization at 1-loop order in the thermal phase.
For the Matsubara sums over two propagators one must distinguish between the case of
equal and unequal magnetic quantum numbers. In the derivation of the equal-momentum
Matsubara sum this yields

1
β

∑
ωn

Ga(k)Gb(k) =


nb(k)−na(k)
ωa(k)−ωb(k) a ̸= b

βna(k)(1 + na(k)) a = b .
(2.47)

In case of opposite momentum, the distinction between equal and unequal magnetic quan-
tum number becomes obsolete and one obtains

1
β

∑
ωn

Ga(k)Gb(−k) = 1 + na(k) + nb(k)
ωa(k) + ωb(k)

. (2.48)

This dependence on the relative sign of the involved momenta becomes important when
investigating the zero temperature limit of the flow equations, as (2.47) vanishes in this
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limit whereas (2.48) has a non-vanishing contribution. This accounts for the fact that at
vanishing temperature only ladder diagrams, i.e. repeated scattering between two initial
particles, must be taken into account [30]. It can be understood as the absence of particles
for T = 0 since all three Zeeman-states are effectively empty due to the vanishing Bose-
Einstein distribution. Thus, two particles propagating in the system can only scatter with
each other and loop diagrams involving a circular momentum flow vanish as they contain
additional particles at microscopic wavelengths. If we will later include a condensate
fraction of the Bose gas, such interactions become possible again as our description is then
formulated in terms of quasiparticles that also account for scattering between thermal and
condensed bosons.
Together with the Matsubara sums, the changes can now be evaluated explicitly and flow
equations can be derived after rescaling.

Flow equations

As outlined before, the evaluation of the momentum integrals over the loop momentum
are too tedious to compute explicitly. Thus, one rather derives flow equations that de-
scribe how the couplings renormalize when integrating out the microscopic fluctuations,
i.e. when one zooms out of the system. To logarithmically describe the progress of the
mode elimination one introduces a flow parameter l = ln (b) that is related to the two
cut-offs through Λ = Λ0 exp (−l). As all renormalized couplings are dependent on this
flow parameter, the derivative with respect to l is taken to arrive at a set of coupled
differential equations describing the renormalization. The advantage of flow equations is
the direct access to the fixed points of the system, i.e. the critical points. These points
of self-similarity are reached when all flow equations turn zero and the length scale of the
system disappears. Such a point reflects the correlations over all length scales that are
characteristic for phase transitions. Thus, critical behavior is best studied in the linearized
proximity of such fixed points.
As no anomalous renormalization emerges, no anomalous scaling is expected either and
both anomalous couplings can be set to one. This results in the dynamical scaling ex-
ponent being z = 2 and ϵ = 2 − d. Therefore, the rescaling does not contain any wave
function renormalization and we only rescale according to the engineering dimensions of
the couplings. Before moving to the flows of the couplings, we note the flow equation for
the temperature ∂lT = 2T as well as for the quadratic Zeeman coupling ∂lq = 2 q that are
solely determined by rescaling.
The calculation of the flow equation for µ0 will be presented in a more detailed manner
than the subsequent flow equations in order to clarify how they are obtained. One starts
by calculating the derivative of the renormalized chemical potential with respect to the
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flow parameter. This results in

∂lµ
′
0 = ∂l e

2lµ<
0 = 2µ′

0 + e2l∂l dµ0

= 2µ′
0 − 4 e2l ∂l

∑∫
k

e−lΛ0<|k|<Λ0

(
g

(4)
0000G0(k) + 2g(4)

0011G1(k)
)

= 2µ′
0 − 4 eϵl SdΛd

0
(2π)d

(
g

(4)
0000 n0( e−lΛ0) + 2g(4)

0011 n1( e−lΛ0)
)
. (2.49)

Here we used the fact that the boundary of the momentum integration depends on the
flow parameter and the derivative simply replaces the appearing momenta with the cut-off
Λ. However, the derivative with respect to the flow parameter only resolves the integra-
tion over the absolute value of the momentum, whereas the spherical part of the integral
remains. This integral is computed straightforwardly as the surface of a d-dimensional
ball Sd = 2πd/2/Γ

(
d/2

)
with Γ(x) the Gamma function. In the last step the Matsub-

ara sums (2.46) were inserted as well. The appearing exponentials are used to rescale
the initial couplings according to their engineering dimension since we want to eliminate
all explicit l-dependencies in the flow equation. Since the renormalization is essentially
performed in infinitesimally small steps these rescaled initial couplings can be replaced
by the renormalized ones, e.g. eϵlg

(4)
0000 ≈ g

(4)
0000

′
. In the Bose-Einstein distribution this

leads to the emergence of the renormalized temperature T ′ instead of the initial T . After
the l-dependencies have been removed and only renormalized quantities appear in the
flow equation, the primes are dropped and one obtains the flow equation for the chemical
potential µ0 as

∂lµ0 = 2µ0 − 4SdΛd
0

(2π)d

(
g

(4)
0000n0(Λ0) + 2g(4)

0011n1(Λ0)
)
. (2.50)

In order to further simplify the flow equations, we introduce dimensionless couplings to
absorb the appearing prefactors and cut-off dependencies. These dimensionless couplings
are defined as

µ̄a = µa

ϵΛ0

, ḡ
(4)
ijkl = SdΛd

0
(2π)dϵΛ0

g
(4)
ijkl , T̄ = kBT

ϵΛ0

, q̄ = q

ϵΛ0

. (2.51)

Here ϵΛ0 indicates the single particle energy at the cut-off. This redefinition also leads
to a dimensionless dispersion relation ω̄a(Λ0) = 1 − µ̄a + a2q̄. Replacing all dimensional
couplings with their dimensionless counterparts, we arrive at a simplified flow equation.
Note that the bars over the couplings indicating their dimensionless form are omitted since
all couplings are dimensionless now.
The last simplification is to drop the momentum arguments of the Bose-Einstein distribu-
tion as they are always evaluated at the cut-off Λ0. This results in the flow equation for
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µ0 in the thermal phase

∂lµ0 = 2µ0 − 4
(
g

(4)
0000n0 + 2g(4)

0011n1
)
. (2.52)

The other flow equations are derived following the same steps as for the above flow equation.
For the other two-point coupling µ1 one obtains

∂lµ1 = 2µ1 − 4
(
g

(4)
0011n0 +

(
g

(4)
1111 + g

(4)
11-1-1

)
n1

)
. (2.53)

When computing the flows of the four-point couplings, the Matsubara sums over two
propagators that were derived in (2.47) and (2.48) are also required. At first, the flow
equation for the four-point scattering between two m = 0 particles is calculated and one
finds

∂lg
(4)
0000 = ϵ g

(4)
0000 − 2

(
4g(4)

0000g
(4)
0000βn0(1 + n0) + 8g(4)

0011g
(4)
0011βn1(1 + n1)

+ g
(4)
0000g

(4)
0000

1 + 2n0
2ω0

+ 2g(4)
010-1g

(4)
010-1

1 + 2n1
2ω1

)
. (2.54)

If only bosons with m = ±1 scatter, the corresponding coupling renormalizes as

∂lg
(4)
1111 = ϵ g

(4)
1111 − 2

(
4g(4)

0011g
(4)
0011βn0(1 + n0) + 4

(
g

(4)
1111g

(4)
1111 + g

(4)
11-1-1g

(4)
11-1-1

)
βn1(1 + n1)

+ g
(4)
1111g

(4)
1111

1 + 2n1
2ω1

)
. (2.55)

In the case of two different magnetic quantum numbers, the flow equations are found to
be

∂lg
(4)
0011 = ϵ g

(4)
0011 − 4

(
g

(4)
0011g

(4)
0011

(
n1 − n0
ω0 − ω1

+ 1 + n0 + n1
ω0 + ω1

)
+ g

(4)
0000g

(4)
0011βn0(1 + n0)

+ g
(4)
0011

(
g

(4)
1111 + g

(4)
11-1-1

)
βn1(1 + n1) + g

(4)
010-1g

(4)
010-1

n1 − n0
ω0 − ω1

)
,

∂lg
(4)
11-1-1 = ϵ g

(4)
11-1-1 − 4

(
g

(4)
11-1-1g

(4)
11-1-1

1 + 2n1
2ω1

+ g
(4)
0011g

(4)
0011βn0(1 + n0)

+ g
(4)
11-1-1

(
2g(4)

1111 + g
(4)
11-1-1

)
βn1(1 + n1) + g

(4)
010-1g

(4)
010-1

1 + 2n0
4ω0

)
. (2.56)

Finally, for the spin-mixing coupling the flow equation is

∂lg
(4)
010-1 = ϵ g

(4)
010-1 − 2g(4)

010-1

(
8g(4)

0011
n1 − n0
ω0 − ω1

+ g
(4)
0000

1 + 2n0
2ω0

+ 2g(4)
11-1-1

1 + 2n1
2ω1

)
. (2.57)

The above flow equations are a fully determined set of coupled differential equations that
could be used to analyze the behavior of a spin-1 Bose gas in the thermal phase. To
validate the results one can remove all spin-dependent parts, i.e. all terms that involve
m = ±1 particles, to reduce the set of flow equations to a spin-0 system. Doing so yields
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only two flow equations for the chemical potential µ0

∂lµ0 = 2µ0 − 4g(4)
0000n0 (2.58)

and the four-point coupling involving only m = 0 bosons

∂lg
(4)
0000 = ϵ g

(4)
0000 − 2g(4)

0000g
(4)
0000

(
4βn0(1 + n0) + 1 + 2n0

2ω0

)
. (2.59)

Replacing the chemical potential by µ and the four-point coupling by the spin-0 s-wave
coupling V0 = 2g(4)

0000, one obtains the flow equations that were computed in [31] for the
spin-0 system.
Furthermore, at zero temperature, i.e. removing all Bose-Einstein distributions, one re-
covers, after relabeling the couplings, the flow equations that were given in [32]. As a final
validation one can set the quadratic Zeeman shift q = 0 to zero which enables one to sep-
arate the flow equations into two distinct flow equations for the density-density coupling
c0 and the spin-spin coupling c1. In addition, the chemical potentials become equal and
thus the occupancies of the Zeeman states, i.e. the Bose-Einstein distributions. For the
chemical potential one obtains

∂lµ = 2µ− 2(2c0 + c1)n . (2.60)

The Bose-Einstein distribution was abbreviated here with n. For the density-density
coupling one finds

∂lc0 = ϵ c0 −
(
2(3c2

0 + 2c0c1 + c2
1)βn(1 + n) + (c2

0 + 2c2
1) 1 + 2n

2(1 − µ)

)
(2.61)

and for the spin-spin coupling

∂lc1 = ϵ c1 −
(
4c1(c0 + c1)βn(1 + n) + c1(2c0 − c1) 1 + 2n

2(1 − µ)

)
. (2.62)

These flow equations match with the ones presented in [33]. Our calculation only yielded
additional terms in (2.61) that were motivated by the scattering between two m = 0
particles by exchanging two intermediate m = ±1 bosons. Thus, we assume that in [33]
this scattering process has not been taken into account or a typo accounted for the different
flow equation.

2.4 Fixed point analysis

The aim of this thesis is to apply WRG to phase transitions occurring in spin-1 Bose gases.
Thus, we must realize that utilizing the thermal flow equations we are not able to describe
any phase transition since the flow equations just describe the symmetric thermal phase.
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Flow equations are not capable of breaking the symmetry to introduce a condensate frac-
tion. In the subsequent chapter, we will break the symmetry explicitly and compute flow
equations for the polar phase. Their behavior will then be analyzed in detail with a focus
on how these flow equations exhibit a thermal phase transition back into the thermal phase
for large temperatures. Therefore, the investigation of the thermal flow equations will not
be pursued further and we refer to the literature for further discussion, e.g. [33].
The only feature that will be discussed here is the Wilson-Fisher fixed point that describes
the thermal transition from the thermal side. Fixed points can be determined by setting all
flow equations to zero and finding the corresponding solutions for this system of equations.
However, there is one caveat concerning temperature as only one fixed point at T ∗ = 0 is
found but such a temperature would rather describe a quantum phase transition and not
the thermal phase transition that we aim to investigate. Non-zero initial temperatures will
flow to infinitely large temperatures which leads to a steadily increasing gap between the
Matsubara frequencies. This rise in temperature leads to an asymptotic behavior of the
Bose-Einstein distribution nB(ξ) = (βξ)−1. If one replaces the Bose-Einstein distributions
by this expression, one effectively removes the time derivative from the action (1.34) lead-
ing to a multiplicative factor of β. It is then required that the temperature does not flow
what is equivalent to setting the dynamical scaling exponent to z = 0. This is achieved by
effectively transferring the engineering dimensions to the temporal anomalous couplings
Zτ,a that acquire an engineering dimension of 2 and thus diverges in the course of the
renormalization. If one recalculates the previous flow equations and properly includes
the anomalous couplings one can transform to the thermal regime by taking the limit
Zτ,a → ∞ and replacing the scaling dimension of the four-point couplings by ϵ = 4 − d.
The first fixed point is found for the quadratic Zeeman shift at q∗ = 0 and implies that
the flow equations (2.60), (2.61) and (2.62) can be used to determine the fixed points for
c0 and c1 respectively. The fixed point equations are found to be

0 = 2µ− 2(2c0 + c1)
β(1 − µ)

(2.63)

for the chemical potential and

0 = ϵ c0 − 7c2
0 + 4c0c1 + 4c2

1
β(1 − µ)2 ,

0 = ϵ c1 − c1(6c0 + 3c1)
β(1 − µ)2 . (2.64)

for the density-density and the spin-spin coupling. Evaluating these flow equations shows
that all non-vanishing fixed points for c1 are complex and we thus conclude c∗

1 = 0 simpli-
fying the fixed point equations further. Besides the Gaussian fixed point with µ∗ = 0 and
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c∗
0 = 0, one finds an additional Wilson-Fisher fixed point at

µ∗ = 2ϵ
7 + 2ϵ

, c∗
0 = 7ϵβ

(7 + 2ϵ)2 . (2.65)

Before Wilson’s ϵ-expansion [24] is performed, we linearize the flow equations around the
fixed points employing µ = µ∗ + δµ and ci = c∗

i + δci. This yields

∂l


δµ

δc0

δc1

 =


2(7−2ϵ)

7 −4(7+2ϵ)
7β −2(7+2ϵ)

7β

− 2ϵ2β
7+2ϵ −ϵ −4ϵ

7
0 0 ϵ

7



δµ

δc0

δc1

 . (2.66)

The critical exponents at this Wilson-Fisher fixed point are fully determined using scaling
relations with the two exponents ν and η. The exponent η incorporates anomalous renor-
malization that is absent at 1-loop order in the thermal phase; thus, this exponent is zero.
The second exponent ν is defined as the inverse of the largest eigenvalue of the linearized
flow equations. For the matrix above the largest eigenvalue can be determined and the
corresponding critical exponent is found as

ν = 14
14 − 11ϵ+

√
196 + ϵ(84 + 233ϵ)

= 1
2

+ ϵ

7
+ O(ϵ2) . (2.67)

In the last step the obligatory ϵ-expansion to linear order was performed as our flow
equations were only determined up to 1-loop order and thus higher orders in ϵ cannot be
taken into account.
This result differs from the spin-0 result where in an ϵ-expansion the critical exponent
is found to be ν = 1/2 + ϵ/10 like in [31] matching with the expectation for an O(2)
universality class [23]. For d = 3 one finds ν = 0.6 which still deviates from the more
precise prediction of ν = 0.67 that has been computed [34] as well as measured [35]. For
our spin-1 computation we obtain a critical exponent of ν = 0.64 in d = 3 dimensions
that corresponds to the thermal phase transition for the case of three degenerate Zeeman
states.
Above, we computed the Wilson-Fisher fixed point for the thermal transition in case
of vanishing external magnetic field, i.e. quadratic Zeeman shift. This led to deviant
results from the spin-0 critical exponents obtained in a first order ϵ-expansion. However,
one can also enforce that the quadratic Zeeman shift is non-zero and obtains, as for the
temperature, a divergent contribution q → ∞ from the corresponding flow equation. This
effectively leads to the disappearance of all Bose-Einstein distributions of the m = ±1
Zeeman states as their occupation vanishes. Hence, this already resembles the result one
obtains for spin-0 Bose gases; however, one must first work out the fixed point equations for
infinite quadratic Zeeman shift and large temperatures. This yields for the two two-point
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couplings

0 = 2µ0 − 4g(4)
0000

β(1 − µ0)
, 0 = 2µ1 − 4g(4)

0011
β(1 − µ0)

. (2.68)

For the five four-point couplings the following equations are derived:

0 = ϵg
(4)
0000 − 10g(4)

0000g
(4)
0000

β(1 − µ0)2 , 0 = ϵg
(4)
1111 − 8g(4)

0011g
(4)
0011

β(1 − µ0)2 ,

0 = ϵg
(4)
0011 − 4g(4)

0000g
(4)
0011

β(1 − µ0)2 , 0 = ϵg
(4)
010-1 − 2g(4)

0000g
(4)
010-1

β(1 − µ0)2 ,

0 = ϵg
(4)
11-1-1 − 2

β(1 − µ0)2

(
2g(4)

0011g
(4)
0011 + g

(4)
010-1g

(4)
010-1

)
. (2.69)

Using the above fixed point equations one finds that both g
(4)
010-1 and g

(4)
0011 only have a

fixed point at zero. This then implies the same for g(4)
1111, g(4)

11-1-1 and µ1 which reduces the
fixed point equations to only two equations for µ and g

(4)
0000 which are exactly the fixed

point equations one obtains for a spin-0 Bose gas. We now further rewrite the four-point
coupling using the corresponding spin-channel coupling c0 = 2g(4)

0000. The Wilson-Fisher
fixed point for these equations is found at

µ∗ = ϵ

5 + ϵ
, c∗

0 = 5ϵβ
(5 + ϵ)2 . (2.70)

Next, the linearized flow equations around the fixed point are found to be

∂l

δµ
δc0

 =

 2(5−ϵ)
5 −2(5+ϵ)

5β

−2ϵ2β
5+ϵ −ϵ

δµ
δc0

 . (2.71)

The critical exponent ν can now be found as the inverse of the largest eigenvalue. In the
ϵ-expansion this results in

ν = 10
10 − 7ϵ+

√
ϵ(89ϵ+ 60) + 100

= 1
2

+ ϵ

10
+ O(ϵ2) . (2.72)

This result is exactly the aforementioned spin-0 result from [23, 31]. For d = 3 we thus
find a critical exponent of ν = 0.6. To conclude, if one treats the quadratic Zeeman shift
as a parameter, one can tune the phase transition from a spin-1 thermal transition at
q = 0 to a spin-0 thermal transition at q → ∞. This is reasonable since for large q the
side modes with m = ±1 are energetically unfavored in an ultracold Bose gas and hence
all particles reside in m = 0 thereby making it a spin-0 Bose gas.
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Chapter 3

WRG - Symmetry-Broken Phase

In the previous chapter we determined the flow equations for a spin-1 Bose gas in the
thermal phase, i.e. above the critical temperature Tc. However, they do not exhibit
a proper thermal phase transition as one would expect because the symmetry of the
system cannot be broken by flow equations. A restoration of symmetry can only appear
when the renormalization flow reaches a regime where the broken symmetry is restored.
Therefore, one has to compute flow equations in the symmetry-broken phase in order to
properly describe the transition from the condensed into the thermal phase. As presented
in Section 1.2 the spin-1 Bose gas exhibits four different ground states that are all achieved
by breaking varying symmetries. In this thesis, we focus on describing the thermal phase
transition out of the polar phase into the thermal state.
The polar phase is chosen because it is technically less demanding to compute its flow
equation than for example for the easy-plane phase. Secondly, the polar phase appears to
be similar to the spin-0 ground state as it also only has a macroscopic occupation of the
m = 0 Zeeman state. Thus, we will later compare our results for the critical temperature
and the condensate density to observations and predictions made in and for the spin-0
system. The choice is also limited as for the easy-plane phase no thermal phase transition
is predicted apart from q = 0 [36]. Since the outlook of this thesis will be the possibility
to describe the quantum phase transition between the polar and the easy-plane phase as
displayed in Figure 1.1, a proper description of the polar phase has to be given first. This
quantum phase transition is of particular interest as it is already used to study universal
dynamics in far-from-equilibrium systems. In [37] 87Rb is quenched over the quantum
phase transition to observe universal scaling also in non-equilibrium systems.
The techniques we are going to employ to determine the flow equations in the symmetry-
broken phase are adapted from Bijlsma and Stoof [31] where the condensed phase of the
spin-0 system has been described. Our aim is to extend the description to the spin-1 gas in
this chapter and investigate the emergence of a critical temperature for the thermal phase
transition as well as the decrease in condensate density towards the critical point. However,
similar to [31], difficulties will arise due to infrared divergences that were solved by Bijlsma
and Stoof by restricting to the regime where na0Λth ≪ 1. Here, n is the total particle
density, a0 the s-wave scattering length and Λ2

th = 2πℏ2/(MkBT ) the thermal de Broglie
wavelength. This approach proved successful but circumvented the adequate inclusion
of anomalous renormalization. In the subsequent chapter the 1-loop flow equations for
the anomalous couplings will be determined as well; hence, already in this chapter, the
anomalous couplings will be included.
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3.1 Breaking the symmetry

In order to work out the symmetry-broken flow equations one has to break the symmetry
explicitly and determine the resulting action. The symmetry is broken when the Bose field
acquires a non-vanishing expectation value. Hence, one expands around this expectation
value to split the Bose field into the condensate part ψc and the thermal field ψ(τ,x) that
has a vanishing expectation value:

Ψ(τ,x) = ψc + ψ(τ,x) ,

Ψ(ωn,k) = δ(k)ψc + ψ(ωn,k) . (3.1)

In the following computations, the fields will be abbreviated by Ψ(ωn,k) = Ψ(k) and
ψ(ωn,k) = ψ(k). The condensate field is related to the condensate density via ψ†

cψc = nc

and therefore factorized into ψc = √
nc ξ using the absolute value √

nc of the condensate
part and a normalized order parameter ξ that is a 3-vector in case of a spin-1 Bose
gas. This order parameter determines which ground state is chosen according to the four
distinct ones found in Section 1.2. For the time being, this ground state is not specified
and kept general and will only later be replaced by the order parameter for the polar
phase. This procedure also aims to illuminate the path to obtain flow equations in other
symmetry-broken regimes.

3.1.1 Symmetry-broken action

The expansion is now plugged into the Gaussian part of the action (1.38) which yields

S0 =βV nc ξ
†
(
−µ+ qF 2

z

)
ξ +

√
nc ξ

†
(
−µ+ qF 2

z

)
ψ(0) +

√
nc ψ

†(0)
(
−µ+ qF 2

z

)
ξ

+
∑∫

k

ψ†(k)
(
−iZτωn + Zxϵk − µ+ qF 2

z

)
ψ(k) . (3.2)

In this computation, the identity δ(0) = βV was used where the volume V =
∫

dr is
defined as the spatial integration and thus typically a diverging quantity in case of infinitely
large systems as ours. This infiniteness is also a prerequisite for obtaining an apparent
discontinuity in the derivatives of the free energy. In the expanded Gaussian action a
constant term emerges that will later be discarded as it only contributes to the overall
energy constant f0, whereas the appearing linear terms are crucial for determining the
chemical potential in the condensed phase.
Besides the Gaussian part, also the interacting contribution of (1.38) needs to be expanded
using (3.1). In doing so, we employ the known interchange relations (1.13) for the four-
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point couplings and obtain

Sint =
1∑

ijkl=−1
g

(4)
ijkl

[
βV n2

cξ
∗
i ξjξ

∗
kξl + 2

√
nc

3ξ∗
i ξj

(
ξ∗

kψl(0) + ψ∗
k(0)ξl

)
+ nc

∑∫
k1

(
4ψ∗

i (k1)ξjξ
∗
kψl(k1) + ξ∗

i ψj(k1)ξ∗
kψl(−k1) + ψ∗

i (k1)ξjψ
∗
k(−k1)ξl

)
+

∑∫
k1,k2,k3

2
√
ncδ(k1 − k2 − k3)

(
ψ∗

i (k1)ψj(k2)ξ∗
kψl(k3) + c.c.

)

+
∑∫

k1,k2,k3,k4

δ(k2 + k4 − k1 − k3)ψ∗
i (k1)ψj(k2)ψ∗

k(k3)ψl(k4)
]
. (3.3)

The thermal interaction term introduces new terms to the Gaussian action corresponding
to four-point interactions between two condensed and two thermal bosons. This will lead
to changes in the free propagator and also gives rise to anomalous propagators like

〈
ψiψj

〉
0.

Such anomalous propagators can be understood as two incoming thermal particles that
scatter into the condensate or the reverse process. Besides, the interacting action now
also consists of three-point interactions corresponding to four-point interactions with one
condensed and three thermal bosons involved. Similar to the expanded free action a
constant term emerges as well as terms linear in the fields that will be discussed in greater
detail later.
The new free part of the action in the symmetry-broken phase in momentum space is
denoted by S̃0. The emergent constant terms in (3.2) and (3.3) that change the total energy
constant of the action are already omitted as they are physically insignificant. Further
expanding the Gaussian symmetry-broken action in explicit field components results in

S̃0 =
√
nc

1∑
ab=−1

(
δab

(
qb2 − µ

)
+ 2nc

1∑
cd=−1

g
(4)
abcd ξ

∗
c ξd

)(
ξ∗

aψb(0) + ψ∗
a(0)ξb

)

+
∑∫

k

1∑
ab=−1

ψ∗
a(k)

(
δab

(
Zx,bϵk − iZτ,bωn − µ+ qb2

)
+ 4nc

1∑
cd=−1

g
(4)
abcd ξ

∗
c ξd

)
ψb(k)

+ nc
∑∫

k

1∑
abcd=−1

g
(4)
abcd

(
ξ∗

aψb(k)ξ∗
cψd(−k) + ψ∗

a(k)ξbψ
∗
c (−k)ξd

)
. (3.4)

In (3.1) the thermal field ψ(k) was introduced such that it has vanishing expectation value
and thus properly describes the thermal part of the Bose gas. However, this is only achieved
if the action does not contain any currents, i.e. linear terms in ψ(k). This prerequisite is
obviously violated by the above action as it contains such currents. Fortunately, this can
be restored by demanding a vanishing linear term in the action and retaining only terms
that appear quadratically in the fields. This demand results in an implicit determination
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of the chemical potential and can be formulated as

0 !=
1∑

a=−1
ξ∗

a

(
δab

(
q b2 − µ

)
+ 2nc

1∑
cd=−1

g
(4)
abcdξ

∗
c ξd

)
. (3.5)

The above constraint must be fulfilled for all b ∈ {−1, 0, 1}. When working out the flow
equations in the polar phase this relation will be used to find the explicit relation for the
chemical potential in this particular ground state.
Further, one can also write down the symmetry-broken expression for the interacting part
of the action S̃int, where the new three-point vertex appears

S̃int =
1∑

ijkl=−1
g

(4)
ijkl

 ∑∫
k1,k2,k3,k4

δ(k2 + k4 − k1 − k3)ψ∗
i (k1)ψj(k2)ψ∗

k(k3)ψl(k4)

+ 2
√
nc

∑∫
k1,k2,k3

δ(k1 − k2 − k3)
(
ψ∗

i (k1)ψj(k2)ξ∗
kψl(k3) + c.c.

) . (3.6)

These new actions already suffice to describe the emerging condensate phase if one drops
below the critical temperature. However, from a renormalization perspective the actions
should be modified slightly by introducing new generalized couplings since throughout the
renormalization every distinct field term and its corresponding coupling gets renormalized.
This change in couplings is independent from the initial assembly of the respective coupling;
hence, generalized two-point couplings g(2)

ij , generalized anomalous two-point couplings
g

(2,an)
ij and generalized three-point couplings g(3)

ijk are introduced. They are related to the
generalized four-point couplings and the chemical potential via

g
(2)
ij = δij

(
−µ+ qj2

)
+ 4nc

1∑
kl=−1

g
(4)
ijklξ

∗
kξl , g

(2,an)
ij = 2nc

1∑
kl=−1

g
(4)
ikjlξ

∗
kξ

∗
l ,

g
(3)
ijk = 2

√
nc

1∑
l=−1

g
(4)
ijlkξ

∗
l . (3.7)

These definitions also determine the corresponding initial values of these generalized cou-
plings. Strictly speaking, these definitions only cover one set of generalized couplings and
the other set is obtained after complex conjugating the above relations. However, as the
order parameters in the spin-1 Bose gas can always be chosen real, this distinction becomes
obsolete and for simplicity the global phases that can be determined freely are just set to
zero. Nevertheless, such a behavior could always be achieved by an appropriate rotation
of the frame of reference. Applying the permutation relations for the four-point couplings
(1.13) leads to new rules for the couplings defined in (3.7) and can be read off as

g
(2)
ij = g

(2)
ji , g

(2,an)
ij = g

(2,an)
ji , g

(3)
ijk = g

(3)
ikj . (3.8)
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3.1. Breaking the symmetry

Inserting the two generalized two-point couplings in (3.2) and dropping the linear term
we obtain the symmetry-broken free action

S̃0 =
∑∫

k

1∑
ab0=−1

ψ∗
a(k)

(
δab

(
Zx,bϵk − iZτ,bωn

)
+ g

(2)
ab

)
ψb(k)

+ 1
2
∑∫

k

1∑
ab=−1

g
(2,an)
ab

(
ψa(k)ψb(−k) + ψ∗

a(k)ψ∗
b (−k)

)
. (3.9)

Here we also utilized the realness of the order parameter to shorten the Gaussian action.
This simplified action covers the normal and the anomalous propagator as well as the four
anomalous couplings. Inserting the three-point function into (3.3), the interacting part
can be rewritten as

S̃int =
∑∫

k1,k2,k3

1∑
ijk=−1

g
(3)
ijk δ(k1 − k2 − k3)

(
ψ∗

i (k1)ψj(k2)ψk(k3) + ψi(k1)ψ∗
j (k2)ψ∗

k(k3)
)

+
∑∫

k1,k2,k3,k4

1∑
ijkl=−1

g
(4)
ijkl δ(k2 + k4 − k1 − k3)ψ∗

i (k1)ψj(k2)ψ∗
k(k3)ψl(k4) . (3.10)

Together (3.9) and (3.10) form the general symmetry-broken action that can now be used
to work out the expectation values that appear in mode elimination (2.7).
For the computation of the propagators, the symmetry-broken action is required in spatial
coordinates. The spatial free action is found after Fourier transforming (3.9) as

S̃0 =
∫

x

1∑
ab=−1

ψ∗
a(x)

(
δab

(
Zτ,b∂τ − Zx,b

∇2

2M

)
+ g

(2)
ab

)
ψb(x)

+ 1
2

∫
x

1∑
ab=−1

g
(2,an)
ab

(
ψa(x)ψb(x) + ψ∗

a(x)ψ∗
b (x)

)
. (3.11)

The spatial interacting action is derived from (3.10) as

S̃int =
∫

x

1∑
ijkl=−1

g
(4)
ijkl ψ

∗
i (x)ψj(x)ψ∗

k(x)ψl(x)

+
∫

x

1∑
ijk=−1

g
(3)
ijk

(
ψ∗

i (x)ψj(x)ψk(x) + ψi(x)ψ∗
j (x)ψ∗

k(x)
)
. (3.12)

3.1.2 Expectation values

In order to compute the mode elimination for the symmetry-broken action the same expec-
tation values as in the thermal regime must be computed. The mode elimination equation
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Chapter 3. WRG - Symmetry-Broken Phase

(2.7) remains valid for the symmetry-broken action S̃ in the form

S̃<[g<] = S̃<[g] +
〈
S̃<>[g] + S̃>

int[g]
〉

0

+ 1
2

(〈
S̃<>[g] + S̃>

int[g]
〉2

0
−
〈
(S̃<>[g] + S̃>

int[g])2
〉

0

)
. (3.13)

Even though, the mode elimination remains structurally the same, the following computa-
tions will reveal the increase in complexity due to the broader variety of Feynman diagrams
that appear after breaking the symmetry.
Splitting the fields again ψ = ψ< +ψ> into a larger and a smaller component, one can first
of all check that the decomposition S̃0 = S̃<

0 + S̃>
0 still holds for the Gaussian action. To

find the mixed contribution S̃<>, the field splitting must be inserted into the interacting
part of the action as well. Due to the novel three-point interaction, the interacting part
is split S̃int = S̃

(3)
int + S̃

(4)
int into its three-point and its four-point part. The splitting is first

applied on the four-point interacting part S̃(4)
int and results in

S̃
(4)
int = S̃

(4)<
int + S̃

(4)>
int +

1∑
ijkl=−1

g
(4)
ijkl

∑∫
k1,k2,k3,k4

δ(k2 + k4 − k1 − k3)

×
(

2ψ∗<
i (k1)ψ<

j (k2)ψ∗<
k (k3)ψ>

l (k4) + 2ψ∗<
i (k1)ψ<

j (k2)ψ∗>
k (k3)ψ>

l (k4)

+ ψ∗<
i (k1)ψ>

j (k2)ψ∗<
k (k3)ψ>

l (k4) + 2ψ∗<
i (k1)ψ>

j (k2)ψ∗>
k (k3)ψ>

l (k4) + c.c.
)
.

(3.14)

In this computation, the permutation rules (1.13) for the indices were utilized to recover the
same result as in the thermal phase (2.19). This result is sensible as four-point interactions
including four thermal bosons cannot accommodate additional condensate particles and
thus remain untouched when breaking the symmetry. The splitting is also applied on the
three-point interacting part S̃(3)

int yielding

S̃
(3)
int = S̃

(3)<
int + S̃

(3)>
int +

1∑
ijk=−1

g
(3)
ijk

∑∫
k1,k2,k3

δ(k1 − k2 − k3)

×
(

2ψ∗<
i (k1)ψ>

j (k2)ψ<
k (k3) + ψ∗>

i (k1)ψ<
j (k2)ψ<

k (k3)

+ 2ψ∗>
i (k1)ψ>

j (k2)ψ<
k (k3) + ψ∗<

i (k1)ψ>
j (k2)ψ>

k (k3) + c.c.
)
. (3.15)

Here, the possible permutations for the three-point couplings (3.8) were used frequently to
shorten the result. Having split the fields one can again compute the relevant expectation
values to determine the mode elimination and thus the change for all couplings. From
a diagrammatic perspective it is not instantly clear that all expectation values involving
S̃>

int are either vacuum diagrams, connected diagrams or of 2-loop order as in the thermal
phase. Ultimately, we will find that all diagrams involving any constituent of this action
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3.1. Breaking the symmetry

will vanish; however, for the time being we cannot neglect this term.
Similarly to the thermal phase, the expectation value

〈
S̃<>[g]

〉2

0
is dropped because it

only contains disconnected diagrams to cancel those in the last expectation value in (3.13).
After we have expanded the action, one can carry on calculating the relevant expectation
values explicitly.
Having found S̃<>, its expectation value with respect to the Gaussian action S̃0 can be
computed. At first, this is performed on a diagrammatic level to discuss the appearing
contributions

〈
S̃<>

〉
0

= + . (3.16)

Both diagrams are connected and of 1-loop order and thus of relevance. Clearly, the first
diagram, which will also be called tadpole diagram, appears due to the new three-point
interaction whereas the second diagram is the standard diagram with one loop and two
external legs that was already found in the thermal phase. However, the variety of these
diagrams increased due to the anomalous propagators that will be computed later. The
tadpole diagram is a renormalization of the one-point function which is of particular inter-
est as this leads to a new linear term emerging in the course of mode elimination. A more
elaborate discussion of this term will be presented later when the polar phase is discussed
explicitly.
Performing the calculation of the expectation value, we can again utilize the vanishing
expectation values over an odd number of larger fields. However, we cannot drop expec-
tation values of two (conjugated) larger fields as the system exhibits anomalous propa-
gators in the symmetry-broken phase. This will be derived in detail later for the case
of the polar phase. Hence, only the rewriting

〈
ψ∗

i (k1)ψj(k2)
〉

0
= δ(k1 − k2)Gij(k1) and〈

ψi(k1)ψj(k2)
〉

0
= δ(k1 +k2)Gan

ij (k1) is used, where the latter one also applies for the com-
plex conjugated expression. For the anomalous propagator one derives the permutation
relation Gan

ij (k1) = Gan
ji (−k1) from the defining two-point correlator. Taking the above

considerations into account, the expectation value of the mixed action is derived as

〈
S̃<>

〉
0

=
1∑

ijk=−1

∑∫
k

Λ<k<Λ0

(
ψ<

i (0) + ψ∗<
i (0)

) (
2g(3)

kijGjk(k) + g
(3)
ijkG

an
jk(k)

)

+
1∑

ijkl=−1
g

(4)
ijkl

∑∫
k,k′

k<Λ<k′<Λ0

((
ψ<

i (k)ψ<
k (−k) + c.c.

)
Gan

jl (k′) + 4ψ∗<
i (k)ψ<

j (k)Gkl(k′)
)
.

(3.17)

The vacuum contributions, like
〈
ψ4
〉

0
, that renormalize the energy constant were dropped

in the above computation.
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The quadratic expectation value will require some further breakdown of the computation.
The already mentioned splitting of the interacting action can be used to define the cor-
respondent three- and four-point mixed actions that were obtained in (3.14) and (3.15).
The expectation value is then factorized into three separate contributions that are going
to be evaluated individually〈(

S̃<>
)2
〉

0
=
〈(
S̃(4)<>

)2
〉

0
+
〈(
S̃(3)<>

)2
〉

0
+ 2

〈
S̃(4)<>S̃(3)<>

〉
0
. (3.18)

The expectation value of the four-point mixed action was already computed in the sym-
metric phase; however, the anomalous propagators must now also be taken into account.
At first, the expectation value is analyzed in its diagrammatic representation to carve out
the relevant diagrams

〈(
S̃(4)<>

)2
〉

0
= + +

+ + + . (3.19)

We already neglected the disconnected diagrams in the above set; however, also further
diagrams will be negligible. The first three diagrams apparently are of 2-loop order and
thus of no importance in our approximation. The fifth diagram vanishes due to energy
momentum conservation as already discussed for the analogue diagram in the thermal
phase. We argued that at the right vertex the loop does not depend on external momentum.
Thus, the momentum is directly transferred between the two other legs which are, however,
an external and an internal one having momenta either below or above the chosen cut-
off Λ. The sixth diagram renormalizes the six-point couplings that are not taken into
account such that ultimately only the fourth diagram remains and must be considered
when renormalizing the four-point couplings.
The explicit calculation taking only the fourth diagram into account leads to the general
solution for the expectation value

〈(
S̃(4)<>

)2
〉

0
=

1∑
ijkl=−1

1∑
mnop=−1

g
(4)
ijklg

(4)
mnop

∑∫
k1,k2,k3,k4

|ki|<Λ

∑∫
k′

Λ<|k′|<Λ0

×
(

16 δ(k2 + k4 − k1 − k3)ψ∗<
i,1 ψ

<
j,2ψ

∗<
m,3ψ

<
n,4

(
Gkp(k′)Glo(k′) +Gan

ko(k′)Gan
lp (k′)

)
+ 16 δ(k1 − k2 − k3 − k4)

(
ψ∗<

i,1 ψ
<
j,2ψ

<
n,3ψ

<
p,4 + c.c.

)
Gan

km(k′)Glo(k′)

+ 2 δ(k1 + k2 + k4 + k3)
(
ψ∗<

i,1 ψ
∗<
k,2ψ

∗<
m,3ψ

∗<
o,4 + c.c.

)
Gan

jn(k′)Gan
pl (k′)

+ 4 δ(k2 + k4 − k3 − k1)ψ∗<
i,1 ψ

∗<
k,3ψ

<
n,2ψ

<
p,4Gjm(k′)Glo(−k′)

)
. (3.20)

48



3.1. Breaking the symmetry

The shorthand notation ψ<
i (k1) = ψ<

i,1 was used in the above computation. Apparently
also terms like ψ3ψ∗ and ψ4 get renormalized by this expectation value, which is a new fea-
ture compared to the thermal phase. These terms emerge as the thermal bosons are now
able to scatter with condensed bosons; thus, allowing 1-loop diagrams with four thermal
bosons scattering into the ground state. However, these contributions will not be further
discussed and not included into our renormalization scheme, as we will later derive all
affected couplings from the two-point couplings using their relations in (3.7).
From a technical stance it must be remarked that in (3.20) all propagators are already
Taylor expanded around the loop momentum such that no dependence on external mo-
mentum remains. It effectively removes all anomalous renormalization from the results.
This can be done as the expectation value only modifies couplings for ψ4-like terms for
which the anomalous couplings are irrelevant.
For the expectation value of the squared three-point mixed action we start again by ana-
lyzing the expected diagrams to rule out the irrelevant ones:

〈(
S̃(3)<>

)2
〉

0
∝ + + . (3.21)

The first diagram is connected; however, the propagator only depends on external mo-
mentum as it is of 0-loop order and hence corresponds to a renormalization of k2ψ4. In a
zeroth order Taylor expansion around the ’loop momentum’, which is zero, the propagator
does not carry any momentum which is impossible for a propagator between two larger
fields. The second diagram is exactly zero, as the propagator connecting the external fields
with the loop does not carry any momentum but consists of larger fields. Only the third
diagram that contains a proper loop integral over momentum is relevant.
This diagram is an additional renormalization of the two-point couplings that arises due
to the three-point interaction in the symmetry-broken phase that has been absent in the
previous chapter. In contrast to the diagram in (3.16) that renormalizes the two-point
couplings, this diagram contains a loop momentum that depends on external momentum.
Therefore, it introduces anomalous scaling in the terms ωnψ

∗ψ and k2ψ∗ψ and is thus
responsible for introducing anomalous renormalization in the symmetry-broken phase al-
ready at 1-loop order. This feature will be discussed in greater detail in Chapter 4. Having
understood the diagrammatic composition of this expectation value, the actual computa-
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tion can be handled and yields

〈(
S̃(3)<>

)2
〉

0
=

1∑
ijk=−1

1∑
mno=−1

g
(3)
ijkg

(3)
mno

∑∫
k,k′

|k|<Λ<|k′|<Λ0

(
4ψ∗<

i (k)ψ<
m(k)Gjn(k′)Gko(k − k′)

+ 8ψ<
k (k)ψ∗<

o (k)
(
Gim(k′)Gjn(k′ − k) +Gan

in (k′)Gan
jm(k′ − k)

)
+ 8

(
ψ<

k (k)ψ∗<
m (k) + c.c.

)
Gin(k′)Gan

jo (k′ − k)

+ 4
(
ψ<

k (k)ψ<
o (−k) + c.c.

)(
Gin(k′)Gjm(k′ − k) +Gan

im(k′)Gan
jn(k′ − k)

)
+ 2

(
ψ<

i (k)ψ<
m(−k) + c.c.

)
Gan

jn(k′)Gan
ko(k′ − k)

+ 8
(
ψ<

k (k)ψ<
m(−k) + c.c.

)
Gan

in (k′)Gjo(k′ − k)
)
. (3.22)

In contrast to (3.20), the dependence on external momentum in the propagators in the
above expectation value is retained since according to our diagrammatic analysis in (3.21)
it will become relevant later. When computing the contribution to the mode elimination
term for the plain two-point couplings, the propagators must be expanded around the loop
momentum to zeroth order.
The third expectation value, which is the mixed one between the three- and four-point
mixed action, consists of the following diagrams:

〈
S̃(4)<>S̃(3)<>

〉
0

∝ + + + . (3.23)

Here, the first and second diagram can be dropped as they are of 2-loop order. The third
one is of 1-loop order; however, the propagator connecting the loop and the external legs
carries zero momentum and as it consists of larger fields, the diagram is zero. Consequently,
only the last diagram does not vanish and leads to the renormalization of the three-point
couplings. This term contains an anomalous contribution too, but only for the terms ωnψ

3

and k2ψ3 and thus only the zeroth order expansion is taken into account. The explicit
computation results in

〈
S̃(4)<>S̃(3)<>

〉
0

=
1∑

ijkl=−1

1∑
mno=−1

g
(4)
ijklg

(3)
mno

∑∫
k1,k2,k3,k′

|ki|<Λ<|k′|<Λ0

[
δ(k1 + k2 + k3)

×
(

2
(
ψ<

i,1ψ
<
k,2ψ

<
m,3 + c.c.

)
Gan

jn(k′)Gan
ol (k′) + 4

(
ψ<

i,1ψ
<
k,2ψ

<
o,3 + c.c.

)
Gln(k′)Gan

mj(k′)
)

+ δ(k1 − k2 − k3)
(

8
(
ψ∗<

i,1 ψ
<
j,2ψ

<
o,3 + c.c.

)(
Gan

km(k′)Gan
ln (k′) +Gkn(k′)Glm(k′)

)
+ 8

(
ψ∗<

i,1 ψ
<
j,2ψ

<
m,3 + c.c.

)
Gln(k′)Gan

ko(k′) + 4
(
ψ∗<

o,1ψ
<
i,2ψ

<
k,3 + c.c.

)
Gjm(k′)Gan

nl (k′)

+ 2
(
ψ∗<

m,1ψ
<
i,2ψ

<
k,3 + c.c.

)
Gjn(k′)Glo(−k′)

)]
. (3.24)
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Now, all expectation values have been worked out in a general manner that can hereafter
be used to determine explicit changes in the couplings within the different phases. Take
note that we have not specified the order parameter ξ so far as it was only incorporated
in the couplings. Already in the introduction of this chapter it was explained why we are
going to compute the flow equations within the polar phase. This particular choice will
lead to a simplification of the computation that is presented in the following section.

3.2 Polar phase flow equations

From this section onwards, the computations will be restricted to the polar phase in order
to determine its flow equations. The polar phase only exhibits a macroscopic occupation
of the m = 0 state and is thus expected to resemble the spin-0 Bose-Einstein condensate.
The aim is to set up a proper description of the thermal phase transition to show the
applicability of WRG using the method presented in [31] also for the spin-1 Bose gas.
The Bose field of the polar phase is given by ψc,i = √

nc δi0 where compared to the mean-
field result (1.24) the density is replaced by a condensate density nc since above T = 0
parts of the Bose gas will occupy thermal states. Consequently, the order parameter of
the polar phase is ξi = δi0. The mean-field results are used as a starting point to seed the
condensate and afterwards flow equations will be used to determine the regime of existence
as well as the thermodynamic properties.

Chemical potential

Similarly to the mean-field discussion, we have found a constraint (3.5) for the chemi-
cal potential in the symmetry-broken phase. Inserting the chosen order parameter this
constraint reduces to

0 != δ0b(qb2 − µ) + 2ncg
(4)
0b00 . (3.25)

As this constraint must be valid for all b, which is clearly fulfilled for b = ±1 as g(4)
0±100 = 0,

one finds the relation µ = 2ncg
(4)
0000 inserting b = 0. This result is the same expression

that was already found in the mean-field description (1.25). But now both the chemical
potential as well as the four-point coupling are governed by flow equations and thus the
relation defines the condensate density. As the constraint (3.5) for the chemical potential
must be fulfilled at every instance throughout the renormalization to ensure a vanishing
single field expectation value, the above relation is valid generally and not only for the
initial conditions.
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Correlators

Before the correlators of the polar phase can be obtained, the order parameter must be
inserted in the symmetry-broken action (3.9) and (3.10) to determine the different gener-
alized couplings that appear in the polar phase. The Gaussian action in the symmetry-
broken phase (3.9) is found to be

S̃0 =
∑∫

k

(
ψ∗

0(k)ψ0(k)
(

− iZτ,0ωn + Zx,0ϵk + g
(2)
00

)
+
(
ψ∗

1(k)ψ1(k) + ψ∗
-1(k)ψ-1(k)

)(
− iZτ,1ωn + Zx,1ϵk + g

(2)
11

)
+ g

(2,an)
00

2

(
ψ0(k)ψ0(−k) + c.c.

)
+ g

(2,an)
-11

(
ψ1(k)ψ-1(−k) + c.c.

))
. (3.26)

The generalized two-point couplings simplify to

g
(2)
ij = δij

(
−µ+ qj2 + 4ncg

(4)
ii00

)
, g

(2,an)
ij = 2δ-ijncg

(4)
0i0-i . (3.27)

From the above definition of the normal and anomalous two-point couplings one could
directly read off g

(2)
00 = µ = g

(2,an)
00 using the definition of the chemical potential. Even

though this is a valid result, for the time being we proceed distinguishing between both
couplings in order to show that their equality is fundamental in achieving a gap-less
excitation mode as predicted by Bogoliubov theory and required by the Hugenholtz-Pines
theorem.
Also the three-point couplings get further specified to

g
(3)
ijl = 2

√
ncg

(4)
ij0l (3.28)

by inserting the order parameter. The interacting action will not be formulated again, as
only the explicit form of the Gaussian part is relevant for computing the correlators.
In order to describe all Feynman diagrams, the two-point correlators in the polar phase
are essential. The two main differences that will appear compared to the thermal phase
are the new dispersion relations and the appearance of anomalous correlators as already
introduced in the previous section. The procedure will be the same as in the thermal
phase where we started by splitting the spatial fields into their real and imaginary parts
and then solved the defining path integral. The Gaussian action for the polar phase in
spatial coordinates can be obtained using (3.26). The new anomalous correlators can be
expressed similarly to the normal correlator (2.23) in terms of functional derivatives

〈
ψa(k1)ψb(k2)

〉
0 = δ

δJ∗
a (k1)

δ

δJ∗
b (k2)

e
∑∫ J †(k)M−1

k
J (k)

∣∣∣∣
J =0

,

〈
ψ∗

a(k1)ψ∗
b (k2)

〉
0 = δ

δJa(k1)
δ

δJb(k2)
e
∑∫ J †(k)M−1

k
J (k)

∣∣∣∣
J =0

. (3.29)
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One has to distinguish again between the complex current Ja(x) and the real current J (x)
that consists of six entries. For the explicit calculation, the functional derivative must be
transformed to real currents as done in (2.25) but now for either two complex currents
or two conjugated complex currents. The crucial difference between the thermal and the
polar phase is the different matrix Mk, which is found in the polar phase, compared to
the thermal phase result (2.24), as

Mk =

Zxϵk +M +M (an) −Zτωn

Zτωn Zxϵk +M −M (an)

 . (3.30)

The two auxiliary matrices M and M (an) are defined as

M =


g

(2)
11 0 0
0 g

(2)
00 0

0 0 g
(2)
11

 , M (an) =


0 0 g

(2,an)
-11

0 g
(2,an)
00 0

g
(2,an)
-11 0 0

 . (3.31)

This matrix must be inverted and then the functional derivatives need to be evaluated
which ultimately leads to the correlators. The inverse of Mk is

M−1
k =


(
Zxϵk +M −M (an)

)
Ω−1 ZτωnΩ−1

−ZτωnΩ−1
(
Zxϵk +M +M (an)

)
Ω−1

 . (3.32)

The auxiliary 3x3 matrix Ω is defined as

Ω =


Z2

τ,1ω
2
n + ω2

1 0 0
0 Z2

τ,0ω
2
n + ω2

0 0
0 0 Z2

τ,1ω
2
n + ω2

1

 . (3.33)

In the above definition the dispersion relations ω0 and ω1 have been introduced as

ω2
0 =

(
Zx,0ϵk + g

(2)
00

)2
−
(
g

(2,an)
00

)2
,

ω2
1 =

(
Zx,1ϵk + g

(2)
11

)2
−
(
g

(2,an)
-11

)2
. (3.34)

At this point it is not yet apparent why these frequencies are labeled dispersion relations
but it will become clear later when evaluating the Matsubara sums. These dispersions
could also be determined by performing a Bogoliubov analysis of the action (3.9) as it
stems from the expansion around the expectation value and a subsequent restriction to
Gaussian order. From this Bogoliubov theory performed in terms of couplings c0 and c1,
the two modes ω0 =

√
ϵk(ϵk + 2c0n) and ω1 =

√
(ϵk + q)(ϵk + q + 2c1n) are found [9]. At

first glance, (3.34) does not appear to equal the Bogoliubov modes; however, this can be
fixed by inserting the initial values for the generalized couplings. Later, we will discuss
the fact that the gap-less mode in Bogoliubov theory stays gap-less also when performing
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an explicit renormalization group calculation in further detail.
In the computation one finds that only normal correlators with equal indices and anoma-
lous correlators with inverse indices exist which further factorizes the two-point correlators
compared to the factorization employed in the general symmetry-broken computations.
From now on we will utilize the decomposition

〈
ψ∗

a(k1)ψb(k2)
〉

0 = δ(k1 − k2)δabGa(k1) ,〈
ψa(k1)ψb(k2)

〉
0 = δ(k1 + k2)δ-abG

an
a (k1) . (3.35)

Evaluating the correlators (2.23) using the polar phase matrix (3.30), the normal propa-
gators Ga(k) are found to be

Ga(k) = Zx,aϵk + g
(2)
aa − iZτ,aωn

Z2
τ,aω

2
n + ω2

a

. (3.36)

For the anomalous propagators Gan
a (k1) using (3.29) we find

Gan
a (k) = − g

(2,an)
-aa

Z2
τ,aω

2
n + ω2

a

. (3.37)

Together with these propagators, the expectation values and thus the Feynman diagrams
can be computed to determine the new couplings after the mode elimination step. In the
next step we will work out the explicit expressions for these changes in the couplings in
the polar phase.

Coupling changes

When starting with the expectation values in the polar phase, one first of all realizes that
the one-point couplings are also renormalized with the expectation value (3.17). This
will be of great importance in a subsequent section. In the thermal phase the change in
couplings was denoted as d and will now be used to label the total change of a coupling.
For the change that is induced by mode elimination, we introduce the label ∆. When
the emergence of the second contributing change, i.e. the change in condensate density,
will be discussed, the final result for the total change will also be stated. So far, only the
changes stemming from the expectation values appearing in (3.13) are computed. For the
one-point coupling g(1)

0 one finds

∆g(1)
0 =

∑∫
k

Λ<|k|<Λ0

(
4g(3)

110G1(k) + 2g(3)
01-1G

an
1 (k) + g

(3)
000

(
2G0(k) +Gan

0 (k)
))

. (3.38)

This change stems from the tadpole diagrams in (3.16) and leads to the emergence of a
linear term after mode elimination. For a vanishing expectation value of the Bose field,
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3.2. Polar phase flow equations

however, it is indispensable that the linear term vanishes and thus this emergence implies
a non-vanishing field expectation value after mode elimination. This will be resolved in
the next section as this term is related to the renormalization of the condensate density
that also changes when running the renormalization.
For the second one-point coupling one finds ∆g(1)

1 = 0 which, if one believes the aforemen-
tioned interpretation of the change in one-point couplings as the change of the condensate
density in the according Zeeman state, coincides with the expectation that no side-mode
occupation appears through mode elimination.
Beyond the one-point couplings, also the two-point couplings need to be evaluated. They
are modified by the two diagrams in (3.16) and (3.21) that were discussed in Section 3.1.2.
Note that for the change in the two-point couplings the zeroth order Taylor expansion
around the loop momentum is utilized as higher order terms renormalize anomalous cou-
plings. For the first normal coupling g(2)

00 one obtains

∆g(2)
00 =

∑∫
k

Λ<|k|<Λ0

(
4g(4)

0000G0(k) + 8g(4)
0011G1(k) − 16g(3)

110g
(3)
01-1G1(k)Gan

1 (k)

− g
(3)
000g

(3)
000

(
4G0(k)G0(k) + 8G0(k)Gan

0 (k) + 4Gan
0 (k)Gan

0 (k) + 2G0(k)G0(−k)
)

− 8g(3)
110g

(3)
110

(
G1(k)G1(k) +Gan

1 (k)Gan
1 (k)

)
− 4g(3)

01-1g
(3)
01-1G1(k)G1(−k)

)
. (3.39)

Comparing this to the thermal result (2.36), it is apparent that the inclusion of the conden-
sate enlarges the amount of possible diagrams immensely. For the other normal coupling
g

(2)
11 one finds

∆g(2)
11 =

∑∫
k

Λ<|k|<Λ0

(
4g(4)

1111G1(k) + 4g(4)
0011G0(k) + 4g(4)

11-1-1G1(k) − 4g(3)
01-1g

(3)
01-1G0(k)G1(k)

− 4g(3)
110g

(3)
110

(
2G1(k)Gan

0 (k) +G1(k)G0(k) +G1(k)G0(−k)
)

− 8g(3)
110g

(3)
01-1

(
G0(k)Gan

1 (k) +Gan
1 (k)Gan

0 (k)
))

. (3.40)

The other normal two-point couplings that are initially zero are not changed by mode
elimination and thus remain zero. For the anomalous coupling g(2,an)

00 the change is

∆g(2,an)
00 =

∑∫
k

Λ<|k|<Λ0

(
2g(4)

0000G
an
0 (k) + 4g(4)

010-1G
an
1 (k) − 16g(3)

110g
(3)
01-1G1(k)Gan

1 (k)

− 4g(3)
01-1g

(3)
01-1G

an
1 (k)Gan

1 (k) − 8g(3)
110g

(3)
110

(
G1(k)G1(k) +Gan

1 (k)Gan
1 (k)

)
− g

(3)
000g

(3)
000

(
4G0(k)G0(k) + 6Gan

0 (k)Gan
0 (k) + 8G0(k)Gan

0 (k)
))

. (3.41)
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The other anomalous coupling g(2,an)
-11 changes as follows

∆g(2,an)
-11 =

∑∫
k

Λ<|k|<Λ0

[
2g(4)

010-1G
an
0 (k) + 4g(4)

11-1-1G
an
1 (k) − 8g(3)

110g
(3)
110G

an
1 (k)

(
Gan

0 (k) +G0(k)
)

− 8g(3)
110g

(3)
0-1G1(k)

(
G0(k) +Gan

0 (k)
)

− 4g(3)
01-1g

(3)
01-1G

an
0 (k)Gan

1 (k)
]
. (3.42)

For the other anomalous couplings that are initially zero one can check again that they
do not acquire any change throughout mode elimination.
At this point, it is worth elaborating on how the renormalization of the four-point cou-
plings will later be determined. As we already found the relation between the chemical
potential and the four-point coupling g(4)

0000, one can make use of this result by identifying
the chemical potential with the two-point coupling g(2)

00 or g(2,an)
00 which are actually equal

as claimed by the Hugenholtz-Pines theorem and proven later. This relation is then used
to determine the four-point coupling by only using changes of two-point couplings. On a
two-point level, the current evaluation includes all possible couplings and their renormal-
izations which is more feasible than at four-point level where also new four-point couplings
with unequal number of in- and outgoing particles appear. Thus, to keep the amount of
simplifications to a minimum, all four-point couplings that are related to two-point cou-
plings will be determined using these relations that were noted in (3.27).
However, this approach is limited since such a relation does not exist for all four-point cou-
plings, namely g(4)

1111 and g(4)
11-1-1, which is sensible as these couplings cannot trickle down by

introducing a condensate in the m = 0 state. One can further show using (3.20) that no
new couplings emerge with same magnetic spin quantum numbers but different number
of in- and outgoing particles. This shows that the two couplings above are independent of
symmetry breaking. The change for g(4)

1111 is found as

∆g(4)
1111 = −

∑∫
k

Λ<|k|<Λ0

(
g

(4)
1111g

(4)
1111

(
2G1(k)G1(−k) + 8G1(k)G1(k)

)

+ 8g(4)
11-1-1g

(4)
11-1-1G1(k)G1(k) + 8g(4)

0011g
(4)
0011

(
G0(k)G0(k) +Gan

0 (k)Gan
0 (k)

)
+ 16g(4)

1111g
(4)
11-1-1G

an
1 (k)Gan

1 (k)
)
. (3.43)

For the second four-point coupling g(4)
11-1-1 that is read off directly we find

∆g(4)
11-1-1 = −

∑∫
k

Λ<|k|<Λ0

(
2g(4)

010-1g
(4)
010-1G0(k)G0(−k) + 8g(4)

1111g
(4)
11-1-1G1(k)G1(k)

+ 4g(4)
1111g

(4)
1111G

an
1 (k)Gan

1 (k) + 4g(4)
0011g

(4)
0011

(
G0(k)G0(k) +Gan

0 (k)Gan
0 (k)

)
+ 4g(4)

11-1-1g
(4)
11-1-1

(
2Gan

1 (k)Gan
1 (k) +G1(k)G1(k) +G1(k)G1(−k)

))
. (3.44)
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The change of g(4)
0011 can be computed using the corresponding relation; however, it contains

the quadratic Zeeman shift q that will be treated as an external parameter that does not
renormalize and only rescales when changing the system’s length scales. Thus, the change
under mode elimination of this parameter is set to zero as the external magnetic field is
not affected when zooming out of the gas.
To conclude, we have now collected all relevant changes that suffice to determine all
couplings in the system and also proposed the scheme of computing most couplings using
two-point couplings as in [31].

Change in condensate density

In the previous sections the emergence of a linear term through the renormalization proce-
dure was already established. This term is responsible for the formation of a non-vanishing
expectation value of the thermal Bose field which corresponds to the change in condensed
particle number. As the renormalized action must have a thermal Bose field with vanishing
expectation value, this linear term must be removed in an additional step. By splitting
the field into the change in condensate density and a new thermal field with vanishing
expectation value ψ0 = ψ′

0 + δ(k)∆√
nc, a proper separation between thermal and con-

densed bosons is restored. This splitting must only be done for the m = 0 state since
no occupation of the m = ±1 states emerges. Inserting this in the action after the mode
elimination gives rise to yet another linear term

S̃ ∝
(

∆g(1)
0 + ∆

√
nc
(
g

(2)
00 + g

(2,an)
00

))(
ψ0(0) + ψ∗

0(0)
)
. (3.45)

Terms of quadratic order in the change in condensate density are neglected because the
later transition to flow equations implements an infinitesimal iterative renormalization
scheme. For the linear term to vanish, the bracket must cancel to zero which determines
the change in condensate density to

∆
√
nc = − ∆g(1)

0

g
(2)
00 + g

(2,an)
00

. (3.46)

Here we found the explicit relation between the change in condensate density and the
change in the one-point coupling that was already foreshadowed.
The expansion around the new expectation value of the field does not only remove the linear
term and fixes the condensate change but also leads to a shift of the other couplings as
higher order terms also create new contributions at lower orders. This can be understood
as an additional density renormalization step that must be performed. Adding up the
change due to density and the 1-loop mode elimination change returns the total change
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dg(2)
ij in the couplings

g
(2)<
ii = g

(2)
ii + ∆g(2)

ii + 4g(3)
ii0 ∆

√
nc ,

g
(2,an)<
-ii = g

(2,an)
-ii + ∆g(2,an)

-ii + 2g(3)
0-ii∆

√
nc . (3.47)

The above relation explains the previous distinction between the total change and the
change due to mode elimination. This extra term in determining the new couplings also
highlights the advantage of computing most flow equations using two-point couplings. For
higher order terms, several additional terms can appear when including the renormaliza-
tion of the newly emerging four-point couplings.

Matsubara sums

To arrive at flow equations, the Matsubara sums that appear in the above expressions
must be solved. For this, the shorthand na(k) = nB(Z−1

τ,aωa(k)) is mostly used without
the momentum arguments. One recovers in the Bose-Einstein distribution the dispersion
relations ωa that were already introduced when computing the propagators. Their appear-
ance now proves that these are the excitation spectra as was claimed previously. Within
the polar phase, new Matsubara sums appear over anomalous propagators. At first, the
sums over single normal propagators are determined as

a

: 1
β

∑
ωn

Ga(k) = Zx,aϵk + g
(2)
aa

2Zτ,aωa
(1 + 2na) − 1

2Zτ,a
, (3.48)

and for the anomalous propagators as

a

: 1
β

∑
ωn

Gan
a (k) = − g

(2,an)
-aa

2Zτ,aωa
(1 + 2na) . (3.49)

The Feynman diagram building blocks represent the loop that is governed by the cor-
responding Matsubara sum. To arrive at the relevant Feynman diagrams, one or two
external legs, depending on three-point or four-point interaction, must be glued to the
vertex.
For one propagator the Matsubara sums remain in a manageable size; however, over two
propagators these tend to increase in size and thus some auxiliary functions are introduced
to keep them handy. The auxiliary functions are obviously constructed such that they
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simplify the Matsubara sums the most:

N (1)
ab = Zτ,bωa(1 + 2nb) − Zτ,aωb(1 + 2na)

2ωaωb(Z2
τ,bω

2
a − Z2

τ,aω
2
b )

,

N (2)
ab = Zτ,bωa(1 + 2na) − Zτ,aωb(1 + 2nb)

2(Z2
τ,bω

2
a − Z2

τ,aω
2
b )

,

N (3)
a = Zτ,a(1 + 2na)

2ωa
+ βna(1 + na) . (3.50)

The first sum over two propagators is over two normal ones describing a typical loop
with momentum circulating (counter-) clockwise. The case of equal indices must again be
treated separately as different results are obtained:

b

a

: 1
β

∑
ωn

Ga(k)Gb(k) = (Zx,aϵk + g(2)
aa )(Zx,bϵk + g

(2)
bb )N (1)

ab − N (2)
ab

a=b= (g(2,an)
aa )2

2ω2
aZ

2
τ,a

N (3)
a + βna(na + 1)

Z2
τ,a

. (3.51)

In the thermal phase we found that only ladder diagrams account for the renormalization
at T = 0 due to the absence of particles to scatter with. The above diagram apparently
has a non-vanishing contribution at zero temperature due to the possibility of intermediate
scattering events with condensed particles that are now incorporated in our quasi-particle
description.
For opposite momentum, but still two normal propagators, this corresponds to two parti-
cles flowing in the same time direction. This Matsubara sum is solved to be

b

a

: 1
β

∑
ωn

Ga(k)Gb(−k) = (Zx,aϵk + g(2)
aa )(Zx,bϵk + g

(2)
bb )N (1)

ab + N (2)
ab

a=b= (g(2,an)
aa )2

2ω2
aZ

2
τ,a

N (3)
a + (1 + 2na)

2Zτ,aωa
. (3.52)

Summing over two anomalous propagators implies the obligatory intermediate interaction
with at least four condensed particles. As the sign of the momentum is actually irrelevant
it does not matter whether these particles are in- or outgoing and thus the arrows on the
propagators could be flipped. Working out the details gives

b

a

: 1
β

∑
ωn

Gan
a (k)Gan

b (k) = g(2,an)
aa g

(2,an)
bb N (1)

ab
a=b= (g(2,an)

aa )2

2ω2
aZ

2
τ,a

N (3)
a . (3.53)

Ultimately, the Matsubara sums over a normal and an anomalous propagator also ex-
ist. They correspond to the intermediate interaction with at least two in- or outgoing
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condensate particles. The accurate computation gives

b

a

: 1
β

∑
ωn

Ga(k)Gan
b (k) = −(Zx,aϵk + g(2)

aa )g(2,an)
bb N (1)

ab

a=b= −(Zx,aϵk + g
(2)
aa )g(2,an)

aa

2ω2
aZ

2
τ,a

N (3)
a . (3.54)

Flipping the momentum in the normal propagator does not affect the result in the above
diagram due to the symmetry of the anomalous propagator. Together with the total
changes in the couplings, the proper flow equations can now be determined.

Hugenholtz-Pines relation

Before computing the explicit flow equations we prove the foreshadowed equality between
g

(2)
00 and g(2,an)

00 . We already found this equality after inserting the constraint for the chem-
ical potential in the definition of the according two-point couplings. From the dispersion
relations (3.34) it is apparent that the equality is indispensable for a gap-less excitation
mode that must be present at every instance throughout the renormalization. This fea-
ture is essentially the Hugenholtz-Pines theorem [38] for a spin-0 Bose gas. In [39, 40] this
theorem has been extended to spin-1 Bose gases which leads to the expected results of a
gap-less mode ω0 and two gapped modes ω±1 unless q = 0 in the polar phase.
However, it is worthwhile to check if this constraint is also incorporated in our Wilso-
nian renormalization scheme. Therefore, the difference between the renormalized g(2)

00 and
g

(2,an)
00 is computed to show that it actually vanishes if their initial values are equal. For

this, a relation between the Matsubara sums can be found that proves to be useful later
on:

g
(2,an)
−aa

1
β

∑
ωn

(
Gan

a (k)Gan
a (−k) −Ga(k)Ga(−k)

)
= 1
β

∑
ωn

Gan
a (k) . (3.55)

Besides, also the two relations for the two anomalous two-point couplings g(2,an)
00 = 2ncg

(4)
0000

and g(2,an)
-11 = 2ncg

(4)
010-1 are employed in the following computation. The difference between

the renormalized couplings is then computed as

g
(2)<
00 − g

(2,an)<
00 = g

(2)
00 − g

(2,an)
00 +

∑∫
k

Λ<|k|<Λ0

1 − 2g(2,an)
00

g
(2)
00 + g

(2,an)
00



×
(

2g(4)
0000

(
2G0(k) +Gan

0 (k)
)

+ 8g(4)
0011G1(k) + 4g(4)

010-1G
an
1 (k)

)
. (3.56)

If the initial values for g(2)
00 and g(2,an)

00 are equal, which they are for the spin-1 Bose gas in
the polar phase, the couplings after the mode elimination and thus after the renormaliza-
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3.2. Polar phase flow equations

tion are also equal. This directly implies equality throughout the complete renormalization
if the initial values are equal. As g(2,an)

00 can be identified with the chemical potential, g(2)
00

can also be replaced by µ which will be done from now on. Furthermore, this confirms
the validity of the Hugenholtz-Pines theorem also in our WRG approach.

New couplings

Having found the change due to mode elimination for all four two-point couplings in (3.39),
(3.40), (3.41) and (3.42) as well as the change due to condensate density renormalization
(3.47), we can compute the total change of these couplings. This section will compute the
new couplings in their dimensional form before the rescaling step is applied. The purpose
is to disclose how the anomalous couplings appear in the subsequent expressions as they
will later disappear after rescaling. In our approach it suffices to compute the change
for the two-point couplings µ and g

(2)
11 where we proved, in the previous section, that the

particular choice between g
(2)
00 and g

(2,an)
00 is actually irrelevant. Utilizing these couplings

one can then evaluate the change for the four-point couplings g(4)
0000 and g

(4)
0011. Next, the

change of g(2,an)
-11 is used to determine g

(4)
010-1 where only the latter coupling is relevant

as both are related through the condensate density. Eventually, only the two four-point
couplings g(4)

1111 and g
(4)
11-1-1 need to be found as they are not affected by the symmetry

breaking. Performing the actual computations, we will employ the Matsubara sums that
were derived in the previous section. For the chemical potential either (3.39) as well as
(3.41) yield the same result:

µ< =µ− 4
∫ Λ0

Λ
dk

 g(4)
0000

2Zτ,0

µ(2Zx,0ϵk + µ
)2

Zτ,0ω2
0

N (3)
0 + Zx,0ϵk − µ

ω0
(1 + 2n0) − 1

− g
(4)
0011
Zτ,1

+ 2nc
Z2

τ,1ω
2
1

(
2g(4)

0011

(
Zx,1ϵk + g

(2)
11

)
− g

(4)
010-1g

(2,an)
-11

)2

N (3)
1

+ g
(4)
0011

Zτ,1ω1

(
(Zx,1ϵk + g

(2)
11 ) − 4ncg

(3)
0011

)
(1 + 2n1)

 . (3.57)

The integration limits in the above result indicate the range of integration for the absolute
value |k|, whereas the angular integration covers the whole sphere Sd. Using (3.40), we
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find for the other normal two-point coupling

g
(2)<
11 = g

(2)
11 − 2

∫ Λ0

Λ
dk

− 4g(4)
010-1g

(2,an)
-11 N (2)

01 + g
(4)
0011
Zτ,0

(
Zx,0ϵk
ω0

(1 + 2n0) − 1
)

+

4g(4)
0011g

(4)
0011

g
(4)
0000

− g
(4)
1111 − g

(4)
11-1-1

Zx,1ϵk + g
(2)
11

Zτ,1ω1
(1 + 2n1) − 1

Zτ,1


−
(
g

(2,an)
-11

)2 2g(4)
0011

µZτ,1ω1
(1 + 2n1) + 8nc

(g(4)
010-1

)2(
Zx,0ϵk + µ

)(
Zx,1ϵk + g

(2)
11

)

− 2g(4)
0011

(
g

(4)
010-1g

(2,an)
-11 − g

(4)
0011

(
Zx,1ϵk + g

(2)
11

))
Zx,0ϵk

N (1)
01

 . (3.58)

As already foreshadowed, some four-point couplings will be computed using their relation
to the two-point couplings. For the coupling g(4)

0000 that is directly related to the chemical
potential, whose change is already known from (3.57), the change can be computed using
this relation. However, it does not suffice to just divide by the condensate density as we
do not have an explicit expression for the density after mode elimination. Thus, as the
relation holds ahead of mode elimination, we can compute the total change of g(4)

0000. One
ultimately finds

dg(4)
0000 = d

g(2,an)
00
2nc

 = 1
2nc

(
dg(2,an)

00 − g
(2,an)
00

dnc
nc

)

= 1
2nc

(
∆g(2,an)

00 + 2g(3)
000∆

√
nc − 2g(2,an)

00
∆√

nc√
nc

)
= ∆g(2,an)

00
2nc

. (3.59)

In this computation the relation g
(2,an)
00 = √

ncg
(3)
000 is used as well as our results for the

total change of g(2,an)
00 in (3.47). We obtain that the change in the four-point coupling

is only determined by the mode-elimination change of the anomalous two-point coupling.
Applying this result together with the Matsubara sums one obtains for the four-point
coupling

g
(4)<
0000 = g

(4)
0000 − 2

∫ Λ0

Λ
dk

((g(4)
010-1

)2
− 4

(
g

(4)
0011

)2
)

1 + 2n1
ω1Zτ,1

+ µ2

4n2
c

((2Zx,0ϵk + µ
)2

ω2
0Z

2
τ,0

N (3)
0

− 3(1 + 2n0)
2Zτ,0ω0

)
+
(

2g(4)
0011

(
Zx,1ϵk + g

(2)
11

)
− g

(4)
010-1g

(2,an)
-11

)2 2N (3)
1

ω2
1Z

2
τ,1

 . (3.60)

Following the same procedure as for g(4)
0000 in (3.59), the change in g(4)

010-1 can be determined.
Doing so relies on the relation g

(2,an)
-11 = 2ncg

(4)
010-1 that links the four-point coupling to a
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two-point coupling. We obtain

dg(4)
010-1 = d

g(2,an)
-11
2nc

 = ∆g(2,an)
-11

2nc
. (3.61)

In the computation one has to utilize the relation g
(2,an)
-11 = √

nc g
(3)
01-1. Applying previous

results yields the new four-point coupling

g
(4)<
010-1 = g

(4)
010-1 − 2g(4)

010-1

∫ Λ0

Λ
dk

 g
(4)
0000

2Zτ,0ω0
(1 + 2n0) + g

(4)
11-1-1
Zτ,1ω1

(1 + 2n1) − 8g(4)
0011N (2)

01

− 4

2g(4)
0011Zx,0ϵk

(
2ncg

(4)
0011 −

(
Zx,1ϵk + g

(2)
11

))
− µg

(4)
010-1g

(2,an)
-11

N (1)
01

 . (3.62)

The four-point coupling g(4)
0011 is determined using the relation (3.27) for the two-coupling

g
(2)
11 . Thus, no particular expression for this coupling is relevant as the condensate is

determined via the chemical potential and the quadratic Zeeman coupling does not change
under mode elimination q< = q.
For the coupling g(4)

1111 that is not computed using a related two-point coupling, the new
coupling is found as

g
(4)<
1111 = g

(4)
1111 −

∫ Λ0

Λ
dk

((g(4)
1111

)2
− 4

(
g

(4)
11-1-1 − g

(4)
1111

)2
)(

g
(2,an)
-11

)2

+ 8
((

g
(4)
1111

)2
+
(
g

(4)
11-1-1

)2
)(

Zx,1ϵk + g
(2)
11

)2
 N (3)

1
ω2

1Z
2
τ,1

− 4
(
g

(4)
0011

)2
1 + 2n0
ω0Zτ,0

− 2
(
Zx,0ϵk + µ

)2
ω2

0Z
2
τ,0

N (3)
0

−
(

4
(
g

(4)
11-1-1

)2
+ 3

(
g

(4)
1111

)2
)

1 + 2n1
ω1Zτ,1

 . (3.63)

The last coupling g(4)
11-1-1 is also determined by its direct change in the fourth order of the

fields and yields the change

g
(4)<
11-1-1 = g

(4)
11-1-1 −

∫ Λ0

Λ
dk

2
((

g
(4)
1111

)2
+ 2g(4)

11-1-1

(
g

(4)
11-1-1 − g

(4)
1111

))(
g

(2,an)
-11

)2

+ 4g(4)
11-1-1

(
g

(4)
11-1-1 + 2g(4)

1111

)(
Zx,1ϵk + g

(2)
11

)2
 N (3)

1
ω2

1Z
2
τ,1

− 4g(4)
1111g

(4)
11-1-1

1 + 2n1
ω1Zτ,1

+
(

4
(
g

(4)
0011

)2(
Zx,0ϵk + µ

)2 +
(
g

(4)
010-1

)2
µ2
)

N (3)
0

ω2
0Z

2
τ,0

+
((

g
(4)
010-1

)2
− 2

(
g

(4)
0011

)2
)

1 + 2n0
ω0Zτ,0

 . (3.64)

The determined changes are now used to work out the corresponding flow equations.
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Chapter 3. WRG - Symmetry-Broken Phase

Flow equations

Before the flow equations are determined by taking the derivative with respect to the flow
parameter l, the rescaling step must be applied as explained in Section 2.2. The appearing
two-point couplings are rescaled according to (2.12) and the four point couplings using
(2.14). From the defining relation of the condensate density µ = 2nc g

(4)
0000, its correct

rescaling can be derived as

n′
c = b2−ϵZx,0n

<
c . (3.65)

In the symmetry-broken phase one must take into account that the dynamical scaling
exponent z also becomes dependent on the flow parameter. This occurs as the anomalous
couplings Zτ,i and Zx,i that determine z according to (2.11) flow as well. This leads to
additional terms when taking the derivative of the rescaling contribution. In the following
flow equations all couplings appear in their rescaled version apart from the explicitly
mentioned anomalous couplings after mode elimination. Thus, the primes to indicate
rescaled quantities are dropped and we further employ dimensionless couplings as defined
in (2.51). The definition of the dimensionless chemical potential equivalently applies to
all appearing two-point couplings and only a new definition for the (condensate) density
is necessary:

n̄c = (2π)d

SdΛd
0
nc . (3.66)

The flow equation for the dynamical scaling exponent z as well as for the temperature
T were already determined in (2.15) and (2.16) when the rescaling step was introduced.
The quadratic Zeeman coupling gets rescaled like g(2)

11 yielding q′ = b2Z−1
x,1q. Furthermore,

the two anomalous dimensions ηi are introduced which are determined by the flow of the
anomalous couplings

ηi = −∂l lnZ<
x,i . (3.67)

Take note that the physical anomalous dimension is obtained by taking the limit to infinite
flow parameters. Using this definition directly results in the flow equation ∂lq = (2 + η1)q
for the quadratic Zeeman coupling. For the chemical potential one can derive the respective
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3.2. Polar phase flow equations

flow equations from the new coupling (3.57)

∂lµ = (2 + η0)µ− 4

g(4)
0000
2

(
µ(2 + µ)2

ω2
0

N (3)
0 + 1 − µ

ω0
(1 + 2n0) − 1

)
− g

(4)
0011

+ 2nc
ω2

1

(
2g(4)

0011

(
1 + g

(2)
11

)
− g

(4)
010-1g

(2,an)
-11

)2

N (3)
1

+ g
(4)
0011
ω1

((
1 + g

(2)
11

)
− 4ncg

(3)
0011

)
(1 + 2n1)

 . (3.68)

Similarly the flow equation for g(2)
11 can be obtained using (3.58) and yields

∂lg
(2)
11 = (2 + η1)g(2)

11 − 2

(g(4)
0011

)2 4
g

(4)
0000

− g
(4)
1111 − g

(4)
11-1-1

1 + g
(2)
11

ω1
(1 + 2n1) − 1


−
(
g

(2,an)
-11

)2 2g(4)
0011
µω1

(1 + 2n1) − 8nc

2g(4)
0011

(
g

(4)
010-1g

(2,an)
-11 − g

(4)
0011

(
1 + g

(2)
11

))

−
(
g

(4)
010-1

)2
(1 + µ)(1 + g

(2)
11 )

N (1)
01 − 2

(
g

(2,an)
-11

)2 N (2)
01
nc

+ g
(4)
0011

(1 + 2n0
ω0

− 1
) .

(3.69)

The results for the four-point coupling g
(4)
0000 are found after rescaling and taking the

derivative of (3.60):

∂lg
(4)
0000 = (ϵ− l∂lz + 2η0)g(4)

0000 − 2

(2g(4)
0011

(
1 + g

(2)
11

)
− g

(4)
010-1g

(2,an)
-11

)2 2N (3)
1
ω2

1

+ µ2

4n2
c

(
(2 + µ)2

ω2
0

N (3)
0 − 3(1 + 2n0)

2ω0

)
+
((

g
(4)
010-1

)2
− 4

(
g

(4)
0011

)2
)

1 + 2n1
ω1

 .
(3.70)

For g(4)
010-1 we evaluate the new coupling in (3.62) and work out the flow equation

∂lg
(4)
010-1 = (ϵ− l∂lz + η0 + η1)g(4)

010-1 − 2g(4)
010-1

g(4)
0000

1 + 2n0
2ω0

+ g
(4)
11-1-1

1 + 2n1
ω1

− 4

2g(4)
0011

(
2ncg

(4)
0011 −

(
1 + g

(2)
11

))
− µg

(4)
010-1g

(2,an)
-11

N (1)
01 − 8g(4)

0011N (2)
01

 .
(3.71)
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The coupling g(4)
1111 is determined using (3.63) and has the subsequent flow equation

∂lg
(4)
1111 = (ϵ− l∂lz + 2η1)g(4)

1111 −

((g(4)
1111

)2
− 4

(
g

(4)
11-1-1 − g

(4)
1111

)2
)(

g
(2,an)
-11

)2

+ 8
((

g
(4)
1111

)2
+
(
g

(4)
11-1-1

)2
)(

1 + g
(2)
11

)2
N (3)

1
ω2

1

−
(

4
(
g

(4)
11-1-1

)2
+ 3

(
g

(4)
1111

)2
)

1 + 2n1
ω1

+ 4
(
g

(4)
0011

)2
(

2(1 + µ)2

ω2
0

N (3)
0 − 1 + 2n0

ω0

) .
(3.72)

The other four-point coupling g
(4)
11-1-1 that is not determined using two-point couplings

changes according to (3.64) and has the flow equation

∂lg
(4)
11-1-1 = (ϵ− l∂lz + 2η1)g(4)

11-1-1 −

4g(4)
11-1-1

(
g

(4)
11-1-1 + 2g(4)

1111

)(
1 + g

(2)
11

)2

+ 2
((

g
(4)
1111

)2
+ 2g(4)

11-1-1

(
g

(4)
11-1-1 − g

(4)
1111

))(
g

(2,an)
-11

)2
N (3)

1
ω2

1
− 4g(4)

1111g
(4)
11-1-1

1 + 2n1
ω1

+
(

4
(
g

(4)
0011

)2
(1 + µ)2 +

(
g

(4)
010-1

)2
µ2
)

N (3)
0
ω2

0
+
((

g
(4)
010-1

)2
− 2

(
g

(4)
0011

)2
)

1 + 2n0
ω0

 .
(3.73)

Removing all spin-dependent contributions, i.e. all terms with m = ±1 involved, from
(3.68) and (3.70) leads to the spin-0 flow equations that have already been computed in
[31].
Starting with the flow equations in the symmetry-broken phase, we expect that if the
chemical potential, i.e. the order parameter of the polar phase, becomes zero the sym-
metry is restored and the phase transition occurs. At this restoration where µ = 0 it
is expected that the flow equations smoothly connect to the thermal flow equations that
further describe the flow in the symmetric phase. This can be checked explicitly by eval-
uating the above flow equations at vanishing µ. The dimensionless excitation modes in
both phases become ω0 = 1 and ω1 = 1 + q. Neglecting the anomalous couplings and
taking into account that at nc = 0 no change in condensate density appears anymore,
one actually finds a smooth connection between the two phases. However, we are only
interested in the behavior within the condensed phase; thus, the thermal phase and how
the two phases connect is not relevant for our further discussion.
The above flow equations suffice to compute all couplings that appear in the system. For
later purposes we will now work out a flow equation for the total particle density as it is
crucial when trying to extract physical predictions out of the flow equations.
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3.2. Polar phase flow equations

Flow of total particle density

To complete the above derivation of all necessary flow equations, one has to add the total
particle density n. Its flow equation does not affect the flow of the couplings as the density
is solely an observable; however, in the later evaluation of the flow equations a macroscopic
density will be presumed. Therefore, a corresponding flow equation is required. The
total particle density consists of a thermal density nT and the already known condensate
density nc. But, when the renormalization is initiated, the total particle density acquires a
dependence on the flow parameter l. To derive the respective flow equation for the density,
we also apply all expansions that were required to determine the above flow equations to
the general expression for the density

n = 1
βV

∑∫
k

〈
Ψ∗(k)Ψ(k)

〉
= nc +

√
nc
βV

( 〈
ψ<

0 (0)
〉

+
〈
ψ>

0 (0)
〉

+ c.c.
)

+ 1
βV

∑∫
k

1∑
i=−1

( 〈
ψ∗<

i (k)ψ<
i (k)

〉
+
〈
ψ∗>

i (k)ψ>
i (k)

〉 )
. (3.74)

To this point we expanded around the condensate density and split the field into its
larger and smaller components. It is important to be careful at this point, as through
the renormalization the field ψ<

0 (k) acquires a non-vanishing expectation value, i.e. the
change in condensate density. This must be taken into account as we want to obtain an
expression for the total particle density after the full renormalization. Thus, the expansion
of the smaller field around the change in condensate density must also be included. First,
the expectation value of a single smaller field yields〈

ψ<
0 (k)

〉
= δ(k)∆

√
nc +

〈
ψ′<

0 (k)
〉

= δ(k)∆
√
nc . (3.75)

In the second step the field expectation value vanishes as this is the expectation value of
a proper thermal field obtained after the renormalization. The expectation value of the
larger field vanishes as well

〈
ψ>

0 (k)
〉

= 0, as it does not get changed in the renormalization
and thus remains a proper thermal field. For the first quadratic expectation value we find〈

ψ∗<
i (k)ψ<

i (k)
〉

= δi0
(
δ(k)∆

√
nc
)2

+
〈
ψ′∗<

i (k)ψ′<
i (k)

〉
=
〈
ψ′∗<

i (k)ψ′<
i (k)

〉
. (3.76)

The first term vanishes since the change in condensate density is understood to be in-
finitesimal because the renormalization is performed in infinitesimal steps. Here, one can
already introduce the expression for the density of thermal particles

nT = 1
βV

∑∫
k

1∑
i=−1

〈
ψ′∗<

i (k)ψ′<
i (k)

〉
. (3.77)
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As ψ′<(k) is the proper thermal field with vanishing expectation value that is left in the
action after the renormalization step, this is a reasonable definition. Finally, one has to
look at the last expectation value that already appears to be just a propagator; however,
the expectation value is calculated over the interacting theory and not the Gaussian part.
This can be resolved by taking a look at the one loop expression for the partition function
that can be expressed as

Z
Z0

= 1 +
∑

all vacuum diagrams . (3.78)

Note that this also contains disconnected vacuum diagrams. As every vacuum diagram
has to contain at least one interacting vertex, it becomes clear that the summation is of
2-loop order and higher. Hence, one finds

Z = Z0 + O(2-loop) . (3.79)

Applying this, straightforwardly reduces the expectation value to 1-loop order ⟨O⟩ = ⟨O⟩0.
Thus, the last expectation value is just δ(0)Gi(k). Inserting all the above results together
with the relation δ(0) = βV into (3.74) yields

n = nc + nT + ∆nc +
∑∫

k
Λ<|k|<Λ0

1∑
i=−1

Gi(k)

= nc + nT −
∑∫

k
Λ<|k|<Λ0


4g

(4)
0011

g
(4)
0000

− 2

G1(k) + 2g
(4)
010-1

g
(4)
0000

Gan
1 (k) +G0(k) +Gan

0 (k)

 .
(3.80)

In order to transform this expression for the total particle density into the corresponding
flow equation, the Matsubara sums need to be solved at first using previous results from
Section 3.2. Before taking the derivative with respect to the flow parameter, the density
must be rescaled as well. Its rescaling relation can be determined either by inserting
the already known rescaling relations and read-off the rescaled densities or by using the
relation for the condensate density between two- and four-point couplings (3.65). Both
approaches lead to

n′ = b2−ϵZx,0n . (3.81)

Besides the rescaling, the dimensionless density is introduced as n̄ = (2π)dn/(SdΛd
0) equally

to (3.66) for the condensate density. Ultimately, this results in the rescaled and dimen-
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sionless flow equation for the total particle density:

∂ln = (2 − ϵ+ l∂lz − η0)n−

1 + 2n0
2ω0

+ 1
2

− 2g
(4)
0011

g
(4)
0000

+

(1 + g
(2)
11

)2g
(4)
0011

g
(4)
0000

− 1

− g
(2,an)
-11

g
(4)
010-1

g
(4)
0000

(1 + 2n1)
ω1

 . (3.82)

As always, the primes and bars are dropped again in this flow equation for simplicity.
Performing the previous computations for a spin-0 Bose gas without the anomalous con-
tributions in the rescaling, one is going to obtain the result presented in [31] for the flow
of the total particle density.

3.3 Results

This section is going to explain how the above flow equations can be implemented such
that physical predictions can be made. Doing so requires the differentiation between bare
microscopic couplings and macroscopic observables that are measurable.

Fixing the UV cut-off

At first, the relevance of the momentum cut-off Λ0 that has been introduced to regularize
the spin-1 action has to be discussed. We must realize that this cut-off is indispensable
to restrict momenta to a regime in which the s-wave approximation is valid. Thus, the
cut-off must be of the order Λ0 ≈ a−1

0 , but its explicit value should not be of any physical
relevance. Therefore, different cut-offs will be specified in the following using the param-
eter k = Λ0a0 and the behavior under these choices is investigated. To obtain physical
results, we will now present a scheme to initialize the flow equations such that the result
should become cut-off independent.
We realize that the experimental value of the scattering lengths a0 and a2 are macroscopic
values obtained in vacuum including quantum fluctuations. This implies that the experi-
mental values are not initial values of the flow equations but rather its outcome. In [31]
this has been realized for the spin-0 Bose gas. The consequence of such an understanding
of the scattering length implies that the experimental scattering lengths are the macro-
scopic outcomes of the vacuum flow equations. This also means that the initial scattering
lengths will be chosen cut-off dependent such that they flow towards the experimental val-
ues. For the flow dependent scattering lengths a0(l) and a2(l), the following asymptotic
limit behavior for l → ∞ is demanded:

lim
l→∞

a0(l) = eϵla0 , lim
l→∞

a2(l) = eϵla2 . (3.83)
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The above limits only apply to the vacuum flow equations for q = 0. The vacuum flow
equations are found by removing all particles from the condensate, i.e. employing the
thermal flow equations, and then setting all Bose-Einstein distributions to zero. As no
quadratic Zeeman shift is present, the vacuum flow equations can be decomposed into
two distinct flow equations for the couplings c0 and c1 like in (2.61) and (2.62). Using
the definition in terms of the s-wave scattering lengths in (1.8) and introducing the single
spin-channel coupling gi = 4πℏ2ai/M , these flow equations can be decomposed further.
Next, this four-point coupling can be brought into its dimensionless form following the
standard definition in (2.51). In the thermal phase no anomalous renormalization appears
at 1-loop order; thus, the decomposed vacuum flow equations for the two dimensionless
spin-channel couplings are

∂lg0 = ϵg0 − g2
0
2
,

∂lg2 = ϵg2 − g2
2
2
. (3.84)

To arrive at these equations, the chemical potential has been neglected as it is assumed
to be small µ ≪ 1. We will later validate up to which densities this assumption actually
holds true in detail. The above differential equations can be solved analytically and for
the initial value gi,in one finds the solution

gi(l) = 2ϵ eϵlgi,in
2ϵ+ gi,in( eϵl − 1)

. (3.85)

From (3.83) we can derive the according initial values in their dimensionless form by com-
parison with the dimensionless scattering lengths. As later computations will be performed
in d = 3 we assume ϵ = −1 in the subsequent derivation:

lim
l→∞

gi(l) = 2 e−lgi,in
2 + gi,in

!= e−l 4Λ0
π
ai . (3.86)

The above equation can be solved for the initial couplings gi,in that are found to be

gi,in = 4Λ0ai

π

1
1 − 2Λ0ai

π

. (3.87)

Here, we derived what has already been foreshadowed previously: the initial spin-channel
couplings are actually cut-off dependent and in the course of the vacuum flow reach the
experimentally measured values. These initial values are now employed when defining the
initial values for all four-point couplings even in the non-vacuum flow equations. Thus, the
introduction of Bose-Einstein distributions leads to the emergence of an effective scattering
length that is obtained after the renormalization that should be cut-off independent as
well.
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Initialization

This section will elaborate on how to initialize the flow equations in the symmetry-broken
phase to obtain meaningful results. In the previous section it was already explained how
the initial spin-channel couplings can be chosen cut-off independent. Utilizing (3.87) and
the initial four-point couplings in (1.14) these couplings can be initialized. The general
approach when investigating the flow equations is that we place all particles in the con-
densate initially. After evolving the flow, we then read off the condensate density and
determine how many particles have left the condensate and have gone into the thermal
cloud. If the condensate density reaches zero, we have hit the critical temperature and
the configuration we have chosen does not allow for a stable condensate. The initial
temperature is chosen as the physically desired temperature. Placing all particles in the
condensate means that nc,in = nin and the initial chemical potential is µin = ninc0,in and
the other initial two-point coupling g(2)

11,in = qin+ninc1,in with qin being the initial quadratic
Zeeman shift. Note that all initial values are determined using dimensionless expressions.
Furthermore, a maximal flow parameter lmax = 15, up to which the flow is evolved in
our numerical implementation, is set. Evolving the flow equations is achieved using the
NDSolve routine implemented in Mathematica.
As the initial values have turned cut-off dependent, they also depend on the particular
choice of the scattering lengths and thus on the choice of atoms for the spin-1 gas. This
thesis will mainly investigate 23Na atoms that can either be in the F = 1 or the F = 2
state. The same applies to the other atoms that are of interest, namely 87Rb. For sodium
the scattering lengths are chosen as a0 = 47.36 aB and a2 = 52.98 aB [9, 11] with aB being
the Bohr radius. The mass is M = 23.0u [41] with u the atomic mass unit. For rubidium
a0 = 101.8 aB and a2 = 100.4 aB [9, 12] and a mass of M = 85.5u [41] could be used.
The main reason why we will not investigate the flow for rubidium explicitly relates to
the fact that the spin-spin coupling c1 is negative for rubidium in contrast to sodium. At
positive quadratic Zeeman shift q this implies that rubidium can exhibit a quantum phase
transition between the polar phase and the easy-plane phase according to the mean-field
phase diagram in Figure 1.1. This phase transition cannot be investigated thoroughly as
we have not computed flow equations in the easy-plane phase and thus cannot rely on the
validity of the outcomes.
For sodium, the mean-field phase diagram results in a critical quadratic Zeeman parameter
qc = 0. Taking into account experimental results close to T = 0 from [42] where they mea-
sured a shift of the transition to qc/h = 650 mHz we will chose q/h = 10 Hz for most of
our investigations. This ensures computations within the polar phase also at non-zero
temperatures. In most evaluations the cut-off parameter will be chosen from the set
k ∈ {0.5, 1, 1.3} to obtain results for different cut-offs to confirm our cut-off independent
initialization.
Having initialized all couplings, one finally has to set the initial particle density in the
polar condensate. We will observe our system at a density of n = 1019 m−3; however, this
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is not the initial density to chose as according to (3.82) the density changes in the course of
WRG as well. Thus, one must realize that the desired density is a macroscopic observable
that we aim to achieve and the initial value for the density has no physical implications.
To achieve a constant macroscopic density as an outcome of our flow equations, for every
temperature an appropriate initial density must be determined that, in the specific ini-
tialization we chose, flows to the demanded outcome. In later plots it will be shown that
this actually worked out; however, this caused an additional computational step before
actually observing the flow.
Before we can turn to actual results of the flow equations, one must briefly explain how
the subsequent numbers that are plotted were determined from the outcomes of the flow
equations. Clearly, the dimensionless values can be transformed to dimensional quantities
again which is inevitably to confirm cut-off independence as the removal of the dimension-
ality according to (2.51) depends on the cut-off. We further remove the rescaling from
the couplings again as we aim to compare the observables at a set scale. In the course
of renormalization most couplings will either diverge or converge to zero for temperatures
away from criticality due to the rescaling step. Thus, we expect that an asymptotic limit
behavior is reached for all couplings from which we infer the physical quantities by remov-
ing the rescaling step. As an example for the chemical potential the physical outcome is
determined using µphys(l) = e−[µ]lZx,0(l)µ(l) which is expected to converge for large flow
parameter l. As a scaling dimension we will generically use the engineering dimension
that has been introduced previously and we will find that convergence in certain cases is
only achieved after modifying the scaling dimension and thus inserting anomalous scaling
manually in the case of no anomalous renormalization. This removal of the rescaling after
the flow can also be understood as initializing all couplings such that they flow to the scale
we are interested in, i.e. to the correct temperature, density and scattering lengths.
As we have not computed flow equations for the anomalous couplings so far, the results
presented in this chapter will be computed neglecting the effects of the anomalous scal-
ing. This is done to highlight the crucial influence of anomalous renormalization in the
symmetry-broken phase in the course of the following sections.

Critical degeneracy parameter

In the introduction of cut-off dependent initial couplings that flow to cut-off independent
results we made the assumption of small chemical potentials, i.e. small densities. In this
section we are going to evaluate up to which densities this assumption is sufficient to
achieve cut-off independent outcomes. For this, we chose the parameters for sodium and
quadratic Zeeman shifts of q/h = 0 Hz and q/h = 10 Hz. We now aim to calculate the
corresponding critical densities for temperatures in the range of T ∈ [10−10 K, 10−4 K],
i.e. the density for which the condensate density flows exactly to zero. Hence, we are
computing pairs of critical temperature and critical density that are then plotted. These
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Figure 3.1: The critical degeneracy parameter ncritΛ3
th is plotted for 23Na and quadratic

Zeeman shifts of q/h = 0 Hz (solid) and q/h = 10 Hz (dashed) for three
different UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red), Λ0 = 1.3 a−1

0
(green). This parameter is plotted against the dimensionless a0Λ−1

th where
the critical temperature Tc is utilized in the thermal de Broglie wavelength
Λ2

th = 2πℏ2/(MkBT ). In black, the constant mean-field result of a non-
interacting spin-1 Bose gas ncritΛ3

th = 3 ζ(3/2) at vanishing Zeeman effect is
plotted.

pairs are computed for three different momentum cut-offs individually to compare them
to each other. Implementing the flow equations numerically yields emerging singularities
when searching for the critical temperatures. These singularities appear due to g(4)

0011 as it
is obtained by dividing with the condensate density that flows to zero at criticality. For
temperatures close to and below the critical temperature, this approach works out as will
be shown in the following. To circumvent these singularities, one can compute an addi-
tional flow equation for g(4)

0011 directly from (3.20) as an approximation. Comparing results
between these two approaches yields identical critical temperatures on the relevant scales
and thus for computing critical densities and critical temperatures this approximation is
used for numerical stability.
At first, we plot the dimensionless critical degeneracy parameter ncritΛ3

th using the thermal
de Broglie wavelength Λ2

th = 2πℏ2/(MkBT ) and replacing the temperature by its critical
counterpart. In Figure 3.1, this parameter is plotted against a0Λth thus essentially against
the critical temperature. We observe that up to ∼ 10−2 the critical degeneracy parame-
ter remains cut-off independent and only for larger critical temperatures a separation is
observed. From Figure 3.2, where we plotted critical temperature against critical density
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Figure 3.2: The critical temperature Tc for the thermal phase transition between the po-
lar and the thermal phase of 23Na at quadratic Zeeman shift q/h = 0 Hz
is plotted against the critical density ncrit for three different UV cut-
offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red), Λ0 = 1.3 a−1

0 (green). In
black, the mean-field result of a non-interacting spin-1 Bose gas Tc =
2πℏ2/(MkB)

(
ncrit/(3 ζ(3/2))

)2/3 is plotted. The main plot displays the re-
sults in a log-log scale whereas the subplot is in a linear scale.

one can directly read off that up to densities ∼ 1021 m−3 the cut-off independence remains
accurate. This is sufficient compared to the currently achieved densities in experiments.
For larger densities this only enforces to compute the initial spin-channel couplings more
carefully and include the chemical potential and its flow which is then only solvable nu-
merically but can be achieved to generalize also to higher densities.
As the interacting results for q/h = 0 Hz drift away from the non-interacting result for
the critical degeneracy parameter of ncritΛ3

th = 3 ζ(3/2) in Figure 3.1, we can infer that
the critical temperature actually increases compared to the Gaussian result. ζ(x) denotes
the Riemann zeta function that also appears in the spin-0 result and the additional factor
of 2F + 1 = 3 represents the spin-1 nature of the Bose gas. This observation becomes
obvious when comparing with Figure 3.2 where the non-interacting critical temperature
Tc = 2πℏ2/(MkB)

(
ncrit/(3 ζ(3/2))

)2/3 is plotted additionally. Such a tendency of the in-
teraction to shift the critical temperature to larger values has been observed in the WRG
results for the spin-0 Bose gas [31] too. This has been confirmed by analytic approaches
[43] and numerical Monte-Carlo simulations [44] were a proportionality of the deviation
percentage from the non-interacting results to a0n

1/3 is found. Such a proportionality
cannot be seen in our 1-loop computations for the spin-1 Bose gas. This is either caused
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by the question of how to generalize this proportionality to spin-1 or the inability of our
1-loop approximation to reproduce such a relation. Nevertheless, we observe deviations
between ∼ 0.2% and ∼ 10% from the non-interacting critical temperature.
When introducing a quadratic Zeeman shift of q/h = 10 Hz in Figure 3.1, we observe
overlapping results in the cut-off dependent regime for large critical temperatures and a
strong deviation in the cut-off independent regime. In contrast to the results for vanishing
quadratic Zeeman shift, the critical degeneracy parameter approaches ∼ 2.62. Comparing
this to the expected critical degeneracy parameter ζ(3/2) ≈ 2.61 for a spin-0 gas, we find
that the critical temperature approaches the spin-0 results for small densities. This can
be understood, as the increase of the quadratic Zeeman shift suppresses the side modes
m = ±1 as their energy is increased. Thus, more particles reside in the m = 0 mode
which leads to a resemblance with the spin-0 Bose gas especially for low densities. In
contrast, for vanishing Zeeman effect the three magnetic modes are degenerate and thus
populated equally resulting in a lowered phase space density that leads to a decreased
critical temperature.
To summarize the discussion of these two plots, we found cut-off independent critical
temperatures for the relevant density regime in this thesis thus validating the approach
introduced in Section 3.3. We were further able to reproduce the critical temperature for
the non-interacting spin-1 Bose gas at low densities and vanishing quadratic Zeeman shift
using flow equations. This agreement is sensible as in very dilute systems the influence of
interactions becomes less important and the system thus resembles a non-interacting gas.
Increasing the quadratic Zeeman shift leads to an increase in critical temperature that
ultimately results in the spin-0 results confirming the results from the fixed point analysis
of the thermal flow equations in Section 2.4.

Couplings

After investigating the critical temperature we will now examine the individual couplings
at temperatures below Tc but at a fixed density of n = 1019 m−3. The computations are
again performed for sodium at q/h = 10 Hz and neglecting all anomalous couplings.
In Figure 3.3 both normal two-point couplings µ and g

(2)
11 of the spin-1 Bose gas are dis-

played up to the critical temperature for three different cut-offs. For the chosen density a
critical temperature of Tc ≈ 164 nK is found and also displayed in all plots for comparison.
For the chemical potential we find a steep decrease for low temperatures and after a slower
descent in the intermediate temperature regime another sharp drop-off close to the criti-
cal temperature. The latter feature confirms the existence of the thermal phase transition
between the polar and the thermal phase as the chemical potential is the order parameter
that must vanish exactly at criticality. For a non-interacting gas the chemical potential is
zero for all temperatures below the critical temperature; however, interactions as in our
spin-1 Bose gas shift the chemical potential to positive values. In mean-field theory for
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Figure 3.3: The chemical potential µ (solid) and the generalized two-point coupling g(2)
11

(dashed) for 23Na in the polar phase without anomalous renormalization at
a quadratic Zeeman shift of q/h = 10 Hz are plotted against temperature.
The total density is chosen at n = 1019 m−3 and the corresponding critical
temperature is depicted too. Both couplings are displayed for three different
UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red), Λ0 = 1.3 a−1

0 (green). The
subplot displays the results for the chemical potential divided by the cut-off
parameter k = a0Λ0.

weakly interacting Bose gases one finds the same relation for the chemical potential as in
our WRG approach namely µ = 2nc g

(4)
0000. From the non-interacting Bose gas the propor-

tionality nc/n = 1−(T/Tc)3/2 is known that should also approximately hold in the weakly
interacting gas and thus implies a similar proportionality to temperature for the chemical
potential as well. However, such a proportionality cannot be observed in Figure 3.3 and
furthermore, the chemical potential is clearly cut-off dependent even though we applied
our cut-off independent approach.
The subplot indicates that the dependency can be removed by dividing by the flow param-
eter k = a0Λ0. This correction will not lead to quantitative physical results but implies
that the scaling dimension of the chemical potential is rather [µ]s = 1 than the engineering
dimension [µ]e = 2. The same can be observed when fixing the cut-off and computing the
chemical potential for different maximal flow parameters lmax. Doing so leads to deviant
results that do not converge to an ultimate physical value but can be corrected by replac-
ing the engineering dimension with the newly found scaling dimension in the removal of
the rescaling. Such an observation does not contradict our cut-off independent setup as,
e.g. the critical temperature remains cut-off independent, but rather highlights the im-
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Figure 3.4: The generalized four-point coupling g(4)
0000 for 23Na in the polar phase without

anomalous renormalization at a quadratic Zeeman shift of q/h = 10 Hz is
plotted against temperature. The total density is chosen at n = 1019 m−3

and the corresponding critical temperature is depicted too. For comparison,
the coupling is normalized with its mean-field value g(4)

0000,MF. The coupling
is displayed for three different UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0

(red), Λ0 = 1.3 a−1
0 (green). The subplot displays the results for the four-

point coupling g(4)
0000 divided by the cut-off parameter k = a0Λ0.

portance of anomalous scaling in the symmetry-broken phase that is introduced at 1-loop
order by (3.21). In the next chapter the inclusion of such anomalous renormalization is
discussed in greater detail.
Regarding the second normal two-point coupling g

(2)
11 , we observe a cut-off independent

outcome in Figure 3.3. This indicates that mainly the anomalous couplings in the m = 0
state introduce anomalous scaling as can be expected due to the broken symmetry in
this state. In contrast to the chemical potential, this two-point coupling does not flow
to zero at criticality which is expected when looking at its initial values (3.27) where the
quadratic Zeeman shift remains if the condensate density is set to zero. From the plot
one can read off the approximate value of the two-point coupling at criticality which is
g

(2)
11 ≈ 4.05 × 10−14 eV and is in good agreement with the set value of the quadratic Zee-

man shift q ≈ 4.14 × 10−14 eV. For lower Zeeman shifts we thus expect an approach of the
two-point coupling to zero.
In Figure 3.4 the four-point coupling g

(4)
0000 is plotted again for three different cut-offs.

The coupling is normalized with its mean-field value and we observe a strong decrease
over the whole temperature regime. This appears inconsistent as we expect that WRG
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Figure 3.5: The generalized four-point couplings g(4)
010-1 (dashed, short), g(4)

1111 (solid) and
g

(4)
11-1-1 (dashed, long) are plotted against temperature for 23Na in the polar

phase without anomalous renormalization at a quadratic Zeeman shift of
q/h = 10 Hz. The total density is chosen at n = 1019 m−3 and the corre-
sponding critical temperature is depicted too. For comparison, the couplings
are normalized with their mean-field values g(4)

ijkl,MF. The couplings are dis-
played for three different UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red),

Λ0 = 1.3 a−1
0 (green).

leads to a correction of the mean-field result and especially for temperatures far below
the critical temperature deviations over several orders of magnitude are not expected. As
for the chemical potential, cut-off dependence is observed that indicates that anomalous
renormalization plays a crucial role in describing these couplings. This is also expected
to account for the strong decrease we observed. By dividing with the cut-off parame-
ter, overlapping results are achieved in the subplot which implies a scaling dimension of[
g

(4)
0000

]
s

= −2 instead of the engineering dimension
[
g

(4)
0000

]
e

= −1. At criticality we know
that the flow equations should reach a Wilson-Fisher fixed point for dynamical scaling
exponent z = 0. As this changes the engineering dimension to +1 we expect that the
effective scattering lengths flow to zero at criticality thus also g(4)

0000. Such a feature is not
observed if anomalous renormalization is not included.
The other three four-point couplings g(4)

010-1, g(4)
1111 and g

(4)
11-1-1 are displayed in Figure 3.5

where they are again normalized with their mean-field values. The coupling g(4)
010-1 exhibits

all features that we demanded and expected. Cut-off independent results were found as
well as small deviances from the mean-field value over most of the temperature regime.
Furthermore, it appears to flow to zero at criticality as we expect for effective scattering
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Figure 3.6: The condensate (solid) and the total (dashed) density are plotted against
temperature using the flow equations for 23Na in the polar phase without
anomalous renormalization at a quadratic Zeeman shift of q/h = 10 Hz. The
total density is chosen at n = 1019 m−3 and the corresponding critical tem-
perature is depicted too. For comparison, the non-interacting result for the
condensate density using the given total density is displayed in black. The
computed densities are displayed for three different UV cut-offs: Λ0 = a−1

0
(blue), Λ0 = 0.5 a−1

0 (red), Λ0 = 1.3 a−1
0 (green).

lengths. The other two couplings are obviously not cut-off independent and cannot be
rescaled to achieve overlapping results. In addition, these couplings turn negative in large
temperature regimes indicating an attractive interaction. This, however, will not be dis-
cussed further as we do not expect any physical insights from it apart from the relevance
of anomalous renormalization that will resolve this problem.
At last, we discuss the results obtained for the total and the condensate density plotted in
Figure 3.6. For both observables cut-off independent results are observed, indicating that
anomalous renormalization plays a negligible role when computing their values. This is a
relic from the definition of the condensate density as the fraction of the chemical poten-
tial and the four-point coupling g(4)

0000. Both of the latter couplings exhibited anomalous
behavior; however, both their scaling dimensions shrunk by one explaining the disappear-
ance of anomalous renormalization in the condensate density. We find a similar behavior
as expected from the mean-field result for vanishing quadratic Zeeman shift that is plot-
ted in black. At the phase transition, the condensate density vanishes indicating that
no macroscopic ground state occupation is left. The result plotted for the total particle
density ntot confirms the correctness of our initial densities that flow to the set density
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of ntot = 1019 m−3. The cut-off independence for the total density is trivial as the initial
values were chosen to yield this result.
The condensate depletion, i.e. the amount of condensed particles at T = 0, is of particular
interest as for this quantity predictions both for the spin-0 [45] as well as for the spin-1
[39] Bose gas exist. The prediction for the polar phase has been computed in a Green’s
function approach first introduced by Beliaev [45, 46]. In [39] they found the condensate
fraction at T = 0 as

nc
n

= 1 − 8
3
√
π

√
na3

0 . (3.88)

Inserting the parameters that were chosen in this section results in a predicted condensate
fraction of nc/n = 99.933 %. Setting the temperature to zero in the flow equations im-
plies dropping all Bose-Einstein distributions. Taking these flow equations, one can also
compute the condensate fraction in the polar phase using our WRG approach and obtains
nc/n = 99.931 %. Hence, we are able to replicate the predicted fraction to a sufficient ac-
curacy. Take note that the analysis has already been performed using the flow equations
without anomalous renormalization as we will later see that at T = 0 the anomalous flow
accounts for deviations on even smaller orders.
To conclude the discussion of the results of the spin-1 flow equations, it has been appar-
ent that anomalous renormalization plays a crucial role in computing reasonable physical
results. In [31] this has been resolved by restricting to na0Λ2

th ≪ 1 and thus restricting to
a regime where the linear contribution of the excitation modes becomes negligible. This
enables one to approximate the Bogoliubov mode with the thermal dispersion relation.
Such a procedure removes the IR divergences from the subsequent computation and yields
results that do not exhibit anomalous behavior anymore. In this thesis, however, we aim to
perform the explicit calculation to obtain flow equations for the four anomalous couplings
that are then included in our numerical procedure to resolve the problems pinpointed in
this section.

3.4 Fixed point analysis

Evaluating the fixed point of the flow equations in the symmetry-broken phase works
technically equivalent to the computation in Section 2.4. The temperature again flows to
large values and thus the dynamical scaling exponent is set to zero z = 0 to treat the
temperature as an parameter and absorbing the dimension in the anomalous couplings.
This again results in the replacement of the Bose-Einstein distribution by nB(ξ) = (βξ)−1

and the scaling dimension of the four-point couplings being ϵ = 4 − d. The fixed point
of the quadratic Zeeman shift is at first again q∗ = 0 yielding three degenerate Zeeman
states. At this fixed point the relation 4ncg

(4)
0011 = µ+g

(2)
11 can be used. As for the thermal
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flow equations we can start with the fixed point equation for g(4)
010-1:

0 = ϵg
(4)
010-1 − 2g(4)

010-1

g(4)
0000
βω2

0
+ 2g(4)

11-1-1
βω2

1
− 4
βω2

0ω
2
1

(
g

(4)
0011

(
µ− g

(2)
11 − 2

)
− µg

(4)
010-1g

(2,an)
-11

) .
(3.89)

One directly reads off the fixed point of g(4)
010-1 at zero. This is consistent with the thermal

phase where the spin-changing collision was also zero at the fixed point. Furthermore, it
has been numerically checked that for g(4)

010-1 ̸= 0 no real fixed points for the other couplings
were found. Employing this first fixed point value, we further determine g(2,an)

-11 = 0 and
ω1 = 1 + g

(2)
11 resembling the thermal dispersion relation in the side modes. As the

spin-changing coupling g
(4)
010-1 is initially only depending on c1, we will now set c∗

1 = 0
as well. Thus, we conclude couplings involving only c1 like g(2)

11 are zero as well. Even
though decomposing the couplings in their spin-channel couplings is an approximation, its
applicability has been checked numerically at chemical potentials µ ≪ 1. The fixed point
equation for c0 is determined using g(4)

0000 and results in

0 = ϵc0 − c2
0

βω4
0

(
5 + 2µ+ 2µ2

)
− 2c2

0
β
. (3.90)

For the chemical potential one finds the fixed point equation

0 = 2µ− 2c0
βω4

0

(
1 + 5µ+ 2µ2 + µ3

)
− 2c0

β
(µ+ 1) . (3.91)

In the two equations above one also finds a Wilson-Fisher fixed point besides the Gaussian
fixed point at

µ∗ = 1 , c∗
0 = β

3
. (3.92)

Here we already set ϵ = 1 since the computation was not feasible otherwise. Even though
no ϵ-expansion can be performed anymore, the fixed point c∗

0 can be kept small by tuning
the temperature to remain in a regime where perturbation theory is justified. Expanding
linearly around this fixed point yields the following linearized flow equations

∂l

δµ
δc0

 =

 4
3 − 6

β
2β
27 −1

δµ
δc0

 . (3.93)

The eigenvalues of the 2x2 matrix can be computed and inverting the largest one results
in the critical exponent ν at the fixed point q∗ = 0 of the spin-1 Bose gas:

ν = 6
1 +

√
33

≈ 0.89 . (3.94)
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For a thorough interpretation of this result, a more detailed study of the universality class
of the thermal phase transition in a degenerate spin-1 Bose gas is required.
Choosing a non-zero quadratic Zeeman shift implies that q → ∞ and thus all Bose-Einstein
distributions of the Zeeman states m = ±1 vanish. For the four-point coupling g(4)

010-1 one
finds the fixed point equation

0 = ϵg
(4)
010-1 − 2g(4)

010-1g
(4)
0000

βω2
0

. (3.95)

Assuming g(4)
010-1 to be non-zero leads to a constraint between the chemical potential and

the four-point coupling g(4)
0000. Inserting this into the fixed point equation of the chemical

potential

0 = 2µ− g
(4)
0000

4
βω4

0

(
1 + 5µ+ 2µ2 + µ3

)
(3.96)

yields, in the case of d = 3, only two complex and one negative real solution. The complex
fixed points can be discarded right away and also the negative one cannot describe the
thermal transition as µ > 0. Thus, we conclude that the coupling g

(4)
010-1 must be zero,

which is also expected as this coupling represents the spin-spin interaction that vanishes
in the case of infinite quadratic Zeeman shift. Evaluating the equations for g(4)

1111 and
g

(4)
11-1-1 yields

0 = ϵg
(4)
1111 − g

(4)
0011g

(4)
0011

8
βω4

0

(
1 + 2µ+ 2µ2

)
,

0 = ϵg
(4)
11-1-1 − g

(4)
0011g

(4)
0011

4
βω4

0

(
1 + 2µ+ 2µ2

)
. (3.97)

Here, we can directly read off the relation 2g(4)
11-1-1 = g

(4)
1111 at the fixed point. The other

two-point coupling can be approximated for large q as g(2)
11 = q and thus diverges as well.

As the infinite quadratic Zeeman shift effectively decouples the side modes from the m = 0
mode, there cannot be any scattering between them. This implies that g(4)

0011 vanishes and
hence also the couplings g(4)

1111 and g
(4)
11-1-1. For the last four-point coupling g(4)

0000, we find
the flow equation

0 = ϵg
(4)
0000 − g

(4)
0000g

(4)
0000

2
βω4

0

(
5 + 2µ+ 2µ2

)
. (3.98)

This can now be solved to find the Wilson-Fisher fixed point of the thermal phase transition
at large q. Using (3.96) and (3.98) leads to the Wilson-Fisher fixed point

µ∗ = 1 , c∗
0 = β . (3.99)

The fixed point value is apparently three times the value we obtained at q∗ = 0 which is
related to the reduction from three Zeeman states to only one. We already inserted ϵ = 1
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3.4. Fixed point analysis

as we did not achieve to perform the proper ϵ-expansion since the expression became too
lengthy. Thus, the results are directly expressed in d = 3 and the linear expansion around
this fixed point yields

∂l

δµ
δc0

 =

 2 − 2
β

2β
3 −1

δµ
δc0

 . (3.100)

Diagonalizing the above matrix leads to two distinct eigenvalues where the largest one is
inverted to obtain the critical exponent ν. Doing so results in

ν = 6
3 +

√
33

≈ 0.686 . (3.101)

This is the same result obtained from the spin-0 computation in the symmetry-broken
phase in [31] and is also very close to the exact result of ν = 0.67 that is expected for an
O(2) universality class. The high precision can be explained by arguing that we performed
a 1-loop renormalization in quasi-particles. This means that also higher order diagrams
in real particles were implicitly taken into account thus resulting in a higher accuracy.
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Chapter 4

Anomalous Renormalization

This chapter is going to discuss the importance of anomalous renormalization that was al-
ready observed in the previous chapter. In Section 3.3 we found for several couplings clear
cut-off dependencies even though our setup has been chosen to yield cut-off independent
results. It has already been highlighted that these anomalies appear because the renor-
malization of the derivative terms ∂τ and ∇2 in the action were not taken into account.
For the corresponding anomalous couplings Zτ,i and Zx,i, flow equations at 1-loop order
will be calculated in the course of this chapter.

4.1 Flow of anomalous couplings

Anomalous scaling appears due to the possible three-point couplings in the symmetry-
broken action. These terms allow for diagrams, see (3.21), with loop momentum that
depends on external momentum and thus renormalizes the anomalous couplings already
at 1-loop order. As in this chapter only the renormalization of Zτ,i and Zx,i will be
analyzed, all terms proportional to ψ2 or ψ∗2 can be discarded in (3.22). Anomalous
couplings appearing in these anomalous field terms are a relic of breaking the symmetry
and are essentially related to anomalous couplings in ψ2ψ∗2 terms that are neglected
anyway. Applying the explicit structure of the propagators in the normal phase (3.35)
that is Gij(k) = δijGi(k) and Gan

ij (k) = δ-ijGi(k) reduces the relevant expectation value
(3.22) to

〈(
S̃(3)<>

)2
〉

0
=

1∑
ijkm=−1

∑∫
k,k′

|k|<Λ<|k′|<Λ0

4ψ∗<
i (k)ψ<

j (k)
(
g

(3)
ikmg

(3)
jkmGk(k′)Gm(k − k′)

+ 2g(3)
kjm

(
g

(3)
kimGk(k′)Gm(k′ − k) + g

(3)
-mi-kG

an
k (k′)Gan

m (k′ − k)
)

+ 2
(
g

(3)
ik-mg

(3)
kjm + g

(3)
kimg

(3)
jk-m

)
Gk(k′)Gan

m (k′ − k)
)
. (4.1)

In the expression above one can show by inserting explicit values for the indices that
one only obtains a renormalization if i = j as the expectation value otherwise vanishes.
Therefore, no new anomalous couplings appear apart from those we neglected in the
anomalous field terms.
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Chapter 4. Anomalous Renormalization

Coupling changes

In order to cope with the dependence on external momentum in the propagators, we ap-
ply a Taylor expansion. This has already been done earlier but only to zeroth order, i.e.
neglecting the anomalous renormalization. As the previous chapter revealed the crucial ef-
fects of anomalous scaling, the propagators are now expanded around the loop momentum
up to first order in the Matsubara frequency and to second order in the momentum. Doing
so, also a linear term in the momentum ki appears as well as a mixed term ωnki which is
also linear in the momentum vector. They are both zero due to the momentum integration
and the quadratic dependence on momentum in the propagators

∫
dki kif(k2) = 0. This

is reasonable as no such terms appear in the action beforehand. Thus, the expansion is of
the form

Gi(k′ − k) = Gi(k′) − ωn
∂Gi(k)
∂ωn

∣∣∣∣∣
k=k′︸ ︷︷ ︸

Gω
i (k′)

+
3∑

j=1

k2
j

2M
M

∂2Gi(k)
∂k2

j

∣∣∣∣∣
k=k′︸ ︷︷ ︸

G
kj
i (k′)

, (4.2)

both for the normal and anomalous propagators. The derivatives of the propagators
are abbreviated by Gω

i (k′) in ωn and Gkj

i (k′) in k2
j where an additional mass factor is

included in the latter definition to recover the single-particle energy in the expansion
later. If the order of the two momenta is inverted, only the sign in the linear term flips
Gi(k − k′) = Gi(−k′) + ωnGω

i (−k′) +
∑3

j=1
k2

j

2M Gkj

i (−k′). Using this expansion, one can
evaluate the change corresponding to the anomalous couplings. After computing several
Matsubara sums between normal and expanded propagators, a flow equation can be found.
In doing so, we also need to introduce Gω,an

i and Gk,an
i which are defined identically as their

normal counterparts but with respect to the anomalous propagators.
The change in the anomalous couplings Zx,i is read off in the action as the coefficient of
ϵkψ

∗
i ψi. However, after the Taylor expansion only terms proportional to k2

jψ
∗
i ψi appear,

i.e. in momentum components, and must first be brought into the desired form. One
must take care of the explicit dependence on the index j of the expanded propagator
Gkj

a (k′). But the propagators themselves only depend on the absolute value |k| and thus
the expanded propagators are indistinguishable for different indices j leading to equal
integrals over the loop momentum. Exemplary this is shown here using the combination
Ga(k′)Gkj

b (k′) but works similarly for all combinations between normal and momentum-
expanded propagators:

∑∫
k′

3∑
j=1

k2
j

2M
Ga(k′)Gkj

b (k′) =
3∑

j=1

k2
j

2M
∑∫
k′

Ga(k′)Gkj

b (k′) = ϵk
∑∫
k′

Ga(k′)Gk1
b (k′) . (4.3)

In the second step one uses the independence from the index j as explained above; thus,
the momentum index in the expanded propagator can be chosen arbitrarily to j = 1.
Thereafter, the summation over j is performed trivially and results in the expected single-
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4.1. Flow of anomalous couplings

particle energy term. This enables us to read off the change terms for the spatial anomalous
couplings. Note that there remains an explicit dependence on one particular momentum
component in the expanded propagator that will be taken care of in the following.
In order to compute flow equations, both the Matsubara sums and the spherical momen-
tum integration have to be performed explicitly. Previously, the spherical integration was
trivial as propagators only depended on the absolute value |k|. This has changed regarding
the expanded propagator Gk1

b (k′) in (4.3) where no straightforward spherical integration is
possible anymore. Nevertheless, the integral can be evaluated using d-dimensional spher-
ical coordinates. In these coordinates the first euclidean momentum component can be
decomposed into k′

1 = |k′| cos(ϕ1) with ϕ1 being the first of the d − 2 polar angles that,
together with the azimuthal angle ϕd−1 and the absolute value |k′| , make up the spher-
ical coordinate system. As the momentum-expanded propagator is a second derivative
and the propagator itself only depends on the absolute value, one can show that the ex-
panded propagator will be a function of |k| and the squared cosine cos2(ϕ1) leading to
Gk1

b

(
|k′| , cos2(ϕ1)

)
. Due to this non-trivial spherical dependency, the integration will not

be performed after the Matsubara summations but prior to them by introducing an aux-
iliary function Gk

a(k′) that is the spherically integrated momentum-expanded propagator
and defined as

Gk
a(k′) =

∫ π

0
dϕ1 . . . dϕd−2

∫ 2π

0
dϕd−1

∣∣det(Jd)
∣∣Gk1

a

(
|k′| , cos2(ϕ1)

)
. (4.4)

This ’propagator’ is by construction angularly independent and contains the Jacobian Jd

of a d-dimensional unit sphere

∣∣det(Jd)
∣∣ =

d−1∏
k=2

sink−1(ϕd−k) . (4.5)

In the later computation it will be revealed that the expanded propagators only linearly
depend on cos2(ϕ1) and thus only the following non-trivial spherical integral must be
computed ∫ π

0
dϕ1 . . . dϕd−2

∫ 2π

0
dϕd−1

∣∣det(Jd)
∣∣ cos2(ϕ1) = Sd

d
. (4.6)

Together with the trivial spherical integral that yields the surface of a d-dimensional ball
Sd, this suffices to properly adapt to the spherical dependency and we can now write down
the explicit change in the four distinct anomalous couplings. First, the change of the two
temporal couplings Zτ,0 and Zτ,1 is worked out. For this, the propagators depending on
external momentum in (4.1) need to be replaced by their linear expansion in the Matsubara
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frequency. For Zτ,0 one obtains

dZτ,0 = 2i
∑∫

k
Λ<|k|<Λ0

(
8g(3)

110g
(3)
01-1G1(k)Gω,an

1 (k) − 2g(3)
01-1g

(3)
01-1G1(k)Gω

1 (−k)

+ g
(3)
000g

(3)
000

(
2G0(k)Gω

0 (k) + 2Gan
0 (k)Gω,an

0 (k) + 4G0(k)Gω,an
0 (k) −G0(k)Gω

0 (−k)
)

+ 4g(3)
110g

(3)
110

(
G1(k)Gω

1 (k) +Gan
1 (k)Gω,an

1 (k)
))

. (4.7)

For the second temporal anomalous coupling Zτ,1, the change can be found as

dZτ,1 = 2i
∑∫

k
Λ<|k|<Λ0

(
2g(3)

110g
(3)
01-1

(
Gan

1 (k)Gω,an
0 (k) +Gan

0 (k)Gω,an
1 (k) + 2G0(k)Gω,an

1 (k)
)

+ g
(3)
110g

(3)
110

(
4G1(k)Gω,an

0 (k) + 2G1(k)Gω
0 (k) −G0(k)Gω

1 (−k) −G1(k)Gω
0 (−k)

)
+ 2g(3)

01-1g
(3)
01-1G0(k)Gω

1 (k)
)
. (4.8)

Besides the temporal anomalous couplings, also the change in the spatial ones needs to
be determined by expanding to second order in momentum. The change will directly
be expressed in terms of the spherically integrated expanded propagators. For Zx,0 the
expectation value (4.1) yields

dZx,0 = − 2
β

∑
ωn

∫ Λ0

Λ
|k|d−1 d|k|

(
8g(3)

110g
(3)
01-1G1(k)Gk,an

1 (k) + 2g(3)
01-1g

(3)
01-1G1(k)Gk

1(−k)

+ g
(3)
000g

(3)
000

(
2G0(k)Gk

0(k) + 2Gan
0 (k)Gk,an

0 (k) + 4G0(k)Gk,an
0 (k) +G0(k)Gk

0(−k)
)

+ 4g(3)
110g

(3)
110

(
G1(k)Gk

1(k) +Gan
1 (k)Gk,an

1 (k)
))

. (4.9)

Apparently, the structure of this change is equal to the temporal anomalous coupling in
(4.7) that was presented previously as only the expanded propagators were replaced and
the prefactor changed. The same applies for the second spatial anomalous coupling Zx,1

that changes according to

dZx,1 = − 2
β

∑
ωn

∫ Λ0

Λ
|k|d−1 d|k|

(
2g(3)

01-1g
(3)
01-1G0(k)Gk

1(k)

+ g
(3)
110g

(3)
110

(
4G1(k)Gk,an

0 (k) + 2G1(k)Gk
0(k) +G0(k)Gk

1(−k) +G1(k)Gk
0(−k)

)
+ 2g(3)

110g
(3)
01-1

(
Gan

1 (k)Gk,an
0 (k) +Gan

0 (k)Gk,an
1 (k) + 2G0(k)Gk,an

1 (k)
))

. (4.10)

All changes in the anomalous couplings have been expressed in terms of three-point cou-
plings so far but will later be replaced by two- and four-point couplings using the relations
(3.27) and (3.28). For explicit computations that can be implemented numerically, the
solutions of the appearing Matsubara sums are indispensable and will be evaluated in the
next section.
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4.1. Flow of anomalous couplings

Matsubara sums

At first, the appearing Matsubara sums containing the frequency-expanded propagator
Gω

a (k) in (4.7) and (4.8) are determined. For this undertaking, the expanded propagators
themselves are necessary:

Gω
a (k) = − 1

Z2
τ,aω

2
n + ω2

a

(
2Z2

τ,aωnGa(k) + iZτ,a

)
,

Gω,an
a (k) = −

2Z2
τ,aωn

Z2
τ,aω

2
n + ω2

a

Gan
a (k) . (4.11)

Together with the auxiliary functions in (3.50), the Matsubara sums between a normal
and an expanded normal propagator can be computed using a computer algebra system:

1
β

∑
ωn

Ga(k)Gω
b (k) = i

(
Zτ,b

(
Zx,aϵk + g(2)

aa

)
+ Zτ,a

(
Zx,bϵk + g

(2)
bb

))2Z2
τ,bω

2
aN (1)

ab − N (3)
b

Z2
τ,bω

2
a − Z2

τ,aω
2
b

− iZτ,b

(
Zx,aϵk + g(2)

aa

)
N (1)

ab

a=b= −
i
(
Zx,aϵk + g

(2)
aa

)
2Z2

τ,aωa
N (4)

a . (4.12)

Again, one has to distinguish between the result for equal and unequal indices as both
cases appear in the changes for the anomalous couplings. In case of equal indices, a new
auxiliary function is introduced containing Bose-Einstein distributions up to third order

N (4)
a = β2na(1 + na)(1 + 2na) . (4.13)

The same sum as above is needed but with reverse momentum as it appears in mode
elimination:

1
β

∑
ωn

Ga(k)Gω
b (−k) = i

(
Zτ,b

(
Zx,aϵk + g(2)

aa

)
− Zτ,a

(
Zx,bϵk + g

(2)
bb

))2Z2
τ,bω

2
aN (1)

ab − N (3)
b

Z2
τ,bω

2
a − Z2

τ,aω
2
b

− iZτ,b

(
Zx,aϵk + g(2)

aa

)
N (1)

ab

a=b= −
i
(
Zx,aϵk + g

(2)
aa

)
N (3)

a

2Zτ,aω2
a

. (4.14)

Next, both propagators are replaced by their anomalous counterpart which yields a van-
ishing Matsubara sum for all index combinations

1
β

∑
ωn

Gan
a (k)Gω,an

b (k) = 0 . (4.15)
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Finally, the sum between the normal propagator and the expanded anomalous propagator
is determined:

1
β

∑
ωn

Ga(k)Gω,an
b (k) =

iZτ,ag
(2,an)
-bb

Z2
τ,bω

2
a − Z2

τ,aω
2
b

(
N (3)

b − 2Z2
τ,bω

2
aN (1)

ab

)
a=b=

ig
(2,an)
-aa

(
ωaN (4)

a − Zτ,aN (3)
a

)
4Z2

τ,aω
2
a

. (4.16)

Inserting these sums in (4.7) and (4.8) yields the change for both temporal anomalous
couplings explicitly. Now we move on computing the Matsubara sums that are required
for the spatial anomalous couplings.
Besides the temporal anomalous couplings, for both spatial anomalous couplings the Mat-
subara sums appearing in (4.9) and (4.10) need to be calculated too. One again starts by
stating the momentum-expanded propagators

Gkj
a (k) = Zx,a

Z2
τ,aω

2
n + ω2

a

[
2Ga(k)

(
8Zx,a

k2
j

2M

(
Zx,aϵk + g

(2)
aa

)2

Z2
τ,aω

2
n + ω2

a

− Zx,aϵk − g(2)
aa − 2Zx,a

k2
j

2M

)

− 8Zx,a

k2
j

2M
Zx,aϵk + g

(2)
aa

Z2
τ,aω

2
n + ω2

a

+ 1
]
,

Gkj ,an
a (k) = 2Zx,aG

an
a (k)

Z2
τ,aω

2
n + ω2

a

[
8Zx,a

k2
j

2M

(
Zx,aϵk + g

(2)
aa

)2

Z2
τ,aω

2
n + ω2

a

− Zx,aϵk − g(2)
aa − 2Zx,a

k2
j

2M

]
. (4.17)

In this explicit notation it becomes clear how the auxiliary functions depend on one par-
ticular momentum component besides the absolute value. As argued, the index j can be
chosen arbitrarily and in case of j = 1 also the quadratic dependence on cos(ϕ1), which
has already been deduced, is apparent. For our purpose of evaluating the Matsubara
sums, the spherically integrated expanded propagators will be computed. It is clear that
the sole integration over the determinant of the Jacobian (4.5) yields the surface Sd of
a d-dimensional ball. If a cos2(ϕ1) is involved, we already mentioned the corresponding
integration (4.6) to evaluate the angular integrals. Applying these two integrals, the two
auxiliary functions Gk

a(k) and Gk,an
a (k) are

Gk
a(k) = SdZx,a

Z2
τ,aω

2
n + ω2

a

[
2Ga(k)

(
8Zx,aϵk

d

(
Zx,aϵk + g

(2)
aa

)2

Z2
τ,aω

2
n + ω2

a

− Zx,aϵk − g(2)
aa − 2Zx,aϵk

d

)

− 8Zx,aϵk
d

Zx,aϵk + g
(2)
aa

Z2
τ,aω

2
n + ω2

a

+ 1
]
,

Gk,an
a (k) = 2SdZx,aG

an
a (k)

Z2
τ,aω

2
n + ω2

a

[
8Zx,aϵk

d

(
Zx,aϵk + g

(2)
aa

)2

Z2
τ,aω

2
n + ω2

a

− Zx,aϵk − g(2)
aa − 2Zx,aϵk

d

]
. (4.18)
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4.1. Flow of anomalous couplings

Before the actual sums are evaluated, more shorthand notations need to be introduced
besides the already familiar ones in (3.50) and (4.13):

N (5)
a = β3na(1 + na)(1 + 6na + 6n2

a) ,

Ωab = Z2
τ,bω

2
a − Z2

τ,aω
2
b ,

γa = Zx,aϵk + g(2)
aa . (4.19)

For the Matsubara sum between a normal propagator and a momentum-expanded normal
propagator we evaluate the sum and obtain

1
β

∑
ωn

Ga(k)Gk
b (k) = 2Zx,bSd

dΩab

(Zτ,a

(8Zx,bϵkZ
2
τ,aγ

2
b

Ωab
+ dγb + 2Zx,bϵk

)(
Zτ,aγaγb + Zτ,bω

2
a

)

+ γa

(
4Zx,bϵkZ

2
τ,aγb + dΩab

2

))
N (1)

ab +
(

2Zx,bϵkZτ,bγaγb

(
2γ2

b − ω2
b

)

−
(
Zx,bϵkγ

2
b

Ωab

(
Z2

τ,bω
2
a + 3Z2

τ,aω
2
b

)
+ ω2

b

dγb + 2Zx,bϵk
2

)(
Zτ,bγaγb + Zτ,aω

2
b

)) N (3)
b

Zτ,bω
4
b

+ Zx,bϵkγ
2
b

Z2
τ,bω

3
b

(
Zτ,bγaγb + Zτ,aω

2
b

)
N (4)

b

 . (4.20)

As the Matsubara summations for the spatial anomalous couplings turn out to be very
lengthy even when using the shorthand notations, the result for equal indices is always
presented separately. Conversely, the above result only applies for a ̸= b. For equal indices
we compute

1
β

∑
ωn

Ga(k)Gk
a(k) = Zx,aSd

dZ2
τ,aω

4
a

[(
2Zx,aϵk

(
γ2

a − ω2
a

)(
4γ2

a + ω2
a

)
− dγaω

2
a

(
ω2

a + γ2
a

)) N (4)
a

4Zτ,aωa

+ ω2
a − γ2

a

4ω2
a

(
2Zx,aϵk

(
ω2

a − 10γ2
a

)
+ 3dγaω

2
a

)
N (3)

a + Zx,aϵkγ
2
a

3Z2
τ,a

(
ω2

a + γ2
a

)
N (5)

a

]
. (4.21)

Between the normal propagator and the expanded normal propagator the Matsubara sum
with reverse momentum has to be considered as well. For unequal indices we obtain
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This sum also appears with equal indices and can be computed to be

1
β

∑
ωn

Ga(k)Gk
a(−k) = Zx,aSd

dZ2
τ,aω

4
a

[(
2Zx,aϵk

(
10γ4

a − 7γ2
aω

2
a − ω4

a

)
+ dγaω

2
a

(
ω2

a − 3γ2
a

))N (3)
a

4ω2
a

+
(

2Zx,aϵk
(
4γ4

a − 3γ2
aω

2
a + ω4

a

)
+ dγaω

2
a

(
ω2

a − γ2
a

)) N (4)
a

4Zτ,aωa

+ Zx,aϵkγ
2
a

(
γ2

a − ω2
a

)N (5)
a

3Z2
τ,a

]
. (4.23)

Still utilizing the normal propagator, the Matsubara sum together with an expanded
anomalous propagator is of interest and results in
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Using equal indices yields
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Finally, the sum between an anomalous propagator and an expanded anomalous propaga-
tor is missing which is computed as
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This enumeration of Matsubara sums is completed with the previous result for equal
indices
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As aforementioned, these sums can now be used to express the change in the spatial
anomalous couplings in terms of the relevant two- and four-point couplings of the system.
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Having both changes explicitly, enables us to work out the flow equations for the anomalous
couplings.

Flow equations

Using the Matsubara sums of the section above and the change for all four anomalous
couplings in (4.7), (4.8), (4.9) and (4.10), the final flow equations can be determined. As
the anomalous couplings are rescaled to one, no rescaling is needed and flow equations for
the new couplings after mode elimination are computed. In the following flow equations
the left hand side is expressed in terms of new couplings that are not rescaled whereas the
right hand side is in its rescaled dimensionless form. Throughout the computation one
can check that rescaling the right hand side leads to the emergence of one additional Z<

τ,a

or Z<
x,a factor respectively. Thus, we find as flow equations

∂l lnZ<
τ,a = ∂l dZτ,a , ∂l lnZ<

x,a = ∂l dZx,a . (4.28)

From the definitions of the anomalous dimensions ηi in (3.67), we infer the equality with
the change in the spatial anomalous couplings. Having found the above anomalous flow
equations, the previously neglected anomalous dimensions and flow of the dynamical scal-
ing exponent z must now be taken into account. Due to the elongate results for the
Matsubara sums, we relinquish presenting the flow equations in their explicit form here
but they could be obtained by inserting the Matsubara sums in the coupling changes.
To assess the outcome of these modified flow equations, similar plots as in the previous
chapter will be presented in the subsequent section.

4.2 Results

In this section the results of the flow equations in the polar phase are presented including
the effect of anomalous renormalization in the derivative terms ∂τ and ∇2. The plots are
done for 23Na at a quadratic Zeeman shift q/h = 10 Hz and a total density n = 1019 m−3 as
in the previous chapter. In general, the computation works similarly as before. One starts
with computing an appropriate initial density for every temperature such that the flow
arrives at the demanded macroscopic density. Furthermore, our cut-off independent setup
of the initial couplings is kept as it does not need to be modified because in the vacuum
flow equations no anomalous renormalization is present at 1-loop order. We choose the
same three different cut-offs to assess whether our flow equations yield cut-off independent
results.
When evaluating the flow equations numerically, one sets again a maximal flow parameter
lmax = 15 at which the evolution is stopped. However, when anomalous scaling is included
the flow runs into singularities already at flow parameters on the order of l ∼ 9 and must
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Figure 4.1: The chemical potential µ (solid) and the generalized two-point coupling g(2)
11

(dashed) for 23Na in the polar phase including anomalous renormalization
at a quadratic Zeeman shift of q/h = 10 Hz are plotted against temperature.
The total density is chosen at n = 1019 m−3 and the corresponding critical
temperature is depicted too. Both couplings are displayed for three different
UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red), Λ0 = 1.3 a−1

0 (green).

therefore be aborted. It is expected that these singularities are caused by the convergence
to zero of the anomalous coupling Zx,0; however, this could not be fully explained so far.
Also, the inconsistent inclusion of anomalous couplings to first order in the frequency but
to second order in momentum could be responsible. This issue will be discussed later in
greater detail. For the being, it is important to mention that in the following plots the
equations are always evolved as far as possible without reaching the singularity. This
implies a temperature-dependent maximal flow parameter that is only a technical feature
as we expect the outcomes to be convergent towards a physical value.
In Figure 4.1, both the chemical potential and the generalized two-point coupling g(2)

11 are
plotted against temperature for three different cut-offs, i.e. Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0

(red), Λ0 = 1.3 a−1
0 (green), at the chosen parameters. For the chemical potential we ob-

serve that it approaches its mean-field value for low temperatures whereas after a slowly
descending regime at intermediate temperatures it drops to zero at the critical tempera-
ture. This corresponds to the expected behavior that was already mentioned in Section 3.3.
Besides the improved behavior, we furthermore observe cut-off independent results since
no distinct lines for the chemical potential are visible anymore. This confirms the as-
sumption that the anomalous behavior previously was caused by the neglect of anomalous
renormalization that is apparently crucial within the condensed phase. Regarding the
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10-1

100

Figure 4.2: The generalized four-point coupling g(4)
0000 for 23Na in the polar phase includ-

ing anomalous renormalization at a quadratic Zeeman shift of q/h = 10 Hz
is plotted against temperature. The total density is chosen at n = 1019 m−3

and the corresponding critical temperature is depicted too. For comparison,
the coupling is normalized with its mean-field value g(4)

0000,MF. The coupling
is displayed for three different UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0

(red), Λ0 = 1.3 a−1
0 (green).

coupling g(2)
11 , we recover the same behavior as previously. This was expected as already

without anomalous renormalization we obtained a cut-off independent result that did not
exhibit any signs of anomalous behavior. Furthermore, the coupling is dominated by the
chosen quadratic Zeeman shift because for 23Na c0 ≫ c1 and thus the initial value at zero
quadratic Zeeman shift is on the order of ∼ 1 % of the initial chemical potential. Close to
the critical temperature, the coupling approaches the quadratic Zeeman shift as has been
already found previously.
The same cut-off independent result is obtained for the four-point coupling g(4)

0000 in Fig-
ure 4.2. Again, we observe only one distinct line for the three different cut-offs that were
chosen. Compared to the result presented in Figure 3.4, we furthermore achieved a drop
to zero in the coupling at the critical temperature. This drop has already been motivated
but could not be observed without the inclusion of anomalous renormalization. Take note,
that the endpoint of the curve for g(4)

0000 has no physical meaning but marks up to which
temperature the flow equations were investigated. As they approach a singularity when
approaching criticality, the computations could only be performed in the vicinity of the
critical temperature. By introducing an explicit flow equation for g(4)

0011 that is read off
directly in the expectation value (3.20), one obtains an approximate flow equation for this
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10-1
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Figure 4.3: The generalized four-point couplings g(4)
010-1 (dashed, short), g(4)

1111 (solid) and
g

(4)
11-1-1 (dashed, long) are plotted against temperature for 23Na in the polar

phase including anomalous renormalization at a quadratic Zeeman shift of
q/h = 10 Hz. The total density is chosen at n = 1019 m−3 and the corre-
sponding critical temperature is depicted too. For comparison, the couplings
are normalized with their mean-field values g(4)

ijkl,MF. The couplings are dis-
played for three different UV cut-offs: Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red),

Λ0 = 1.3 a−1
0 (green).

coupling instead of computing it through its relation to both two-point couplings. This
alternative setup lacks the singularity at the critical temperature but results in compara-
ble plots with numerically more stable values close to criticality.
The other three four-point couplings g(4)

010-1, g(4)
1111 and g

(4)
11-1-1 are depicted in Figure 4.3.

We clearly find cut-off independent behavior for these couplings as well, showing that our
cut-off independent setup is actually applicable if anomalous renormalization is taken into
account. For the two four-point couplings that are not directly affected by the introduc-
tion of a condensate, we find strictly positive results in contrast to the approach without
anomalous renormalization. The slight offset of g(4)

11-1-1 can be explained through the dif-
ferent initial value where the spin-spin coupling c1 is subtracted and not added. For the
spin-spin interactions, the scattering potential between equal particles with equal m = ±1
is repulsive whereas for opposite magnetic quantum numbers it becomes attractive. It
is further observed that all three couplings approach a fixed value, i.e. a fixed fraction
compared to their mean-field value, at criticality. All three couplings describe interactions
that can occur due to spin-spin interactions; thus, the equality of the fixed value is un-
derstood. However, the underlying reason why only spin-spin interactions dominate the
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10-2
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100
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Figure 4.4: The spatial anomalous couplings Zx,0 (dashed, short) and Zx,1 (dotted) as
well as the temporal anomalous couplings Zτ,0 (solid) and Zτ,1 (dashed, long)
are plotted against temperature for 23Na in the polar phase including anoma-
lous renormalization at a quadratic Zeeman shift of q/h = 10 Hz. The total
density is chosen at n = 1019 m−3 and the corresponding critical temperature
is depicted too. The couplings are displayed for three different UV cut-offs:
Λ0 = a−1

0 (blue), Λ0 = 0.5 a−1
0 (red), Λ0 = 1.3 a−1

0 (green).

system at the critical temperature is not fully understood yet.
For the condensate density and the total density one observes cut-off independent results
as we had already seen when anomalous renormalization has been neglected. We suggested
earlier that the condensate density is not affected by anomalous renormalization as can be
verified now. The change in density due to anomalous scaling is below ∼ 1 % compared
to previous results. This reassures our computation of the condensate depletion without
anomalous renormalization.
In contrast to the previous computations without flow in the anomalous couplings, we can
now investigate the changed anomalous couplings in Figure 4.4. At first, we note that all
anomalous couplings yield cut-off independent results as expected within our approach.
For the spatial coupling Zx,1 and the temporal coupling Zτ,1, only small deviations from
the initial value, which is one, are observed. This is sensible as the condensate only resides
in the m = 0 state and thus the side modes are not directly affected by the condensate. The
spatial anomalous couplings remain constant over temperature and can be further rescaled
to one by using the dynamical scaling exponent. The spatial coupling Zx,0 exhibits a strong
decrease towards zero in the course of the renormalization and is thus suspected to cause
the singularities that arise in the flow equations. If one computes the coupling for flow
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Figure 4.5: The four-point coupling g
(4)
0000 is plotted against temperature for 23Na in

the polar phase including anomalous renormalization at a quadratic Zeeman
shift of q/h = 10 Hz and a cut-off Λ0 = a−1

0 . The total density is chosen
at n = 1019 m−3 and the corresponding critical temperature is depicted too.
For comparison, the coupling is normalized with its mean-field value g(4)

0000,MF.
The coupling is displayed for four different flow parameters indicated by
δ = lmax − l with lmax being the maximal flow parameter at which the
singularity is reached: δ = 0.00001 (blue), δ = 0.1 (red), δ = 0.5 (green),
δ = 1 (orange). The subplot, rescaled with Zτ,0 which is chosen according to
the corresponding δ, displays the same results.

parameters smaller than the maximal flow parameter that is reached at the singularity,
one observes that the drop towards zero only occurs in the vicinity of the maximal flow
parameter. For smaller flow parameters this anomalous coupling also remains at the or-
der of the initial value. Both temporal anomalous couplings yield temperature-dependent
results, especially the coupling Zτ,0 increases for small temperatures towards a plateau at
intermediate temperatures before another increase in the vicinity of criticality.
Take note that the plotted anomalous couplings are the results after mode elimination as
they get rescaled to one which implicitly defines the dynamical scaling exponent z. Previ-
ously this value was z = 2 and is now expected to flow as well, according to (2.15) where
a small numerical offset had to be introduced to avoid the singularity occurring for l = 0.
We observe an increase up to z ≈ 2.4 for all three cut-offs. However, this result contradicts
our expectation of a dynamical scaling exponent of z = 0 for large temperatures. When
the fixed points of the flow equations were investigated in Section 2.4 and 3.4 it was ar-
gued that the dynamical scaling exponent must acquire this value to obtain sensible fixed
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points. Thus, we expect that this feature should be incorporated by the flow equations but
it could not be observed employing the calculated equations including anomalous scaling.
Besides this inconsistency, we plotted the four-point coupling g(4)

0000 again in Figure 4.5 but
now for fixed cut-off Λ0 = a−1

0 and varying flow parameter l. As we already discussed the
time-dependent maximal flow parameter lmax at which the singularity in the flow equa-
tions is reached, we introduce the parameter δ = lmax − l that defines how far ahead of
the singularity the evolution of the flow is aborted. Then, the coupling is plotted for four
such δ parameters and we find four distinct curves. When anomalous renormalization was
neglected, the flow did not run into singularities and when plotting the results for different
flow parameters a convergence towards the ultimate physical value was observed. This
expectation of a converging result could not be achieved including anomalous scaling as
becomes clear in Figure 4.5. One can either question the expectation of convergence itself
as close to a singularity convergence is by no means a typical expectation. Or one multi-
plies the coupling with the anomalous coupling Zτ,0 which is chosen at the corresponding
flow parameters and observes improved convergence as is depicted in the subplot. This
procedure has no direct physical motivation; however, it is reminiscent of the discussion
of the flow equations without anomalous scaling where we also multiplied with the cut-off
parameter to achieve overlapping results. This was interpreted as the effect of anomalous
scaling; thus, we can now interpret this observation as further influence of higher order
anomalous couplings that were not taken into account. Such an interpretation is backed
firstly by the inconsistency in the inclusion of anomalous couplings were we only consid-
ered first order derivative terms in complex time but second order derivatives in the spatial
coordinates. The inclusion of the anomalous couplings corresponding to the term ψ†∂2

τψ

could improve the convergence behavior. Secondly, one can consult results from func-
tional renormalization group theory, where the relevance of the second time derivative for
criticality is highlighted [47]. Ultimately, our approach remains a 1-loop perturbative ap-
proximation that exhibits flaws compared to more sophisticated approaches like functional
and numerical ones.
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Chapter 5

Conclusion

This chapter concludes this thesis by giving a summary of the obtained results and ends
with an outlook on further possible subjects of research. As we aimed at describing the
ultracold free spin-1 Bose gas using renormalization methods, the spin-1 Hamiltonian was
derived first to pinpoint the richer interactions through the spin-spin interactions com-
pared to the simple spin-0 model. The mean-field phase diagram that this Hamiltonian
infers has been presented in order to show the variety of condensed phases that can be
found in a spin-1 gas. This derivation was already performed in terms of generalized cou-
plings that proved useful later when actual WRG computations were performed.
In Chapter 2 the Wilsonian renormalization group has been introduced that enabled us
to derive an effective field theory by computing flow equations. In this thesis all computa-
tions were performed in a 1-loop perturbative approximation which for the thermal phase
of the spin-1 Bose gas did not contain any anomalous renormalization. The flow equations
within this thermal phase were computed explicitly in order to get acquainted with the
concept of WRG and to analyze the Wilson-Fisher fixed point of these flow equations.
When the ϵ-expansion around the relevant fixed point was computed explicitly, one had
to distinguish between the two possible fixed points of the quadratic Zeeman shift: q∗ = 0
and q∗ = ∞. In the first case, the three Zeeman states were energetically degenerate and
we obtained a critical exponent ν = 0.64 in three dimensions. In contrast, the latter fixed
point of the quadratic Zeeman shift raised the side modes to infinity and thus we recovered
the spin-0 Bose gas flow equations for which we derived the critical exponent ν = 0.6 that
has already been found in [23]. Further discussion of the thermal flow equations was not
presented as the focus of this thesis was on the thermal phase transition for which the flow
equations within the symmetry-broken phase were indispensable.
As flow equations are not able to break symmetries, we broke them manually in Chapter 3
to compute a set of flow equations for all generalized couplings in the polar phase. This
phase was chosen as it is, together with the ferromagnetic phase, the technically least
demanding to compute. Furthermore, it is of particular interest as for positive quadratic
Zeeman shifts a quantum phase transition to the easy-plane phase can be observed if the
spin-spin coupling is negative. After the symmetry has been broken, the computations were
carried out following the same steps as in the previous chapter; however, new interactions
such as anomalous interactions proportional to ψ2 and ψ∗2 terms as well as three-point
interactions emerged that corresponded to interactions between condensed and thermal
particles. In (3.16) we found new terms that renormalized the one-point coupling that had
to vanish to ensure a proper distinction between the thermal field with vanishing expecta-
tion value and the condensate. These emerging terms after mode elimination accounted
for the renormalization of the condensate density and were taken care of by expanding
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around a new expectation value of the field. As the symmetry breaking introduced several
relations between two- and four-point couplings via the condensate density, all four-point
couplings besides g(4)

1111 and g
(4)
11-1-1 were straightforwardly computed using these relations

as had been already done for the spin-0 case in [31]. The two mentioned couplings that
were not computed using two-point couplings were not affected by breaking the symmetry
and thus directly read off at fourth order in the fields. Throughout this computation, we
already included the anomalous couplings as we realized in (3.21) that in the polar phase
anomalous renormalization already occurs at 1-loop order due to three-point interactions.
With the obtained flow equations, we checked that both the Hugenholtz-Pines theorem
that guarantees a gap-less excitation mode as well as the analytic transition to the thermal
phase in the sense of equal couplings and equal flow equations at the critical point were
fulfilled.
For the subsequent evaluation of the flow equations without anomalous renormalization
the flow for the total particle density has also been derived. The flow equations were
analyzed for 23Na at a quadratic Zeeman shift of q/h = 10 Hz because sodium has positive
initial spin-spin coupling and thus resides only in the polar phase according to the mean-
field phase diagram. In the course of our computations, the action had to be regularized
by introducing a UV cut-off Λ0 that, however, had no physical implications. Thus, we had
to initialize our flow equations such that they yield cut-off independent results by choosing
cut-off dependent initial couplings. They were chosen such that they flow in the thermal
vacuum to the experimental results for the scattering lengths. Furthermore, we set a total
particle density that had to be understood as a macroscopic quantity and thus had to
be the outcome of the evolution of the flow equations. Therefore, for all temperatures a
corresponding initial density was computed to arrive at the desired density.
By investigating the critical degeneracy parameter, we recovered approximately the critical
temperature for the non-interacting spin-1 Bose gas at q = 0 and for the non-interacting
spin-0 Bose gas for large external fields. This reassured our previous fixed point discus-
sion and furthermore exhibited cut-off independent results for small chemical potentials
as desired. The observed shift towards larger critical temperature was also consistent with
preliminary results; however, the predicted order of magnitude could not be reproduced.
In the subsequent analysis of the couplings that were obtained from the flow equations, we
however realized that for several couplings cut-off dependent results were obtained. This
was explained through anomalous scaling that had been discarded in these plots even
though it is present in the polar phase. For the condensate density we found a continuous
decrease towards the critical temperature that exhibited the same qualitative behavior as
the non-interacting prediction. Additionally, also the condensate depletion at T = 0 was
computed and found to be in good agreement with theoretical predictions.
The fixed point analysis of the symmetry-broken flow equations resulted in a new critical
exponent ν = 0.89 for the case of three degenerate Zeeman states at vanishing external
field and ν = 0.69 in case of infinite quadratic Zeeman shift. The latter exponent was the
one found in a WRG analysis of the spin-0 Bose gas in the symmetry-broken phase [31].
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Due to our observation of anomalous scaling in the symmetry-broken flow equations with-
out the anomalous couplings, we proceeded with the explicit computation of flow equations
for the four relevant anomalous couplings in the polar phase in Chapter 4. Doing so, we
expanded the dependencies on external momentum in the appearing propagators to first
order in the Matsubara frequency and to second order in the momentum. After reading off
the changes in the relevant couplings, one had to solve the Matsubara sums and ultimately
obtained the flow equations. They then came again under scrutiny and we found cut-off
independent results for all couplings that are present in the spin-1 Bose gas. We thus con-
firmed our assumption that the cut-off dependencies that had been observed previously
were caused by anomalous scaling. This result came, however, with the drawback that
our flow equations ran into singularities and could not be evolved up to the demanded
maximal flow parameter. As a consequence, we only evolved up to the maximal possible
flow parameters which were sufficiently large to obtain meaningful results. These singular-
ities, however, also gave rise to lacking convergence in the couplings before reaching the
singularity. It has been suggested that this is caused by the inconsistency of neglecting the
second derivative in complex time that also defines two anomalous couplings. However,
no further attempt has been undertaken to include these couplings in our flow equations
and were left for future investigations.
For the relevant couplings that were observed, we found the expected behavior such as
convergences to zero or the quadratic Zeeman shift at the critical temperature and small
deviations from mean-field results for temperatures far below criticality. Unfortunately,
we did not observe the decrease in the dynamical scaling exponent from two to zero as we
expected but rather an increase that could not be explained so far and might be a relic of
missing anomalous couplings.
To summarize, we constructed two sets of flow equations in the thermal and the polar
phase of a spin-1 Bose gas to describe the thermal phase transition in a cut-off inde-
pendent manner. By checking certain benchmarks we found that our approach is able
to qualitatively describe the phase transition and can also make quantitative predictions
concerning the condensate depletion and the critical exponents. However, one has to ac-
knowledge that a perturbative 1-loop approach is not as sophisticated as Monte-Carlo
simulations or functional renormalization group but still results in meaningful predictions
especially in the symmetry-broken phase. As the renormalization is performed at 1-loop
order in quasi-particles in the polar phase, our computations actually contain a larger set
of Feynman diagrams resulting in an increased accuracy.
The scheme presented in this thesis can be, from a technical stance, easily be extended
to the other three ground states of the spin-1 Bose gas. This is of particular interest
not only to describe other thermal phase transitions but also to examine quantum phase
transitions between the condensed phases themselves. Especially the transition between
the easy-plane and the polar phase is of interest as in experiments quenches are already
performed through this transition [37]. Besides more accurate predictions for the T = 0
phase diagram, the thermal phase transition between the condensed phases can also be

103



Chapter 5. Conclusion

observed as indicated in [36]. Having presented results for spin-1 Bose gases here, one
can of course perform these computations for spin-0 gases as in [31] and in higher spins.
For spin-0 the flow equations for the anomalous couplings have been computed and sim-
ilar results as in the spin-1 gas were observed, therefore they were not presented in this
thesis. Higher spin computations, flow equations up to 2-loop order or the inclusion of
linear Zeeman effect p will, however, be technically very demanding and its benefit should
be assessed beforehand. For the resolution of the lacking convergence and the singularity
in the anomalous flow equations one could expand the propagator up to second order in
the Matsubara frequency to include these couplings as well. Before this is done for the
spin-1 gas, it is recommendable to carry out these computations for the spin-0 gas first
to validate or refute the suggestion that the extra anomalous couplings could resolve the
flaws of the anomalous flow equations.
Additionally to the extension of the WRG computations mentioned above, the spin-1 sys-
tem could also be implemented in a functional renormalization scheme as it has been done
for the spin-0 gas in [48–50] or in further non-perturbative approaches as in [51]. This is
of particular interest as [47] claims that for d ≤ 3 perturbative approaches do not suffice
to properly describe critical behavior and rather a non-perturbative approach must be
employed. Besides these analytic approaches, also numerical methods like Monte-Carlo
simulations could be used to survey the predictions made in this thesis. For spin-0 Bose
gases Monte-Carlo methods have already been used to describe, e.g. trapped bosons [52]
or the shift in critical temperature [53]. Eventually, precise experiments will review the
predictions and claims stated here and give further insights in the physics of spin-1 Bose
gases.
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