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Phasenkorrelatoren in Gross-Pitaevskii-Systemen fernab des Gleichge-
wichts:

Wir diskutieren verschiedene Ansätze zur Definition einer Korrelationsfunktion von
Phasenfeldern und untersuchen deren Eigenschaften in einem eindimensionalen Spin-
System. Wir kommen zu dem Schluss, dass die natürlichste Art, einen solchen Kor-
relator zu definieren, darin besteht, einen Schallwellen- und Vortex-Anteil der Phase
als skalares beziehungsweise Vektor-Potential des Geschwindigkeitsfeldes einzuführen.
Basierend auf dieser Definition extrahieren wir numerisch Phasenkorrelatoren in einem
zweidimensionalen U(N)-symmetrischen Gross-Pitaevskii-System. Der Schallwellen-
Anteil wird mit den Vorhersagen aus einer effektiven Feldtheorie verglichen. Bezüglich
des Vortex-Anteils argumentieren wir, warum eine näherungsweise Dualität zwischen
Vortex-Dynamik und dem 2+1D Sine-Gordon-Modell gelten könnte. Im letzten Teil
entwickeln wir eine kinetische Theorie dieses Modells, aus welcher wir einen dynami-
schen Skalierungsexponenten β = 1/6 finden. Dieses Ergebnis wird untermauert durch
numerische Simulationen. Damit geben wir eine mögliche Erklärung für das anomale
β ∼ 0.2 in vortexdominierten Systemen.

Phase correlators in Gross-Pitaevskii systems far from equilibrium:

We discuss different approaches of defining a correlation function of phase fields and
study their properties in a one-dimensional spin system. We conclude that the most
natural way of defining such a correlator is to introduce a sound-wave and vortex
part of the phase as the scalar and vector potential of the velocity field. Based on
this definition we numerically extract phase correlators in a two-dimensional U(N)
symmetric Gross-Pitaevskii system. The sound wave part is compared to predictions
from a low-energy effective field theory. Regarding the vortex part we argue why
an approximate duality between vortex dynamics and the 2+1D Sine-Gordon model
might hold. In the last part we develop a kinetic theory of this model, from which
we find a dynamical scaling exponent β = 1/6. This result is further corroborated by
numerical simulations. Thereby a possible explanation for the anomalous β ∼ 0.2 in
vortex dominated systems is provided.
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1 Introduction

Quantum many-body systems far from thermal equilibrium are an intriguing as well as
tempting field of study. A plethora of new phenomena show up on the way back to ther-
mal equilibrium, such as parametric resonance, turbulence, prethermalization, prescaling
and non-thermal fixed points [1–6]. These occur in a similar way in very different scenar-
ios, rendering non-equilibrium quantum theory applicable to a broad range of physical
systems, such as early universe dynamics, heavy ion collisions and ultra-cold quantum
gases [7].
This thesis mainly deals with the non-equilibrium dynamics of the non-relativistic Gross-
Pitaevskii model, though in the last chapters we will also have a look at the relativistic
Sine-Gordon model. The particular focus will be on the phase θ of the complex Gross-
Pitaevskii field ψ, motivated by the fact that at low energies fluctuations in the density
ρ = |ψ|2 are suppressed and the phases become the relevant degree of freedom [8]. We
will therefore study correlation functions of the phases numerically, comparing to existing
analytical predictions, as well as analytically, aiming at giving a possible explanation for
numerical results not fully understood yet.
The work is organized as follows: in the remainder of this chapter, we will introduce
the Gross-Pitaevskii model and briefly discuss some of its properties. Furthermore we
discuss the notion of universality far from equilibrium and non-thermal fixed points. The
next chapter gives a short overview over the techniques of non-equilibrium quantum field
theory. After these two introductory chapters we discuss in detail several possibilities to
introduce a correlation function of phase variables (chapter 3). Thereafter these different
definitions are applied to a one-dimensional spin system and discussed in this context
(chapter 4). We will then conclude that the most reasonable way of defining phase corre-
lators is to correlate either the scalar or the vector potential (the ”sound wave” and the
”vortex” part, respectively) of the velocity field V of the Gross-Pitaevskii field ψ. This
definition will be the only one considered in the remainder of the thesis. Based on this def-
inition, chapter 5 discusses several aspects of the phase representation of Gross-Pitaevskii
theory. We review earlier findings concerning the ”sound wave” part of the phase. Fur-
thermore we aim at giving also a description for the ”vortex” part. To this end we propose
arguments why, under certain assumptions, the well-known duality between vortices and
the Sine-Gordon model in 2D might approximately persist to the 2+1D case. Finally this
chapter deals with the relation between correlation functions of the fundamental field ψ
and of the phase fields, in part reviewing again earlier findings but including now also
the ”vortex” part. The following chapter (6) deals with the numerical computation of
phase correlators in a two-dimensional U(1) and U(3) symmetric system. Thereafter we
discuss the non-equilibrium dynamics of the Sine-Gordon model. Whereas in chapter 7
we make the attempt of developing a kinetic description based on the 2PI effective action
formalism and the Boltzmann equation, chapter 8 gives a numerical treatment employing
the truncated Wigner approximation. Finally in chapter 9 we summarize the results and
give an outlook.
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1.1 Gross-Pitaevskii model and vortices

The central model studied in this thesis is the U(N) symmetric Gross-Pitaevskii (GP)
model whose Lagrangian is given by

LGP =
i

2
(ψ∗a∂tψa − ψa∂tψ∗a)−

1

2m
∇ψ∗a · ∇ψa −

g

2
(ψ∗aψa)

2 (1.1)

where ψa is an N -component scalar Bose field and summation over indices is implied. For
the important case of N = 1 this reduces to

LGP =
i

2
(ψ∗∂tψ − ψ∂tψ∗)−

1

2m
∇ψ∗ · ∇ψ − g

2
|ψ|4. (1.2)

This Lagrangian provides an effective description of a Bose-Einstein condensate of ultra-
cold atoms (cf. e. g. [9]), with the identification

g =
4πa

m
(1.3)

with a the scattering length of the atoms and m their mass. For N > 1 one can see
the different field components e. g. as representations of atoms in different hyperfine
or Zeeman states, or of atoms of different elements [10]. Apart from the description of
ultra-cold atoms, there exists also an interpretation of the Gross-Pitaevskii Lagrangian
as the effective description of relativistic scalar field theories at low momenta [11].
The classical equations of motion can be easily obtained as the Euler-Lagrange equations
of the Lagrangian (1.1):

i∂tψa =

(
− 1

2m
∆ + g(ψ∗bψb)

)
ψa (1.4)

and in the one-component case

i∂tψ =

(
− 1

2m
∆ + g|ψ|2

)
ψ. (1.5)

As for the wave function in the Schrödinger equation one can define a density and a
current for the Gross-Pitaevskii field, given by

ρ = |ψ|2 (1.6)

j =
1

2mi
(ψ∗∇ψ − ψ∇ψ∗). (1.7)

It is easy to show that also in Gross-Pitaevskii theory the continuity equation ∂tρ+∇·j = 0
is fulfilled.
An important solution to the two-dimensional Gross-Pitaevskii equation is the vortex
solution, which is topologically non-trivial. It is characterized by a drop of the density ρ
to 0 in the vortex core and a winding of the phase around it. We make the ansatz

ψ(r, ϕ; t) =
√
ρ0f(r)eiqϕe−iωt (1.8)
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Figure 1.1: Density profile (normalized to the bulk density) and velocity field of a vortex.

with q ∈ Z the integer ”charge” of the vortex and ρ0 the bulk density outside the vortex.
Inserting this into the Gross-Pitaevskii equation yields

∂2f

∂r2
+

1

r

∂f

∂r
− q2

r2
f + 2mωf − 2mgρ0f

3 = 0. (1.9)

For r →∞ we should have f → 1. This enforces ω = gρ0, so that the equation becomes

∂2f

∂r2
+

1

r

∂f

∂r
− q2

r2
f + 2mgρ0(f − f 3) = 0. (1.10)

It turns out that there is a characteristic length scale ξh = 1/
√

2mgρ0. Indeed by introduc-
ing the dimensionless variable x = r/ξh we can write the equation for f in a dimensionless
form:

f ′′ +
1

x
f ′ − q2

x2
f + f − f 3 = 0. (1.11)

ξh is called healing length because it is the length scale on which the defect in the density
is ”healed”, i. e. on which the density returns from ρ = 0 in the vortex center to the bulk
value ρ = ρ0. Equation (1.11) has no simple analytic solution but a numerical evaluation
is straightforward.
For the velocity field v ≡ j/ρ of a vortex one finds

v =
q

mr
eϕ. (1.12)

Figure (1.1) shows the density profile (as calculated numerically from (1.11)) and the
velocity field of a vortex together.
Vortices are very robust objects and can act as quasiparticles that move in space, scatter
from each other, form bound pairs and annihilate. In many situations they are essential
to the dynamics of a Gross-Pitaevskii system in 2D [12]. An important part of this thesis
will deal with a particular attempt to describe their dynamical behavior.
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Figure 1.2: Sketch of the flow with time in parameter space. Picture taken from [5].

In 3D, there cannot be point-like topologically non-trivial objects since the GP field
ψ has only two components (if one considers its real and imaginary part as independent
components). However, tube-like topological defects are still possible, which are frequently
called vortex tubes. Indeed they occur in three-dimensional GP systems and can play an
important role for the dynamics too, as their two-dimensional counterparts [12]. However,
as we are mainly concerned with two-dimensional systems, we will not discuss vortex tubes
in more detail here.

1.2 Non-thermal fixed points and scaling

Whereas the notion of universality is well-established for systems in thermal equilibrium,
universality in systems far from thermal equilibrium is a rather recent subject of study.
By universality one understands the fact that very different systems exhibit very similar
behavior near a phase transition. This manifests itself in a set of critical exponents that
depend only on very general properties such as the dimension and symmetries of a system.
A celebrated explanation for this phenomenon is provided by renormalization group the-
ory (see e. g. [13]). Here one studies the flow in an effective parameter space of a theory
under the change of a flow parameter λ, which encodes the spatial resolution on which
the system is looked at. It then turns out that there are fixed points in the parameter
space to which the system flows from a broad range of initial parameters if the spatial
resolution is sent to 0. Thus they account for the very similar behavior of very different
systems near phase transitions, where spatial coherence typically grows large and hence
the spatial resolution becomes small.
The notion of non-thermal fixed points [14] arises from applying this idea from the the-
ory of thermal equilibrium systems to the non-equilibrium case. Instead of the spatial
resolution the role of the flow parameter λ is now played by the time t itself. Such a flow
with time in the effective parameter space of a theory is sketched in figure (1.2).
One of the most frequently considered observables in the study of non-thermal fixed
points is the occupation number in momentum space f(t; k). One postulates that at a
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Figure 1.3: Sketch of f(k) at a non-thermal fixed point. Picture taken from [15].

non-thermal fixed point the occupation number fulfills the following relation:

f(t; k) = (t/t0)αfS((t/t0)βk) (1.13)

where t0 is a reference time, fS(k) ≡ f(t = t0; k) is the scaling function and α and β are
scaling exponents. Predicting their values is a central issue in the theory of non-thermal
fixed points, such as predicting critical exponents is one of the most important problems
in equilibrium theory. α and β are not entirely independent if one assumes a conservation
law to hold. E. g. if one assumes particle number conservation, the quantity∫

ddkf(t; k) (1.14)

has to remain constant from which it follows that α = dβ. Similarly, energy conservation
implies the conservation of the integral∫

ddkf(t; k)ωk (1.15)

with ωk the dispersion relation. If ωk ∼ kz this implies α = (d + z)β. Typically, one
observes the fulfillment of particle conservation in the IR part of the spectrum whereas
energy conservation holds in the UV. The exponents α and β are thus different in the IR
and UV. Usually they have even different signs. Whereas in the IR β is typically positive,
implying a transport of particles towards lower momenta, in the UV we have a movement
into the opposite direction, i. e. towards higher momenta [5]. This is depicted schemat-
ically in figure (1.3). In this thesis we will be concerned only with the dynamics in the
IR, thus in the following, whenever we talk about exponents α and β, we are referring to
those of the IR part of the spectrum. In this regime, relativistic systems with a mass gap
and non-relativistic systems typically show very similar behavior and are characterized by
the same exponents because at low momenta the relativistic theory becomes effectively
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non-relativistic [15].
Regarding the shape of the function f(k) one typically finds that at low momenta f(k)
shows a plateau and then falls off with a characteristic power law k−κ [5]. In the UV there
can be additional structure. The point where the plateau forms indicates a characteristic
momentum scale kchar and thus a characteristic length scale ξchar in the system. The
value of the spatial scaling exponent κ is also an object of study that one tries to predict
analytically.
One of the most important predictions coming from the non-equilibrium QFT formalism
outlined in the next chapter is that β = 1/2. This value is indeed found in a plethora of
different systems, relativistic and non-relativistic ones alike. However, there are excep-
tions, one of the most important ones being the one-component two-dimensional Gross-
Pitaevskii system. Here one finds β ∼ 0.2 [16]. Similar results also hold for one-component
two-dimensional φ4 theory, which in its IR modes can be approximately described by the
GP system [11]. One can show that this deviation is caused by vortices, i. e. topological
defects in the field configurations of such systems. While in [16] a heuristic argument for
β ∼ 0.2 is provided, there is no satisfying field-theoretic explanation so far. In a later
chapter we will propose one possibility for such an explanation.

11



2 Non-equilibrium quantum field theory

In this section we want to summarize briefly the main concepts of non-equilibrium quan-
tum field theory. For a more comprehensive treatment the reader is referred to [7], which
we will follow closely.

2.1 Schwinger-Keldysh formalism

The majority of quantum field theoretic calculations does not concern the most general
physical setup, i. e. a system in an arbitrary state allowed by the theory, but restricts
itself to important special cases. In particle physics one usually performs computations
in ”zero-temperature” quantum field theory. This means one assumes the system to be in
its ground state (the vacuum state) and considers excitations on top of this ground state.
”Finite-temperature” QFT is more general, taking the system’s density matrix to be a
thermal one with an arbitrary temperature. This approach is chosen e. g. in condensed
matter physics or the study of quark-gluon plasma. However, for treating systems out of
thermal equilibrium one needs a still more general formalism. This is known under the
name of Schwinger-Keldysh formalism.
Assume we have a system which at the initial time t0 is described by the density matrix
ρ0. The expectation value of an operator O at time t is then given by

Tr
{
ρ0e

iH(t−t0)Oe−iH(t−t0)
}
. (2.1)

This can be interpreted as propagating from t0 to t and then from t back to t0. Addition-
ally one usually inserts a 1 for convenience, i. e. a propagation from t to ∞ and from ∞
back to t. This gives rise to the Schwinger-Keldysh contour C. C runs from t0 to ∞ and
then back to t0, see figure (2.1).
One can define then a non-equilibrium generating functional, from which arbitrary corre-
lation functions can be calculated:

Z[J,R] = Tr

{
ρ0TC exp

(
i

∫
x,C
J(x)φ(x) + i

1

2

∫
xy,C

φ(x)R(x, y)φ(y)

)}
(2.2)

where φ(x) is a Heisenberg field operator and TC denotes time ordering along the Schwinger-
Keldysh contour. E. g. one obtains from Z:

δZ

iδJ(x)

∣∣∣∣
J,R=0

= 〈φ(x)〉 (2.3)

δ2Z

iδJ(x)iδJ(y)

∣∣∣∣
J,R=0

= 〈TCφ(x)φ(y)〉. (2.4)

One further defines the connected propagator G as

G(x, y) = 〈TCφ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉. (2.5)

12



C+

C− → ∞t0 t

Figure 2.1: Schwinger-Keldysh contour C with upper (C+) and lower branch (C−).

(2.2) can be transformed into a non-equilibrium path integral:

Z[J,R] =

∫
[dφ+

0 ][dφ−0 ]〈φ+
0 |ρ0|φ−0 〉

×
φ−0∫
φ+0

Dφ exp

[
i

(
S[φ] +

∫
x,C
J(x)φ(x) +

1

2

∫
xy,C

φ(x)R(x, y)φ(y)

)]
(2.6)

with |φ±0 〉 being eigenstates of the field operator at t0, i. e.

φ̂(t0,x)|φ±0 〉 = φ±0 (x)|φ±0 〉 (2.7)

and ∫
[dφ+

0 ][dφ−0 ] ≡
∫ ∏

x

dφ+
0 (x)dφ−0 (x). (2.8)

The notation
∫ φ−0
φ+0

Dφ means that one integrates only over field configurations fulfilling

the boundary condition φ(t+0 ,x) = φ+
0 (x) and φ(t−0 ,x) = φ−0 (x) where t±0 denotes t0 on

the lower or upper branch of the Schwinger-Keldysh contour C, respectively.
〈φ+

0 |ρ0|φ−0 〉 can be parameterized as

〈φ+
0 |ρ0|φ−0 〉 = N exp

{
i(h1[φ+

0 , φ
−
0 ] + h2[φ+

0 , φ
−
0 ] + . . . )

}
(2.9)

with

h1[φ+
0 , φ

−
0 ] =

∫
ddx{α+

1 (x)φ+
0 (x) + α−1 (x)φ−0 (x)} (2.10)

h2[φ+
0 , φ

−
0 ] =

∫
ddxddy{α++

2 (x,y)φ+
0 (x)φ+

0 (y) + α+−
2 (x,y)φ+

0 (x)φ−0 (y)

+ α−+
2 (x,y)φ−0 (x)φ+

0 (y) + α−−2 (x,y)φ−0 (x)φ−0 (y)} (2.11)

. . .

A very common assumption is that one can indeed truncate the series in (2.9) at second
order, i. e. that the initial density matrix is Gaussian. This is fulfilled to a good accuracy
in many systems. Then one can absorb 〈φ+

0 |ρ0|φ−0 〉 entirely into the source terms J(x)
and R(x, y) so that these encode the initial conditions.

2.2 2PI effective action and 1/N expansion

Standard perturbation theory techniques are not suited very well for non-equilibrium
problems. The reason are so-called secular terms growing exponentially in time, which
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render a perturbative expansion invalid even for arbitrarily weak coupling at sufficiently
late times [17].
One of the major approaches to circumvent this problem are n-particle irreducible (nPI)
effective actions, in particular 2PI effective actions, generalizing the well-known concept
of 1PI effective actions. Whereas the 1PI effective action is expressed in terms of the full
quantum field φ, the 2PI effective action is expressed in terms of the full quantum field
φ and the full propagator G. Correspondingly, the nPI effective action is expressed in
terms of all k-point functions with k ≤ n. However, for most non-equilibrium problems
the 2PI formalism is sufficient.
As an example we consider relativistic φ4 theory with the action

S[φ] =

∫
x,C

{
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4

}
. (2.12)

The 2PI effective action is constructed by a twofold Legendre transform. First we define
the function W by

exp(iW [J ]) ≡ Z[J,R]. (2.13)

With this we can define

Γ[φ,G] = W [J,R]−
∫
x,C

δW

δJ(x)
J(x)−

∫
xy,C

δW

δR(x, y)
R(x, y). (2.14)

Since Γ[φ,G] is a functional only of φ and G, J and R have to be expressed in terms of
these new variables by resolving the equations

δΓ

δφ(x)
= −J(x)−

∫
y,C
R(x, y)φ(y) (2.15)

δΓ

δG(x, y)
= −1

2
R(x, y). (2.16)

At the same time, (2.15) and (2.16) are the full quantum equations of motion for φ and
G. Given the currents J and R, they determine their dynamics entirely.
Γ can be calculated by standard loop expansion techniques. One then usually writes it as
the sum of the 1-loop contribution and a ”rest”, i. e.

Γ[φ,G] = S[φ] +
i

2
Tr{lnG−1}+

i

2
Tr{G−1

0 (φ)G}+ Γ2[φ,G] + const (2.17)

with the first three terms the one loop contribution and Γ2[φ,G] the rest. G0 is the
classical propagator, i. e. iG−1

0 (x, y) = δ2S/δφ(x)δφ(y). The trace and the logarithm
have to be understood in the functional sense, i. e. viewing G(x, y) as a matrix with
indices x and y and the logarithm being the matrix logarithm. From Γ2[φ,G] one can
define the self-energy as

Σ(x, y) ≡ 2i
δΓ2

δG(x, y)
. (2.18)

The perturbative computation of Γ2 can be organized in terms of Feynman diagrams.
Assuming the absence of symmetry breaking, i. e. φ = 0, a φk term in the action with
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coupling constant λk/k! yields only k-vertices coming with a factor of −iλk/k!. These have
to be connected by propagators G(x, y) such that cutting through two arbitrary propa-
gators does not make the diagram fall apart, i. e. one keeps only two-particle irreducible
(2PI) contributions. Additionally one has to include an overall factor of 1/n! with n the
number of vertices in a diagram (this factor stems from the expansion of the exponential).
If φ 6= 0, there are additional vertices containing also the field value φ. However, in this
thesis we will not deal with this case so that we do not consider it further.
In non-equilibrium quantum field theory it is a common practice to decompose the propa-
gator into a spectral component (ρ) and a statistical component (F ). The former encodes
the spectrum of the theory, i. e. the available states, whereas the latter describes their
occupancy. This decomposition works as follows:

G(x, y) = F (x, y)− i

2
ρ(x, y)sgnC(x

0 − y0). (2.19)

Here sgnC(x
0− y0) denotes the signum function on the Schwinger-Keldysh contour. Note

that while G is a contour ordered object, F and ρ are not contour ordered any more. A
similar decomposition is possible for the self-energy. First one decomposes it into a local
and a non-local part as Σ(x, y) = −iΣ(0)(x)δ(x− y) + Σ(x, y). Then one can write

Σ(x, y) = ΣF (x, y)− 1

2
Σρ(x, y)sgnC(x

0 − y0). (2.20)

From the quantum equations of motion (2.15) and (2.16) one can derive evolution equa-
tions for F and ρ, which read

[�x +M2(x)]F (x, y) = −
∫ x0

t0

dzΣρ(x, z)F (z, y) +

∫ y0

t0

dzΣF (x, z)ρ(z, y) (2.21)

[�x +M2(x)]ρ(x, y) = −
∫ x0

y0
dzΣρ(x, z)ρ(z, y) (2.22)

with
∫ t2
t1
dz ≡

∫ t2
t1
dz0
∫
ddz and M2(x) ≡ m2 + Σ(0)(x). Given the self-energy in some

approximation, these equations can be implemented on a computer (cf. e. g. [18]),
though the numerical study of non-equilibrium evolution equations is tempting due to
the ”memory integrals” involved in it. An alternative approach is outlined in the next
chapter, consisting of an expansion of these equations in the gradients of the ”central
coordinates” X ≡ (x+ y)/2. This way some analytical insight can be gained.
To close this chapter, we will briefly discuss one very important approximation for the
calculation of the self-energy in the 2PI formalism, the 1/N or ”ring diagram” expansion.
Say we have an O(N) symmetric scalar field theory, defined by the action

S[φa] =

∫
x,C

{
1

2
∂µφa∂

µφa −
m2

2
φaφa −

λ

4!N
(φaφa)

2

}
(2.23)

where summation over repeated indices is implied. Then it is possible to show that in an
expansion in 1/N , the next-to-leading-order contribution is given by

i

2
Tr ln

{
δ(x− y) + i

λ

6N
Gab(x, y)Gab(x, y)

}
(2.24)
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· · ·
Figure 2.2: Ring diagrams giving the next-to-leading order contribution to the effective
action in a 1/N expansion.

where the ln has to be understood as the matrix logarithm in the functional sense, i. e.
taking the expression in brackets to be a matrix with indices x and y. The diagrams
corresponding to this expression are all of the ”ring” type as depicted in figure (2.2).
From this one can calculate the self energy. Namely, one obtains

Σab(x, y) = − λ

3N
Gab(x, y)I(x, y). (2.25)

The function I(x, y) is defined by

iI(x, y) = δ(x− y)−
{
δ(x− y) + i

λ

6N
Gab(x, y)Gab(x, y)

}−1

(2.26)

where the inverse is again understood in the functional sense. Multiplying with δ(x−y)+
iλ/(6N)Gab(x, y)Gab(x, y) on both sides (in the matrix sense) and writing the functional
matrix multiplications as integrals, one obtains an integral equation for I(x, y):

I(x, y) =
λ

6N
Gab(x, y)Gab(x, y)− i λ

6N

∫
z

I(x, z)Gab(z, y)Gab(z, y). (2.27)

From now on let us assume that Gab(x, y) = δabG(x, y), Fab(x, y) = δabF (x, y) and
ρab(x, y) = δabρ(x, y). I(x, y) can again be decomposed into statistical and spectral com-
ponents, I(x, y) = IF (x, y)− i

2
Iρ(x, y)sgnC(x

0−y0). One finds that the IF and Iρ functions
fulfill the following integral equations:

IF (x, y) = ΠF (x, y)−
x0∫
t0

dzIρ(x, z)ΠF (z, y) +

y0∫
t0

dzIF (x, z)Πρ(z, y) (2.28)

Iρ(x, y) = Πρ(x, y)−
x0∫
y0

dzIρ(x, z)Πρ(z, y) (2.29)

where

ΠF (x, y) =
λ

6

(
F (x, y)2 − 1

4
ρ(x, y)2

)
(2.30)

Πρ(x, y) =
λ

3
F (x, y)ρ(x, y). (2.31)
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Here F (x, y)2 and ρ(x, y)2 is not meant in the functional sense. For the self energies one
obtains

ΣF (x, y) = − λ

3N

(
F (x, y)IF (x, y)− 1

4
ρ(x, y)Iρ(x, y)

)
(2.32)

Σρ(x, y) = − λ

3N

(
F (x, y)Iρ(x, y) + ρ(x, y)IF (x, y)

)
. (2.33)

With these expressions for the self-energy one can now either set up a numerical compu-
tation of the evolution equations or treat them by a gradient expansion in order to obtain
a Boltzmann equation, as outlined in the following section.

2.3 Gradient expansion and Boltzmann equation

If one puts a system in a state far from thermal equilibrium, one usually observes that,
after a very fast evolution at the beginning, at later stages the system evolves more
smoothly in time. The gradient expansion aims at giving an approximate description of
the system at these later times (regarding its range of validity cf. [19]).
First we introduce central coordinates Xµ ≡ (xµ + yµ)/2 and relative coordinates sµ ≡
xµ − yµ. Then one can Fourier transform quantities such as F and ρ with respect to the
relative time coordinates:

F (X; p) ≡
2X0∫

−2X0

ds0eis
0p0

∞∫
−∞

ddse−is·pF (X + s/2, X − s/2) (2.34)

ρ(X; p) ≡ −i
2X0∫

−2X0

ds0eis
0p0

∞∫
−∞

ddse−is·pρ(X + s/2, X − s/2) (2.35)

where the −i is included in order to make ρ(X; p) real. Analogously one also defines the
Fourier transform of the statistical and spectral components of Σ, I and Π. The time
integral has to be restricted to the range from −2X0 to 2X0 because the time evolution
starts at x0 = y0 = 0. Nevertheless one commonly assumes that X0 is so large that one
can also send these integration limits to infinity. This restricts the range of validity of
this approach to late times.
Now one expands the evolution equation (2.21) in powers of ∂Xµ , i. e. gradients of the
central coordinate. Commonly, very few terms are kept. E. g. one can show that to
lowest order, the evolution equations become

2pµ
∂F (X; p)

∂Xµ
= Σρ(X; p)F (X; p)− ΣF (X; p)ρ(X; p) (2.36)

2pµ
∂ρ(X; p)

∂Xµ
= 0. (2.37)
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If one further assumes spatial homogeneity, they simplify further to

2p0∂F (X; p)

∂X0
= Σρ(X; p)F (X; p)− ΣF (X; p)ρ(X; p) (2.38)

2p0∂ρ(X; p)

∂X0
= 0. (2.39)

This means, in particular, that at this order the spectral function becomes time inde-
pendent. Furthermore, the intricate memory integrals have disappeared. This order of
approximation is known as kinetic theory. With some effort it is possible to bring these
equations into a form that resembles the well-known Boltzmann equation. First one
introduces a function f by writing

F (X; p) ≡
(
f(X; p) +

1

2

)
ρ(X; p). (2.40)

From the symmetry properties of F and ρ it follows that

f(X;−p) = −(f(X; p) + 1). (2.41)

Since we have assumed spatial homogeneity, there is no dependence on the spatial com-
ponents of Xµ. From now on we write X0 ≡ t. Now we define an effective number
distribution f(t; p) by

f(t; p) ≡
∞∫

0

dp0

2π
2p0ρ(p)f(t; p). (2.42)

This is motivated by the fact that if ρ(p) were the free spectral function ρfree(p) =
2π sgn(p0) δ((p0)2 − ω2

p) with ωp ≡
√
m2 + p2 this definition would yield f(t; p) =

f(t; p0 = ωp,p). With this one can rewrite (2.38) as

∂f(t; p)

∂t
=

∞∫
0

dp0

2π
[Σρ(t; p)F (t; p)− ΣF (t; p)ρ(t; p)] ≡ C[f ](t; p). (2.43)

By expressing everything in terms of f and ρ only, this can be cast into a form resembling
even closer a Boltzmann equation. Here we take the self energies obtained by the 1/N
resummation outlined in the last chapter.
First we need an additional definition. For a function such as G(x, y), Σ(x, y), I(x, y)
and Π(x, y) which can be decomposed into F and ρ components, one defines its retarded
and advanced version by GR(x, y) = Θ(x0− y0)ρ(x, y) and GA(x, y) = −Θ(y0−x0)ρ(x, y)
and analogously for the other ones. It can be shown then that within the approximation
t0 → −∞ the implicit equation for I can be solved in momentum space by

IF (t; p) = veff(t; p)ΠF (t; p) (2.44)

Iρ(t; p) = veff(t; p)Πρ(t; p) (2.45)
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where veff(t; p) is an effective coupling accounting for the sum of the ring diagrams. It is
given by

veff(t; p) =
1

|1 + ΠR(t; p)|2 . (2.46)

With this it is finally possible to write the scattering integral C[f ](t; p) in a form close to
that of a Boltzmann equation:

C[f ](p) =− λ2

18N

∞∫
0

dp0

2π

∫
q1q2q3

(2π)d+1δ(p− q1 − q2 − q3)

× [(f(q1) + 1)(f(q2) + 1)(f(q3) + 1)f(p)− f(q1)f(q2)f(q3)(f(p) + 1)]

× ρ(q1)ρ(q2)ρ(q3)ρ(p)veff(p− q1) (2.47)

where for clarity we have suppressed the dependence on t.
One commonly makes additional assumptions about the scattering integral. The first is to
assume that ρ(p) is not only constant in time but also equal to the free spectral function,
i. e. ρ(p) ≈ ρfree(p) = 2πsgn(p0)δ((p0)2 − ω2

p). This is known as on-shell or quasi-particle
approximation. Furthermore one assumes that f � 1 so that in (2.47) all terms containing
less than three fs can be neglected and that ΠR � 1 so that veff ≈ 1/|ΠR|2. With these
assumptions the Boltzmann equation becomes scaling, i. e. permits solutions of the form
f(t; p) = (t/t0)αfS((t/t0)βp). Inserting this ansatz one can determine the exponents α
and β (for clarity we set t0 = 1):

∂

∂t
[tαfS(tβp)] = C

[
tαfS(tβk)

]
(p) (2.48)

⇔ αtα−1fS(tβp) + βtα+β−1p · ∇fS|tβp = C
[
tαfS(tβk)

]
(p). (2.49)

Now sending p→ t−βp yields

tα−1[αfS(p) + βp · ∇fS(p)] = tλC [fS(k)] (p) (2.50)

where tλC[fS(k)](p) ≡ C[tαfS(tβk)](t−βp) and the exponent λ has to be determined from
the scattering integral. To make f(t; p) = (t/t0)αfS((t/t0)βp) a solution of the Boltzmann
equation for all times t, one has to demand α− 1 = λ. In the case of massless φ4 theory,
one obtains λ = α − β, from which it follows that β = 1. However, if there is a mass
gap (which can be generated dynamically even if m = 0 in the Lagrangian) the system
behaves effectively non-relativistic at low momenta and we obtain λ = α − 2β, i. e.
β = 1/2. Particle number conservation yields α = d/2 in this case. We will later see that
the situation is different for the Sine-Gordon model where the Boltzmann equation also
contains terms scaling with β = 1/(2 + 2d).

2.4 Truncated Wigner approximation

An extremely important tool for the study of many-body systems out of equilibrium apart
from 2PI techniques is the truncated Wigner approximation [20] (for a direct comparison
of 2PI and truncated Wigner simulations see [21]). It is applicable to systems with
high occupation numbers, which makes it very suitable for studying non-thermal fixed
points. One can see the truncated Wigner approximation as the lowest-order term in an
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expansion of the classicality of the system, e. g. characterized by the occupation numbers.
Here we will only consider its non-relativistic version because our numerical calculations
were mainly concerned with non-relativistic systems. Be given an operator Ω({ai}, {a†i})
composed of the creation and annihilation operators for the different modes of the system
numbered by i. Then we define its Wigner transform by

W
{

Ω({ai}, {a†i})
}

(ψ,ψ∗) ≡ 1

2m

∫
dηdη∗

〈
ψ − η

2

∣∣∣Ω({ai}, {a†i})
∣∣∣ψ +

η

2

〉
× exp

(
−|ψ|2 − 1

4
|η|2 +

1

2
(η∗ ·ψ − η ·ψ∗)

)
. (2.51)

Here m denotes the number of modes in the system, ψ and η are m-dimensional complex
vectors, dηdη∗ ≡∏i(d<ηid=ηi/π) and for a general m-dimensional complex vector α we
define |α〉 ≡∏i |αi〉i with |α〉i the coherent state of mode i with parameter α. Note that
here we use a convention where the coherent states are not normalized, i. e. 〈α|β〉 =
exp(α∗β).
One can show that if Ω is symmetrically ordered, the Wigner transform can be easily
obtained by substituting ai → ψi and a†i → ψ∗i . E. g.

a†a =
1

2
(a†a+ aa†)− 1

2
(2.52)

so that a†a→ (ψ∗ψ + ψψ∗)/2− 1/2 = |ψ|2 − 1/2.
Furthermore one defines the Wigner function as the Wigner transform of the density
matrix of a system, i. e.

W (ψ,ψ∗) ≡ W {ρ} (ψ,ψ∗). (2.53)

The truncated Wigner approximation can now be defined as follows: say we have some ob-
servable O whose expectation value we want to calculate at time t. Then this expectation
value is approximately given by

〈O〉(t) ≈
∫
dψ0dψ

∗
0W0(ψ0,ψ

∗
0)W{O}(ψ(t;ψ0),ψ∗(t;ψ0)) (2.54)

where W0 is the Wigner function at t = 0 and ψ(t;ψ0) is the field that arises if the initial
condition ψ0 is evolved with the classical equation of motion to time t. The condition
for the validity of this approximation is that the system is somehow in a nearly classical
regime where quantum fluctuations are small and can be treated perturbatively. This is
e. g. the case if all modes relevant for the dynamics are highly occupied.
The truncated Wigner approximation is very suitable to be implemented on a computer.
The integral over the initial conditions in (2.54) can be evaluated in a Monte Carlo fashion
if the Wigner function is positive definite (which is the case if we choose the initial state to
be a product of coherent states). Then all what has to be done is to evolve the system with
the classical equation of motion for a high number of initial conditions chosen randomly
according to the weight of the Wigner function and to average the observables over these
trajectories.
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3 The problem of phase correlators

Be given a Gross-Pitaevskii type quantum field theory with a complex field ψ(x, t). Then
we can write ψ in the density-phase-representation

ψ(x, t) =
√
ρ(x, t)eiθ(x,t). (3.1)

The object we want to consider in this thesis are equal-time correlators of the phases
θ(x, t), i. e.

〈θ(x, t)θ(y, t)〉 (3.2)

or in momentum space

〈θ(k, t)θ(−k, t)〉. (3.3)

Although it is easy to formally write down these expressions, their precise definition is
not obvious. It turns out that there is in fact more than one possible definition. Which
one of these is the ”natural” one is not a priori clear.
Let us first consider the problem of defining 〈θ(x, t)〉. In the path integral formalism, the
definition is straightforward:

〈θ(x, t)〉 ≡
∫
DψDψ∗arg(ψ(x, t))eiS[ψ,ψ∗] (3.4)

with
∫
DψDψ∗ representing a zero-temperature or non-equilibrium path integral. Trans-

lating this into the operator formalism, i. e. defining a ”phase operator” θ̂, is a highly
intricate problem. It should be defined on the entire Fock space and should translate to
arg(ψ) in the path integral formalism, i. e. have the property 〈α|θ̂|α〉 = arg(α) for all
coherent states |α〉. A reasonable choice seems to be

θ̂ ≡ 1

2i
(ln(a)− ln(a†)). (3.5)

By replacing a→ ψ and a† → ψ∗ one would get

θ̂ → 1

2i
(ln(ψ)− ln(ψ∗)) = arg(ψ). (3.6)

However, one still has the problem of defining the logarithm of the creation and annihi-
lation operators. The series expansion of ln(a) and ln(a†) converges only on a subset of
all possible states, so it is necessary to somehow extend the definition. Naively one would
do this by inserting a 1 in terms of the coherent states in front of ln(a), pulling ln(a) into
the integral, applying it to the coherent state and defining ln(a)|α〉 = ln(α)|α〉. I. e. one
would arrive at the definition

ln(a) ≡
∫
dαdα∗e−|α|

2

ln(α)|α〉〈α| (3.7)

and analogously for ln(a†). While this is a perfectly well-defined definition, it is pointed
out in [22] that it has a severe problem: the equation ln(a)|α〉 = ln(α)|α〉 would not be
valid any more and therefore 〈α|θ̂|α〉 6= arg(α), which can be seen by simply inserting
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some |α〉. This is somehow counterintuitive: one would think that we have not done
anything but inserting a 1. The mathematical reason is that we have naively pulled the
operator ln(a) into the

∫
dαdα∗ integral which is not allowed here because the logarithm

is no smooth function in the entire complex plane but has a discontinuity at its branch
cut.
As in many cases, these subtleties can be traced back to the overcompleteness of the coher-
ent states. Therefore in that same paper the authors try to cure the described difficulties
by using a complete (instead of overcomplete) subset of the coherent states, a construction
due to von Neumann. However, their θ̂ then fulfills the condition 〈α|θ̂|α〉 = arg(α) only
approximately.
An alternative approach is proposed in [23]. Instead of considering the Taylor series ex-
pansion of the logarithm, the author considers the Runge expansion of the logarithm.
Loosely speaking, the Runge theorem states that under certain conditions an analytic
function can be arbitrarily well approximated by a sequence of polynomials. Therefore
a sequence of logarithm Runge polynomials in the creation and annihilation operators
on a coherent state converges to the logarithm of the complex parameter of that state.
However, this does not make sure yet that the resulting operator converges on the entire
Fock space.
In the following, we will leave such difficulties apart and work in the c-number formula-
tions of quantum theory, i. e. the path integral and Wigner formulation. To close this
discussion, let us briefly consider the translation of arg(ψ) = (ln(ψ) − ln(ψ∗))/2i into
Wigner space. The Wigner transform of this expression is given by

1

2

∫
dηdη∗

1

2i
(ln(ψ + η/2)− ln(ψ∗ − η∗/2))e−|η|

2/2. (3.8)

This integral looks hardly analytically solvable. However, one can see easily that for
|ψ| � 1 it will yield approximately arg(ψ) so that, as usually in this limit, the distinction
between the path integral and Wigner version of an observable does not matter.
Now let us turn to phase correlators. At the first glance it is straightforward to define

〈θ(x, t)θ(y, t)〉 ≡
∫
DψDψ∗arg(ψ(x, t))arg(ψ(y, t))eiS[ψ,ψ∗] (3.9)

Although this definition seems straightforward, it has a problem: θ being a compact
variable taking only values between −π and π, we will have unphysical jumps in θ when
ψ crosses the negative real axis. One possibility is to simply accept this fact: we will call
this the ”obvious” definition of the phase correlator. But there are other ways to cope
with this problem. We summarize here the main options for the definition:

• Obvious definition: take the phases as they are. Unphysical phase jumps are ac-
cepted.

• Continuation definition: continue the phases onto the next ”Riemann sheet” if ψ
crosses the negative real axis. In finite size systems, there is some ambiguity in how
to treat the boundaries in this definition.

• Modification definitions: instead of considering the product θ(x, t)θ(y, t) consider
some other function f(θ(x, t), θ(y, t)) that somehow resembles θ(x, t)θ(y, t) but
avoids the phase jumps. Of course this is no ”real” phase correlator then. But
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by a suitable choice of f it can be possible to capture the same physics as the phase
correlator and to avoid phase jumps at the same time.

In some sense the continuation definition is the most natural one and it is the only
one accessible to analytic treatment in an interacting theory. We will therefore mainly
consider this definition in this thesis. It has, however, the drawback that in more than
one-dimensional systems it forces us to give up the notion of one unique phase correlator.
Instead it turns out that one has to consider two different objects: a ”sound-wave” phase
correlator and a ”vortex” phase correlator. Discussions of the properties of the obvious
and modification definition can mainly be found in chapter 4.
In the following two sections we have a closer look at the continuation and modification
definition.

3.1 Continuation definition

For phase fields θ, which are mappings from Rn to [−π, π), the definition of the derivative
has to be generalized. Considering θ as a function in the usual sense, it is discontinuous
where it jumps from −π to π and therefore not differentiable in these points. On the other
hand it is obvious that one can assign a meaningful value to the derivative of a phase also
in the points where it jumps by 2π since a simple redefinition of the phase would move
the jumps to other positions.
Be given a phase field θ : Rn → [−π, π), then we define the continued derivative ∂̃iθ as

∂̃iθ(x) ≡ lim
h→0

unwrap(θ(x + hei)− θ(x))

h
(3.10)

where the unwrap function is defined as

unwrap(x) ≡


x, −π ≤ x ≤ π

x− 2π, x > π

x+ 2π, x < −π
. (3.11)

An equivalent definition is

∂̃iθ(x) ≡ −ie−iθ(x)∂ie
iθ(x). (3.12)

The continued gradient ∇̃θ and other differential operators are defined correspondingly.
With the help of the continued derivative it is possible to express the velocity field of a
Gross-Pitaevskii system in terms of the phases. It is given by

v =
j

ρ
=

1

|ψ|2
1

2mi
(ψ∗∇ψ − ψ∇ψ∗) =

∇̃θ
m
. (3.13)

For convenience let us also define V ≡ mv = ∇̃θ.
The vector field V is a physical field. The operator corresponding to (3.13) is hermitian
and contains only pairings of creation and annihilation operators. Therefore V is in
principle measurable.
The relation V = ∇̃θ suggests that θ is the ”potential” of V. However, it is no real
potential because V is given by the continued gradient of θ instead of the gradient.
It would therefore be convenient to introduce a (jump-free) θcontinued for which in fact
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V = ∇θcontinued. In one dimension V reduces to a simple one-dimensional function V (x)
and it is easy to define a unique potential θcontinued of V (x) (simply by taking the integral
over V (x)). However, in two and three dimensions, this is only possible if V is curl free.
In real systems this is usually not true because quantum vortices are present. Then it
becomes necessary to introduce a scalar and a vector potential of V. We will call them
the sound-wave and vortex part of the (continued) phase and denote them by θsw and
θvo, respectively. I. e. we write the velocity field as

V = ∇θsw +∇× θvo. (3.14)

We can now calculate correlators of these continued θsw and θvo fields which are not spoilt
by phase jumps. The main advantage of this (apart from the fact that unnatural jumps are
avoided) is that correlators of θsw and θvo are accessible to analytic treatment: writing the
action in terms of these fields only ordinary differential operators will appear. In contrast,
if one writes the action in terms of θ itself, the highly intricate continued gradient ∇̃ will
be present in the action which cannot be subjected to standard techniques such as Fourier
transforming, calculating a Green’s function and performing diagrammatic expansions or
integrating out fluctuations. The main drawback is that now we do not have one single
phase correlator any more (at least in more than one dimension). A frequently employed
assumption is that sound-wave and vortex dynamics approximately decouple. Therefore
we will not consider ”mixed” correlators of θsw and θvo among each other. For the sound-
wave part it is obvious to consider

〈θsw(x, t)θsw(y, t)〉. (3.15)

But for the vortex part, there are several possibilities: one could consider correlators like

〈θvo(x, t) · θvo(y, t)〉 (3.16)

or

〈θvo(x, t)× θvo(y, t)〉 (3.17)

or correlators of single components. However, in the case of two dimensions which we will
mainly consider here, θvo effectively becomes a scalar field so that there are no ambiguities
in what to correlate.
(3.14) still does not define θsw and θvo uniquely. It is convenient to require the standard
conditions that ∇·θvo = 0 and that θsw and θvo decay to 0 at infinity. Then one calculate
them from V by the Helmholtz decomposition theorem:

θsw(r) = − 1

4π

∫
d3r′
∇ ·V(r′)

|r− r′| = − 1

4π

∫
d3r′
∇ · ∇̃θ(r′)
|r− r′| (3.18)

θvo(r) =
1

4π

∫
d3r′
∇×V(r′)

|r− r′| =
1

4π

∫
d3r′
∇× ∇̃θ(r′)
|r− r′| . (3.19)
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For the two-dimensional case θvo is a scalar θvo which can be thought of as the z-component
of θvo. Here we have

θsw(r) =
1

2π

∫
d2r′∇ ·V(r′) ln

( |r− r′|
a

)
=

1

2π

∫
d2r′∇ · ∇̃θ(r′) ln

( |r− r′|
a

)
(3.20)

θvo(r) = − 1

2π

∫
d2r′(∂xVy(r

′)− ∂yVx(r′)) ln

( |r− r′|
a

)
= − 1

2π

∫
d2r′(∂x∂̃yθ(r

′)− ∂y∂̃xθ(r′)) ln

( |r− r′|
a

)
(3.21)

where a is some integration constant needed to make the argument of the logarithm
dimensionless.
So far our discussion was always based on the assumption of the thermodynamic limit
V → ∞, i. e. that all fields live on the entire Rn. However, numerical calculations have
to be performed in a box of finite size. A frequent choice for the boundary conditions
(which we will impose throughout this thesis) are periodic boundary conditions. This
gives rise to the question how to define potentials in a periodic box. V will of course be
periodic since it is directly calculated from the physical field ψ. But when calculating a
potential of V it will typically break the periodicity (the simplest example is a constant
V: the resulting scalar potential will constantly increase throughout the box so that it
cannot have the same value on the boundaries). As for the choice of boundary conditions
itself, up to a certain extent it is a matter of taste how to resolve this problem. For
sufficiently large boxes, i. e. approaching the thermodynamic limit, the results should be
independent of such choices.
Here we will use a definition of θsw and θvo on finite size systems that preserves periodicity
but slightly modifies (3.14). To motivate our definition, we will go over from position space
to momentum space. So let us first consider the momentum space version of the Helmholtz
decomposition (in the entire R3). We define the Fourier transform of V(r) by

V(k) =

∫
d3reir·kV(r). (3.22)

It is straightforward to show by means of standard vector identities that the following
decomposition of V(k) holds:

V(k) = −ik
(
i

k

|k|2 ·V(k)

)
− ik×

(
−i k

|k|2 ×V(k)

)
. (3.23)

The terms in big brackets can now be interpreted as the momentum space version of θsw

and θvo:

θsw(k) = i
k

|k|2 ·V(k) (3.24)

θvo(k) = −i k

|k|2 ×V(k). (3.25)
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Sound Wave Vortex
1D

θsw(k) =
i

k

∫
dxeixk∂̃xθ(x) −

2D

θsw(k) =
ik

|k|2 ·
∫
d2reir·k∇̃θ(r) θvo(k) =

∫
d2reir·k

−i(kx∂̃yθ(r)− ky∂̃xθ(r))

|k|2

3D

θsw(k) =
ik

|k|2 ·
∫
d3reir·k∇̃θ(r) θvo(k) =

−ik
|k|2 ×

∫
d3reir·k∇̃θ(r)

Table 1: Definition of sound-wave and vortex part of the phase in different dimensions.

That this is justified can be seen by going back to real space:

∇θsw(r) +∇× θvo(r) = ∇
∫

d3k

(2π)3
e−ik·rθsw(k) +∇×

∫
d3k

(2π)3
e−ik·rθvo(k)

= ∇
∫

d3k

(2π)3
e−ik·r

(
i

k

|k|2 ·V(k)

)
+∇×

∫
d3k

(2π)3
e−ik·r

(
−i k

|k|2 ×V(k)

)
=

∫
d3k

(2π)3
e−ik·r(−ik)

(
i

k

|k|2 ·V(k)

)
+

∫
d3k

(2π)3
e−ik·r(−ik)×

(
−i k

|k|2 ×V(k)

)
=

∫
d3k

(2π)3
e−ik·rV(k) = V(r). (3.26)

These considerations still are only valid for functions living on R3. In a periodic box
the situation is different. Here the momenta are quantized and the momentum integrals
become momentum sums. Nevertheless, we will now take (3.24) and (3.25) as defining
equations of θsw and θvo on a periodic box. (3.24) and (3.25) can be straightforwardly
modified for the lower-dimensional cases. In 2D, the vortex part of the phase reduces
to a scalar field again whereas in 1D the vortex part is not even present, i. e. we have
one unique phase. In table (1) the definitions are summarized for all three dimensions.
For the case k = 0 these definitions cannot be applied. This reflects the fact that the
global average of the phase is arbitrary. A natural choice is to set θsw(k = 0) = 0 and
θvo(k = 0) = 0.
By defining the phases by a momentum space expression, we make sure that periodicity is
preserved: applying the discrete Fourier transform on a periodic box to θsw(k) and θvo(k)
we get a θsw(r) and θvo(r) which is periodic. On the other hand, as was pointed out above,
this means that (3.14) cannot be fulfilled exactly any more. Let us have a short look on
what this means in detail. For simplicity we restrict ourselves to the one-dimensional
case. So be given a velocity field V (x) : [0, L) → R which is continuous and periodic on
[0, L). We want to compare the definition of θsw as given in table (1) and a definition that
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preserves ∂xθsw = V (x) exactly. The latter is given by

x∫
0

dx′V (x′) + const. (3.27)

Now let us transform the former into position space in order to compare:

1

L

∑
k 6=0

e−ikx
i

k

L∫
0

dx′eikx
′
V (x′) =

1

L

∑
k 6=0

e−ikx
i

k

L∫
0

dx′eikx
′
∂x′

x′∫
0

dx′′V (x′′)

=
1

L

∑
k 6=0

e−ikx
L∫

0

dx′eikx
′

x′∫
0

dx′′V (x′′) +
1

L

∑
k 6=0

e−ikx
i

k
eikL

L∫
0

dx′V (x′)

=

x∫
0

dx′V (x′)− 1

L

L∫
0

dx′
x′∫

0

dx′′V (x′′)− x− L/2
L

L∫
0

dx′V (x′) (3.28)

where in the second line we have performed a partial integration and in the third line
made use of 1/L

∑
k 6=0 e

−ikx = δ(x)−1/L and of the fact that in the second term we have
the Fourier series of the saw tooth function. This permits now a simple interpretation.
The first and second term represent a definition of θsw(x) which preserves ∂xθsw(x) = V (x)
exactly (the second term is just a constant that makes sure that the average of θsw(x)
is 0, a consequence of our choice to set the 0-momentum-mode to 0). The third term,
however, subtracts a saw tooth function that exactly compensates the jump between 0
and L and therefore enforces periodicity.
Of course one could also argue that the exact fulfillment of ∂xθsw(x) = V (x) should be
primary instead of spatial periodicity. As mentioned above, up to a certain extent this
is a matter of taste since for the thermodynamic limit the definitions should agree. Here
we have taken the momentum space expression (and therefore periodicity) to be primary
for two reasons. The first one is that the analytical theory is conveniently formulated in
momentum space (instead of position space). Say one term of the action is of the kind∫

V

d3r∇̃θ · ∇̃θ (3.29)

with a periodic box of volume V and ∇̃θ is curl free. Then one can rewrite this term in
momentum space as

1

V
∑
k

k2θsw(k)θsw(−k) (3.30)

if and only if one has defined θsw(k) as in table (1). The second reason is numerical

convenience. Calculating θsw this way is quite simple: calculate ∇̃θ, Fourier transform
the result by means of a fast Fourier transform (FFT) algorithm and apply the formulas
of table (1). Especially in higher dimensions taking position space to be primary would
be quite unpractical.
In the following, the definition of the phase correlator as outlined in this section will be
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the main working base for numerical calculations.

3.2 Modification definitions

An alternative to 〈θ(x, t)θ(y, t)〉 frequently employed in the literature is

〈eiθ(x,t)e−iθ(y,t)〉. (3.31)

Obviously, this is not spoilt by phase jumps. The motivation to relate this object to
the phase correlator is that for small phase fluctuations we can expand eiθ(x,t) ≈ 1 +
iθ(x, t) and then ignoring (irrelevant) constants and expectation values of the fields, we
get 〈θ(x, t)θ(y, t)〉.
Here we want to propose a second alternative that is in some sense closer to 〈θ(x, t)θ(y, t)〉
but has its own drawbacks. To motivate it, consider the relation

〈θ(x, t)θ(y, t)〉 = −1

2
〈(θ(x, t)− θ(y, t))2〉+

1

2
〈θ(x, t)2〉+

1

2
〈θ(y, t)2〉. (3.32)

The second and third term on the right hand side can assumed to be constants, i. e. the
behavior of 〈θ(x, t)θ(y, t)〉 is captured by −〈(θ(x, t)− θ(y, t))2〉/2. This is an expression
depending solely on the difference between the phases at two different positions. Now we
can get rid of the phase jumps by defining the difference of two phases by the ”shorter”
distance on the unit circle. This leads to the correlator

−1

2
〈mindist(θ(x, t), θ(y, t))2〉+ c (3.33)

where the mindist function of two compact variables x, y ∈ [−π, π) is defined as

mindist(x, y) ≡
{
|x− y|, |x− y| < π

2π − |x− y|, |x− y| ≥ π
(3.34)

and c is a constant. It is conveniently chosen such that the correlator is ”connected”,
i. e. giving 0 for two phase variables which are completely uncorrelated and randomly
distributed around the unit circle. It is easy to how that in such a case we have

〈mindist(θ(x, t), θ(y, t))2〉 = π2/3 (3.35)

so that one has to choose c = π2/6.
Although this correlator is free of jumps, it is still not free of kinks: when the phases at
point x and y cross the point of opposition on the unit circle the correlator has a kink, i.
e. is non-differentiable. But at least the points where the kinks happen are determined
by a somehow natural condition (crossing of the point of opposition) whereas the position
of the jumps in the obvious definition depends on how one defines the phase.
A further disadvantage of this definition is that it can only be formulated naturally in
position space. Once calculated as a function of the difference x − y, we can of course
still Fourier transform the result. But this is not a very natural momentum space version.
Apart from this question, it is also numerically quite inconvenient. Calculating a correla-
tor in position space directly is computationally very intensive. In contrast, calculating a
momentum space correlator directly (and in case Fourier transforming the result back to
get the position space correlator) is numerically favorable due to the applicability of fast
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Fourier transform (FFT) algorithms.
It should be stressed again that the two correlators discussed in this subsection are not
entirely the same as a phase correlator. Nevertheless they are able to give some phys-
ical insights. We will, however, not devote them as much space as to the continuation
definition.
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4 One-dimensional spin system

Before turning to the more complicated case of higher-dimensional systems we will first
consider a one-dimensional system as a toy system. This does not imply that the one-
dimensional case is trivial (which in fact it is not). But here one can study in a clearer
way than in higher dimensional systems the effect of the different definitions of the phase
correlator.
We examined phase correlators for the 1D spin system described in [24]. The Hamiltonian
is given by

H =

∫
dx

[
~Φ†
(
− 1

2m

∂2

∂x2
+ qf 2

z

)
~Φ +

c0

2
n2 +

c1

2
|~F |2

]
(4.1)

with ~Φ a three-component Bose field, n = ~Φ†~Φ, ~F = ~Φ† ~f~Φ, ~f the vector of the three-
dimensional spin matrices and constants q, c0 and c1. For details of the initial conditions
and parameters we refer the reader to the mentioned paper. The simulations have been
performed by C.-M. Schmied who kindly provided the raw simulation data. Generally we
took N = 5000 truncated-Wigner runs to calculate observables. As in this publication,
we considered the complex field

F⊥ ≡ Fx + iFy. (4.2)

However, instead of considering 〈|F⊥(k)|2〉 we examined correlators of the phase of F⊥, i. e.
〈θF⊥(k)θF⊥(−k)〉, thereby applying the different definitions of phase correlators discussed
above. We begin with the obvious definition, subsequently we discuss the modification
definitions and finally the continuation definition. In the end we discuss the different
results together and compare them.

4.1 Obvious definition

In figure (4.1) the momentum space correlator 〈θ(k)θ(−k)〉 according to the obvious
definition is plotted for four different times. One observes that at small momenta a
plateau is present, at intermediate momenta we have a clear power law and finally a UV-
tail. Scaling in time is clearly visible. We have extracted the scaling exponents α and β
according to the procedure described in [15] (as always in the following). The result is

α = 0.26± 0.02 (4.3)

β = 0.29± 0.02. (4.4)

In appendix E a rescaled plot can be found (as for all the following correlator plots).
As will turn out later when considering the continuation definition, the plateau is caused
by 2π-jumps in the phase. The mean distance between these jumps introduces a char-
acteristic length scale into the system which corresponds to a characteristic momentum
scale at which the plateau forms. It is therefore surprising that nevertheless the extracted
exponents fulfill very well the particle number conservation condition α = dβ. Moreover,
they show approximate agreement with the exponents for 〈|F⊥(k)|2〉 extracted in [24]. We
will comment on this below.
The momentum space correlator in the obvious definition also shows an anomalous fea-
ture. As one can clearly see in figure (4.1), the power law is extraordinary. The exponent
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Figure 4.1: The phase correlator calculated with the obvious definition.

κ is no integer but ”fractional”, i. e. it lies between 1 and 2. In 1D, one would expect
κ = 2 [25]. This is also the exponent that comes out for 〈|F⊥(k)|2〉 and will come out for
the continuation definition.
We want to show that this anomalous power law is also due to the presence of the 2π-
jumps in the phase. To that end consider a function θ(xi) ≡ θi defined on an infinite,
one-dimensional lattice which can take only two values, π and −π. Between two neigh-
boring lattice sites θ jumps from one value to the other with a probability p. We want to
derive the correlation function

〈θiθi+`〉. (4.5)

Consider first the case that ` is even. The probability that θi and θi+` have the same
value is given by the probability that the number of jumps between i and i+ ` is even, i.
e.

`/2∑
k=0

(
`

2k

)
p2k(1− p)`−2k =

1

2
+

1

2
(2p− 1)`. (4.6)

Then the expectation value of θiθi+` is given by

π2

(
1

2
+

1

2
(2p− 1)`

)
− π2

(
1−

(
1

2
+

1

2
(2p− 1)`

))
= π2(2p− 1)`. (4.7)

The case that ` is odd is similar. Here we have

(`−1)/2∑
k=0

(
`

2k

)
p2k(1− p)`−2k =

1

2
− 1

2
(2p− 1)` (4.8)
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and the expectation value of θiθi+` is

π2

(
1

2
− 1

2
(2p− 1)`

)
− π2

(
1−

(
1

2
− 1

2
(2p− 1)`

))
= −π2(2p− 1)`. (4.9)

So in total we have

〈θiθi+`〉 = π2

{
(2p− 1)`, ` even

−(2p− 1)`, ` odd
. (4.10)

Now let us transform this result into momentum space, i. e. consider

f(k) ≡
∞∑

`=−∞

eik`〈θiθi+`〉 = −〈θ2
i 〉+ 2<

∞∑
`=0

eik`〈θiθi+`〉. (4.11)

In order to evaluate this sum we split it up into a sum over the even and odd `s and insert
the formulas derived above. Thus we arrive at

f(k) = −π2 + 2<
∞∑
m=0

eik2mπ2(2p− 1)2m − 2<
∞∑
m=0

eik(2m+1)π2(2p− 1)2m+1

= π2

(
2< 1

1− e2ik(2p− 1)2
− 2< eik(2p− 1)

1− e2ik(2p− 1)2
− 1

)
= π2 1− (2p− 1)2

1 + (2p− 1)2 + 2(2p− 1) cos k
(4.12)

which is the desired result. Since p is the probability that a phase jump occurs between
two lattice points, we can interpret 1/p as the mean distance between two jumps expressed
in units of the lattice spacing. Then there are two ways of interpreting the dependence
of (4.12) on 1/p: either one considers the lattice spacing as fixed and thus regards 1/p
as the (real) mean distance between two jumps, or one keeps the mean distance between
two jumps fixed and considers a variation of 1/p as a change in lattice resolution. We will
do the latter now, i. e. we introduce the momentum in units of the inverse jump length
k̃ ≡ k/p and rewrite (4.12) as

f̃(k̃) ≡ pf(pk̃) = pπ2 1− (2p− 1)2

1 + (2p− 1)2 + 2(2p− 1) cos pk̃
(4.13)

where we have multiplied with p in order to account for the changing lattice spacing. In
figure (4.2) f̃(k̃) is plotted as a function of k̃ for different values of p. One can see that
indeed the resulting power law exponents are smaller than 2 but approach 2 as p→ 0, i.
e. the lattice resolution goes to infinity. In fact it is straightforward to show that

lim
p→0

pπ2 1− (2p− 1)2

1 + (2p− 1)2 + 2(2p− 1) cos pk̃
=

4π2

4 + k̃2
. (4.14)

This shows that the anomalous power law for the phase correlator in the obvious definition
is indeed caused by the phase jumps but can also be considered as an artifact of the finite
lattice resolution. We would, however, not consider this as a purely numerical artifact
because in condensed matter physics every system also has a physical lattice spacing.
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Figure 4.2: The function f̃(k̃).

Nevertheless this result demonstrates again the problems of the obvious definition for the
phase correlator since different numerical setups can give qualitatively completely different
results.

4.2 Modification definition

Figure (4.3) shows a ”phase correlator” as obtained by applying (3.33) in position space,
averaging over all lattice points, and then Fourier transforming the result. Apparently
now the anomalous power law is not present any more but we have κ = 2. The reason is
that we have constructed the correlator such as to avoid jumps. A plateau, however, is
still present. This is due to the presence of kinks in the correlator, which occur when the
phases cross the point of opposition on the unit circle. As for the jumps in the obvious
definition, the mean distance between these kinks plays the role of a characteristic length
scale responsible for the observed plateau.
For the scaling exponents we obtain

α = 0.26± 0.02 (4.15)

β = 0.27± 0.01, (4.16)

which is in excellent agreement with the scaling exponents obtained above. This shows
that our modified definition, though no real phase correlator, is still capable of giving
physical insight: the scaling behavior comes out the same as for the obvious definition
and additionally the artificial anomalous power law is avoided.

4.3 Continuation definition

In figure (4.4) the continuation definition correlator is shown. Apparently there is no
plateau any more now. This suggests that there is no characteristic length scale or at
least that it is much larger than the system size. The power law exponent is κ = 2. α
and β cannot be extracted independently any more now. If fS(k) = k−κ, the scaling
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Figure 4.3: The phase correlator calculated with the modification definition.

assumption yields

f(t; k) = (t/t0)αfS((t/t0)βk) = (t/t0)α−κβk−κ (4.17)

so that we have only one exponent γ ≡ α − κβ. The fitting procedure yields for this
exponent

γ = −0.28± 0.04. (4.18)

If we define α and β by assuming additionally α = dβ this gives α = β = 0.28± 0.04.

4.4 Concluding remarks about the different phase correlators in
1D

For both the obvious and modification definition we found α, β ∼ 0.25. For the continu-
ation definition, which yields no plateau so that α and β are indistinguishable, the same
is true if one defines α = dβ. Interestingly, this agrees very well with the result that
in [24] was obtained for 〈|F⊥(k)|2〉. This suggests that the phases are the relevant degree
of freedom which drives the dynamics. Moreover, at least in terms of scaling, the different
definitions of phase correlators seem to be equivalent.
Regarding power laws and plateaus, however, they are not. The obvious and modification
definition both have a plateau due to the presence of jumps and kinks. Additionally the
obvious definition features also an anomalous power law which can be explained by a
simple model of random jumps on a lattice.
A peculiarity of phase correlators in contrast to usual correlators of the fields, which will
show up again in 2D, is that they show coherence on much larger length scales. Of course
the obvious and modification phase correlator showed a plateau in the IR. But this is
only due to somehow unphysical artifacts, namely jumps and kinks. The continuation
definition correlator is free of such artifacts and therefore lacks a plateau. Additionally
to the described problems of the other definitions, this demonstrates the superiority of
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Figure 4.4: The phase correlator calculated with the continuation definition.

the continuation definition. It will therefore be the only one we will use for the higher
dimensional systems.
In principle in 1D the phase can also have physical jumps due to solitons which would
introduce a length scale even for the continuation definition. The fact that here no plateau
appeared shows that in the studied system the ”jumps” are rather smooth.
That the phases show coherence on a much larger length scale compared to correlators
of the fields suggests that they are a very ”clean” observable. The effects of density fluc-
tuations are excluded. This makes it a very suitable observable for studying non-thermal
fixed points.
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5 Analytical considerations about phase correlators

Based on the continuation definition, we want to gain some analytical understanding of
θsw and θvo in this chapter, whereby in part we review earlier findings.

5.1 Phase representation of Gross-Pitaevskii theory

Inserting the density-phase representation ψa =
√
ρae

iθa into the U(N) symmetric Gross-
Pitaevskii Lagrangian (1.1) yields

Lρθ = −
∑
a

{
ρa∂̃tθa +

1

2m

(
ρa(∇̃θa)2 + (∇√ρa)2

)}
− g

2

(∑
a

ρa

)2

(5.1)

where again the tilde denotes the continued derivative. The path integral over the fun-
damental Bose fields

∫ ∏
aDψ

∗
aDψa is transformed to

∫ ∏
aDθaDρaρa. Now we want to

get rid of the continued derivatives by a change of variables. For the gradient term this
is easily done by employing ∇̃θ = ∇θsw +∇× θvo. However, there is also a term with a
time derivative of θ. One way to treat this problem is to express ∂̃tθ in terms of θsw and
θvo. Alternatively, at least in 2D, one can give up the notion of θsw and θvo and instead
consider (∂̃tθ, ∂̃xθ, ∂̃yθ) as a three-component vector field in three-dimensional space time
that can be decomposed into a divergence free and curl free part. We will first consider
the former option while adopting the latter later for convenience. We will then also show
that for the case of vortex-free systems and systems with sufficiently slow vortices the two
points of view agree.
So let us now try to find a way to express ∂̃tθ in terms of θsw and θvo. Let us first consider
the two-dimensional case, i. e we have ∇̃θ = ∇θsw + (∂yθvo,−∂xθvo)T . We need a way to
recover the original phase θ from θsw and θvo. First one can note that the line integral
of ∇̃θ between two points gives the difference of θ in the two points modulo an integer
multiple of 2π, i. e.

B∫
A

dr · ∇̃θ = θ(B)− θ(A) + 2πn, n ∈ Z. (5.2)

Therefore we have for a closed integration contour C∮
C

dr · ∇̃θ = 2πn, n ∈ Z. (5.3)

By inserting the representation of ∇̃θ in terms of θsw and θvo and applying the two-
dimensional Stokes theorem it follows easily that the curl of (∂yθvo,−∂xθvo)T , i. e. −(∂2

x+
∂2
y)θvo, has to be of the form

−(∂2
x + ∂2

y)θvo(x, t) = 2π
∑
i

qiδ
(2)(x−Xi(t)) (5.4)
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with integer vortex charges qi and vortex trajectories Xi(t). We can solve this equation
for θvo(x, t) applying standard techniques:

θvo(x, t) = −
∑
i

qi ln

( |x−Xi(t)|
a

)
(5.5)

with a an integration constant. For the curl of θvo(x, t) we obtain(
∂y
−∂x

)
θvo(x, t) =

∑
i

qi
1

(x−Xi(t))2 + (y − Yi(t))2

(
−(y − Yi(t))
x−Xi(t)

)
(5.6)

where x, y and Xi(t), Yi(t) denote the components of x and Xi(t), respectively.
Now we have the tools in our hands to calculate ∂̃tθ(x, t). Equation (5.2) can also be read
as

θ(x) =

x∫
A

dr · ∇̃θ + θ(A) + 2πn. (5.7)

If we now choose the point A to lie infinitely far away we can assume that θ(A) is not
affected by the dynamics and is thus constant in time. Then we have

∂̃tθ(x, t) = ∂̃t

x∫
A

dr · ∇̃θ = ∂t

x∫
A

dr · ∇̃θ (5.8)

where in the second equality we have replaced ∂̃t by ∂t assuming that the contour is chosen
such that it does not cross vortices and that the line integral therefore is continuous.
Without any loss of generality we now choose A to be x + (−∞, 0)T and the contour to

be a straight line between A and x. Inserting the representation of ∇̃θ in terms of θsw

and θvo we get

∂̃tθ(x, t) = ∂t

x∫
A

dr ·
[
∇θsw +

(
∂y
−∂x

)
θvo

]
= ∂tθsw(x, t)

+ ∂t
∑
i

qi

0∫
−∞

dξ

(
1
0

)
· 1

(x+ ξ −Xi(t))2 + (y − Yi(t))2

(
−(y − Yi(t))
x+ ξ −Xi(t)

)

= ∂tθsw(x, t) + ∂t
∑
i

qi arctan

(
y − Yi(t)
x−Xi(t)

)
(5.9)

where for the treatment of the sound-wave part we have used the fact that the line
integral of a vector field which is the gradient of a potential is just the difference of the
potential at the ends of the contour and that θsw is constant at infinity. The vortex
part still contains a singularity, namely when x − Xi(t) = 0. This can be cured by
applying arctan(x) = − arctan(1/x) + const (which corresponds to choosing A to lie at
x+(0,−∞)T in the first place). Only if x−Xi(t) = y−Yi(t) = 0 it is not well-defined any
more because in the core of a vortex the phase is ill-defined. One should also note that
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this representation of the phase field of a vortex is only valid ”inside the time derivative”.
Clearly one may not write θ(x, t) = q arctan ((y − Y (t))/(x−X(t))) since the arctan-
function is restricted to the interval (−π/2, π/2) whereas the phase around a vortex takes
every value between −π and π at least once.
Let us now briefly discuss the generalization to the three-dimensional case. Here the
condition (5.3) enforces ∇×∇× θvo = −∆θvo to be of the form

−∆θvo(x, t) = 2π
∑
i

Ii

∫
dτδ(3)(x−Xi(τ ; t))

∂Xi

∂τ
(5.10)

where Xi(τ ; t) is a parametrization of the ith vortex tube at time t with curve parameter
τ and Ii are the integer currents of the vortex tubes. To see that this expression in fact
satisfies (5.3) it is sufficient to show that ∆θvo(x, t) integrated over an arbitrary surface
gives an integer multiple of 2π. The Stokes theorem then ensures that the line integral of
∇̃θ over arbitrary closed curves is an integer multiple of 2π, too. So be given a positively
oriented surface s(σ1, σ2) parametrized by σ1 and σ2. Then we have, suppressing the
dependence on i and t

2πI

∫
dσ1dσ2

∫
dτ

(
∂s

∂σ1

× ∂s

∂σ2

)
· ∂X

∂τ
δ(3)(s(σ1, σ2)−X(τ)) = 2πI (5.11)

where we have made use of the transformation formula for the delta function

δ(n)(~f(x)) =
δ(n)(x− x̄)

| det J [~f ](x̄)|
(5.12)

where x̄ is the zero of ~f(x) and J [~f ] its Jacobian and of the fact that in three dimensions
the determinant of a matrix is equal to the triple product of its column vectors. Again by
applying standard techniques from (5.10) we get for the curl of θvo the Biot-Savart law

∇× θvo(x, t) =
1

2

∑
i

Ii

∫
dτ
∂Xi

∂τ
× x−Xi(τ ; t)

|x−Xi(τ ; t)|3 . (5.13)

∂̃tθ can now be calculated by the same procedure as in the 2D case. The sound-wave part
gives again only ∂tθsw, so we focus on the vortex part. Analogously to the 2D case we
obtain:

∂̃tθ(x, t) = ∂tθsw(x, t) + ∂t

x∫
A

dr · ∇ × θvo(x, t)

= ∂tθsw(x, t) + ∂t
1

2

∑
i

Ii

0∫
−∞

dξ

∫
dτex ·

(
∂Xi

∂τ
× x + ξex −Xi(τ ; t)

|x + ξex −Xi(τ ; t)|3
)

= ∂tθsw(x, t) + ∂t
1

2

∑
i

Ii

∫
dτ

∂Yi
∂τ

(z − Zi(τ ; t))− ∂Zi
∂τ

(y − Yi(τ ; t))

(y − Yi(τ ; t))2 + (z − Zi(τ ; t))2

×
[
1 +

x−Xi(τ ; t)

[(x−Xi(τ ; t))2 + (y − Yi(τ ; t))2 + (z − Zi(τ ; t))2]1/2

]
. (5.14)
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Analogous and equivalent expressions can of course be obtained by choosing the integra-
tion contour to be along the y- or z-axis.

5.2 Integrating out density fluctuations

It is a standard procedure to ”integrate out” the fluctuations in the density ρ in order to
obtain an effective theory for the low energy degrees of freedom. For the U(N) Gross-
Pitaevskii theory this procedure is described in detail in [8] to which we will refer often
in the following. Here we summarize only the main steps and show how to rewrite the
calculations using our formalism. The idea is to write ρa = ρ

(0)
a + δρa and then to

expand the Lagrangian (5.1) up to second order in δρa. Then the integral over the δρa is
purely Gaussian and can be performed analytically. What remains is an effective theory
containing only the phase variables θa or, alternatively, θsw,a and θvo,a. The expansion of
(5.1) up to second order in δρa yields

LSO =−
(
gρ(0) + ∂̃tθa +

1

2m
(∇̃θa)2

)
δρa −

1

2
δρa

(
g − δab

4mρ
(0)
a

∆

)
δρb

− ρ(0)
a

(
∂̃tθa +

(∇̃θa)2

2m

)
(5.15)

where ρ(0) =
∑

a ρ
(0)
a and summation over indices is implied here. The term ρ

(0)
a ∂̃tθa

is usually dropped since it is a ”total derivative”. Moreover, as explained in [8], the
term gρ(0) can be adsorbed by an energy shift of the energy of the zeroth mode. Then,
performing the Gaussian integrals, one obtains an effective action

Seff =
1

2

∫
dtddxddx′Ja(x, t)Gab(x,x

′)Jb(x
′, t)− ρ

(0)
a

2m

∫
dtddx(∇̃θa(x, t))2 (5.16)

where Ja(x, t) ≡ ∂̃tθa(x, t) + 1
2m

(∇̃θa(x, t))2 and Gab =
(
g − δab

4mρ
(0)
a

∆
)−1

.

Inserting ∇̃θ = ∇θsw +∇ × θvo into the second term of (5.16) one can see that for this
term the sound wave and vortex part decouple:∫

d3x (∇θsw +∇× θvo)2 =

∫
d3x(∇θsw)2 +

∫
d3x(∇× θvo)2 (5.17)

where the vanishing of the mixed term can be seen by a partial integration. However, for
the first term they do not decouple in general. Nevertheless it is a frequently employed
assumption that they approximately decouple and one can treat the dynamics of vortices
and sound waves separately. In [8] only the sound wave part is considered, i. e. ∇× θvo

is completely neglected. Then it is possible to simply write ∂̃tθ = ∂tθsw and ∇̃θ = ∇θsw.
Inserting this into (5.16) yields an action accessible to standard techniques. In the said
publication the 2PI effective action is calculated for this action, from which in turn a
quantum Boltzmann equation can be derived that can be subjected to a scaling analysis,
a procedure which is briefly described in the introduction of this thesis. We state only the
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results here. In the large-N limit, one obtains for the scaling exponents in the infrared

β = 1/2 (5.18)

α = d/2. (5.19)

In the same limit, the spatial scaling exponent κ comes out to be

κ = d+ 1. (5.20)

For the case of a single field component, N = 1, the resulting exponents are not obvious.
In the mentioned publication, the authors propose either β = 1/2 or β = 1/3, depending
on which term dominates in the scattering integral of the Boltzmann equation. Also for
κ they consider two possibilities: κ = d+ 3/2 and κ = d+ 2. It is therefore interesting to
compare to numerics.
In the next chapter we want to make the attempt to develop also a description of the
vortex part.

5.3 Vortex part

For the treatment of the vortex part we will restrict ourselves to the simplest case of two
spatial dimensions and one field component. First one can note that the action (5.16) is
still much too complicated for performing calculations in the vortex case. Therefore we
make further assumptions in order to arrive at a well-known, much simpler action. First

we approximate G =
(
g − 1

4mρ(0)
∆
)−1

≈ 1/g. Furthermore we discard terms that contain

spatial and temporal derivatives as well. With this one arrives at

Seff =

∫
dt d2x

{
1

2g
∂̃tθ∂̃tθ −

ρ(0)

2m
∇̃θ · ∇̃θ

}
. (5.21)

Introducing the speed of sound c ≡
√
gρ(0)/m and K ≡ ρ(0)/2mc one can rewrite this as

Seff = K

∫
cdt d2x

{
1

c2
∂̃tθ∂̃tθ − ∇̃θ · ∇̃θ

}
. (5.22)

This action is known under several names in the literature, such as Luttinger liquid action,
phason action or continuous XY model (see e. g. [26]). If one assumes the phase field
to consist only of a sound wave part, this action is purely Gaussian and therefore trivial.
However, if a vortex part is present, it is not.
Here we want to approach this problem in two in some sense complementary ways. First,
we will derive from the Luttinger liquid action a ”vortex action”, containing only the
vortex trajectories. The second approach will consist in an attempt to extend the well-
known duality between this action and the Sine-Gordon model in 2D (see e. g. [13]) to
the 2+1D case. It is easy to see that this cannot work out exactly. However, we will
propose arguments why, under certain assumptions, an approximate duality may hold.
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5.3.1 Vortex action

As was argued above, if no sound wave part is present we have for V = ∇̃θ

∇̃θ =
∑
i

qi
1

(x−Xi(t))2 + (y − Yi(t))2

(
−(y − Yi(t))
x−Xi(t)

)
. (5.23)

For ∂̃tθ we obtain by performing the derivative in (5.9)

∂̃tθ = −
∑
i

Ẋi(t) ·Vi (5.24)

where Vi is the contribution of the ith vortex to V. Inserting this into the Luttinger
liquid action yields

Seff =
K

c2

∑
ij

qiqj

∫
cdt d2x

[Ẏi(x−Xi)− Ẋi(y − Yi)][Ẏj(x−Xj)− Ẋj(y − Yj)]
[(x−Xi)2 + (y − Yi)2][(x−Xj)2 + (y − Yj)2]

−K
∑
ij

qiqj

∫
cdt d2x

(x−Xi)(x−Xj) + (y − Yi)(y − Yj)
[(x−Xi)2 + (y − Yi)2][(x−Xj)2 + (y − Yj)2]

(5.25)

where we have suppressed the time dependence of the vortex trajectories for clarity. The
idea is now to perform the spatial integrals in order to obtain a Lagrangian containing
only the vortex trajectories. This procedure is similar to that employed in [27], with the
difference that the authors start from the Gross-Pitaevskii Lagrangian with a constant
density, i. e. a Lagrangian linear in ∂̃tθ. Since the integrals are UV and IR divergent as
well, one has to introduce a short distance and a long distance cutoff a and L, respectively.
As is shown in appendix B, assuming qi = ±1 one arrives at

Seff =2πK

∫
cdt

[∑
i

1

2
M |Ẋi|2 +

∑
i 6=j

qiqj ln

( |Xj −Xi|
L

)
− 1

2c2

∑
i 6=j

qiqjẊi · Ẋj ln

( |Xj −Xi|
e1/2L

)

− 1

2c2

∑
i 6=j

qiqj
(Ẋi × (Xj −Xi))(Ẋj × (Xj −Xi))

|Xj −Xi|2

]
+ const (5.26)

where M ≡ ln(L/a)/c2, e = exp(1) and the ”×” denotes the two-dimensional (scalar)
vector product, i. e. a × b = a1b2 − a2b1. The first two terms represent the action of a
system of charged particles with Coulomb interaction in 2D. In contrast to the Onsager
model [28], where the equation of motion is a first-order differential equation, here it is of
second order, as in classical mechanics. Additionally, there are two terms which are beyond
the pure Coulomb system and will account for new effects. It would be highly interesting
to simulate the theory defined by this action, either on a purely classical level or in the
truncated Wigner approximation (which to our knowledge has not been performed yet).
By comparing to the vortex motion in GP simulations or simulations of other effective
theories for vortices such as the Hall-Vinen-Iordanskii equation [29] one could estimate
the range of validity of the Luttinger liquid action regarding vortex dynamics. On the
other hand, by comparing to Sine-Gordon simulations one could gain insight about the
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range of validity of the duality between vortices in the Luttinger liquid model and the
Sine-Gordon model outlined in the next section.

5.3.2 Approximate duality to 2+1D Sine-Gordon model

In this section we want to propose arguments why under certain assumptions the well-
known duality between vortices in the thermal (2D) Luttinger liquid model and the Sine-
Gordon model can be approximatively extended to the real time (2+1D) case. Let us
start with the Luttinger liquid action

SLL = K

∫
cdt d2x

(
1

c2
∂̃tθ∂̃tθ − ∇̃θ · ∇̃θ

)
≡ K

∫
cdt d2x ∂̃µθ∂̃

µθ (5.27)

where c is the speed of sound and K = ρ0/2mc. In contrast to the previous section we
now adopt a point of view where the 2+1D velocity field Uµ (i. e. including the time
derivative of θ as 0th component), given by

Uµ = ∂̃µθ (5.28)

is subjected to a Helmholtz decomposition. Here we keep only the divergence free part,
which can be seen as the field created by moving vortices, i. e. vortex tubes in the three
dimensional space time. Thus every sound wave contribution is entirely neglected.
Due to the compactness of the phase it must hold for every integral over a closed curve
that ∮

dxµ∂̃µθ = 2πn, n ∈ Z. (5.29)

This restricts the curl of U to be of the form

εµαβ∂αUβ(x) = 2π
∑
i

Ii

∫
dτδ(2+1)(xµ −Xµ

i (τ))Ẋµ
i (5.30)

where the Xµ
i (τ) are the parametrizations of the vortex tubes and the Ii are their integer

currents. Here we will restrict ourselves to Ii = ±1. This can be simplified by taking the
time component of Xµ(τ) to be its curve parameter, whereby we obtain

(
εµαβ∂αUβ(t,x)

)
= 2π

∑
i

Ii

 1

Ẋi/c

Ẏi/c

 δ(2) (x−Xi(t)) (5.31)

where Xi(t) now is the trajectory of vortex i (with Xi and Yi its components) and the
dot denotes the time derivative. This parametrization of Xµ by its 0th component is not
generally possible but relies on the assumption that every vortex tube crosses every ”time
layer” only once. This means that we have distinguishable vortex trajectories persisting
for the entire time range. Therefore annihilation processes of vortices and antivortices are
not included explicitly in this approach. Nevertheless they might be included implicitly: a
vortex and an antivortex could approach each other and after having encountered follow
the same trajectory, meaning that effectively they have vanished. Though the results
presented in [16] strongly suggest that annihilation processes are crucial for scaling in
vortex systems, the question whether they are accounted for by our approach must remain
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open.
Now we write down a partition function analogous to the equilibrium case, i. e. summing
over all vortex numbers and all vortex charges, including a weight ζ. However, the ordinary
integrals over the vortex positions in the equilibrium case are now replaced by path
integrals over the vortex trajectories:

Z =
∞∑
n=0

(−iζ)n

n!

∑
{Ii=±1}

∫ n−1∏
i=0

DXi(t) exp

(
iK

∫
cdt d2x ∂̃µθ∂̃

µθ

)
(5.32)

with ∫
DXi(t) = N

∫ N−1∏
j=0

d2X
(j)
i , (5.33)

i. e. we slice the time into N time points tj with distance εt/c and X
(j)
i is the position of

vortex i at time tj. In the first place one can of course write down any partition function
one likes. The above partition function merely takes its inspiration from the equilibrium
one and it is not a priori obvious why it should describe the real time system. One has
then to argue afterwards that it describes indeed the physics we are considering (at least
approximatively). We will postpone this discussion to the end of this section, then also
giving an interpretation for ζ.
Since the normalization constant of the path integral N could be absorbed into ζ and we
are a priori free to choose for ζ whatever we like, in principle we are also free to choose
for N whatever we like. It will later turn out to be convenient to choose

N = V−N (5.34)

with V being the volume of the system.
Now let us perform a Hubbard-Stratonovich transform. To that end we first write the
action in discretized form:

Sdiscretized
LL = Kε2sεt∂̃µθ ◦ ∂̃µθ = Kε2sεtUµ ◦ Uµ (5.35)

where ◦ denotes the ”functional scalar product” φ ◦ ψ ≡ ∑t,x φ(t,x)ψ(t,x) and εs and
εt/c are the spatial and temporal discretization, respectively. Consider now the Fresnel
formula

∞∫
−∞

dy exp(−iay2 + iJy) =

√
π

ia
exp

(
i
J2

4a

)
(5.36)

where a, J ∈ R, a 6= 0. This generalizes trivially to

∞∫
−∞

dny exp(−ia~y2 + i ~J · ~y) =

√
π

ia

n

exp

(
i
~J2

4a

)
(5.37)

for n-dimensional real vectors ~y and ~J . When taking this formula to perform the Hubbard-
Stratonovich transform, there is a subtlety: on the left hand side we have −i as prefactor,
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on the right hand side i (or vice versa by taking a→ −a), meaning that in the resulting
dual partition function we have e−iS instead of eiS. This implies that the dual action
yields backward propagation in time (or negative energies).
We use the Fresnel formula to introduce an auxiliary vector field bµ:

Z =
∞∑
n=0

(−iζ)n

n!

∫
Dbµ

∑
{Ii=±1}

∫ n−1∏
i=0

DXi(t) exp

(
−i 1

4Kε2sεt
bµ ◦ bµ + ibµ ◦ Uµ

)
(5.38)

where ∫
Dbµ =

√
i

4πKε2sεt

3M ∫ M−1∏
i=0

2∏
α=0

dbαi (5.39)

with M the number of space time lattice points. Now perform a change of variables and
introduce a field φµ with bµ = ε2sε

µαβ∂αφβ/2π and ∂µφ
µ = 0. Of course in principle bµ will

also have a curl free part. But if one introduces such a curl free part one will see that it
entirely decouples and can be integrated out. This is due to the fact that Uµ is divergence
free. Inserting this and casting everything back into the continuum version yields

Z =
∞∑
n=0

(−iζ)n

n!

∫
D′φµ

∑
{Ii=±1}

∫ n−1∏
i=0

DXi(t)

× exp

(
−i 1

16π2Kε2t

∫
cdt d2x εµαβ∂

αφβεµγδ∂γφδ

)
× exp

(
i

1

2πεt

∫
cdt d2xUµε

µαβ∂αφβ

)
. (5.40)

The notation D′φ means that we integrate only over field configurations that fulfill ∂µφ
µ =

0 (the same could be accomplished by introducing a gauge fixing term (∂µφ
µ)2/2ξ with

ξ → 0 into the Lagrangian). Note that here, in contrast to the standard case of point
vortices in 2D, the discretization does not drop out (otherwise the units would not even
be correct). We will comment on this fact below.
Let us first consider the first exponential. Making use of partial integration and the
identity εµαβε

µγδ = δαγδβδ − δαδδβγ, we arrive at

exp

(
−i 1

16π2Kε2t

∫
cdt d2x {−φµ�φµ + φµ∂

µ(∂νφ
ν)}
)
. (5.41)

Taking into account the gauge of φ this becomes:

exp

(
−i 1

16π2Kε2t

∫
cdt d2x {−φµ�φµ}

)
. (5.42)
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In the second exponential, we move the curl operator by a partial integration from φµ to
Uµ and then insert (5.31):

exp

(
i

1

2πεt

∫
cdt d2xUµε

µαβ∂αφβ

)
= exp

(
i

1

2πεt

∫
cdt d2xφµε

µαβ∂αUβ

)
= exp

(
i
1

εt

∫
cdt d2x

∑
i

Ii

(
φ0 − Ẋi

c
φ1 − Ẏi

c
φ2

)
δ(2) (x−Xi(t))

)

= exp

(
i
1

εt

∫
cdt

∑
i

Ii

(
φ0(t,Xi(t))−

Ẋi

c
φ1(t,Xi(t))−

Ẏi
c
φ2(t,Xi(t))

))
. (5.43)

Now in order to be able to integrate out the vortex trajectories and to arrive at a sensible
QFT one must make two approximations. Though their range of validity is difficult to
estimate it seems hard if not impossible to proceed without them. The first one is to say
that

φ0(t,Xi(t))−
Ẋi

c
φ1(t,Xi(t))−

Ẏi
c
φ2(t,Xi(t)) ≈ φ0(t,Xi(t)). (5.44)

The question is what is about the terms Ẋiφ
1/c+ Ẏiφ

2/c. Of course one could argue that
the speed of the vortices is so low compared to c that one can neglect terms proportional
to Ẋi/c and Ẏi/c. However, it is questionable whether one can neglect terms of first
order in the vortex velocity, even if the vortices move slowly. With the same argument
one could also neglect ∂̃tθ in the first place. A more convincing argument is therefore to
assume that |φ0| � |φ1|, |φ2|. Then it is reasonable to further assume that the dynamics
of φ0 is influenced only weakly by the dynamics of φ1 and φ2. In turn the dynamics of φ1

and φ2 would be ”driven” by the dynamics of φ0. We will briefly address the assumption
|φ0| � |φ1|, |φ2| when we will discuss the meaning of φµ below.
Be that as it may, writing φ ≡ φ0 we then arrive at

exp

(
i
1

εt

∫
cdt

∑
i

Iiφ(t,Xi(t))

)
. (5.45)

Casting this back into the discretized form and taking into account the path integrals
over the vortex trajectories we have

∑
{Ii=±1}

∫ n−1∏
i=0

DXi(t)
n−1∏
i=0

N−1∏
j=0

exp
(
iIiφ(tj,X

(j)
i )
)

=

{
N−1∏
j=0

(∫
d2x

V exp (iφ(tj,x))

)
+

N−1∏
j=0

(∫
d2x

V exp (−iφ(tj,x))

)}n

. (5.46)

Now we have to make the second major approximation. Since we can assume that the
system is homogeneous, the expectation value of φ is constant in space and we can gauge
φ such that it is 0. This second approximation consists now in assuming that locally φ can
fluctuate arbitrarily strongly around its expectation value but averaging over the entire

45



volume the fluctuation is small. I. e. if we split∫
d2x

V exp (iφ(tj,x)) = 1 +

∫
d2x

V (exp (iφ(tj,x))− 1) (5.47)

we assume that the second term is much smaller than the first one,∫
d2x

V (exp (iφ(tj,x))− 1)� 1. (5.48)

Since we have not expanded exp (iφ(tj,x)) by any means, φ can still have arbitrarily large
fluctuations. The condition is only that this occurs solely in few regions in space. Then
we can write the product in (5.46) as

N−1∏
j=0

(
1 +

∫
d2x

V (exp (iφ(tj,x))− 1)

)
≈ 1 +

N−1∑
j=0

∫
d2x

V (exp (iφ(tj,x))− 1). (5.49)

Discarding irrelevant constants and recasting the result into the continuum version, we
get

1

εtV

∫
cdt d2x exp(iφ(t,x)). (5.50)

Doing the analogous calculation for the antivortex contribution and combining the results,
we have found the following approximate expression for (5.46):(

2

εtV

∫
cdt d2x cos(φ(t,x))

)n
. (5.51)

Collapsing now the series over n and combining with the previously found results, we
finally obtain for the partition function (omitting irrelevant constants)

Z =

∫
Dφ exp

(
−i
∫
cdt d2x

{
− 1

16π2Kε2t
φ�φ+

2ζ

εtV
cos(φ)

})
. (5.52)

As already mentioned, the temporal discretization εt does not drop out in the end. We
would therefore suggest to interpret εt/c as a characteristic microscopic time scale of the
system, e. g. the time in which a vortex with average speed moves by one healing length.
Nevertheless the question remains open what is its precise value or whether the fact that
it does not drop out even invalidates the entire approach.
Now let us turn to the postponed discussion about the meaning of the partition function,
in particular the value of ζ. First one can note that in contrast to the equilibrium case
where the grand-canonical ensemble naturally involves a summation over all possible
vortex numbers, this summation does not seem to make much sense in the real time case:
in a closed system with unitary time evolution the vortex number should be a constant
if annihilations are neglected. On the other hand this summation is necessary to obtain
the Sine-Gordon field theory in the end. Of course one could also keep only one term in
the vortex number series. But apart from the fact that this would yield a rather unhandy
QFT for high vortex numbers, this approach has the disadvantage that one usually does
not want to specify a precise vortex number (which also depends on the system size) but
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rather a vortex density.
Therefore we propose the following line of reasoning: if the prefactor (−iζ)n/n! in the
summation (5.32) were removed, all terms would have approximately the same order of
magnitude. This can be seen by considering the limit K → 0. Then the normalization
constant of the path integral N = V−N ensures that without the (−iζ)n/n! prefactor all
terms in the series are equal in magnitude. If we now add this prefactor, we can argue
that terms with a certain n will give a much larger contribution to Z than others so that
effectively the situation in which only one term is kept is restored.
ζn/n! considered as a function of n (seen as a continuous variable) reaches its maximum
approximately at n ≈ ζ. This can be seen by making use of the Stirling formula

ζn

n!
≈ ζn√

2πn(n/e)n
=

1√
2π

exp

(
n(ln ζ − lnn+ 1)− 1

2
lnn

)
. (5.53)

The position of the maximum can be found by solving for the zero of the derivative:

d

dn

(
n(ln ζ − lnn+ 1)− 1

2
lnn

)
= 0 (5.54)

⇔ ln ζ − lnn− 1

2n
= 0. (5.55)

For ζ � 1 this has the approximate solution n ≈ ζ. In order to determine also the ”width”
of ζn/n! we can expand the argument of the exponential in (5.53) to second order around
its maximum:

exp

(
n(ln ζ − lnn+ 1)− 1

2
lnn

)
≈ exp

(
ζ − 1

2
ln ζ

)
exp

(
− 1

2ζ
(n− ζ)2

)
(5.56)

where we have already inserted the approximation nmax ≈ ζ and have furthermore ap-
proximated −1/ζ + 1/2ζ2 ≈ −1/ζ (because ζ � 1). This shows that the width σ is given
by
√
ζ. Compared to nmax ≈ ζ we have

σ

nmax

≈ 1√
ζ

ζ→∞−−−→ 0. (5.57)

So additionally ζn/n! is more and more closely peaked around its maximum for ζ →∞.
Therefore the terms in the series whose vortex number is around ζ yield the dominant
contribution to the partition function, i. e. ζ can be interpreted as the total vortex
number. In the action in (5.52) the factor ζ/V can thus be interpreted naturally as the
mean vortex density ρvo.
Comparing to the well-known Sine-Gordon Lagrangian

LSG = − 1

2η
φ�φ+ λ cos(φ) (5.58)

we can now read off the meaning of the parameters η and λ:

η = 8π2Kε2t =
4π2ρ0ε

2
t

mc
(5.59)

λ =
2ρvo

εt
. (5.60)

47



Now let us also discuss the meaning of the field φ. To that end consider again the Fresnel
formula (5.37). Deriving on both sides by Ji yields

∞∫
−∞

dny yi exp(−ia~y2 + i ~J · ~y) =

√
π

ia

n
1

2a
Ji exp

(
i
~J2

4a

)
, (5.61)

deriving by Ji and Jj with i 6= j gives

∞∫
−∞

dny yiyj exp(−ia~y2 + i ~J · ~y) =

√
π

ia

n
1

(2a)2
JiJj exp

(
i
~J2

4a

)
, (5.62)

and so on for higher orders. In our case where J = U , y = b and a = 1/(4Kε2sεt) this
implies that

〈bµ(x)〉 = 2Kε2sεt〈Uµ(x)〉 (5.63)

〈bµ(x)bν(y)〉 = (2Kε2sεt)
2〈Uµ(x)Uν(y)〉 (5.64)

and similarly for higher order correlators. Inserting bµ = ε2sε
µαβ∂αφβ/2π we can write

〈εµαβ∂αφβ(x)〉 = 4πKεt〈Uµ(x)〉 (5.65)

〈εµαβ∂αφβ(x)ενγδ∂γφδ(y)〉 = (4πKεt)
2〈Uµ(x)Uν(y)〉 (5.66)

. . .

This shows that, on the level of expectation values, φµ can be seen as the vector potential
of the velocity field Uµ. Let us explore this in a bit more detail. To ease the notation, we
will leave out the averaging brackets 〈〉 from now on. One should keep in mind, however,
that this correspondence between φ and the vector potential of the velocity field holds
only after averaging over all configurations. Inserting the relation (5.65) into (5.31) we
obtain

(
εµαβ∂α(εβκλ∂

κφλ)
)

= 8π2Kεt
∑
i

Ii

 1

Ẋi/c

Ẏi/c

 δ(2) (x−Xi(t)) . (5.67)

Making again use of εµαβε
µγδ = δαγδβδ − δαδδβγ, the left side becomes −�φµ + ∂µ(∂νφ

ν).
Remembering that we had gauged ∂µφ

µ = 0, we finally obtain

� (φµ) = −8π2Kεt
∑
i

Ii

 1

Ẋi/c

Ẏi/c

 δ(2) (x−Xi(t)) . (5.68)

This has the form of the inhomogeneous wave equation, a well-known equation in classical
electrodynamics. There one has

�Aµ = jµ. (5.69)
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Its general solution is a sum of solutions to the free wave equation and the advanced and
retarded potentials. In two spatial dimensions, the retarded potential is given by [30]

Aµ(t,x) =
1

2π

∫
dt′
∫
d2x′

Θ(t− t′ − |x− x′|/c)√
(t− t′)2 − |x− x′|2/c2

jµ(t′,x′). (5.70)

The adiabatic limit, in which retardation effects are neglected, can be obtained by ap-
proximating jµ(t′,x′) ≈ jµ(t,x′) in the integral:

Aµ(t,x) ≈ 1

2π

∫
dt′
∫
d2x′

Θ(t− t′ − |x− x′|/c)√
(t− t′)2 − |x− x′|2/c2

jµ(t,x′)

=
1

2π

−|x−x′|/c∫
−tmax

dt′
∫
d2x′

1√
(t′)2 − |x− x′|2/c2

jµ(t,x′)

= − 1

2π

∫
d2x′ log

(
|x− x′|

c(tmax +
√
t2max − |x− x′|2/c2)

)
jµ(t,x′), (5.71)

where we have regularized the integral by introducing a cutoff tmax. If tmax � |x− x′|/c,
the expression in the denominator becomes approximatively independent of |x− x′| and
plays the role of a mere integration constant a. Thus we obtain

Aµ(t,x) ≈ − 1

2π

∫
d2x′ log

( |x− x′|
a

)
jµ(t,x′). (5.72)

Now we can apply these results to (5.68). We assume that all vortices move much slower
than the speed of sound and that we are thus in the adiabatic limit. This yields

(φµ(t,x)) = 4πKεt
∑
i

Ii log

( |x−Xi(t)|
a

) 1

Ẋi/c

Ẏi/c

 . (5.73)

One can now see that if Ẋi, Ẏi � c, we have indeed |φ0| � |φ1|, |φ2|, as assumed above.
φ ≡ φ0 is given by

φ(t,x) = 4πKεt
∑
i

Ii log

( |x−Xi(t)|
a

)
, (5.74)

i. e. the electrostatic potential created by the vortex charges. Up to the prefactor this
agrees exactly with θvo, which we introduced previously as the vortex part of the phase
and which we are going to calculate numerically in chapter 6.
Finally one should remark that, though our derivation was performed in the real-time
formalism, it still does not explicitly take into account the non-equilibrium formalism,
which can be seen from our sloppy treatment of boundary terms. In fact a real non-
equilibrium derivation would have to treat the boundary conditions much more carefully.
We will leave such a more rigorous derivation to further research.
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5.4 Relation between phase correlators and fundamental field
correlators

In this section we will discuss the relation between correlators of the fundamental Bose
fields and the two types of phase correlators regarding scaling. For the case of sound wave
phase correlators this subject has already been treated in depth in [8] so that we will only
give the main steps for this case while considering the case of vortex phase correlators in
more detail. For the sake of simplicity we will restrict ourselves to the one-component
case (a generalization to the more-component case is straightforward). It is convenient
to work in position space instead of momentum space, so let us translate the scaling
relation from momentum space to real space. Say f(t; k) = 〈|ψ(k)|2〉 fulfills f(t; k) =
(t/t0)αfS((t/t0)βk), then Fourier transforming both sides yields for g(t; r) ≡ FT {f}(t; r)

g(t; r) = (t/t0)α
∫

ddk

(2π)d
eir·kfS((t/t0)βk)

= (t/t0)α−dβ
∫

ddk

(2π)d
ei((t/t0)−βr)·kfS(k)

≡ (t/t0)α−dβgS((t/t0)−βr) (5.75)

with gS(r) the Fourier transform of fS(k).
So let us now examine the consequences for the scaling behavior of the phase correlator,
given that g(t; r) fulfills (5.75). The crucial assumption is that fluctuations in the density
are suppressed and we can approximate

g(t; r) ≈ ρ(0)
〈
eiθ(x+r,t)e−iθ(x,t)

〉
≡ ρ(0)C(t; r). (5.76)

In order to express C(t; r) in terms of θsw and θvo we employ the previously used ar-
gumentation: choose a point A sufficiently far away such that it is not affected by the
dynamics and θ(A) is constant. Then the line integral of ∇̃θ from A to x will differ from
θ(x) only by a multiple of 2π and an irrelevant constant. Therefore we may write

C(t; r) =

〈
exp

i
x+r∫
A

d` · ∇̃θ − i
x∫

A

d` · ∇̃θ


〉

=

〈
exp

i
x+r∫
x

d` · ∇̃θ


〉

=

〈
exp

i
x+r∫
x

d` · (∇θsw +∇× θvo)


〉

=

〈
exp {i(θsw(x + r, t)− θsw(x, t))} exp

i
x+r∫
x

d` · ∇ × θvo


〉
. (5.77)

According to the frequently employed assumption that vortex and sound wave dynamics
approximately decouple we can factorize this correlator into the sound wave and vortex
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part, i. e.

C(t; r) ≈ 〈exp {i(θsw(x + r, t)− θsw(x, t))}〉
〈

exp

i
x+r∫
x

d` · ∇ × θvo


〉
. (5.78)

In order to have proper scaling of the fundamental Bose field correlator one has further to
assume that either the sound wave and the vortex part show the same scaling behavior or
that one dominates over the other. In any case it is reasonable to treat them separately.
As mentioned above, the sound wave part has been discussed in detail in [8]. The result is
that, assuming the absence of accidental cancellations, the scaling relation (5.75) enforces
that

G(n)
sw (t; {xi})|xi∈{0,r} = G

(n)
sw,S({xi})|xi∈{0,(t/t0)−βr} (5.79)

where G
(n)
sw (t; {xi}) is the nth order connected propagator of the sound wave part of the

phase, i. e.

G(n)
sw (t; {xi}) = 〈θsw(x1, t) . . . θsw(xn, t)〉c . (5.80)

This means, in particular, that 〈θsw(k)θsw(−k)〉 has the same scaling behavior as the
fundamental field occupation number 〈|ψ(k)|2〉 if the sound wave part dominates.
Now let us turn to the vortex contribution. Assuming particle number conservation for
the fundamental Bose field, we may insert α = dβ so that we have the scaling relation
C(t; r) = CS((t/t0)−βr). Inserting the representation of C(t; r) in terms of θvo into the
scaling relation yields〈

exp

i
r∫

0

dr′ · ∇ × θvo(r′, t)


〉

=

〈
exp

i
s−1r∫
0

dr′ · ∇ × θvo(r′, t0)


〉

(5.81)

⇔
〈

exp

i
r∫

0

dr′ · ∇ × θvo(r′, t)


〉

=

〈
exp

i
r∫

0

dr′ · ∇ × θvo(s−1r′, t0)


〉

(5.82)

where we have used the short hand notation s ≡ (t/t0)β and set x to 0 without loss of
generality. ∇ is always acting on r′. Now we can expand on both sides:

∞∑
n=0

in

n!

r∫
0

dxi11 . . . dx
in
n εi1j1k1 . . . εinjnkn

∂

∂xj11
. . .

∂

∂xjnn

〈
θk1vo(x1, t) . . . θ

kn
vo (xn, t)

〉
=
∞∑
n=0

in

n!

r∫
0

dxi11 . . . dx
in
n εi1j1k1 . . . εinjnkn

∂

∂xj11
. . .

∂

∂xjnn

〈
θk1vo(s−1x1, t0) . . . θknvo (s−1xn, t0)

〉
(5.83)

with summation over repeated indices implied and θkvo the components of θvo. First one
can infer from (5.83) that, given that the vortex phase correlators fulfill〈

θk1vo(x1, t) . . . θ
kn
vo (xn, t)

〉
=
〈
θk1vo(s−1x1, t0) . . . θknvo (s−1xn, t0)

〉
(5.84)
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for all {ki}, C(t; r) fulfills C(t; r) = CS(s−1r), too. Assuming again the absence of ”ac-
cidental cancellations” the reverse conclusion can also be established, i. e. from the
fulfillment of C(t; r) = CS(s−1r) one concludes (5.84). Since connected correlators can
always be written as a sum of unconnected propagators, the same scaling relation is then
also true for the connected correlators, i. e. we have

G(n),{ki}
vo (t; {xi}) = G

(n),{ki}
vo,S ({(t/t0)−βxi}) (5.85)

with

G(n),{ki}
vo (t; {xi}) =

〈
θk1vo(x1, t) . . . θ

kn
vo (xn, t)

〉
c
. (5.86)

In particular this means that 〈θvo(k, t) · θvo(−k, t)〉 shows the same scaling behavior as
〈|ψ(k)|2〉, given that the vortex part dominates. The analogous result can be obtained
straightforwardly for the two-dimensional case.
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6 Numerics of the two-dimensional U(N) system

For the initial condition we used the ”box” momentum distribution. I. e. the initial
density matrix is given by

ρ̂0 =
∏
|k|<Q

ρ̂(k)
∏
|k|>Q

|0〉k〈0|k (6.1)

with Q the cutoff momentum of the box, |0〉k the vacuum state of mode k and

ρ̂(k) =
1

2π

π∫
−π

dθ0

∣∣∣√N0e
iθ0
〉
k

〈√
N0e

iθ0
∣∣∣
k

(6.2)

where we denote a coherent state with parameter α in mode k by |α〉k and N0 is the
number of particles we put into every momentum mode inside the box. I. e. we set the
number of particles in the filled modes to a fixed number but average over all phases
of the coherent state parameter. Q was chosen to be

√
2kh with kh = 1/ξh the healing

momentum, as in [15]. For the case of N > 1, i. e. more than one field component, we
choose the same initial density matrix, given by (6.1), for every single component.
As shown in appendix C, the Wigner function for the filled modes is given in good ap-
proximation by √

1

2πN0

exp

(
−2
(√

N0 −
√
ρ
)2
)

(6.3)

and for the empty modes by

2 exp(−2ρ) (6.4)

where we write the argument ψ of the Wigner function as ψ =
√
ρeiθ.

The Wigner function does not depend on θ. This means that in our Monte-Carlo sampling
of the Wigner function every mode gets a phase which is totally random. The modulus
receives a Gaussian noise instead. However, for extremely high occupation numbers as
are typically chosen in this kind of simulations, this Gaussian noise does not play a very
important role. In contrast, the randomness of the phase is essential for obtaining out-
of-equilibrium initial dynamics.
The numerical integration of the Gross-Pitaevskii equation (1.4) was performed with the
Fourier split-step algorithm.
It turned out to be a central problem of the numerical study of phase correlators that these
are objects living in the far IR, i. e. they describe extremely large-scale structures. This
requires correspondingly large lattices. E. g. using a 512× 512-lattice as employed in [12]
turned out not to be sufficient at all since only a ”thermal tail” of the phase correlator
was visible for this lattice size. Here we generally used a 4096× 4096-lattice for the one-
component simulation and a 2048×2048 lattice for the three-component case. These huge
lattice sizes still were not able to capture the behavior of the phase correlators very well but
even larger ones were beyond the scope of the available computational resources. Apart
from the long computation time, a limiting factor is also the huge memory requirement
of large lattices.
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Figure 6.1: Occupation number in the two-dimensional U(1) system.

In the following, all quantities are expressed in numerical units, see appendix A for details.

6.1 One-component system

We chose the following parameters for our simulation, expressed in numerical units:

g = 3× 10−5 (6.5)

ρ(0) = 2384.2, (6.6)

corresponding to 4× 1010 particles on a 4096× 4096 lattice. In general, we averaged over
N = 40 truncated Wigner runs.
First we consider the usual fundamental Bose field correlator. It is plotted in figure (6.1)
(as for the 1D spin system, rescaled plots can be found in the appendix). Fitting the
scaling function we obtain

α = 0.44± 0.06 (6.7)

β = 0.23± 0.03. (6.8)

This agrees well with earlier findings [16, 31]. For β one observes the ”anomalous” value
β ∼ 0.2 instead of β = 1/2.
So let us now turn to phase correlators. We consider first the sound wave phase correlator.
The result is plotted in figure (6.2). One can immediately see that scaling takes place only
in the far infrared. The largest part of the spectrum is non-scaling and characterized by
a thermal k−2 power law instead. This renders the study of phase correlators numerically
tempting since very large lattices are necessary. As in the 1D case there exists no plateau,
indicating the lack of a characteristic length scale. However, since here we can see only
a small part of the momentum regime where scaling in the phases is present (due to
numerical limitations) it is not completely clear whether such a length scaling is entirely
absent or simply lies too far in the IR to be observed. A final resolution of this question
could only be achieved by employing much stronger computational resources.
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Figure 6.2: Sound wave phase correlator in the two-dimensional U(1) system.

Be that as it may, as in the 1D case we fitted a scaling function containing only one single
exponent γ = α− κβ. The result is

γ = −0.89± 0.18. (6.9)

Note that here, in contrast to the procedure employed elsewhere in this thesis, we took
the latest time as reference time instead of the earliest one due to an apparent outlier in
the data of the earliest time.
As can be seen in the plot, κ = 3 agrees well with the data. However, κ = 7/2, one of
the predictions of the analytical theory, would still be acceptable, too. κ = 4, another
prediction of the analytical theory, seems less likely.
If κ is given and we define α and β by demanding α = dβ, we have β = γ/(d − κ) and
α = dγ/(d− κ). In our case, assuming κ = 3, this yields

α = 1.79± 0.37 (6.10)

β = 0.89± 0.18. (6.11)

Assuming instead κ = 7/2 we obtain

α = 1.19± 0.25 (6.12)

β = 0.6± 0.12. (6.13)

Interestingly, the β that comes out here seems to be much higher than 0.2 although the
fundamental fields scale with β ∼ 0.2. This demonstrates two things: first, this is a
further evidence that the anomalous β is caused by the dynamics of vortices; second, one
can see that even in a scenario where vortices dominate the sound wave part can have
independent dynamics and exhibit scaling on its own.
Unfortunately, these results are in rather poor agreement with the analytical prediction
for the sound wave phase correlators outlined in [8]. Depending on which contribution in
the quantum Boltzmann equation dominates, the prediction is either β = 1/2 and κ = 4
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Figure 6.3: Vortex phase correlator in the two-dimensional U(1) system.

or β = 1/3 and κ = 7/2. κ = 4 seems rather unlikely from the data (though it cannot be
entirely excluded). Assuming κ = 7/2 instead yields a β which is close to 1/2 but not to
1/3. κ = 3 gives a rather unusual β close to 1. One should, however, also keep in mind
the rather high errors caused by the poorness of the data. Numerical errors could also
play a role. This is due to the ”delicateness” of the phase observable.
Let us now turn to the vortex phase correlator. It is plotted in figure (6.3). One observes
that it follows a very strict k−4 power law. However, below a certain momentum threshold,
it obeys a thermal k−2 power law instead. This is most likely a numerical artifact, caused
by a ”washing out” of the phase information at a certain distance.
One obtains

γ = −0.49± 0.06 (6.14)

corresponding to

α = 0.49± 0.06 (6.15)

β = 0.24± 0.03. (6.16)

This small exponents for the vortex part of the phase correlator suggest that the anoma-
lously small exponents which characterize the scaling of the fundamental field correlator
are caused by the scaling of the vortex part of the phase.
We want to show that the κ = 4 power law can be explained by a simple model of ran-
domly distributed vortices. This is similar to the arguments proposed in [12] explaining
a k−2 power law in the ”kinetic energy” of the velocity field, i. e. V2. Here, however,
we want to demonstrate this for 〈θvo(k)θvo(−k)〉, i. e. correlators of the vector potential
of the velocity field. To that end consider the Fourier transform of the velocity field of a
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Figure 6.4: Occupation number in the two-dimensional U(3) system.

single vortex located at position X:∫
d2x

q

(x−X)2 + (y − Y )2

(
−(y − Y )
x−X

)
eik·x

= eik·X
∫
d2x

q

x2 + y2

(
−y
x

)
eik·x

= qeik·X
2πi

k2

(
−ky
kx

)
(6.17)

where in the third line we have made use of a result from [12]. Now say we have a system
of vortices with positions Xi and charges qi = ±1. Then θvo(k)θvo(−k) is given by

4π2

k4

[∑
i

1 +
∑
i 6=j

qiqje
ik·(Xi−Xj)

]
. (6.18)

Assuming that the vortices carrying +1 and −1 charge are distributed randomly we can
average over all possible {qi}, which causes the second term in brackets to vanish. The
first term yields the total number of vortices, i. e. if ρvo is the mean vortex density and
V the volume of the system we get

〈θvo(k)θvo(−k)〉 = 4π2ρvoV
1

k4
, (6.19)

i. e. we obtain κ = 4.
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Figure 6.5: Sound wave phase correlator in the two-dimensional U(3) system.

6.2 Three-component system

In the three-component case we chose the same parameters as in the one-component case
for every single component:

g = 3× 10−5 (6.20)

ρ(0)
a = 2384.2, (6.21)

corresponding now to 1010 particles in each component on a 2048 × 2048 lattice. We
averaged over N = 25 truncated Wigner runs. Exploiting the U(3) symmetry of the
system we averaged additionally over the three different components.
As in the one-component case we will first consider the fundamental field correlator. To
our knowledge, this is also the first time that this system is considered at all (there have
been studies of three-component spin systems in 2D [32,33] but due to the additional spin
interaction these systems are not really comparable). The plot can be seen in figure (6.4).
The fitting procedure yields

α = 1.0± 0.06 (6.22)

β = 0.5± 0.03. (6.23)

β = 1/2 is fulfilled to a very high accuracy. This shows that apparently an anomalous
fixed point as in the one-component 2D system is not present in the three-component
system.
The sound wave phase correlator in the three-component system is plotted in figure (6.5).
Similar to the case of the vortex phase correlator in the one-component system, we ob-
served a thermal k−2 power law below a certain momentum threshold, probably caused
by a ”washing out” of the phase by the numerics. This part is cut out in figure (6.5) while
the full plot can be found in the appendix. As one can see here, a power law characterized
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by κ = 5/2 fits best to the data. The fitting procedure yields for γ

γ = −0.27± 0.05. (6.24)

With κ = 5/2 this corresponds to

α = 1.07± 0.21 (6.25)

β = 0.53± 0.1. (6.26)

This value of β agrees with the analytical prediction. However, κ comes out too small
since from the scaling analysis of the Boltzmann equation one would expect κ = 3 instead
of κ = 5/2.
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7 Kinetic theory of the Sine-Gordon model

Motivated by the fact that in a previous section we proposed arguments why the 2+1D
Sine-Gordon model might approximately describe the dynamics of vortices, in this section
we will make the attempt of developing a kinetic theory of this model in 2+1 dimensions.
Apart from the question of vortex dynamics, this is also a subject of interest in itself
due to the plethora of applications the Sine-Gordon model has in different branches of
physics [34]. We start from the Lagrangian

L = − 1

2η
φ
(
� +m2

)
φ+ λ

(
cos(φ) +

1

2
φ2 − 1

)
= − 1

2η
φ
(
� +m2

)
φ+ λ

(
1

4!
φ4 − 1

6!
φ6 +

1

8!
φ8 + . . .

)
. (7.1)

In this version of the Lagrangian spontaneous symmetry breaking has already occurred, i.
e. φ = 0 in one of the minima of the potential. The η parameter makes sure that the field
φ is dimensionless so that it can be the argument of the cosine. If there are no additional
mass terms in the Lagrangian apart from that in the cosine potential, we have m2 = ηλ.
For simplicity we have not inserted the ”speed of light” c explicitly here and will set it to 1
in the following. However, one should keep in mind that if the Sine-Gordon model serves
as an effective description of some other model, it might have a dependence on several
parameters in the original theory. For example in our case it is given by the speed of
sound in the Gross-Pitaevskii system, which in turn depends on the mass of the particles,
the density and the coupling.

7.1 2PI effective action and self energies

Unfortunately, Sine-Gordon theory does not possess an O(N) symmetry or more than
one field at all so that a straightforward 1/N expansion is not possible. However, the fact
that the β = 1/2 prediction from 1/N resummation was shown to be true also in systems
where N = 1 [15, 35] seems to suggest that with regard to scaling all that matters is to
sum contributions of every order in the coupling constant. Thus our calculation of the
2PI effective action of Sine-Gordon will merely be inspired by 1/N resummation in so far
as we include only ”ring-like” diagrams.
More specifically, we will include only diagrams where every vertex is connected to exactly
two neighbors (cf. figure (7.1)) (the case of two vertices is special and must be treated
separately because here each vertex can have only one neighbor). Furthermore we will
not include ”tadpole” contributions, i. e. diagrams where a vertex is connected to itself.
In principle the number of connecting propagators between two vertices can be arbitrarily
high. However, as we are treating a Lagrangian with a cosine-potential, we can have only
even-fold vertices. This requires that the number of connecting propagators be either
even or odd between all vertices. This gives two different contributions to the effective
action, Γe[G] and Γo[G].
Let us first consider the even case. I. e. we have n > 2 vertices that can each be connected
by 2, 4, 6... propagators to its neighbors. From the expansion of the exponential we get
1/n!. There are (n− 1)!/2 possibilities of swapping around the vertices, so the prefactor
of the nth term is (iλ)n/2n. Let us numerate the vertices by i and denote the number
of propagators between vertex i − 1 and i by 2ki. Then the vertex i is 2ki + 2ki+1-fold.
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Figure 7.1: Some of the diagrams we include in the computation of the effective action of
the Sine-Gordon model. These are still of the ”ring” type but the number of propagators
between two vertices is arbitrary now, as long as it is always even or always odd.

We have (2ki + 2ki+1)!/(2ki)!(2ki+1)! possibilities to choose which of the outgoing lines
we want to connect with vertex i− 1 and which with vertex i+ 1. Additionally we have
(2ki+1)! possibilities to permutate the outgoing lines that we have chosen to be connected
with vertex i + 1 (it is important to include this factor only for one of the neighbors
of each vertex because otherwise we would count it twice). Finally we have a factor of
(−1)ki+ki+1/(2ki + 2ki+1)! from the expansion of the cosine in the Lagrangian. But in
the final product the total sign factor will be (−1)2Σiki = 1, so we can discard the factor
(−1)ki+ki+1 (in contrast in the odd case the sign factors give a total (−1)n). Putting
everything together yields a combinatorial factor of 1/(2ki)! for vertex i. In total we have

Γe[G] = −i
∞∑
n=1

(iλ)n

2n

∫
dx1 . . . dxn

∞∑
k1=1

· · ·
∞∑

kn=1

n∏
i=0

1

(2ki)!
G(xi, xi+1)2ki

=
i

2
Tr lnM {δ(x− y)− iλ(cosh(G(x, y))− 1)} . (7.2)

Here lnM is the logarithm considered as a matrix function whereas the hyperbolic cosine
is a function in the normal sense. In order to get a nice and compact expression, the
sum starts at n = 1 although above we excluded the case n < 3. One can collect the
corrections due to this fact in a Γlow-order[G] that we will neglect here.
Let us now consider the odd case. This case is more involved due to the 2PI requirement:
if there is only one pair of vertices connected by only one propagator but all the others are
connected by at least three propagators, we still have 2PI, but more than one such pair
is not allowed. However, for simplicity we will neglect such diagrams where one single
connection is one-fold and assume that the number of connecting propagators is always
≥ 3. Then we get analogously to the even case

Γo[G] = −i
∞∑
n=1

(iλ)n

2n

∫
dx1 . . . dxn

∞∑
k1=1

· · ·
∞∑

kn=1

(−1)n
n∏
i=0

1

(2ki + 1)!
G(xi, xi+1)2ki+1

=
i

2
Tr lnM {δ(x− y) + iλ(sinh(G(x, y))−G(x, y))} . (7.3)

From these expressions for the effective actions one can now calculate the self-energies. We
will use the same notation as in the introduction which in turn stems from [7]. The calcula-
tions are similar to those for φ4 theory, one only has to replace G(x, y)2 by cosh(G(x, y))−1
and sinh(G(x, y))−G(x, y), respectively. In this way one gets

Σe(x, y) = λ sinh(G(x, y))Ie(x, y) (7.4)

Σo(x, y) = −λ(cosh(G(x, y)− 1)Io(x, y), (7.5)
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where the I-functions fulfill:

Ie(x, y) = −λ(cosh(G(x, y))− 1) + iλ

∫
z

Ie(x, z)(cosh(G(z, y))− 1) (7.6)

Io(x, y) = λ(sinh(G(x, y))−G(x, y))− iλ
∫
z

Io(x, z)(sinh(G(z, y))−G(z, y)). (7.7)

Now we have to perform the decomposition into ρ- and F -components. Therefor it is
useful to use the identities

cosh(G(x, y)) = cosh

(
F (x, y)− i

2
ρ(x, y) sgnC(x

0 − y0)

)
= cosh(F (x, y)) cos(ρ(x, y)/2)

− i sinh(F (x, y)) sin(ρ(x, y)/2) sgnC(x
0 − y0) (7.8)

sinh(G(x, y)) = sinh

(
F (x, y)− i

2
ρ(x, y) sgnC(x

0 − y0)

)
= sinh(F (x, y)) cos(ρ(x, y)/2)

− i cosh(F (x, y)) sin(ρ(x, y)/2) sgnC(x
0 − y0). (7.9)

Using these identities and following the analogous procedure as for the φ4 theory, we
obtain the spectral and statistical components of the self-energy in the even case

ΣF,e(x, y) =λ[sinh(F (x, y)) cos(ρ(x, y)/2)IF,e(x, y)

− 1

2
cosh(F (x, y)) sin(ρ(x, y)/2)Iρ,e(x, y)] (7.10)

Σρ,e(x, y) =λ[2 cosh(F (x, y)) sin(ρ(x, y)/2)IF,e(x, y)

+ sinh(F (x, y)) cos(ρ(x, y)/2)Iρ,e(x, y)] (7.11)

and in the odd case

ΣF,o(x, y) =− λ[(cosh(F (x, y)) cos(ρ(x, y)/2)− 1)IF,o(x, y)

− 1

2
sinh(F (x, y)) sin(ρ(x, y)/2)Iρ,o(x, y)] (7.12)

Σρ,o(x, y) =− λ[2 sinh(F (x, y)) sin(ρ(x, y)/2)IF,o(x, y)

+ (cosh(F (x, y)) cos(ρ(x, y)/2)− 1)Iρ,o(x, y)]. (7.13)

The expressions for the Iρ and IF functions are the same as in φ4 theory, one only has
different summation functions Πρ and ΠF :

ΠF,e(x, y) = −λ(cosh(F (x, y)) cos(ρ(x, y)/2)− 1) (7.14)

Πρ,e(x, y) = −2λ sinh(F (x, y)) sin(ρ(x, y)/2) (7.15)

ΠF,o(x, y) = λ(sinh(F (x, y)) cos(ρ(x, y)/2)− F (x, y)) (7.16)

Πρ,o(x, y) = λ(2 cosh(F (x, y)) sin(ρ(x, y)/2)− ρ(x, y)). (7.17)

7.2 sin(ρ/2) and cos(ρ/2) in momentum space

In this chapter we want to discuss how to treat the terms sin(ρ(x, y)/2) and cos(ρ(x, y)/2)
showing up in the self energies obtained above. In particular, we want to find their momen-
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tum space representation, which will be necessary for obtaining the Boltzmann integrals.
In first-order gradient expansion ρ does not depend on central time. Furthermore the
on-shell approximation assumes that we can insert the free spectral function for ρ. In
momentum space it is given by

ρ(p) = 2πη
δ(p0 −

√
p2 +m2)− δ(p0 +

√
p2 +m2)

2
√

p2 +m2
. (7.18)

Now we want to determine it in position space (with t ≡ x0 − y0 and r ≡ |x− y|):

ρ(t, r) = i

∫
d2+1p

(2π)3
e−i(p

0t−p·(x−y))2πη
δ(p0 −

√
p2 +m2)− δ(p0 +

√
p2 +m2)

2
√

p2 +m2

= η

∫
d2p

(2π)2
eip·(x−y) sin(

√
p2 +m2t)√

p2 +m2

=
η

2π

∞∫
0

dpJ0(pr)p
sin(
√
p2 +m2t)√
p2 +m2

. (7.19)

Surprisingly this last integral permits a simple analytic solution. With the help of formula
(8.7.20) of [36] one arrives at

ρ(t, r) =
η

2π
sgn(t)Θ(t2 − r2)

cos(m
√
t2 − r2)√

t2 − r2
. (7.20)

Now we have to perform the Fourier transform of sin(ρ(x, y)/2) and cos(ρ(x, y)/2). Writ-
ing s ≡ x− y, ω ≡ p0 and p ≡ |p| we have:

1

i
FT {sin(ρ(s)/2)} =

1

i

∫
d2+1seip·s sin(ρ(s)/2)

= 4π

∞∫
0

dt

∞∫
0

drJ0(pr)r sin(ωt) sin

(
η

Θ(t2 − r2) cos(m
√
t2 − r2)

4π
√
t2 − r2

)
(7.21)

FT {cos(ρ(s)/2)} =

∫
d2+1seip·s cos(ρ(s)/2)

= 4π

∞∫
0

dt

∞∫
0

drJ0(pr)r cos(ωt) cos

(
η

Θ(t2 − r2) cos(m
√
t2 − r2)

4π
√
t2 − r2

)
.

(7.22)

These integrals look hardly analytically solvable. We have therefore solved them numer-
ically. Therefor it is useful to note that not all combinations of the parameters η and m
have to be checked since it is only the product mη which determines the behavior of the
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integral. This can be seen by rescaling by a factor of γ, i. e. m→ m/γ, η → γη. Then

4π

∞∫
0

dt

∞∫
0

drJ0(pr)r sin(ωt) sin

(
γη

Θ(t2 − r2) cos(m/γ
√
t2 − r2)

4π
√
t2 − r2

)

= γ34π

∞∫
0

dt

∞∫
0

drJ0((γp)r)r sin((γω)t) sin

(
η

Θ(t2 − r2) cos(m
√
t2 − r2)

4π
√
t2 − r2

)
(7.23)

and analogously for FT {cos(ρ(s)/2)}.
The numerical evaluation is performed by discretizing the integration variables r and t
in (7.21) and (7.22) with a spacing ε and introducing an upper integration limit R. This
corresponds to introducing an IR-cutoff ΛIR ∼ 1/R and an UV-cutoff ΛUV ∼ 1/ε. One
has to make sure that they are far away from the characteristic momentum scales m and
1/η, i. e.

ΛIR � m, 1/η � ΛUV . (7.24)

The interpretation of the numerical results is highly intricate since we have four param-
eters (m, η, ε and R) and the entire ω-p plane to look at (see appendix D for plots).
Additionally the results are expected to be δ-function like. At the first glance it seems
that we can well approximate

1

i
FT {sin(ρ(s)/2)} ≈ 1

i
FT {ρ(s)/2} = ρ(p)/2 (7.25)

FT {cos(ρ(s)/2)} ≈ FT {1} = (2π)3δ(2+1)(p). (7.26)

However, having a closer look reveals that especially the case of the approximation (7.25)
is a bit subtle. In fact it turns out that instead of ρ(p)/2 we rather get

πη

2
√

p2 +m2

[(
δ(p0 −

√
p2 +m2)− δη(p0 −

√
p2 +m2)

)
−
(
δ(p0 +

√
p2 +m2)− δη(p0 +

√
p2 +m2)

)]
(7.27)

where δη(x) approaches δ(x) for η → ∞ so that the entire expression approaches 0 in
this limit. Therefore one has to assume that the integration regions in the (p0,p) space
which yield the dominant contribution in the Boltzmann integral in the end fulfill p0 ±√

p2 +m2 � 1/η.
Although they are still debatable, in the following we will always assume (7.25) and (7.26)
because otherwise a scaling behavior of the resulting Boltzmann equation would hardly
be possible.

7.3 Non-relativistic limit and φ4 theory limit

In the following we will consider the non-relativistic limit of Sine-Gordon theory. This
is necessary because it has a mass m > 0 so that it becomes effectively non-relativistic
at low momenta. Since the relativistic dispersion

√
p2 +m2 a priori does not scale in p,

scaling is only possible in either the non-relativistic (|p| � m) or the ultra-relativistic
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(|p| � m) limit. One can obtain the non-relativistic limit by expanding the free spectral
function (7.18) to lowest order in |p|. This yields

ρ(p) ≈ 2π
η

2m

(
δ(p0 −m− p2

2m
)− δ(p0 +m+

p2

2m
)

)
. (7.28)

f(p) is then defined by f(p) = f(m+ p2/2m,p).
Another quite instructive limit of Sine-Gordon theory is φ4 theory. To be precise, in the
expansion of the − cos(φ) potential of the Sine-Gordon Lagrangian the φ4 term has a
negative prefactor so that strictly speaking no ”φ4 theory” limit of Sine-Gordon exists.
The resulting theory would be sick because energy would not be bounded from below.
Nevertheless we will denote by this name a limit in which only the first few terms of the
cosine series are taken into account (e. g. expanding up to order φ6 we would have again
a theory whose energy spectrum is bounded from below).
Let us adopt the approximation cos(ρ(x, y)/2) ≈ 1 and sin(ρ(x, y)/2) ≈ ρ(x, y)/2 that
was at least made plausible above. Then it is straightforward to show that addition-
ally expanding sinh(F (x, y)) ≈ F (x, y) and cosh(F (x, y)) ≈ 1 in equation (7.10)–(7.17)
will recover the well-known expressions for the self-energies in φ4 theory with a negative
coupling λ (up to ”quantum terms”, i. e. terms that contain less fs and are typically
neglected). Whether we are in the perturbative regime of the hyperbolic functions (i. e.
in the φ4 limit) or in the non-perturbative regime (i. e. beyond φ4 theory) can be seen
from the parameter F0 ≡ F (x− y = 0). If F0 � 1 we have the former case, if F0 � 1 the
latter.
Using F (p) ≈ f(p)ρ(p), f(p0,p) ≈ −f(−p0,p) (the infinite contribution from the 1/2-
terms will have to be renormalized away anyway) and the expanded form of the spectral
function (7.28) one obtains in the non-relativistic case

F0 =
ηn0

m
(7.29)

with n0 the average density of particles. In a relativistic setting F0 has no simple inter-
pretation.
In the following, we will assume that we are in the regime beyond φ4 theory, i. e. F0 � 1,
because the φ4 theory results are well-known.

7.4 Scattering Integral

In the following we will always assume f(p) + 1/2 ≈ f(p) in order to ease the notation
and to avoid renormalization issues. We will also mostly suppress the dependence on the
central time t unless necessary. Furthermore we will introduce the shorthand notation for
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the Fourier transforms of the hyperbolic and trigonometric functions

Ξs(p) ≡ FT {sinh(F )} =

∫
d2+1seip·s sinh(F (s)) (7.30)

Ξc(p) ≡ FT {cosh(F )} =

∫
d2+1seip·s cosh(F (s)) (7.31)

Ωs(p) ≡
1

i
FT {sin(ρ/2)} =

1

i

∫
d2+1seip·s sin(ρ(s)/2) (7.32)

Ωc(p) ≡ FT {cos(ρ/2)} =

∫
d2+1seip·s cos(ρ(s)/2) (7.33)

and

ΩR
s (p) ≡

∫
d2+1seip·s sin(ρ(s)/2)Θ(s0). (7.34)

The right hand side of the Boltzmann equation is given by

∞∫
0

dp0

2π
[Σρ(p)F (p)− ΣF (p)ρ(p)]. (7.35)

In the following we will only consider the ”even” self energies given by equation (7.10),
(7.11) and (7.14), (7.15). In the φ4 limit F0 � 1 the ”odd” contribution vanishes, in the
opposite limit F0 � 1 its behavior is very similar to that of the ”even” one.
The product in real space is a convolution in momentum space. Furthermore IF (p) =
ΠF (p)veff(p) and Iρ(p) = Πρ(p)veff(p). In total we have 4 terms in the scattering integral:
Σρ(p)F (p) gives 2 and ΣF (p)ρ(p) gives 2. We will denote them by C(a)[f ](p), C(b)[f ](p),
C(c)[f ](p) and C(d)[f ](p). Without further approximations and assumptions they read

C(a)[f ](p) =− 2λ2

∞∫
0

dp0

2π
f(p)ρ(p)

∫
q1q2q3

Ωs(p− q1 − q2 − q3)Ξc(q1)

×
(
Ξc(q2)Ωc(q3)− (2π)6δ(2+1)(q2)δ(2+1)(q3)

)
veff(q2 + q3) (7.36)

C(b)[f ](p) =− 2λ2

∞∫
0

dp0

2π
f(p)ρ(p)

∫
q1q2q3

Ωc(p− q1 − q2 − q3)Ξs(q1)

× Ξs(q2)Ωs(q3)veff(q2 + q3) (7.37)

C(c)[f ](p) =λ2

∞∫
0

dp0

2π
ρ(p)

∫
q1q2q3

Ωc(p− q1 − q2 − q3)Ξs(q1)

×
(
Ξc(q2)Ωc(q3)− (2π)6δ(2+1)(q2)δ(2+1)(q3)

)
veff(q2 + q3) (7.38)

C(d)[f ](p) =λ2

∞∫
0

dp0

2π
ρ(p)

∫
q1q2q3

Ωs(p− q1 − q2 − q3)Ξc(q1)

× Ξs(q2)Ωs(q3)veff(q2 + q3) (7.39)
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where

veff(p) =
1

|1 + ΠR(p)|2 (7.40)

ΠR(p) = −2λ

∫
q

ΩR
s (p− q)Ξs(q). (7.41)

Now we will simplify this by the assumption Ωs(p) ≈ ρ(p)/2, Ωc(p) ≈ (2π)3δ(2+1)(p) and
ΩR
s (p) ≈ GR(p)/2. Furthermore we will assume that F0 � 1 such that we can neglect 1

compared to cosh(F ), i. e. the second term in the big brackets compared to the first one.
This approximation is not necessary for scaling but eases the notation. In fact the effect
of subtracting the product of the two delta functions is to cancel the first term in the
expansion (7.50). Occasionally it might be necessary to reinstate it to avoid divergences.
This gives:

C(a)[f ](p) = −λ2

∞∫
0

dp0

2π
f(p)ρ(p)

∫
q1q2

ρ(p− q1 − q2)Ξc(q1)Ξc(q2)veff(q2) (7.42)

C(b)[f ](p) = −λ2

∞∫
0

dp0

2π
f(p)ρ(p)

∫
q1q2

ρ(p− q1 − q2)Ξs(q1)Ξs(q2)veff(p− q1) (7.43)

C(c)[f ](p) = λ2

∞∫
0

dp0

2π
ρ(p)

∫
q1

Ξs(p− q1)Ξc(q1)veff(q1) (7.44)

C(d)[f ](p) =
λ2

4

∞∫
0

dp0

2π
ρ(p)

∫
q1q2q3

ρ(p− q1 − q2 − q3)Ξc(q1)Ξs(q2)ρ(q3)veff(q2 + q3) (7.45)

and

ΠR(p) = −λ
∫
q

GR(p− q)Ξs(q). (7.46)

7.5 Scaling Analysis

7.5.1 Combination of m terms

As mentioned above, we will only consider the non-relativistic limit in the following and
we will do so by using the expanded spectral function (7.28). We will first show how one
obtains the non-relativistic limit in φ4 theory in this way and then turn to the case of
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Sine-Gordon. So let us consider the example term

∞∫
0

dp0

2π
f(p)ρ(p)

∫
q1q2

ρ(p− q1 − q2)f(q1)ρ(q1)f(q2)ρ(q2)veff(q1 + q2)

∝
∞∫

0

dp0f(p)

(
δ(p0 −m− p2

2m
)− δ(p0 +m+

p2

2m
)

)

×
∫
q1q2

(
δ(p0 − q0

1 − q0
2 −m−

(p− q1 − q2)2

2m
)

− δ(p0 − q0
1 − q0

2 +m+
(p− q1 − q2)2

2m
)

)
× f(q1)

(
δ(q0

1 −m−
q2

1

2m
)− δ(q0

1 +m+
q2

1

2m
)

)
× f(q2)

(
δ(q0

2 −m−
q2

2

2m
)− δ(q0

2 +m+
q2

2

2m
)

)
veff(q1 + q2). (7.47)

Now we can perform all integrals over the 0-components and use f(−p0,p) ≈ −f(p0,p).
This will in total give 8 contributions, e. g.

f(p)

∫
q1q2

[
δ(−2m+

p2

2m
− q2

1

2m
− q2

2

2m
− (p− q1 − q2)2

2m
)veff(2m+

q2
1

2m
+

q2
2

2m
,q1 + q2)

+δ(
p2

2m
+

q2
1

2m
− q2

2

2m
− (p− q1 − q2)2

2m
)veff(− q2

1

2m
+

q2
2

2m
,q1 + q2) + . . .

]
f(q1)f(q2).

(7.48)

There are two distinct kinds of terms: those like the first one in the big brackets that still
contain m-terms in the delta function and those like the second term that do not. Since
we are in the non-relativistic limit, all typical momenta p, q1, q2 � m, so we can neglect
terms of the first kind because the argument of the delta function can only become 0 for
atypical momenta for which the f -functions are extremely small. Therefore everything is
scaling again.

7.5.2 Requirement for the scaling of sinh(F ) and cosh(F )

Whereas we could find a simple approximation for the Ωs(p) and Ωc(p) functions that
is perfectly scaling, it is not a priori clear why the Ξs(p) and Ξc(p) functions, i. e. the
Fourier transform of sinh(F (x, y)) and cosh(F (x, y)), should show scaling behavior. One
way is to assume F0 � 1 so that we can expand the hyperbolic functions to lowest order
(φ4 theory limit). However, the case F0 � 1 is more interesting because it is beyond φ4.
In this case scaling behavior can only be achieved by demanding a suitable condition on
the scaling exponents. It will turn out that this condition in the non-relativistic case is
nothing else than particle conservation α = dβ.
Written as convolutions in momentum space the Ξ-functions read (neglecting again the
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1/2-terms)

Ξs(p) = f(p)ρ(p) +
1

3!

∫
q1q2

f(p− q1 − q2)ρ(p− q1 − q2)f(q1)ρ(q1)f(q2)ρ(q2) + . . . (7.49)

Ξc(p) = (2π)3δ(2+1)(p) +
1

2!

∫
q1

f(p− q1)ρ(p− q1)f(q1)ρ(q1) + . . . (7.50)

Inserting (7.28) for ρ and performing the integrals over the 0-components one can see that
in the expansion of Ξs(p) only delta functions containing an odd number of ms can be
present whereas in the expansion of Ξc(p) only those containing an even number of ms
are present. Roughly one could say that in position space Ξs(p) contains parts oscillating
with a frequency of (approximately) m, 3m, 5m, . . . and Ξc(p) with 0, 2m, 4m, . . . . This
makes sure that in the scattering integral we can still ”combine” different delta functions
in the right way to contain no ms in the end so that we have proper scaling.
Let us assume that we have already ”combined” all momenta in a way such as to give delta
functions containing no m terms. I. e. F n in momentum space would give expressions of
the kind (omitting prefactors)∫

q1...qn−1

δ(h(p,q1, . . . ,qn−1))f(p− q1 − · · · − qn−1)f(q1) . . . f(qn−1) (7.51)

where h(k1, . . . ,kn) is a function with the property h(sk1, . . . , skn) = s2h(k1, . . . ,kn).
Making the ansatz f(t; p) = tαfS(tβp) (where we have set t0 = 1 for simplicity) one has

tnα
∫
q1...qn−1

δ(h(p,q1, . . . ,qn−1))fS(tβ(p− q1 − · · · − qn−1))fS(tβq1) . . . fS(tβqn−1).

(7.52)

Rescaling p → t−βp one gets a factor of t−d(n−1)β+2β+nα = tn(α−dβ)+(d+2)β in front where
for clarity we have reinstated a general dimension d. We want to make sure that every
single term in the expansion of sinh(F ) and cosh(F ) scales in the same way. Therefore
n(α − dβ) + (d + 2)β must not depend on n. This can only be achieved by demanding
α = dβ which is nothing else than particle conservation.
Note that in usual φ4 theory one has to postulate scaling and a conservation law as well.
Here one gets the conservation law for free if one postulates only scaling. One should
also note that in the relativistic (massless) case a similar analysis yields α = (d − 1)β
as necessary conservation law. This is neither particle nor energy conservation. It would
therefore be an interesting question whether this conservation law could be realized in
such a system.

7.5.3 Scaling of Sine-Gordon theory

With these preliminaries we can now perform the scaling analysis of Sine-Gordon theory.
The point is that actually the scaling analysis of the φ4 theory remains perfectly valid (for
completeness we will perform it for Sine-Gordon nevertheless) – only the question which
term dominates is completely different. The reason is that φ4 theory is just an expanded
version of Sine-Gordon – but according to the above demand every term in the expansion
of sinh(F ) and cosh(F ) scales like the first one.
In φ4 theory we have also 4 terms if we approximate ΠF = F 2 − 1/4ρ2 ≈ F 2 in the first
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place. In symbolic notation, suppressing all integrals, arguments, prefactors and veff, the
scattering integral then reads

2ρF 3 + ρF 3 − ρF 3 +
1

2
ρ3F. (7.53)

These terms correspond exactly to the four terms (a), (b), (c), (d) for Sine-Gordon.
Interestingly the first three terms scale with the usual β = 1/2. However, the fourth one
will have two fs less in the end and therefore scale with two α less. For α = dβ and
d = 2 this gives β = 1/6. Of course in φ4 theory this fourth term will be extremely
subdominant. But in Sine-Gordon the situation is entirely different, at least in the non-
perturbative regime where F0 � 1: here we do not have sinh(F ) ≈ F and cosh(F ) ≈ 1 but
| sinh(F )| ≈ cosh(F ). Therefore the term (d) scaling with β = 1/6 might be comparable
or even dominant compared to (a), (b) and (c). If one compares (d) to (a) and (b) in
equation (7.42)–(7.45) and assumes that Ξs(p) and Ξc(p) have the same order of magnitude
one can see that the latter still contain ”one f more”. But on the other hand (d) has ”one
ρ more” compared to these terms. We will give an estimate for which might outweigh
below.
By construction it does not matter which of the terms in the expansions (7.49) and (7.50)
we choose for the scaling analysis – they all scale the same. Therefore we will make
the easiest possible choice: perform the analysis for the first term in (7.49) and (7.50),
respectively. Let us first consider veff for which we need ΠR:

ΠR(p) =− λ
∫
q

GR(p− q)Ξs(q)

=− λ
∫
q

η

2m

(
− 1

p0 − q0 −m− (p−q)2

2m
+ iε

+
1

p0 − q0 +m+ (p−q)2

2m
+ iε

)

×
[
f(q)

2πη

2m

(
δ(q0 −m− q2

2m
)− δ(q0 +m+

q2

2m
)

)
+ . . .

]
=
−λη2

(2m)2

∫
q

[
1

p0 − q2

2m
+ (p−q)2

2m
+ iε

− 1

p0 + q2

2m
− (p−q)2

2m
+ iε

+ . . .

]
f(q) (7.54)

Making the ansatz f(t; p) = tαfS(tβp) one has

−λη2

(2m)2

∫
q

[
1

p0 − q2

2m
+ (p−q)2

2m
+ iε

− 1

p0 + q2

2m
− (p−q)2

2m
+ iε

]
tαfS(tβp). (7.55)

Rescaling p→ t−βp, p0 → t−2βp0 one gets a factor of tα in front. Therefore veff will give
t−2α. Now let us turn to the rest of the scattering integrals. We will only perform the
analysis for the contributions (b) and (d) (for the remaining ones it is very similar). For
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(b) we have (omitting the prefactors)

∞∫
0

dp0f(p)

(
δ(p0 −m− p2

2m
)− δ(p0 +m+

p2

2m
)

)

×
∫
q1q2

(
δ(p0 − q0

1 − q0
2 −m−

(p− q1 − q2)2

2m
)

− δ(p0 − q0
1 − q0

2 +m+
(p− q1 − q2)2

2m
)

)
×
[
f(q1)

(
δ(q0

1 −m−
q2

1

2m
)− δ(q0

1 +m+
q2

1

2m
)

)
+ . . .

]
×
[
f(q2)

(
δ(q0

2 −m−
q2

2

2m
)− δ(q0

2 +m+
q2

2

2m
)

)
+ . . .

]
veff(p− q1). (7.56)

One example term of the many terms one gets is

f(p)

∫
q1q2

δ(
p2

2m
− q2

1

2m
+

q2
2

2m
− (p− q1 − q2)2

2m
)veff(

p2

2m
− q2

1

2m
,p− q1)f(q1)f(q2) + . . .

Inserting f(t; p) = tαfS(tβp) and rescaling p → t−βp one obtains in total a factor of
t3α−2·2β+2β−2α = tα−2β, so the scaling condition yields

α− 1 = α− 2β (7.57)

⇔ β = 1/2. (7.58)

The same is true for (a) and (c). Now let us turn to (d), which is different. We have

∞∫
0

dp0

(
δ(p0 −m− p2

2m
)− δ(p0 +m+

p2

2m
)

)

×
∫
q1q2q3

(
δ(p0 − q0

1 − q0
2 − q0

3 −m−
(p− q1 − q2 − q3)2

2m
)

− δ(p0 − q0
1 − q0

2 − q0
3 +m+

(p− q1 − q2 − q3)2

2m
)

)
×
[
(2π)3δ(2+1)(q1) + . . .

]
×
[
f(q2)

(
δ(q0

2 −m−
q2

2

2m
)− δ(q0

2 +m+
q2

2

2m
)

)
+ . . .

]
×
(
δ(q0

3 −m−
q2

3

2m
)− δ(q0

3 +m+
q2

3

2m
)

)
veff(q2 + q3). (7.59)

Again we consider only one example term:∫
q1q2

δ(
p2

2m
+

q2
1

2m
− q2

2

2m
− (p− q1 − q2)2

2m
)f(q1)veff(− q2

1

2m
+

q2
2

2m
,q1 + q2) + . . . (7.60)
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Now we get a prefactor of t−α−2β so that the scaling condition reads

α− 1 = −α− 2β (7.61)

⇔ 2α + 2β = 1. (7.62)

Inserting α = 2β this yields β = 1/6.
One should keep in mind that this sloppy kind of derivation of course is only sufficient
for the question of scaling – not the question which term dominates.

7.6 Estimating which term dominates

In a heuristic way we want to derive a very rough condition for the dominance of the
term (d) scaling with β = 1/6 (assuming in the first place that we are in the non-
perturbative regime F0 � 1). This term has ”one ρ more and one f less” compared to
the terms (a) and (b). First one can note that in the plateau region f(p) ∼ n0ξ

2 with
n0 the number of particles per volume and ξ the spatial coherence length. Therefore
n0ξ

2 is the ”enhancement factor” a term gets due to ”one f more”. Next we have to
determine the enhancement factor due to one ρ more. In the non-relativistic case the free
spectral function comes with an η/m factor in front. However, in contrast to f (which is
dimensionless) η/m has the dimension length squared. So in order to estimate whether it
is large or small we have to compare to another length scale squared. The most natural
length scale in this context to compare with is the spatial ”coherence length” ξ̄ of the Ξs(p)
and Ξc(p) functions. So the enhancement factor due to one ρ more would be ∼ η/(mξ̄2).
In order that the term with one ρ more dominate its enhancement factor has to be much
larger than that of the terms with one f more, i. e.

η

mξ̄2
� n0ξ

2 (7.63)

⇔ η

m
� n0ξ

2ξ̄2 (7.64)

⇔
(η
λ

)1/2

� n0ξ
2ξ̄2. (7.65)

The question remains what is ξ̄. It is almost certain that ξ̄ � ξ since sinh(F ) and
cosh(F ) decay much faster in position space than F , but the exact factor is not ob-
vious. Assume for a moment that the spatial and temporal dependence of F can be
analyzed independently (i. e. that F factorizes) and consider only the spatial part. One
can make different assumptions on how it looks like. E. g. one could say that it is of
the form ∼ F0 exp(−|s|/ξ). Then in sinh(F ) ≈ cosh(F ) ≈ exp(F )/2 one can expand
exp(F0 exp(−|s|/ξ)) ≈ exp(F0) exp(−|s|/(ξ/F0)) and we obtain ξ̄ = ξ/F0 = mξ/(ηn0).
However, one could also make a different ansatz for the spatial dependence of F such as
∼ exp(−|s|2/2ξ2) whereby one obtains ξ̄ = ξ/

√
F0 = ξ

√
m/ηn0.

What is the ”right” choice for ξ̄ and whether these heuristic arguments are correct at
all remains debatable. It might also be possible that phase space factors are much more
important for the dominance of a term. Deciding these questions would require a more
precise knowledge of the form of F (s) and a much more thorough treatment of the Boltz-
mann integrals, probably also numerically. We leave this to further research.
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8 Numerical treatment of the Sine-Gordon model

Though it would be highly desirable to simulate the Sine-Gordon model itself, it turned
out that this is numerically quite tempting. The reason is that the momentum spectrum
is extremely ”stretched out”, i. e. f(k) � 0 for a very broad range of momenta. This
is likely caused by the fact that one has dynamics at very short distances (dynamics
within one minimum of the cosine potential) and at long distances (large-scale structure
formation) alike. This is problematic because at the same time one has to make sure
that the IR is still sufficiently well resolved for extracting the scaling behavior and that
the highest modes on the lattice are not occupied (otherwise one has almost immediate
thermalization). This requires very large lattice sizes. We would estimate that lattice
sizes of at least 8192× 8192 or 16384× 16384 would be necessary, preferably even more.
This was clearly beyond the range of available computational resources.
Surprisingly, however, we found the non-relativistic limit of Sine-Gordon to be much more
feasible numerically. At first one might think that this limit is a ”Sine-Pitaevskii” model,
i. e. a Gross-Pitaevskii Lagrangian with cos(|ψ|) instead of |ψ|4, such as Gross-Pitaevskii
is the non-relativistic limit of φ4 theory. However, it turns out that this is not quite true
but instead the limit is given by the Gross-Pitaevskii Lagrangian with a Bessel function
replacing |ψ|4. This is demonstrated in the next section. Thereafter we present numerical
results for this theory.
The reasoning behind taking the non-relativistic limit of Sine-Gordon to examine its
far from equilibrium dynamics is that at small momenta, relevant for non-thermal fixed
points, a relativistic theory becomes effectively non-relativistic anyways. Consider e. g.
that also in the last chapter we derived the scaling exponents of Sine-Gordon assuming it
to be in its non-relativistic limit. A further advantage apart from the numerical feasibility
is that in the non-relativistic limit of Sine-Gordon one can determine quite easily whether
a potential scaling with an exponent ∼ 0.2 might not be caused by topological defects in
Sine-Gordon itself (cf. [11]).

8.1 Non-relativistic limit of the Sine-Gordon equation

Our derivation of the non-relativistic limit of the Sine-Gordon equation will be a general-
ization of the way in which the Gross-Pitaevskii equation is derived as the non-relativistic
limit of the equation of motion of φ4 theory in [37]. Obviously, the only difference lies in
the different potential term so that most of the time we can closely follow the derivation
in this paper.
Let us start from the equation of motion of the Sine-Gordon model

�φ+m2φ+ ηλ(sin(φ)− φ) = 0 (8.1)

with m2 = ηλ. We are in the non-relativistic limit, i. e. p � m and E ≈ m + p2

2m
. The

idea is now to factor out fast oscillations with frequency m. Therefore we write

φ = <{ψ exp(−imt)} (8.2)

with ψ ∈ C. Since we have factored out the fast oscillations, ψ changes slowly. Thus∣∣∣∣∂2ψ

∂t2

∣∣∣∣� m

∣∣∣∣∂ψ∂t
∣∣∣∣ . (8.3)
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Now we insert (8.2) into the equation of motion and neglect second derivatives in time:

<
{[
−2im

∂ψ

∂t
−∆ψ

]
exp(−imt)

}
+ ηλ (sin(<{ψ exp(−imt)})−<{ψ exp(−imt)}) = 0.

(8.4)

The potential term requires a closer inspection:

sin(<{ψ exp(−imt)})−<{ψ exp(−imt)} =
∞∑
n=1

(−1)n

(2n+ 1)!
(<{ψ exp(−imt)})2n+1

=
∞∑
n=1

(−1)n

(2n+ 1)!

1

22n+1
(ψ exp(−imt) + ψ∗ exp(imt))2n+1

=
∞∑
n=1

(−1)n

(2n+ 1)!

1

22n+1

2n+1∑
k=0

(
2n+ 1

k

)
ψ2n+1−k(ψ∗)k exp(−i(2n+ 1− 2k)mt). (8.5)

Now we discard all terms oscillating with a frequency larger than m, i. e. we keep only
those with k = n and k = n+1. This corresponds to neglecting particle number changing
processes. Then we obtain

∞∑
n=1

(−1)n

(2n+ 1)!

1

22n+1

(2n+ 1)!

n!(n+ 1)!
|ψ|2n2<{ψ exp(−imt)}

=

(
2

|ψ|
∞∑
n=0

(−1)n

n!(n+ 1)!

( |ψ|
2

)2n+1

− 1

)
<{ψ exp(−imt)}

=

(
2

|ψ|J1(|ψ|)− 1

)
<{ψ exp(−imt)} (8.6)

where J1(x) is a Bessel function of the first kind. Inserting this into (8.4) we find

<
{[
−2im

∂ψ

∂t
−∆ψ + ηλ

(
2

|ψ|J1(|ψ|)− 1

)
ψ

]
exp(−imt)

}
= 0 (8.7)

from which it follows that

−2im
∂ψ

∂t
−∆ψ + ηλ

(
2

|ψ|J1(|ψ|)− 1

)
ψ = 0, (8.8)

or dividing out −2m

i
∂ψ

∂t
= − 1

2m
∆ψ +

ηλ

m

(
1

|ψ|J1(|ψ|)− 1

2

)
ψ. (8.9)

We will call this the ”Bessel-Gross-Pitaevskii” (BGP) equation. The corresponding La-
grangian reads

LBGP =
i

2η2
(ψ∗∂tψ − ψ∂tψ∗)−

1

2mη2
∇ψ∗ · ∇ψ +

2λ

mη
(J0(|ψ|) +

1

4
|ψ|2 − 1). (8.10)
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Figure 8.1: The occupation number in the BGP system.

The initial condition in the truncated Wigner simulations is then chosen as

ψ(r) =
η√
V
∑
k

ψke
ik·r (8.11)

with the ψk chosen as in the normal truncated Wigner simulations of Gross-Pitaevskii.
I. e. the only difference to the standard case is the factor η, which ensures that ψ is
dimensionless.

8.2 Numerical results

We have simulated the system described by the Lagrangian (8.10) employing truncated
Wigner simulations. We chose a 1024×1024 lattice and averaged over N = 50 realizations.
As for the Gross-Pitaevskii system, we used a ”box” initial condition, given by (6.1). We
were indeed able to observe a scaling with an anomalously small exponent β, by the
following choice of parameters (expressed in numerical units):

m =
√
ηλ = 1 (8.12)

η = 1 (8.13)

Q = 0.05 (8.14)

ρ0 = 103. (8.15)

If the number of particles were equal at all lattice sites, ρ0 = 103 would correspond to a
field value of |ψ| = 101.5 ≈ 31.6. I. e. the average field value would be close to the sixth
minimum of the Bessel function. This definitely makes sure that we are not simulating
some Gross-Pitaevskii limit of the Bessel-Gross-Pitaevskii model (which could be the case
if |ψ| were so small that it never leaves the 0th minimum of the potential).
The resulting occupation number distribution is shown in figure (8.1). For the scaling
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Figure 8.2: |ψ| in real space for one example realization and for the same four times as
in the occupation number plot (8.1), with time increasing from left to right and from top
to bottom.

exponents we obtain

α = 0.53± 0.07 (8.16)

β = 0.24± 0.02. (8.17)

This is close to the β = 1/6 that was shown to be allowed by the Boltzmann equation of the
Sine-Gordon model though there is a slight deviation. This deviation might be attributed
to the fact that the scattering integral contains also terms scaling with β = 1/2 that
possibly are not entirely suppressed (additionally it seems to be a ”rule of thumb” that
the numerically extracted exponents are slightly larger than those from the Boltzmann
equation, cf. e. g. the results in [8, 15, 38]). A crucial question is of course whether this
small scaling exponent might not be caused by topological defects in the Bessel-Gross-
Pitaevskii model, too. First one can note that such a topological defect is rather unlikely
to be stable if ρ0 is large since the potential V (|ψ|) = −J0(|ψ|) would change its sign
many times between the core of the defect and the bulk. Additionally, a look at some of
the field configurations (figure (8.2)) is able to dispel such concerns even further. In fact,
no such things as vortices are visible.
Instead, one observes small patches in space where |ψ| grows large while it sits in the 0th
minimum of the Bessel function elsewhere. This can be attributed to the fact that on the
one hand the potential −J0(|ψ|) has an absolute minimum at |ψ| = 0 but on the other
hand approaches 0 for |ψ| → ∞ (J0(x) has the asymptotic form

√
2/πx cos(x− π/4) for

large x). It is suggestive to identify such small patches of large |ψ| with the phenomenon of
clustering of equal charge vortices that was observed in [16] and was made responsible for
the anomalously small exponent β there. However, since we were not able to demonstrate
the duality between vortices and the Sine-Gordon model rigorously, such an identification
must remain speculative.
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9 Conclusion and outlook

In this thesis, we have discussed several different ways of defining a correlation function
of phases 〈θ(x)θ(y)〉: the obvious definition, in which the phases are kept as they are
and jumps are accepted; different modification definitions, in which instead of 〈θ(x)θ(y)〉
one considers 〈f(θ(x), θ(y))〉 with f chosen such that jumps are avoided but the resulting
correlator somehow resembles the original one; and finally the continuation definition in
which the phase is defined as either the scalar or vector potential of the velocity field ∇̃θ.
We subsequently applied these different definitions to a one-dimensional spin system and
found that in terms of temporal scaling, i. e. as far as the dynamical exponents α and β
are concerned, these definitions all yield the same result, α, β ∼ 0.25, in agreement with
the values obtained for the fundamental field. We found furthermore that the obvious
definition yields a fractional exponent κ that stems from the jumps in the phase, as can
be shown by a simple model of random jumps. In contrast, our proposal for a modifi-
cation definition and the continuation definition both yielded κ = 2, in agreement with
the fundamental field result. The continuation definition was the only one not to yield a
plateau in the IR, indicating coherence on a very large (potentially infinite) length scale.
We then concluded that the continuation definition, which introduces two phase fields,
the sound-wave and the vortex phase field, is the most natural and suitable definition.
Additionally, it is the only one accessible to analytical treatment. In the following we
showed how to rewrite earlier findings in terms of these two phase fields, reviewing results
for the sound-wave part of the phase. We then tried to develop a description also for the
vortex part, by making use of two approaches. We first derived an action containing only
the vortex trajectories. The second approach was an attempt to generalize the duality
between vortices and the Sine-Gordon model from 2D to 2+1D. We found this duality
to approximately hold under several assumptions. Unfortunately, we were not able to
determine their range of validity (or whether there are scenarios in which they hold at
all).
We then examined the two-dimensional Gross-Pitaevskii system numerically, considering
the one-component and three-component case. In the one component case, we found the
anomalously small β = 0.23±0.03 for the fundamental field correlator, in agreement with
earlier findings. In contrast, in the three-component case we obtained β = 0.5 ± 0.03.
When considering the phase correlator, we encountered some numerical problems related
to the ”delicateness” of the phase observable. On the one hand, scaling appeared only in
the far infrared (at least for the scalar phase correlator in the one-component case), re-
quiring very large lattice sizes. On the other hand, the phase seemed often to be ”washed
out” by the numerics. For the scalar phase correlator in the one-component system we got
γ = −0.89± 0.18 and κ between 3 and 3.5. Assuming κ = 3.5, this yields β = 0.6± 0.12,
in approximate agreement with β = 1/2. For the vortex part we obtained 0.24± 0.03 and
a very clear power law κ = 4, indicating that it is the vortex part that is responsible for
the scaling of the fundamental field correlator. In the three-component case, we obtained
κ = 5/2 and β = 0.53± 0.1 for the sound-wave phase correlator.
Finally we examined scaling in the 2+1D Sine-Gordon model. We found that its Boltz-
mann equation allows for scaling with β = 1/6, in addition to the well-known scaling with
β = 1/2. This was corroborated by simulations of the Bessel-Gross-Pitaevskii model, be-
ing the non-relativistic limit of the Sine-Gordon model, where we found scaling with
β = 0.24 ± 0.02. On the one hand this provides evidence that the rather speculative
derivation of the vortex/Sine-Gordon duality in 2+1D might indeed approximately hold.
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On the other hand it gives rise to a possible explanation of the anomalously small β
exponents in vortex-dominated systems. Admittedly there is still a slight discrepancy
between the value of β extracted for 〈θvo(k)θvo(−k)〉 or the fundamental field correlator
and β = 1/6, approximately of the size ∼ 0.05 (though there is no discrepancy at all if
one compares to the numerical computations of BGP theory). But in our opinion this
is not too severe. First, there is a rather large error in the determination of such small
exponents. And second, such a deviation could possibly be explained by subdominant
contributions in the Boltzmann integral scaling with β = 1/2.
A plethora of new questions that could be addressed by further research arose during the
course of this thesis project. First, since we laid much of the focus onto the Sine-Gordon
model, the original subject of this thesis, the numerical study of phase correlators, was
treated in far less depth than it actually would deserve. Especially we did not figure out
the reason for the discrepancy between our numerical results and the analytical predic-
tions from the low-energy effective theory of the phases in [8]. Various aspects of this
effective theory could be studied in more detail numerically, e. g. the validity of as-
sumptions about dispersion relations, effective couplings or the 1/N limit. Moreover, a
treatment of the 3D case would be highly desirable.
Second, the question whether the 2+1D Sine-Gordon can indeed provide a description
of vortex dynamics or whether the agreement of the β exponent is just a coincidence
remains open. One way how one could possibly check that would be to calculate numer-
ically classical vortex trajectories, preferably with the equation of motion arising from
the action (5.26), or alternatively with some other effective equation of vortex dynamics
or directly from GP simulations. These trajectories would then be inserted into (5.43)
(which is still exact) and one would calculate the resulting dynamics of φµ with truncated
Wigner simulations. From the results could then be inferred the range of validity of the
assumptions we made.
Third, it is an intriguing question whether Sine-Gordon theory could provide also an ef-
fective description of the dynamics of topological defects in different systems, e. g. the
1+1D Luttinger liquid/XY model. Since the duality in 2D is known to be exact, one
might suspect that this is also the case in 1+1D. The topological defects would be ”time
vortices” in this case. In d dimensions, the anomalous exponent from the Boltzmann
equation is β = 1/(2 + 2d), i. e. in one spatial dimension β = 1/4. This agrees with
the value found for the 1+1D XY model from other approaches [39] and also the value
extracted for the 1D spin system here. Whether this is a mere coincidence remains open,
too. It has been demonstrated also for other systems with Euclidean space time that
topological excitations can be described by the Euclidean Sine-Gordon model, e. g. for
the 3D Abelian Higgs model [40] (where the topological excitations are small vortex loops)
or the 4D XY model [41]. Here one can speculate too that after a Wick rotation the real
time Sine-Gordon model describes the real time dynamics of these models in the presence
of topological defects.
Finally, independent of the question whether it describes the dynamics of topological de-
fects, the Sine-Gordon model far from equilibrium showed many interesting properties
and deserves a much closer examination, regarding the 2PI/Boltzmann as well as the
numerical treatment. In particular, it would be highly interesting to determine more pre-
cisely the regimes in which it exhibits scaling with the two different exponents β = 1/2
and β = 1/(2 + 2d) that are found from the Boltzmann equation.
We hope that some of these questions can be resolved by future research.
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A Conventions and units

Throughout this thesis we set

~ = 1. (A.1)

However, the speed of light/sound c is not set to 1 in general but only in the last two
chapters treating the relativistic Sine-Gordon model. I. e. anywhere else distances and
time intervals are not measured in the same units. In this case we have e. g. the following
relations:

Energy = Time−1 (A.2)

Momentum = Length−1 (A.3)

Mass = Time× Length−2. (A.4)

If one sets c = 1 additionally, these collapse further to Energy = Momentum = Mass =
Length−1.
For the numerical calculations we work in numerical units. I. e. for the Gross-Pitaevskii
model we set

as = 1 (A.5)

m =
1

2
(A.6)

with as the lattice spacing, which fixes the unit system. This means that e. g. ρ0 = 103

has to be understood as ρ0 = 103a−ds . In the case of the BGP simulations it is sufficient
to set as = 1 in order to fix the unit system since c has already been set to 1.
In general also momenta are given in numerical units, i. e. Q = 0.5 means Q = 0.5a−1

s .
However, in the plots of correlation functions we use a different convention where we give
a momentum as the number of the corresponding momentum mode on the lattice, i. e.
here k = 10 has to be understood as k = 10× 2π(asN)−1 with N the size of the lattice.
In more than 1D, the function f(k) has to be obtained from f(k) by averaging over all
angles. Since simulations are performed on a lattice, one must decide how to bin the
different k vectors according to their absolute value. We chose a convention where we
take as bin spacing the distance of the modes on the lattice, i. e. 2π(asN)−1. E. g.
k = (1, 1)× 2π(asN)−1 is binned into k = 1× 2π(asN)−1 whereas k = (2, 1)× 2π(asN)−1

is binned into k = 2× 2π(asN)−1.
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B Evaluation of the spatial integrals in the Luttinger

liquid action

All we have to consider are the integrals

Ixxi =

∫
d2x

(x−Xi)
2

[(x−Xi)2 + (y − Yi)2]2
(B.1)

Iyyi =

∫
d2x

(y − Yi)2

[(x−Xi)2 + (y − Yi)2]2
(B.2)

Ixyi =

∫
d2x

(x−Xi)(y − Yi)
[(x−Xi)2 + (y − Yi)2]2

(B.3)

and

Jxxij =

∫
d2x

(x−Xi)(x−Xj)

[(x−Xi)2 + (y − Yi)2][(x−Xj)2 + (y − Yj)2]
(B.4)

Jyyij =

∫
d2x

(y − Yi)(y − Yj)
[(x−Xi)2 + (y − Yi)2][(x−Xj)2 + (y − Yj)2]

(B.5)

Jxyij =

∫
d2x

(x−Xi)(y − Yj)
[(x−Xi)2 + (y − Yi)2][(x−Xj)2 + (y − Yj)2]

(B.6)

with i 6= j. Of course the Iyyi and Jyyij follow trivially from Ixi and Jxxij by analogy. These
integrals have already been calculated in [27] employing dimensional regularization. Here,
however, we want to compute them regularizing by introducing a short distance cutoff a
and a long distance cutoff L. In our opinion this is a more natural procedure in condensed
matter systems where one can attribute a physical meaning to cutoffs.
Let us start with the Ii integrals. One can see from symmetry considerations that Ixyi = 0
and Ixxi = Iyyi . Laying the origin at Xi and introducing polar coordinates we get

Ixxi =

π∫
−π

dϕ

L∫
a

dr

r
cos2 ϕ = π ln

L

a
. (B.7)

Now let us turn to the Jxxij integral, from which again by analogy will follow Jyyij . Again we
lay the origin at Xi. Furthermore we introduce the notation Xij ≡ Xj −Xi, rij ≡ |Xij|,
X̂ij ≡ Xij/rij and Ŷij ≡ Yij/rij. Now we introduce polar coordinates such that the angular

coordinate ϕ is the angle between x and Xij. I. e. we write x = r(cosϕX̂ij − sinϕŶij)

and y = r(sinϕX̂ij + cosϕŶij). With this we obtain

Jxxij =

π∫
−π

dϕ

L∫
0

dr
(cosϕX̂ij − sinϕŶij)(r cosϕX̂ij − r sinϕŶij − rijX̂ij)

r2 + r2
ij − 2rrij cosϕ

. (B.8)
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To solve this, we need some integral formulas:

π∫
−π

dϕ
cos2 ϕ

1− t cosϕ
=

2π

t2

(
1√

1− t2
− 1

)
(B.9)

π∫
−π

dϕ
sin2 ϕ

1− t cosϕ
=

2π

t2

(
1−
√

1− t2
)

(B.10)

π∫
−π

dϕ
cosϕ

1− t cosϕ
=

2π

t

(
1√

1− t2
− 1

)
(B.11)

for 0 < t < 1. All combinations containing only a single sine function in the numerator
vanish due to symmetry. Applying these integral formulas as well as the identity√

1−
(

2rrij
r2 + r2

ij

)2

= sgn(r − rij)
r2 − r2

ij

r2 + r2
ij

(B.12)

we obtain after some algebra:

Jxxij = π

L∫
0

dr

[
(X̂2

ij + Ŷ 2
ij)

1

r
Θ(r − rij) + (−X̂2

ij + Ŷ 2
ij)

r

r2
ij

Θ(rij − r)
]

= −π
[
ln
(rij
L

)
+ X̂2

ij −
1

2

]
. (B.13)

From analogy it follows that

Jyyij = −π
[
ln
(rij
L

)
+ Ŷ 2

ij −
1

2

]
. (B.14)

Therefore one finds for the spatial part of the Luttinger liquid action:

Jxxij + Jyyij = −2π ln
(rij
L

)
. (B.15)

The calculation for Jxyij is very similar and we only state the result here:

Jxyij = −πX̂ijŶij. (B.16)

(B.13), (B.14) and (B.16) agree with the results in [27] up to a difference in the constants
stemming from the different regularization scheme.
Putting all the parts together after some algebra yields the effective action (5.26).
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C Computation of the Wigner function

For the Wigner function of a coherent state |α〉 we have

2 exp(−2|α− ψ|2). (C.1)

Now we calculate the phase average of the Wigner function of the coherent state
∣∣√N0e

iθ0
〉
,

writing ψ ≡ √ρeiθ:

1

π

π∫
−π

dθ0 exp
(
−2|
√
N0e

iθ0 −√ρeiθ|2
)

=
1

π

π∫
−π

dθ0 exp
(
−2
(
N0 + ρ− 2

√
N0
√
ρ cos(θ − θ0)

))
= 2 exp (−2 (N0 + ρ)) I0

(
4
√
N0
√
ρ
)

(C.2)

where I0(x) denotes the modified Bessel function of zeroth order. For large values of x,
the following approximation holds:

I0(x) ≈ ex√
2πx

. (C.3)

Therefore assuming
√
N0
√
ρ� 1 we can write

2 exp (−2 (N0 + ρ)) I0

(
4
√
N0
√
ρ
)
≈
√

1

2π

1

(ρN0)1/4
exp

(
−2
(√

N0 −
√
ρ
)2
)
. (C.4)

Since the exponential suppresses all values of
√
ρ which are not close to

√
N0 we can

additionally approximate ρ ≈ N0 in the denominator in order to arrive at the final result√
1

2πN0

exp

(
−2
(√

N0 −
√
ρ
)2
)
. (C.5)

For the empty modes the calculation is even simpler. Here we just have to insert α = 0
in (C.1) in order to arrive at

2 exp(−2ρ). (C.6)
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D Numerical evaluation of the Fourier transforms of

sin(ρ/2) and cos(ρ/2)

We show plots for the example parameters η/4π = 1, m = 10 (for other choices of
parameters the results were very similar). For the discretization and the large distance
cutoff we took ε = 0.025 and R = 10. Figure (D.1) and (D.2) show contour plots of
the ω-p plane. Here the approximation to expand the trigonometric seems to be quite
accurate for cosine and sine as well. However, cross section plots (figure (D.3) and (D.4))
show that this is not entirely true for the sine. Whereas in the case of the cosine the
expanded and full Fourier transform apparently agree quite accurately, this is not true for
the sine where we have large deviations. The plot of the difference of expanded and full
Fourier transform (figure D.5) reveals the problem: it shows a peak centered around the
same position (namely

√
m2 + p2) as FT {sin(ρ/2)}. Increasing η makes this peak higher

and sharper, i. e. more δ-function like. Since it is a δ-function with approximately the
same amplitude as that of ρ(p)/2 itself (as can be seen by considering the integral over
them), FT {sin(ρ/2)} will vanish unless all relevant frequencies are much smaller than
1/η. This has to be assumed in order to enable scaling of the Boltzmann equation.

Figure D.1: Fourier transform of cos(ρ/2) (left) and 1 (right).
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Figure D.2: Fourier transform of sin(ρ/2) (left) and ρ/2 (right).

Figure D.3: Fourier transform of cos(ρ/2) and 1 for p = 0.

84



Figure D.4: Fourier transform of sin(ρ/2) and ρ/2 for p = 0.

Figure D.5: Difference of the Fourier transforms of sin(ρ/2) and ρ/2 for p = 0.
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E Additional correlator plots

Here we mainly show the rescaled versions of the correlator plots presented in the main
text. Additionally figure (E.8) shows the full scalar phase correlator in the two-dimensional
U(3) system, including the part that in the main text is cut out.

Figure E.1: The rescaled phase correlator in the 1D spin system calculated with the
obvious definition.

Figure E.2: The rescaled phase correlator in the 1D spin system calculated with the
modification definition.
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Figure E.3: The rescaled phase correlator in the 1D spin system calculated with the
continuation definition.

Figure E.4: Rescaled occupation number in the two-dimensional U(1) system.
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Figure E.5: Rescaled sound wave phase correlator in the two-dimensional U(1) system.

Figure E.6: Rescaled vortex phase correlator in the two-dimensional U(1) system.
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Figure E.7: Rescaled occupation number in the two-dimensional U(3) system.

Figure E.8: Full sound wave phase correlator in the two-dimensional U(3) system.

89



Figure E.9: Rescaled sound wave phase correlator in the two-dimensional U(3) system.

Figure E.10: Rescaled occupation number in the BGP system.
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