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Neuronale Netzwerkrepräsentation von Quantenvielteilchensystemen

und Zeitentwicklung im Isingmodell mit transversalem Feld mithilfe

von Positive Operator Valued Measure:

Neuronale Netzwerkquantenzustände (NQZ) ziehen viel Aufmerksamkeit an, da

sie das Potential haben, als sehr ausdrucksstarker Variationsansatz für Quan-

tenvielteilchensysteme zu dienen. In dieser Arbeit präsentieren wir die Mach-

barkeit dessen, dass NQZ basierend auf reellen Zahlen, im Gegensatz zu kom-

plexen, unitäre Zeitentwicklung lösen kann. Dafür verwenden wir ein neuronales

Netzwerk als generatives Modell, um sowohl Grundzustände als auch hoch ver-

schränkte Zustände darzustellen. Die Zeitentwicklung unter dem Isingmodell mit

transversalem Feld (TFI) nach einer plötzlichen Änderung des TFI-Parameters

wird mithilfe von ’positive operator valued measure’ (POVM) in die Sprache des

maschinellen Lernens übersetzt. Wir vergleichen unsere Ergebnisse mit denen

des exakten Diagonalisierungsverfahrens und finden heraus, dass die Genauigkeit

begrenzt und in unserer Anwendung der NQZ-Löser eventuell instabil ist. Zudem

ist der Rechenaufwand bei kleinen Systemgrößen viel größer als beim exakten

Diagonalisierungsverfahren.

Neural Network Representation of Quantum Many-body States and

Time Evolution in the Transverse Field Ising Model by Positive Oper-

ator Valued Measure:

Neural-network quantum states (NQS) attract a lot of attention due to their

potential to serve as a very expressive variational ansatz for quantum many-

body systems. In this work, we present a proof of principle that NQS based on

real numbers, in contrast to complex ones, can solve the unitary time evolution.

We use a neural-network as a generative model to represent both ground states

and highly entangled ones. The time evolution under the transverse-field Ising

(TFI) Hamiltonian after a sudden change of the TFI parameter is transferred into

the language of machine learning by the formalism of positive operator valued

measure. We compare our results to exact diagonalization and find that precision

is limited, that in our application the NQS solver is eventually unstable and that

computational cost is much larger than for exact diagonalization for small system

sizes.
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1 Introduction

Although quantum mechanics is a century old discipline in physics, it still presents

challenging and interesting problems. The Hilbert space description of quantum

states is very simple to grasp in terms of its mathematical description of states as

vectors and operators as matrices but brings the problem of being very inefficient.

The dimension of the Hilbert space scales exponentially with system size. There

are two key aspects of the exponential scaling, the first one concerning the quantum

state itself and the second one concerning the time evolution. From an experimental

point of view, to extract the full information about a generic unknown state, one

has to perform exponentially many different measurements for linearly many par-

ticles. From the theoretical point of view, one needs exponentially scaling amount

of memory to store the state. To determine the time evolution theoretically in a

standard straight-forward approach, e.g. from the Schrödinger equation, one has to

diagonalize an exponentially large matrix.

To circumvent this issue, there are multiple approaches to deal with the expo-

nential scaling with system size, but all efficient approximation schemes turn out to

struggle in different regimes. We want to state just a few.

Quantum Monte-Carlo methods, which sample a finite number of physically rele-

vant configurations, often suffer from the sign problem when approximating infinite

sums with positive and negative contributions in the classical representation of quan-

tum states [Troyer and Wiese, 2005].

One-dimensional quantum spin systems with little entanglement can be very well

captured by simulation methods based on matrix product states (MPS), such as the

time-dependent density-matrix renormalization group (tDMRG) approach [Scholl-

wöck, 2011]. Especially at quantum critical regimes where correlation lengths di-

verge, this method scales up its resources exponentially in system size.
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Semi-classical methods like the discrete truncated Wigner-approximation show

good agreement to the analytical solution when applying a sudden change to the

transverse field Ising (TFI) model Hamiltonian, a quench, to the quantum critical

regime. But they suffer from instabilities for long time evolution and deviations for

quenches to intermediate distances from the quantum critical point [Czischek et al.,

2018b].

Dimensional reduction and feature extraction known from machine learning [Hin-

ton and Salakhutdinov, 2006] can be applied to wave functions [Carleo and Troyer,

2017]. Machine learning studies algorithms and statistical models that computers

use to perform tasks without explicit instructions [Bishop, 2006]. These statisti-

cal models are designed to approximate high dimensional functions. The neural-

network quantum state (NQS) is a graph that calculates the corresponding phase

and amplitude of a wave function with a chosen number of internal parameters for

exponentially many spin configurations. One can derive a learning scheme following

the Schrödinger equation on the basis of feedback from variational principles [Carleo

and Troyer, 2017].

A study of the regimes of validity for NQS [Czischek et al., 2018a] shows that

quenches to the vicinity of the quantum critical point of the TFI model require a

strongly increased number of network parameters. Also deviations to the exact time

evolution are of similar size as semi-classical approaches.

A representation of quantum many-body states as real probabilities that is also

valid for mixed states can be formulated through the connection between measure-

ment probabilities and the density matrix, the positive operator valued measure

[Carrasquilla et al., 2019b]. A description based on real probabilities has the advan-

tage that standard machine learning algorithms can be applied to represent these

states. Very recently, the application of one- and two-qubit quantum gates have

been presented [Carrasquilla et al., 2019a].

The missing link and consequent next step is a machine learning solver based on

real probabilities of the time evolution, which easily generalizes to open and mixed

systems.

In this thesis the goal is a proof of principal for a synthesis of neural network
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quantum states based on positive real numbers and the unitary time evolution.

Therefore we investigate a numerical method from machine learning, the Restricted

Boltzmann Machine (RBM) [Smolensky, 1986], which is an especially simple archi-

tecture of neural networks, to approximate quantum states and exploit dimension

reduction of the parameter space. We chose a real positive representation of den-

sity matrices in order to account for mixed states, circumvent the sign problem

and to profit from standard learning schemes, especially the Contrastive Divergence

algorithm (CD). To bring a general density matrix in the desired form of a real pos-

itive function, we must first apply the method of positive operator valued measure

(POVM). The resulting function is then the probability of a set of measurement

outcomes which can be used equivalently to the density matrix. This probability

distribution determines the likelihood of any given measurement and can be repre-

sented by standard machine learning graphs like the RBM. The POVM description

of the unitary time evolution under any Hamiltonian for the resulting probability

density then arises quite naturally. It is an exact mapping and can be integrated

through step-wise training of the RBM and sampling the distribution of the next

time step. We observe that, in order to approximately solve the POVM equation

of motion, large sample sizes are needed due to statistical sampling and learning

errors.

This thesis is structured in the following way. First, we want to investigate the

information content of a many-body quantum state. By recapitulating some basics

of quantum mechanics (Section 3), we will introduce the concept of entanglement

and state reconstruction from subsystems. This motivates POVM which is one of the

two major concepts of this work, described by the following Section 4. The second

major concept, RBM, will then be introduced and its applications discussed (Section

5). Bringing these two concepts together with the equation of motion creates a

formalism for the time evolution of the neural-network representation of many-body

quantum states based on positive real numbers (Section 6). For illustration, the

results will be compared to exact diagonalization for small system sizes (Section 8).
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2 Notation

Throughout this thesis we will use some standard notation.

The Pauli-matrices are

� = (�x, �y, �z),

�x =

2

40 1

1 0

3

5 ,

�y =

2

40 �i

i 0

3

5 ,

�z =

2

41 0

0 �1

3

5 .

(2.0.1)

The TFI Hamiltonian with nearest-neighbour interaction in one spatial dimension

is

HTFI = �
X

i

�i
z�

i+1
z � hf

X

i

�i
x, (2.0.2)

where the sum over i runs over all particles of the system. Boundary conditions

are periodic, i.e. the first particle is nearest-neighbour to the last one. hf is the

transverse magnetic field, the parameter of the model. If this parameter is abruptly

changed, this is called a quench and exhibits non-trivial time evolution.

We use natural units with Planck’s constant ~ = 1.
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3 Information Content of a State

The information content of a state is the minimal set of parameters to fully represent

it [Brody and Hughston, 2000]. RBMs are often used for dimension reduction of the

parameter space. As a first application, we just want to represent some quantum

states. Therefore we need to understand how much information is stored in certain

quantum states. The standard way to do so is to investigate bipartite entanglement.

3.1 Bipartite Entanglement of Pure States

A bipartition of a closed system is a theoretical division into two subsystems A and

B. If the Hilbert space of the whole state is H, one can always find a basis such that

it can be decomposed according to the bipartition H = HA ⌦HB. | ABi denotes

a state in H, a state in HA is written as | Ai and analogue for subsystem B. In

general, | ABi is a linear combination of states in HA and HB, thus

| ABi =
X

i,j

ci,j | Aii | Bij . (3.1.1)

In the special case in which only one coefficient ci,j is non-zero in Equation 3.1.1,

the state is called separable. Separability is a defining quantity of entanglement: If

the wave function is not separable, system A and system B are entangled.

As an example, let us take two spin-12 states:

| 1i =
1
p
2
(|""i+ |##i)

| 2i =
1

2
(|""i+ |"#i+ |#"i+ |##i) .

(3.1.2)
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If not denoted otherwise, |"i and |#i are the eigenvectors of the Pauli-z-matrix �z

defined in Equation 2.0.1:

�z |"i = |"i , �z |#i = � |#i . (3.1.3)

In the spirit of matrix product states (MPS) [Schollwöck, 2011], we investigate

the separability of the states in Equation 3.1.2 by rewriting them according to the

Schmidt decomposition. It states that one can always find two basis rotations for

the bipartition such that Equation 3.1.1 can be written as
P

i=1,2 si
��� ̃i

A ̃
i
B

E
, where

the tilde denotes the state in the rotated basis.

| 1i =
X

i,j

ci,j | Aii | Bij

=
1
p
2

h
1 0 0 1

i
0

@

2

4|"i

|#i

3

5

A

⌦

2

4|"i

|#i

3

5

B

1

A

=
1
p
2

h
|"i |#i

i

A

2

41 0

0 1

3

5
h
|"i |#i

i

B

=
X

i=1,2

si
�� i

A 
i
B

↵

=
1
p
2
|""i+

1
p
2
|##i ,

(3.1.4)

with s1 = s2 =
1p
2
. From the first to the second line, we made the coefficients ci,j

explicit. In a next step we reshaped the dot product according to the bipartition

and finally notice that only diagonal elements contribute. The Schmidt-rank is two

for this state, meaning that the diagonal matrix connecting the bipartition has two

non-zero elements. Thus, independent of the basis, there is entanglement between
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the bipartition. As a second example consider | 2i:

| 2i =
X

i,j

ci,j | Aii | Bij

=
1

2

h
1 1 1 1

i
0

@

2

4|"i

|#i

3

5

A

⌦

2

4|"i

|#i

3

5

B

1

A

=
1

2

h
|"i |#i

i

A

2

41 1

1 1

3

5

2

4|"i

|#i

3

5

B

(3.1.5)

Applying singular value decomposition to the matrix in this case yields

1

2

2

41 1

1 1

3

5 =
1
p
2

2

41 1

1 �1

3

5

2

41 0

0 0

3

5 1
p
2

2

41 1

1 �1

3

5

= USV †.

(3.1.6)

The matrices U and V † diagonalize the original matrix. The diagonal matrix has

one non-zero entry, there is just a product, so there is only one singular value which

means that there is no entanglement. U and V † can now be applied to the bases of

the bipartition. Our second example state looks very simple if we define the basis

transformation given by U and V †: (|"i , |#i)! (
1
p
2
(|"i+ |#i) ,

1
p
2
(|"i � |#i)) and

call the new basis the x-basis, denoted by an index x as it is the eigenvectors of the

Pauli-x-matrix:

| 2i =
1

2

h
|"i |#i

i

A
USV †

2

4|"i

|#i

3

5

B

=


1
p
2
(|"i+ |#i)

1
p
2
(|"i � |#i)

�

A

2

41 0

0 0

3

5

2

64

1
p
2
(|"i+ |#i)

1
p
2
(|"i � |#i)

3

75

B

= |""ix .

(3.1.7)

Indeed,  2 is a product state in the x-basis and thus not entangled at all. The

method of Schmidt decomposition is powerful because it rotates the basis locally
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into a coordinate system closest to a product state but leaves the correlations (up

to a given order) between partitions unchanged.

3.2 Mixed States and Measuring Subsystems

In the last section, we investigated in two examples how two subsystems can be

differently entangled. In this section we want to investigate the information content

of the whole system by investigating the states of the subsystems. Therefore we

need to generalize our notion of states.

In general states are mixed. A description of mixed states does not only cap-

ture the statistical features arising from quantum uncertainty but also includes the

classical uncertainties. When writing an ensemble theory of quantum states, this

defines the density operator or density matrix for finite Hilbert spaces. This object

captures effects from thermal systems, open systems and all kinds of interaction with

the environment. Especially when a bipartition of a closed system is considered, the

two subsystems might be open if they are entangled. A density matrix can easily

be constructed from pure states

⇢ =
X

i

pi | ii h i| , (3.2.1)

where pi are non-negative coefficients that add up to one. Its interpretation is that

the pi are a classical probability of mixing different states | ii, thus the name mixed

states.

A measurement of an operator O on the system that is described by a density

matrix is given by Born’s rule

hOi = Tr(O⇢), (3.2.2)

where h.i denotes the expectation value.

To get an intuition for density matrices, let us consider the following two examples.
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The first one is the outer product of the maximally entangled state | 1i ⌦ h 1|:

⇢1 =
1

2

2

6666664

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

3

7777775
, (3.2.3)

the second example is a maximally mixed state with pi =
1

4
for all i in Equation

3.2.1

⇢2 =
1

4

2

6666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7777775
. (3.2.4)

If the density matrix of the whole system is denoted as ⇢ and we think of a bipartition

A and B, the corresponding density matrices are defined as partial traces over the

other subsystem:

⇢A = TrB(⇢), ⇢B = TrA(⇢). (3.2.5)

When we look at the subsystems, we find for both cases ⇢A = ⇢B = 1
2I2x2. Notably, a

general density matrix cannot be reconstructed from its partial traces, as information

is lost in the process of taking the trace. More information is needed. To restore

the lost information, one can investigate correlation functions according to Equation

3.2.2, where the correlation h�z�z
i denotes the expectation value of �z ⌦ �z:

h�z�z
i1 = Tr

0

BBBBBB@

1

2

2

6666664

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

3

7777775

2

6666664

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

3

7777775

1

CCCCCCA
= 1,

h�z�z
i2 = 0.

(3.2.6)
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In the first line, the first matrix is �z ⌦ �z in numbers and the second matrix is ⇢1.

The index denotes which of the two examples we consider. Because the expectation

values are zero, the two-point correlation equals the connected two-point correlation.

The latter encodes the statistical correlation and the quantum entanglement. While

it is one in the first example, it vanishes for the second one. The first state is

maximally entangled whereas the second state is completely random as there is no

correlation.

For a general density matrix

⇢ =

2

6666664

a b c d

b⇤ f g h

c⇤ g⇤ k l

d⇤ h⇤ l⇤ p

3

7777775
(3.2.7)

the partial traces are given by

⇢A = TrB ⇢ =

2

4 a+ f c+ h

c⇤ + h⇤ k + p

3

5 ,

⇢B = TrA ⇢ =

2

4 a+ k b+ l

b⇤ + l⇤ f + p

3

5 .

(3.2.8)

If one measures the expectation value of the diagonal operator �z on both subsystems

and the correlation, one can extract the full diagonal of the two-particle density

matrix:

< �z
A > = 2(a+ f)� 1

< �z
B > = 2(a+ k)� 1

< �z
A�

z
B > = 1� 2(f + k)

p = 1� a� f � k

(3.2.9)

Measuring the other Pauli operators and their correlations, one can extract all

free parameters of the full density matrix. A more systematic approach is given by

positive operator valued measures. In this framework, which will be the topic of

10



the next chapter, a minimal set of informationally complete measurements can be

defined. As an extra feature we will demand these operators to be positive in the

operator sense i.e. to have exclusively non-negative eigenvalues.
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4 Positive Operator Valued Measure

(POVM)

In the following section, we will present a method to systematically extract the

complete information content of a general state and map it on positive real numbers.

As the name already reveals, we will measure positive operators M (a) according to

Born’s rule. But there is more to it, so let us first consider one particle before

generalizing to N particles.

4.1 One Particle

One particle with just one spin�1
2 degree of freedom is defined by its density matrix

⇢ as an element of the Lie algebra su(2). This is the vector space of traceless unitary

2x2-matrices together with the commutator ’[., .]’ and has three generators. Thus, it

can be spanned by the Pauli matrices. So, the density matrix is two-dimensional but

has three free real parameters. Thus, one can find a three-dimensional representation

in form of a vector ~s⇢, i.e. the Bloch representation:

⇢(~v) =
1

2
(I2x2 + ~s⇢ · ~�) . (4.1.1)

From this representation we know a possible way to construct unitary positive

operators M (a) [Carrasquilla et al., 2019b]

M (a) =
1

4

�
I2x2 + ~s(a) · ~�

�
, (4.1.2)

where we defined a 2 {1, 2, 3, . . . , n} real valued three component vectors ~s. This is

not the only way to construct positive operators, just a very intuitive one.
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We demand these operators to sum up to the identity

nX

a=1

M (a) = I2x2, (4.1.3)

because then the expectation values

P (a) = Tr
�
M (a)

· ⇢
�

(4.1.4)

define a probability distribution P (a), which is normalized, as can be seen from

explicit summation:

nX

a=1

P (a) =
X

a

Tr
�
M (a)

· ⇢
�

= Tr

 
⇢ ·

nX

a=1

M (a)

!

= Tr(⇢)

= 1.

(4.1.5)

If the density matrix ⇢ is defined by a spin vector ~s⇢, i.e. ⇢ =
1

2
(I2x2 + ~s⇢ · ~�), the

probability turns out to be

P (a) = Tr
�
M (a)

· ⇢
�

= Tr

✓
1

8
(I2x2 + ~s⇢ · ~�)(I2x2 + ~s(a) · ~�)

◆

=
1

4

�
1 + ~s⇢ · ~s

(a)
�
,

(4.1.6)

where we used that � is traceless and �2 = I2x2. It is quite instructive to see in Figure

4.1, that indeed P (a) fulfills the conditions of a normalized probability distribution,

i.e. non-negativity as ~s⇢ has maximal length one and the ~s(a) sum up to zero.

The measurement is informationally complete (IC), if the M (a) span the complete

vector space. Therefore we need at least four positive operators, as the vector space

is three-dimensional and the operators need to fulfill the normalization condition in

Equation 4.1.3.
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(a) Tetrahedral set vectors defined in Equa-
tion 4.1.7

(b) Antenna set vectors defined in Equation
4.1.8

Figure 4.1: Two sets of vectors that each define a POVM measurement set of oper-
ators via Equation 4.1.2

Let’s demonstrate such a measurement by three examples: the ’tetrahedral’

s1 = (0, 0, 1), s2 = (
2
p
2

3
, 0,�

1

3
), s3 = (�

p
2

3
,

r
2

3
,�

1

3
), s4 = (�

p
2

3
,�

r
2

3
,�

1

3
),

M1 =

2

40.5 0

0 0

3

5 ,

M2 =

2

4
1
6

1p
18

1p
18

1
3

3

5 ,

M3 =

2

4
1
6

1
6
p
2
�

ip
12

�1
6
p
2
+ ip

12
1
3

3

5 ,

M4 =

2

4
1
6

�1
6
p
2
+ ip

12

�1
6
p
2
�

ip
12

1
3

3

5 ,

(4.1.7)
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the second we dub ’antenna’

s1 = (1, 0, 0), s2 =(0, 1, 0), s3 = (0, 0, 1), s4 = �(1, 1, 1),

M1 =
1

4

2

41 1

1 1

3

5 ,

M2 =
1

4

2

41 �i

i 1

3

5 ,

M3 =
1

2

2

41 0

0 0

3

5 ,

M4 =
1

4

2

4 0 �1 + i

�1� i 2

3

5

(4.1.8)

and the ’Pauli-4’, which is constructed from the projections of the eigenvectors of the

Pauli operators with positive eigenvalue and the fourth one such that the identity

condition 4.1.3 is fulfilled:

M1 =
1

3

2

41 0

0 0

3

5

M2 =
1

6

2

41 1

1 1

3

5

M3 =
1

6

2

4 1 i

�i 1

3

5

M4 =
1

6

2

4 2 �1� i

�1 + i 4

3

5 .

(4.1.9)

The first two sets are positive by construction (Equation 4.1.2) as long as the vectors

sum up to zero. Drawing the vectors in three dimensions gives the measurement

sets their names (see Figure 4.1). The ’Pauli-4’ set does not have a representation

induced by a set of vectors (Equation 4.1.2). This shows that Equation 4.1.2 defines

a subspace in the space of all positive measurement sets, which is not surprising

seeing that Equation 4.1.2 fixes the trace to be 1
2 as an additional constraint.
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For later reference, we define the overlap matrices as

T a,a0 = Tr
⇣
M (a)

·M (a0)
⌘

= M (a)
ij ·M (a0)

ji ,
(4.1.10)

where we used the Einstein sum convention to make explicit that the trace is taken

over the physical indices i and j of the operator Ma
ij and not over the POVM index

a. The overlap matrices for the three POVM sets are

Ttetrahedral =
1

12

2

6666664

3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

3

7777775
,

Tantenna =
1

8

2

6666664

2 1 1 0

1 2 1 0

1 1 2 0

0 0 0 4

3

7777775
,

TPauli�4 =
1

18

2

6666664

2 1 1 2

1 2 1 2

1 1 2 2

2 2 2 12

3

7777775
.

(4.1.11)

As we will see in the next section, we need these overlap matrices to be invertible.

One can construct POVM bases that do not fulfill this requirement [Carrasquilla

et al., 2019b]. They are excluded in this work, the given examples are indeed in-
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vertible. There inverses are

T�1
tetrahedral =

2

6666664

5 �1 �1 �1

�1 5 �1 �1

�1 �1 5 �1

�1 �1 �1 5

3

7777775
,

T�1
antenna =

2

6666664

6 �2 �2 0

�2 6 �2 0

�2 �2 6 0

0 0 0 2

3

7777775
,

T�1
Pauli�4 =

2

6666664

14 �4 �4 �1

�4 14 �4 �1

�4 �4 14 �1

�1 �1 �1 2

3

7777775
.

(4.1.12)

4.2 N Particles

A measurement on N qubits on a chain is then defined via the tensor product of the

M (a) matrices M (a1)⌦M (a2)⌦ . . .M (aN ) by the 4N possible combinations of the four

(a) at each site. From now on, whenever we write a without an index, we mean the

vector including four components at all sites. With an index i, the four components

at site i are meant. This defines the probability distribution

P (a) = Tr
�
M (a

· ⇢
�
, (4.2.1)

now with the N-particle density matrix. This relation can be inverted. The recon-

struction of the density matrix is defined by the following calculation, where we will
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multiply a one and recognize Equation 4.2.1:

P (a) = P (a0)1a0,a

= P (a0)T�1
a0,a00 Tr

⇣
Ma00Ma

⌘

= Tr
⇣
P (a0)T�1

a0,a00M
a00Ma

⌘

= Tr
⇣
MaP (a0)T�1

a0,a00M
a00
⌘

⌘ Tr(Ma⇢),

(4.2.2)

such that

⇢ =
X

a,a0

P (a)T�1
a,a0M

(a0)

= Ea⇠P (a)

 
X

a0

T�1
a,a0M

(a0)

!
,

(4.2.3)

where a ⇠ P (a) means that a follows P (a) and E denotes an expectation value.

Operators O can be written as

O =
X

a

QO(a)M
(a), (4.2.4)

This relation can be solved for the coefficient QO of the operator in the POVM basis.

First, we multiply by M (a0) and trace out physical indices

OijM
(a0)
ji =

X

a

QO(a)M
(a)
ij M (a0)

ji (4.2.5)

and recognize the overlap matrix Ta,a0 on the right hand side. We multiply by its

inverse and arrive at

QO(a
0) = Tr

�
OM (a)

�
· T�1

a,a0 . (4.2.6)

As it turns out when a complete set of POVM and its statistics are given (equivalent

to P (a) for large sample sizes), all expectation values can be calculated even without
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explicitly reconstructing the density matrix:

Tr(O · ⇢) = Tr

 
X

a

QO(a)M
(a)
X

a0,a00

P (a0)T�1
a0,a00M

(a00)

!

=
X

a,a0,a00

QO(a)P (a0)T�1
a0,a00 Tr

⇣
M (a)M (a00)

⌘

=
X

a

QO(a)P (a)

= Ea⇠P (a)(QO(a)).

(4.2.7)

Here, Ea⇠P (a) denotes an expectation value over samples a following the probability

distribution P (a). All information is stored in the probability distribution P (a).
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5 Restricted Boltzmann Machine (RBM)

We use a RBM to approximate a given probability distribution. In this case the RBM

is referred to as a generative model. It has polynomially many model parameters

✓ = {W, c, b}. An RBM can be represented by a graph (see Figure 5.1), which can

v0 v1 ... vn

h0 h1 ... hm

W
0
0

W
n
m

Figure 5.1: RBM graph representing the first term v ·W · h of the network energy
E(v,h) in Equation 5.0.1, where v and h are the so called visible and
hidden layer respectively and W the connecting weights. There is an all
to all connection between the two layers but no connection within them.
Thus, the model is called restricted.

be interpreted as a matrix multiplication. Each node is an entry of a vector whereas

each line is an entry of the matrix W . The vectors are referred to as layers. The

upper layer is called ’hidden’, the lower one ’visible’. As a bilinear form, it defines

the so called network energy

E(v,h) = �v ·W · h� c · v � b · h. (5.0.1)

The W is the connection between visible v and hidden h layer. On both acts a bias

c and b respectively, which can be interpreted as local external fields. With this
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quantity, the energy, at hand, one can define thermodynamic probabilities

P (v) =
1

Z

X

h

exp(�E(v,h)), (5.0.2)

with the partition sum

Z =
X

h,v

exp(�E(v,h)) (5.0.3)

In most cases, the entries of the visible vector (vi) and in all cases the entries of the

hidden vector (hi) are binary (take values zero or one).

A possible interpretation of the hidden layer is that it represents the microscopic

degrees of freedom and, when summed over, give the macroscopic theory with ef-

fective interactions between the visible nodes. With this picture in mind one can

define the network free energy F (v)

P (v) =
1

Z

X

h

exp(�E(v,h)) =
1

Z
exp(�F (v)), (5.0.4)

with the partition sum as before

Z =
X

v

exp(�F (v)). (5.0.5)

We use that the hidden layer does not have any intra-layer connections so that the

sum over h factorizes and that the hidden units only take binary values, i.e. are

zero or one. Thus the sum over the hidden units can be calculated explicitly:

X

h

exp(v ·W · h+ c · v + b · h) = exp(c · v)
X

h

exp(v ·W + b · h)

= exp(c · v)
X

h

mY

i=1

exp((v ·W + b)ihi)

= exp(c · v)
mY

i=1

1X

hi=0

exp((v ·W + b)ihi)

= exp(c · v)
mY

i=1

(1 + exp((v ·W + b)i)) .

(5.0.6)
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Then the free energy can be written as

F (v) = � log

 
X

h

exp(�E(v,h))

!

= �c · v �
X

j

log(1 + exp(viWij + bj)).

(5.0.7)

Given a set of model parameters ✓, we can now easily calculate the probability for

any input state v:

P (v) =
1

Z
exp(c · v)

mY

i=1

(1 + exp((v ·W + b)i)) . (5.0.8)

5.1 Thermalization

Introduced as a thermal model by defining a Boltzmann distribution of the network

energy, why and how does the system converge to its thermal probability distribu-

tion? This question is important because we will make statistical approximations

of the probability by drawing samples from the RBM. The key insight is, that if we

define a Gibbs sampling procedure with the given probability distribution, this is a

special case of Metropolis-Hastings which is a special case of a Markov process which

guarantees that there is thermal equilibrium. So let us define the needed ingredients

one by one. In this subsection we summarize from [Gelman et al., 2013].

5.1.1 Markov Process

A Markov process is a sequence of random variables, also called sample set, in which

the distribution of the next sample only depends on the current value. Thus the

process is uniquely defined by a positive transition probability P (v0|v) for any two

samples v,v0 to go from v to v0. A sufficient condition for the existence of a stationary

distribution ⇧(v) is detailed balance ⇧(v0)P (v|v0) = ⇧(v)P (v0|v). The stationary

distribution is unique, if the Markov process is ergodic, that is if the number of steps

to come back to any point has finite expectation value and non-zero variance.
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5.1.2 Metropolis-Hastings

In a Metropolis process, the transition probability P (v0|v) can be written as a prod-

uct of proposal probability g(v0|v) and acceptance probability A(v0, v). It is thus a

special case of a Markov process. A new sample is proposed according to g(v0|v),

the probability of proposing v0 while being at v. The acceptance is often chosen to

be A(v0, v) = min
⇣
1, P (v0)

P (v)

⌘
. The algorithm then works the following way:

• start from sample v,

• generate a candidate v0 from g(v0|v),

• draw a unitary random number r 2 [0, 1],

• if r  A(v0, v), accept v0 as the next sample, else reuse v.

By this scheme, a more probable sample is always added to the sample set but a less

probable state only by chance corresponding to the relative occurrence in the target

distribution P (v). The fact that the normalization of the target distribution cancels

out in the acceptance A(v0, v) makes the scheme a powerful tool to approximate a

probability distribution whose normalization is difficult to compute.

5.1.3 Gibbs Sampling

Gibbs sampling [Geman and Geman, 1984] introduces an alternating update scheme

for the hidden and visible vector respectively, based on the conditional posterior dis-

tribution (conditional sampling). It is a special case of a Metropolis-Hastings process

for the RBM. The new sample v0 is proposed for each entry of the vector v separately

(conditioned on the state of all others). As it turns out, for RBMs, the acceptance

A(v0, v) is always one, thus the new sample is always accepted. Due to the structure

of the RBM, which only allows interlayer connections but no intra-layer connections,

the conditional probabilities of the visible entries, given one specific hidden vector,

are independent of each other. For binary visible units, the conditional probabil-

ity of taking the value one compared to taking the value zero is then given by the
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v0 v1 ... vn

h0 h1 ... hn

h ⇠ �(v ·W + b)

v0 v1 ... vn

v ⇠ �(W · h+ a)

h0 h1 ... hn

h ⇠ �(v ·W + b)

...

...

v0 v1 ... vn

h0 h1 ... hn

h ⇠ �(v ·W + b) v ⇠ �(W · h+ a) h ⇠ �(v ·W + b)

Input data Reconstruction 1 ! 1 Equilibrium/ ”fantasy”

Figure 5.2: Gibbs sampling. The RBM gets to its thermal equilibrium when alter-
nately applying Equation 5.1.3 derived in Equation 5.1.2 to the visible
and hidden layer. ’⇠’ means that the layer takes new values following
the given probability distribution. The first reconstruction is reached
after sampling the hidden layer depending on the data and sampling the
visible layer depending on the hidden layer.

exponential of the energy difference as the partition sum cancels out:

P (vi = 1|h)

P (vi = 0|h)
= exp (�(E(vi = 1|h)� E(vi = 0|h)))

= exp(Wijhj + ci)

(5.1.1)

We use that the two probabilities P (vi = 1|h), P (vi = 0|h) add up to one to express

the latter one by the first one. Then we reorder the terms and define the sigmoid

function �(x) = 1
1+exp(�x) and the local energy Ei = �Wijhj � ci:

=) P (vi = 1|h) = exp(Wijhj + ci)(1� P (vi = 1|h))

() P (vi = 1|h)(1 + exp(Wijhj + ci)) = exp(Wijhj + ci)

() P (vi = 1|h) =
1

1 + exp(�Wijhj � ci)

⌘ �(�Ei).

(5.1.2)

An analogue calculation is true for the conditional probability P (hi = 1|v) of the

hidden layer given the visible one. This defines the proposal probabilities. So the

evolution to equilibrium (see Figure 5.2) is given by alternately applying:

h ⇠ �(v ·W + b)

v ⇠ �(W · h+ c),
(5.1.3)
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where h ⇠ �(. . . ) means that h takes a value following the probability distribution

given by �(. . . ). One Gibbs reconstruction is defined as setting the hidden units to

one according to the conditional probability P (hi = 1|v) = �(v ·W + b) and zero

otherwise for all i in the hidden layer and afterwards setting the visible units to one

according to P (vi = 1|h) = �(W ·h+ c) for all i in the visible layer with the hidden

units already updated.

5.2 Learning

Now we know that there is thermal equilibrium of the RBM, which is the Boltz-

mann distribution, and how to get there based on sampling. Given the weights

that determine the network energy we can pick up samples from Gibbs sampling

and approximate the probability distribution without calculating the normalization

explicitly.

Let us turn around the question. If we want to reproduce a given probability dis-

tribution with the RBM, how do we find the weights? This process is called learning.

An RBM can approximate every probability distribution with arbitrary precision if

the number of hidden nodes is large enough, which might increase exponentially

with the number of visible units. In practice we will not make use of this feature

and stick to the polynomial approximation but keep in mind that the number of

hidden nodes is closely linked to the representational power. Given a probability

distribution P (v) that we want to represent by the network PRBM we want to find

the minimum distance between them with respect to the weights D(P (v), PRBM(v)).

Typically, one chooses the Kullback-Leibler (KL) divergence as a distance measure

[Hinton, 2002]. It approaches zero, as the two probability distributions approach

each other, but is not symmetric, thus is not a metric. The KL divergence is defined

in this context as the difference between two probability distributions P and Q:

DKL(P k Q) =
X

v

P (v) log

✓
P (v)

Q(v)

◆
. (5.2.1)

Given some input data v following a probability distribution P 0(v), the probability
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of visible layer after one step of Gibbs reconstruction is P 1(v) and the equilibrium

distribution is P1(v).

We will apply the Contrastive Divergence (CD) learning scheme [Hinton, 2002].

For a detailed calculation see Equation B.3 in the Appendix B.1. The variation of

the distance function by one entry of the connecting weight is given by

@

@Wij

�
DKL(P

0
k P1

✓ )�DKL(P
1
✓ k P

1
✓ )
�
= hvihjiP 0 � hvihjiP 1

✓
, (5.2.2)

where the expectation values of the correlation between the layers over the data

distribution P 0 and the first reconstruction P 1
✓ enter. This expectation value is an

averages over a ’mini-batch’, a subsample of about 20 samples. The formation of

a mini batch is to calculate expectation values efficiently. The interpretation of

the chosen error function is the following: We want the first reconstruction to have

the same distance from the network thermal distribution as the input data. Thus,

if we have learned successfully and the data distribution is roughly the thermal

distribution, then the generated distribution by one step of Gibbs sampling will also

roughly be thermal, i.e. describe the data distribution. This yields the learning

algorithm:

• Given a sample set,

• form mini batches,

• for a sample v in the mini batch:

– set h = �(v ·W + b),

– define W+ = vhT,

– sample h ⇠ �(v ·W + b),

– sample v ⇠ �(W · h+ c),

– set h = �(v ·W + b),

– define W� = vhT.

• average over mini batch,
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• set W to W + �(W+ �W�).

In the last line I introduced the learning rate �. vhT denotes the outer product, i.e.

the correlation matrix between visible and hidden layer. It is important to set the

hidden units to the binary values before sampling the visible layer, as the hidden

layer has the role of an informational bottleneck. When the correlation is calculated,

the hidden units can be set to their probability of being one to reduce sampling noise

[Hinton, 2012].

The derivation of the learning for the biases a,b is analogue to the weights and

given by:

b b+ � (hhiP 0 � hhiP 1) ,

c c+ � (hviP 0 � hviP 1) .
(5.2.3)

Together, they are the Contrastive Divergence (CD) learning algorithm.

5.3 Error Measures

With CD we have a stochastic gradient descent method at hand that is able to

sample the gradients very efficiently in order to minimize a distance function between

the network probability distribution and the target probability distribution. How

does the chosen distance function relate to other standard distant measures? In the

following section we will briefly describe the major aspects of applied error functions.

5.3.1 Kullback-Leibler Divergence and Fidelity

The Kullback-Leibler Divergence has already been introduced in Equation 5.2.1.

As a difference between data distribution Pdata and model probability distribution

PRBM it is written:

DKL(PdatakPRBM) =
X

v

Pdata(v) log

✓
Pdata(v)

PRBM(v)

◆
. (5.3.1)
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The Fidelity between two probability distributions Pdata and PRBM is defined to be

F (Pdata)kPRBM) =

 
X

v

p
Pdata(v) · PRBM(v)

!2

. (5.3.2)

To evaluate these quantities it is necessary to know the whole probability distribu-

tions of the training data and of the network. This is exponentially expensive and

thus only applicable for small system sizes.

5.3.2 Reconstruction Error

The reconstruction error is defined to be the expectation value of the squared dis-

tance between the data vector and a reconstruction from one Gibbs-step

Drecon. = hkv � hviP 1k
2
iP 0 . (5.3.3)

This error measure has the advantages that it is an expectation value, thus it can

approximately calculated from a mini-batch, and that the first reconstruction is very

easy to get. But there is the subtlety that a small mixing rate from the Gibbs-step

also leads to a small reconstruction error. Mixing rate is the inverse of the Markov

mixing time and describes how fast the system approaches its thermal equilibrium.

A small mixing rate is induced by large absolute values of the weights. The weights

change the most from their small initial value during the first few epochs of training,

which correlates with the major decrease of the reconstruction error. An epoch the

the phase of training in which the whole training data is used exactly once. Training

requires several epochs. A causal statement between change of the weights and

decrease of the reconstruction error cannot easily be made. Thus the reconstruction

error should be viewed as a sanity check only and large increases are a marker for

something going wrong.
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5.3.3 Log-Likelihood and Pseudo-Log-Likelihood

Equation 5.0.2 defines a likelihood function if it is viewed as a function of the network

parameters ✓ given a visible sample v

L✓(v) =
1

Z

X

h

exp(E✓(v,h)), (5.3.4)

where the network parameters are ✓ = W, a, b and the network energy as a function

of the network parameters for a given hidden and visible sample E✓(v,h) = v ·W ·

h + c · v + b · h. Taking the logarithm defines the log-likelihood. Log-likelihood

is numerically more stable and still a distant measure because the logarithm is a

strictly monotonic function

l✓(v)) = log(L✓(v)). (5.3.5)

A pseudo-likelihood is defined to be an approximation in the sense that it neglects

the conditional dependence of vi on vj for all i, j. For an RBM the approximation

is exact, because the layers do not have intra-layer connections. Thus the pseudo-

likelihood can be decomposed as a product, the pseudo-log-likelihood as a sum over

Log-likelihoods of one visible vi conditioned on all others v\i:

log(L✓(v)) =
X

i

l✓(vi|v\i). (5.3.6)

Knowing the conditional probability,

P (vi|v\i) =
P (v)

P (v) + P (v, vi ! 1� vi)
, (5.3.7)

we can make a probabilistic ansatz

g = N · log
�
P (vi|v\i)

�
,

i ⇠ U(0, N),
(5.3.8)

where i follows a uniform distribution. Then the expectation value of g is the
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pseudo-log-likelihood

E[g] =
X

i

l✓(vi|v\i). (5.3.9)

Altogether, writing ṽi for v with vi ! (1� vi),

l✓(v) ⇡ N · log

✓
P (v)

P (v) + P (ṽi)

◆

= N · log

✓
exp(F (v))

exp(F (v)) + exp(F (ṽi))

◆

= N · log(� (F (ṽi)� F (v))),

(5.3.10)

where � is the sigmoid function, as introduced in equation 5.1.2 and F (v) is the free

energy. The pseudo-log-likelihood measures approximately how close the thermal

distribution of the RBM is to the data distribution. The pseudo-log-likelihood is easy

to compute and gives a good overview over the learning progress, i.e. convergence,

but it is difficult to develop an intuition for the absolute numbers.

5.3.4 Hyperparameters

Choosing suitable hyperparameters is a real issue in ML and requires some ex-

perience with the system. In this section we present the isolated effects of each

hyperparameter, they can have combined effects which are much more involved to

study. In this section we use relative descriptions like ’small value’. In Section 5.5

we present the quantitative results of hyperparameters which we found suitable from

our experience.

The number of hidden units is a defining quantity for the expressiveness of the

model, as the hidden layer is the informational bottle neck. The hidden units are

binary and each one encodes one bit of information about the correlations. Increas-

ing the number of hidden units also increases the number of model parameters and

is expected to improve the learning result but slowing down the learning.

The initial value of connecting weights W are Gaussian random values with zero

mean and 0.01 variance, the biases a and b as constant 0.1. Those values were

recommended by [Hinton, 2002]. The weights need to be small but non-zero in
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order to have non-zero probability for the hidden units to be one and to explicitly

break symmetry.

When choosing a large learning rate �, we expect very fast convergence in all of

the above error functions with a larger error. The CD algorithm might get stuck in

local minima of the parameter space of the model which are far away from optimal

or overshoot minima which are close to optimal.

Large number of training samples (106 for N=2) exhibit successful learning after

very few epochs.

The number of epochs is how often the network is trained with the training data.

The learning success measured by the error function is largest for the first epochs

and expected to flatten to smaller and smaller training improvements. Where these

two phases are strongly depends on the learning rate and the amount of training

data.

The size of a mini batch influences the learning process. Small batches lead to

fast decrease of the error functions but large oscillations as the averaged gradients

might point into a wrong direction. Small mini batches lead to larger calculation

times per epoch. That is due to the implementation of batch-wise updates. Small

batches tend to run into local minima or even worse do not reflect the topology of

the parameter space of the model and lead to wrong results. For large mini batches

the gradient might become very small and learning is slower.

Small sample sizes from the RBM (103 for number of visible units N = 2) lead

to large deviations of the sampled distribution from the analytic probability distri-

bution of the RBM calculated from the network parameters. Taking many samples

from the RBM via Gibbs sampling leads to small deviations from the analytic prob-

abilities.

5.4 Continuous States

For the sake of completeness, we are also interested in the question of how to handle

continuous local degrees of freedom. In the following, we will propose that contin-

uous visible units can be treated very similarly to binary ones by following three
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different approaches: Investigating the expectation value of conditional probabili-

ties, referring to existing thermal models and a limiting case. If we allow the visible

entries to take continuous values between 0 and 1, Equation 5.1.2 does not hold any

more for the conditional probability but instead we have to write for the conditional

probability density of one visible unit vi to take the value xi, given the hidden units

h:

P (vi = xi|h) =
exp(xiWijhj + bihi + xici)R 1

0 dv exp(E(v,h))

=
exp(xi(Wijhj + ci))

1
Wijhj+ai

[exp(xi(Wijhj + ci))]
xi=1
xi=0

=
Ei exp(xiEi)

exp(Ei)� 1
.

(5.4.1)

It is plotted in Figure 5.3. We see that for x close to its boundary the conditional

probability density diverges for absolute large Ei.

(a) (b)

Figure 5.3: Conditional probability density in case of continuous visible units (see
Equation 5.4.1) as a function of the values xi the unit can take (a) and
as a function of the local energy Ei = Wijhj + ci in (b). It diverges for
xi close to zero and one.

The expectation value of value of the visible unit under the conditional probability

P (vi = xi|h) as a function of the local energy Ei = Wijhj + ci is given by

EP (vi=xi|h)[xi] =
Ei

exp(Ei)� 1

Z 1

0

dxixi exp(xi · Ei) =
�1

Ei
+

1

1� exp(�Ei)
. (5.4.2)

The expectation value as a function of the energy Ei at site i is plotted in Figure

5.4. The expectation value has a similar shape to the sigmoid function �(Ei) and
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Figure 5.4: Expectation value of the conditional probability in case of continuous
visible units (see Equation 5.4.2) and sigmoid function. Qualitatively
similar, the latter is used to approximate the first.

approximates it well for small energies with a relative factor of 3 in steepness. This

justifies the standard assumption that for continuous variables (if normalized to val-

ues 2 (0, 1)) one can just use the value of the sigmoid function instead of stochastic

binary units [Hinton, 2002].

Another implementation for continuous states is used by [Chen and Murray, 2002],

originally introduced by [Movellan, 1998]. The stochasticity of the so called Diffusion

Network is rooted in a Langevin equation which describes diffusion processes in

classical physics - thus its name. These processes are characterized by a deterministic

(or classical) and a thermal (or quantum) probabilistic part. For the probabilistic

part, again the value of the sigmoid function is directly used as a continuous visible

variable. For the stochastic impact there are different approaches. The first one

is to hope for enough statistics resulting from the update procedure of the binary

hidden units via Gibbs sampling [Chu et al., 2018]. The second is to add a Gaussian

noise term to the visible units [Freund and Haussler, 1991].

Furthermore, [Freund and Haussler, 1991] point out that the case of continuous

visible units supplemented with a Gaussian term can be approximated by the case of

binary visible units and vice versa, both in representational power and the learning

algorithm in the limit of small weights. This limiting case, in which the sigmoid is

linear, motivates the linear model for the visible units used in [Chen and Murray,
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2002].
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5.5 Results of Stationary RBM Representation

In this section, we want to give a quantitative understanding of the learning process

by presenting the used hyperparameters (Section 5.3.4) and some of the error mea-

sures (Section 5.3) of the corresponding learning process. Therefore we study three

examples, two spin states and one example of continuous states.

5.5.1 Discrete States

One-Hot encoding

Given a density matrix or a state, one can easily get the probability distribution

(Equation 4.2.1). We use a Metropolis-Hastings method (compare Subsection 5.1.2)

to generate samples from the distribution. For our spin 1
2 systems, we chose the num-

ber of local operators to be four, so a sample of one spin can equivalently be written

as an integer 1, . . . 4 or as a so called one-hot (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

which can be represented in the RBM as four binary visible units and treated anal-

ogously to standard binary units.

Ground State of TFI Hamiltonian

The ground state for small system sizes, e.g. N = 2 can be calculated by diagonal-

ization of the Hamiltonian for different field strengths hf . An example of hf ! 1

is given in Section A.1. For N = 2, hf = 100, the tetrahedral POVM, 4 hidden

units, learning rate � = 10�4, 5 ·105 training samples describing P a
data, 25 epochs and

mini-batch size of 20, we trained the RBM with CD. These numbers of the hyper-

parameters are the result of heuristics, our experience and suggestions in [Hinton,

2012]. They might be optimized further but reliably lead to convergence of the error

functions, as can be seen in Figure 5.5.
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(a) Kullback-Leibler-Divergence and residual of Fidelity

(b) Pseudo-log-likelihood (c) Reconstruction error

(d) Weight W0,0 and its gradient

Figure 5.5: Error functions of training the ground state of TFI for N = 2 and
hf = 100 with hyperparameters given in the main text (Section 5.5.1).
Different error functions suggest convergence after different number of
epochs. Reconstruction error (c) after five, pseudo-log-likelihood (b)
after ten, Kullback-Leibler divergence and fidelity (a) after 15 epochs,
the weight (d) only settles in after 20 epochs.

We observe that all error functions show convergence but the plateau sets in after
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different number of epochs (see Figure 5.5). The reconstruction error decreases the

most, when the weights take absolute large values which is linked to the change of

the mixing rate, thus reconstruction error is not reliable. Kullback-Leibler diver-

gence and fidelity (Equation 5.3.2) show similar behavior and are most reliable as

they take the whole probability distributions into account but are therefore com-

putationally exponentially expensive for larger systems. Pseudo-log-likelihood gives

a qualitative approximation and only scales linearly with the number of network

parameters and the size of mini-batches. The RBM represents the ground state of

the TFI Hamiltonian with high accuracy, the residual of one minus the fidelity is

smaller than 10�4.

GHZ State

The GHZ state is named after Greenberger, Horne and Zeilinger and is highly non-

classical in the sense that bipartitions are not separable. Written as a wave function

it is defined as

| GHZi =
1
p
2

⇣
|"i

⌦N + |#i
⌦N
⌘
, (5.5.1)

where N is the system size. It describes an equal superposition of all states being

in the state |"i and all states being in the state |#i. If we chose the z-basis, the

eigenvectors of �z as local basis, and N = 2, the density matrix is written as

⇢GHZ =
1

2

2

6666664

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

3

7777775
. (5.5.2)

We train it with the same hyperparameters as above, this time we add a momen-

tum method for the updates of the network parameters, where 0.8 of the last update

gets added again, which increases stability and lowers the effect of local minima. We

show the resulting error functions in Figure 5.6.
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(a) Kullback-Leibler Divergence and residual of Fidelity

(b) Pseudo-log-likelihood (c) Reconstruction error

(d) Weight W0,0 and its gradient

Figure 5.6: Error functions of training the GHZ state for N = 2 with hyperparame-
ters given in the main text. Different error functions suggest convergence
after ten epochs. Kullback-Leibler divergence and fidelity (a), pseudo-
log-likelihood (b), Reconstruction error (c) and the weight W0,0 (d).

We observe a small plateau at the beginning of learning, which indicates that
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the gradient is very small at the beginning. The initial values might sit a close

to a saddle point of the parameter space for the GHZ state. All error functions

change rapidly until ten epochs, when convergence sets in. One minus the fidelity

and Kullback-Leibler divergence oscillate around 10�4 and do not improve further.

The highly entangled GHZ state can be represented by the RBM.

5.5.2 Continuous States

As an example for continuous visible units we take measurement data from a quan-

tum many-body experiment with ultra-cold Bosons [Kunkel et al., 2019], also per-

formed in Heidelberg. In a Bose-Einstein condensate of an elongated atomic cloud of
87Rb the short time dynamics leads to an entangled many-body state [Kunkel et al.,

2019]. We take the relative occupation numbers, i.e. the occupation number divided

by the number of atoms in the cloud, of F = 1 hyperfine manifold n1,+1, n1,�1 and

F = 2 manifold n2,�2, n2,+2, whose difference are the spin in x-direction Sx and the

quadrupole moment in yz-direction Qyz respectively (Figure 5.7). The squeezing,

the object of interest for the experiment, is given by the variance of the data cloud

in Figure 5.7 depending on the angle of the projection. This is shown in Figure

5.8. Training the network on the relative occupation numbers, it has to extract the

information about the squeezing on its own.
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Figure 5.7: Experimental data from [Kunkel et al., 2019] and samples from RBM.
Occupation numbers of hyperfine levels in ultracold 87Rb carry informa-
tion about magnetization in x-direction Sx and the quadrupole moment
Qyz. There is spin squeezing, i.e. an elongation along the diagonal,
indicating quantum entanglement. The RBM is able to capture this
quantum feature from learning data of continuous occupation numbers.
Optimal training parameters are given in the main text.

Figure 5.8: Spin Squeezing: Variance from Gaussian fit of projection over angle from
Figure 5.7. The RBM with continuous visible units is able to capture
the quantum nature of trapped ions

We implemented the RBM with continuous visible units by taking the value of the
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sigmoid function as the value of the visible units with the following hyperparameters:

4 visible units representing n1,+1, n1,�1, n2,�2, n2,+2, 30 hidden units, learning rate

� = 10�4, batch size of 10, 200 epochs and trained the RBM on the occupation

numbers of 284 measurements. One can conclude that taking the value of the sigmoid

as the output for continuous visible units is justified in this case. The squeezing is

indeed captured by the network but the variance is slightly overestimated.
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6 Time Evolution - POVM Equation of

Motion

Now, we bring together the POVM description of states representable by RBM, seen

in the previous Section 5.5, with time evolution known from standard quantum me-

chanics and derive the POVM equation of motion (e.o.m.). This can approximately

be captured and solved by RBMs (Section 8). Therefore we start with unitary time

evolution in standard quantum mechanics. In the Heisenberg picture, time evolution

of operators O(t) is given by a unitary transformation

O(t+ dt) = e�iH·dtO(t)eiH·dt, (6.0.1)

with H the Hamiltonian of the system. This can be equivalently written in the

continuous time limit dt! 0 and up to first order in dt

dO(t)

dt
= i [H,O] , (6.0.2)

where [., .] denotes the standard commutator of two operators.

The exact time evolution ⇢(t) of the initial density matrix ⇢0 under a Hamiltonian

H is written

⇢(t) = exp(�iHt) · ⇢0 · exp(iHt), (6.0.3)

where exp() is the matrix-exponential and can be calculated in the following sense.

If v are the eigenvalues of H and w the matrix of their eigenvectors, then exp(H) =

w · diag(exp(v)) · w†. This procedure is called exact diagonalization.

From Equation 6.0.2 we can derive the time evolution of the POVM probability
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distribution P (a) by explicitly plugging in the representation defined in Section 4.

To make clear Einstein sum convention, we also write P a equivalently to P (a):

dP a000

dt
=

d⇢ij
dt

Ma000

ji

= i [H, ⇢]ij M
a000

ji

= iHik⇢kjM
a000

ji � i⇢ikHkjM
a000

ji

= iQa0

HM
a0

ikP
aT�1

aa00M
a00

kj M
a000

ji � iP aT�1
aa0M

a0

ikQ
a00

H Ma00

kj M
a000

ji

= iQa0

HK
a0a00a000P aT�1

aa00 � iQa00

H Ka0a00a000P aT�1
aa0

= iP aT�1
aa0

⇣
Ka0a000a00

�Ka0a00a000
⌘
Qa00

H .

(6.0.4)

In the first line we take the time derivative of the POVM probability defined in

Equation 4.2.1 and use Einstein sum convention for the trace. From the first to the

second line, we plugged in the time evolution (Equation 6.0.2) of the density matrix

⇢. In the following we used the POVM basis for the operators and defined the trace

over three M-matrices

Kaa0a00
⌘Ma

ijM
a0

jkM
a00

ki (6.0.5)

and used that it is cyclic to reorder the indices so that the structure of the POVM

equation of motion can be captured on first sight. The time derivative of the proba-

bility distribution P (a) is a linear transformation of P (a) and the matrix in between

contains an antisymmetric ingredient in form of Ka0a000a00
� Ka0a00a000 . To make the

structure even more apparent, we repeat our calculations with its graphical repre-

sentation introduced in [Carrasquilla et al., 2019b] in the Appendix C.1

In principle, one could also start from other equations of motion like the Lindblad

master equation and insert the POVM basis to capture the time evolution of open

systems. The aim of this thesis is just a prove of principle, so we stick to the unitary

case.
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7 Exact Solution

To check consistency of our developed theory of time evolution for the probability

distribution, let us solve small systems exactly and compare to exact diagonalization.

By writing Equation 6.0.4 as a matrix multiplication

dP a(t)

dt
= P a0(t) ·Ra0,a, (7.0.1)

we define the time evolution matrix

Ra,a000 = iT�1
aa0

⇣
Ka0a00a000

�Ka0a000a00
⌘
Qa00

H . (7.0.2)

If N is the system size, its size is 4N , 4N . The measurement outcomes of P a are

sorted that way, that the last index is the one changing first. As an example for

N = 2: a = ((0, 0), . . . (0, 3), (1, 0), . . . (1, 3), . . . (3, 3)). Ra,a0 is a real matrix whose

columns and rows add up to zero. For the time evolution to first order in the

infinitesimal time step dt, one can also write

P a(t+ dt) = P a(t) + dt
dP a(t)

dt

= (Ia,a0 + dtRa,a0)P a0 .

(7.0.3)

The expression Ia,a0 + dtRa,a0 is called pseudo-stochastic matrix [Carrasquilla et al.,

2019a]. Its columns add up to one, thus it preserves the norm of a probability, but

its entries can be negative and positivity is not preserved in general, thus the prefix

’pseudo’. But one can choose dt small enough, such that kIa,a0 +dtRa,a0
k � 0 in the

operator norm.

As a consistency check, we solve this differential equation (Equation 7.0.1) ana-
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(a) N=3 (b) N=4

Figure 7.1: Comparison of exact diagonalization and exact time evolution of P(a)
(Equation 7.0.4) for GHZ(N), with N = 3, 4 under HTFI with magnetic
field hf = 1.1. For both cases N = 3 and N = 4 the two curves lie
exactly on top of each other. The mapping is exact.

lytically by the matrix exponential

P a(t) = exp
⇣
tRa,a0

⌘
· P a(t = 0). (7.0.4)

In the POVM basis, Equation 4.2.4 induces the following coefficient for the TFI

Hamiltonian

QH = �
X

i

Qai
z Q

ai+1
z � hf

X

i

Qai
x , (7.0.5)

which enters the time evolution through the time evolution matrix Ra,a0 . With the

GHZ-state as initial conditions for P a(t = 0), this gives the results shown in Figure

7.1a for system size of three and in figure 7.1b for system size of four spins. We see

that the developed theory is exact so far.
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8 POVM Time Evolution with RBM

In this section, we will make a proof of principle that the quantum many-body

time evolution can be solved solely with a neural network based on probability

distributions.

We propose an approach for solving the Equation 6.0.4 which is similar to the

Euler integration method but based on training the network and drawing samples

from it. We iteratively train the RBM on the probability distribution at a given

time t and use the network to efficiently draw samples from P (t) + dtdP (t)
dt which

can be used to train the network parameters for P (t+ dt). The sampling from the

’future distribution’ P (t + dt) = P (t) + dtdP (t)
dt is done via a Metropolis-Hastings

algorithm. The acceptance of the new sample ã coming from sample a is given by

A(ã, a) =
P ã(t) + dtdP

ã(t)
dt

P a(t) + dtdP
a(t)
dt

(8.0.1)

where P a(t) is either known and stored from the previous time step or can easily

be calculated from the network parameters (Equation 5.0.2). Before we present our

results, we need to answer some questions concerning representational power and

how we chose suitable hyperparameters.

8.1 Integration Step Size

An important aspect of the integration scheme with the RBM is the integration

step size dt. As this integration scheme is simply a version of Euler integration, it is

expected to be unstable in the sense that the norm is not conserved. So, for N = 2,

we integrate the equation P a(t + dt) = P a(t) + dt · dPa(t)
dt with two different step

sizes. The resulting spin expectation values can be seen in Figure 8.1.
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Figure 8.1: Numerically integrated P a(t+dt) = P a(t)+dt · dP
a(t)
dt with Euler for two

different dt. For dt much larger than 10�3 the integration is unstable.

Indeed it is clear from the figure that the spin expectation value increases unphys-

ically. That is the spin expectation value should not be out of the interval [�1, 1]

for a physical spin, but it is after short times if dt is chosen to be of the order 10�2.

8.2 Representational Power

An important question on the way is, if the RBM is able to learn any probability

distribution that is generated during time evolution. To answer this question, we

solve the time evolution equation of the density matrix via exact diagonalization

(Equation 6.0.3). For discrete points in time t, the exactly evolved density matrix

⇢(t) gets mapped on the POVM probability, on which we train the RBM. From

both, the exactly solved density matrix and the network parameters, we calculate

the spin expectation value and plot it in Figure 8.2. The network parameters enter

in Equation 4.2.7 through the probability distribution P (a), which is PRBM(a) in

this case (with a = v in Equation 5.0.8). The initial state is the ground state of

TFI with magnetic field hf = 100, quenched to hf = 1.1 for the dynamics. The

hyperparameters of training are: the number of hidden units mhid = 4, number of

epochs is 10, size of mini-batch is 10, learning rate � = 10�4 and the number of

training samples is 5 · 105. The deviations are small and seem to be of statistical

nature. One can see that the training of the RBM is successful for any probability

distribution generated by time evolution.
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Figure 8.2: Time Evolution of expectation value of spin in x-direction from exact
diagonalization (Equation 6.0.3) ’*’ and afterwards training the RBM to
represent the state ’+’ at several points in time.

8.3 Reduction of Statistical Errors

We want to reduce the statistical error of learning and sampling such that the RBM

is able to represent small changes in the probability distribution when integrating

the POVM e.o.m. with the RBM over a small time step dt. Therefore we investigate

learning and sampling behavior for different sample sizes, as this hyperparameter

reduces statistical errors.

The question one should consider is, if the Metropolis sampling from the ’future

distribution’ accurately represents the underlying probability distribution. To inves-

tigate how the sampling noise can be reduced, we vary the sample size in the range

from 102 to 106 logarithmically, train the network on a ground state of the TFI

Hamiltonian with transverse field hf = 100 with following hyperparameters: four
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hidden units, a learning rate of � = 10�4, 10 epochs with mini batches of size 10. We

plot the first five measurement outcomes of the exact probability calculated directly

from the density matrix of the ground state (’*’), the probability distribution calcu-

lated from the sample set as a histogram with error bars from Metropolis Sampling

(’+’) and the probability distribution calculated from the network parameters of the

trained RBM (’x’) in Figure 8.3. We see that the probabilities calculated from the

network parameters only converge for the last two crosses, corresponding to sample

sizes of order > 105. We also varied other parameters a little and always found the

same behavior in sample size.

Figure 8.3: Convergence of sampling from the exact probability distributions (’+’)
and learning result (’x’) to the exact probability distribution (’*’). First
five measurement outcomes of the exact probability calculated directly
from the density matrix of the ground state (’*’), the probability dis-
tribution calculated from the sample set as a histogram with error bars
from Metropolis sampling (’+’) and the probability distribution calcu-
lated from the network parameters of the trained RBM (’x’) for logarith-
mically varied sample size in the range from 102 to 106. The different
colors are different sample sizes, increasing from left to the right for
each measurement outcome. Error bars of probability approximated by
Metropolis sampling decrease rapidly and are negligible for sample sizes
larger than 104, the learned probabilities only converge for sample sizes
larger than 105.

In this context, one should ask if the sampling and learning noise is already de-

creased that much that the impact on the probability distribution of an infinitesimal
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time step is larger than the one of the noise. Therefore we investigate the stability of

the RBM integration for dt = 0. We train the RBM on the ground state (see Equa-

tion A.1) of the TFI Hamiltonian with transverse field hf = 100 with 106 samples

and draw the same amount of samples again, just to train it on those data. This

procedure is expected to be unstable in the sense that there is no force bringing the

probability distribution back to the physical state once sampling noise has driven it

away. In Figure 8.4, we see the first five entries of the probability distribution for

each of the 10 repetitions of sampling and learning. The probabilities do not change

much compared to the sampling noise for smaller sample size in Figure 8.3.

Figure 8.4: Stability check of repetitively learning and sampling the RBM using
Metropolis Hastings Equation 8.0.1 with dt = 0. The first five entries of
the probability distribution of the ground state of the TFI Hamiltonian
with transverse field hf = 100 for 10 times learning and sampling. Sam-
ple size is 106, 4 hidden units, 10 epochs, mini batch size of 10, learning
rate of 10�4. Each learning result is encoded in a different color from
left to right.

The repetitive learning and sampling is robust against noise and information loss

for a sample size of 106 for a system size of N = 2. There is the conflict, that the

RBM needs a large dt so that the physical change of the probability distribution is

larger than the sampling noise, but then Euler integration becomes unstable. To

reduce sampling and learning noise, the sampling size needs to be very large, which

immensely slows down the learning process, that needs to be repeated for every
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small time step dt.
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8.4 Results

After these preliminary considerations, we can put the Euler-integration scheme

with the RBM together with dt = 0.1 and sampling size of 2 ·106. In Figure 8.5, one

can compare the result of the RBM with the solution from exact diagonalization.

(a) Expectation value of magnetization in x-
direction at site 1.

(b) First five entries of the probability distri-
bution P

a
RBM (t) as a function of time.

Figure 8.5: Time evolution by RBM integrator as described in the main text and
exact diagonalization. N = 2, initial state is ground state of TFI Hamil-
tonian with hf = 100 quenched to hf = 1.1. Sample size is 2 · 106 and
dt = 0.1.

We train the RBM with the samples from the ’future distribution’ in ten epochs,

as it is expected that the weights only change very little and starting point is already

very close to the target distribution. We investigate how far off the integrator gets, if

smaller sample sizes are used. That way we can approximate the minimum number

and the scaling of the statistical errors. The analogous results to sample size of 2·106

for samples sized of 104, 105 and 106 are shown in the Appendix D. We observe that

only for a sample size of 2 · 106 the expectation value of the spin in x-direction is

approximately correct for short times. The time evolution for the TFI ground state

of hf = 100 quenched to hf = 1.1 for system size N = 2 is captured by the RBM

integrator for short times.

In our implementation for N = 2, we used the time evolution matrix Ra,a0 , defined

in Equation 7.0.1, for the Metropolis sampling in Equation 8.0.1. The problem with

this is the multiplication Ra,a0P a0(t) has exponentially many terms with system
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size. To solve this, there are multiple options. One can find approximations in

the correlation length to formulate local approximations. In the Appendix C.2, we

investigate how local approximations might be formulated in the POVM setting.
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9 Conclusion and Outlook

A machine learning graph (RBM) has been used to represent the POVM represen-

tation of many-body quantum states. From there, we derived a POVM equation

of motion which can be solved by the RBM alone. For the RBM representation

of a steady state we showed that besides discrete systems, RBMs are also able to

represent entanglement features of quantum many-body systems with continuous

degrees of freedom by continuous visible units. For the POVM equation of motion,

we showed exact correspondence to the quantum mechanical equivalent and found

a sampling scheme for the RBM that integrates it statistically. We found out that

in order to reduce statistical sampling and learning errors, an enormous amount of

sampling data is needed. In the case of system size N = 2, a sample set of 106 was

sufficient to obtain good agreement to the solution from exact diagonalization for

short times. The developed NQS solver suffers from accumulating errors with time

and precision is limited. In our application, the NQS solver is eventually unstable

and the computational cost is much larger than exact diagonalization even for small

system sizes. By using other models than the RBM, precision and stability might

improve.

We can conclude, that RBMs are a powerful tool to represent probability distribu-

tions. The POVM setting can be used to represent any quantum state as a positive

probability distribution that can be learned by the RBM. RBMs are even able to

learn distributions with finite continuous values. The time evolution in the POVM

setting is possible, but at this very rudimentary stage of development it has no ad-

vantage over exact diagonalization. However, it has the potential to be improved

so that it scales sub-exponentially in system size and appropriate approximations

might be implemented.

Future works might profit from the sub-exponential scaling of network parameters
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to represent NQS to successfully implement a scalable NQS integrator based on real

numbers. This would enable a powerful tool to simulate relevant many-body systems

for experiments, like open systems.
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A Appendix for Chapter 3

A.1 Ground State of TFI

In the limit of hf !1 the ground state for N = 2 written in the z-basis is

⇢groundstate(hf !1) =
1

4

2

6666664

1 �1 �1 1

�1 1 1 �1

�1 1 1 �1

1 �1 �1 1,

3

7777775
(A.1)

as can be calculated for large hf by calculating the eigenvectors of the Hamiltonian

and observe convergence to the above state. It is dominated by the alignment along

the external field in x-direction.

A.2 KL-Divergence and Mutual Information as

Entanglement Measures

Having a proper probability distribution P (a) at hand after applying POVM gives us

the possibility to investigate the system from an information theoretical perspective.

The POVM description preserves factorizability, i.e. the probability distribution of a

product state is a product distribution over statistically independent sets of variables

P (a) =
Q

i P (ai). Thus the KL-Divergence between a probability distribution and

the product of its marginals might be a measure of separability:

DKL(P (a)||
Y

i

P (ai)) =
X

a

P (a) log

✓
P (a)Q
i P (ai)

◆
(A.1)
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It is also called Mutual Information (MI). Note that it is basis dependent and a

minimization over different bases gives a basis-independent measure for separability.

This optimization over POVM bases might be an analogy to Schmidt-decomposition

in the MPS framework. MI describes how much two subsystems are correlated, i.e.

how much information they share. If we split the system into subsystems A and

B, the marginalized probability distributions are then PA(a) and PB(a). MI might

be a good measure for entanglement entropy if the basis is optimized in the way

mentioned above.
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B Appendix for Chapter 5

B.1 Derivation of Contrastive Divergence Learning

Algorithm

In the following derivation of the learning algorithm, we follow [Hinton, 2002], the

introduction of Contrastive Divergence. Just to underline the fact that each visible

unit is independent of the others, we introduce the following notation of a product

probability

P 0(v) =
1

Z

X

h

exp(E(v,h))

=
1

Z

X

h

exp

 
X

i,j

(viWijhj + hjbj + aivi)

!
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h exp

⇣P
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ṽ
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exp
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j hjbj
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Q
i fi,✓(v)P

ṽ

Q
i fi,✓(ṽ)

.

(B.1)

The KL-divergence between the probability of all data vectors and their equilibrium

distribution can be written as

DKL(P
0
k P1) =

X

v

P 0(v) log
�
P 0(v)

�
�

X

v

P 0(v) log(P1(v))

= �hlog
�
P 0
�
iP 0 � hlog(P1)iP 0

(B.2)
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where angled brackets denote an expectation value following the probability in the

subscript. The expectation value of the logarithmic data distribution is not depen-

dent on the network parameters. The variation of one network parameter ✓m yields

�
@

@✓m
D(P 0
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@
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(B.3)

This is essentially the difference of expectation values of the same object but eval-

uated at different probabilities. The first term is the expectation value over the

learning data whereas the second term is the expectation value over the equilibrium

distribution, resulting from the parameter dependence of the partition sum. The

second term is computationally costly to evaluate since in principle one has to evolve

the Markov chain of Gibbs reconstruction until convergence appears. Instead, one

constructs a different quantity as distance measure, the difference of KL-divergences,
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such that the term resulting from the partition sum cancels out:
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(B.4)

where the last term in the second line results from the weight-dependence of the first

reconstruction P 1
✓ . Empirical evidence suggests that it can be dropped and learning

is still successful [Hinton, 2002]. The interpretation of the above equation is: if the

thermal distribution of the model P1
✓ parametrizes the data distribution P 0 well,

one Gibbs sampling step samples from that same distribution. Evaluating the terms

inside the expectation value brackets yields:

@

@Wij
log(fW ) =

@
@Wij

fW

fW

=

P
h vihj exp(viWijhj + viai + hjbj)P

h exp(viWijhj + viai + hjbj)

=
vi exp(viWij + bj)

exp(viWij + bj) + 1

= vi�(viWij + bj)

= viP (hj|v)

(B.5)

We can now write Equation ?? for ✓m = Wij as

@

@Wij

��D(P 0
k P1

✓ )�D(P 1
✓ k P

1
✓ )
��

=
���hvihjiP 0 � hvihjiP 1

✓

��� , (B.6)

where P 1
✓ is the probability distribution of the network after one updating step of

Gibbs sampling.
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C Appendix for Chapter 6

C.1 Graphical Representation and Calculation of

POVM Equation of Motion

Let us define the following graphical representations for the needed objects in Equa-

tion 6.0.4. We also remind the definitions in the Section 4. The Figures C.1, C.2 and

C.3 show the graphical representation for the probability distribution P (a), density

matrix ⇢ij and for an expectation value of a product operator < O1O2. . . >.

As an example Hamiltonian, we choose the TFI model defined in Equation 2.0.2.

In the POVM basis, Equation 4.2.4 induces the following coefficients:

QH = �
X

i

(Qai
z ⌦Qai+1

z + hf ·Q
ai
x ) (C.1.1)

P (a)

a0 a1 ...

P (a) =

Figure C.1: Graphical representation of probability 4.2.1. P (a) = Tr
�
M (a)

· ⇢
�
.

M (a) is the POVM measurement set and ⇢ the density matrix. P (a)
contains all information about the state, M (a) is just an exact mapping
to real positive numbers.
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P (a)

T
�1
a0,a0

0
T

�1
a1,a0

1
...

M
(a0

0) M
(a0

1)

i0 i1

j0 j1

⇢ij =

Figure C.2: Graphical representation of density matrix as it is defined in Equation
4.2.3 as a function of the probability P (a). T�1

a,a0 is the overlap matrix
4.1.10 and Ma

ij is the POVM basis 4.1.3. Lines connecting two boxes
are tensor contractions.

P (a)

QO0 QO1
...

< O0O1... >=

Figure C.3: Graphical representation of expectation values of product operator like
in Equation C.1.2.
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Thus, its expectation value is given by

< H > = P a
·Qa

H

= �
X

i

P ai,ai+1 · ((Qai
z ⌦Qai+1

z + hf ·Q
ai
x ))

(C.1.2)

where we defined the marginalized probability by summing P (a) over all other

sites than i and i+1. For the energy expectation value of the TFIM, only two point

correlations contribute. We define

P aj =
X

ak

P aj ,ak (C.1.3)

for unequal j, k. For i, j = 1, 2 we can write P aj ,ak as

P a1,a2 = Tr((Ma1 ⌦Ma2)⇢)

= Tr
�
(Ma1 ⌦Ma2)(⇢1 ⌦ ⇢2 + ⇢connected1,2 )

�

= Tr(Ma1⇢1) · Tr(M
a2⇢2) + Tr

�
(Ma1 ⌦Ma2)⇢connected1,2

�

= P a1P a2 + P a1,a2
connected.

(C.1.4)

We used the notation for reduced density matrices, where the density matrix of two

sites is ⇢1,2, the reduced density matrix on site 1 is ⇢1 = Tr2(⇢1,2) and analogue

for site 2. Furthermore the connected density matrix is defined by the difference

of the full density matrix and the outer product of its reduced density matrices

⇢connected1,2 = ⇢1,2 � ⇢1 ⌦ ⇢2. In particular, we see that Equation C.1.3 is still true as
P

a2
P a1,a2
connected = 0. The marginalized probability that contains two sites P aj ,ak and

thus also captures two-point correlations, we will later call second order.
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a

T
�1
a,a0

K

Ia000a
00

= Ia,a00

Figure C.4: Contraction identity given in Equation C.1.5. T�1
a,a0 is the overlap matrix

4.1.10 and K is the trace over three M matrices defined in Equation
6.0.5. The identity with one index has shape 4 and is summed over, the
right-hand side is a four dimensional Kronecker delta, the identity in
POVM space.

Another import equality that will be needed in the following is:

X

a00

T�1
a,a0K

a0,a00,a000 =
X

a00

Tr
⇣
MaMa0

⌘�1

Tr
⇣
Ma0Ma00Ma000

⌘

= Tr
⇣
MaMa0

⌘�1

Tr

 
Ma000Ma0

X

a00

Ma00

!

= T�1
a,a0Ta000a0 = Ia,a000

X

a000

T�1
a,a0K

a0,a00,a000 = Ia,a00

(C.1.5)

which follows directly from the norm condition Equation 4.1.3 and the symmetry of

T�1
a,a0 . Its graphical representation is shown in Figure C.4.

The graphical representation of the above Equation is shown in Figure C.4. This

has the consequence shown in Figure C.5. Especially, the triangle representing the

tensor K vanishes, if the open index is summed over.
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P (a)

...T
�1
a,a0

K

QxIa00

= P (a)

Qx ...

Figure C.5: Sum over open index a00 of a contribution of Equation 6.0.4 represented
in Figure C.6. From the property of K (Equation 6.0.5) follows Fig-
ure C.4. When summing over the open index a00, the antisymmetric
structure vanishes.

Altogether, Equation 6.0.4 can be represented as shown in Figure C.6.

i iP (a000)

T
�1
a000,a00 ...

K

QHa0

P (a000)

T
�1
a000,a0 ...

K

QH a0

-dP (a)
dt =

Figure C.6: Exact time evolution under a Hamiltonian of the probability P (a) repre-
senting a density matrix, derived in Equation 6.0.4. T�1

a000,a00 is the overlap
matrix, K the trace over three POMVs and QH the coefficient of the
Hamiltonian in the POVM basis.

We recognize the structure of the commutator and note that the tensor K is the

only antisymmetric object. If we sum out all open indices, no matter what the

operator coefficient QH is, the whole expression will vanish identically.
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C.2 Local Hierarchy

The goal is to get rid of the exponential scaling with system size while only losing as

little information as possible. The TFI model exhibits an inherent approximation

scheme as there are only nearest-neighbour interactions. If one is interested in

observables that only contain few-site correlations or even only local observables at

site i, considering subsystems will probably be a good approximation. Therefore we

sum over sites in Equation 6.0.4. Reminding that the index a is a multi-index for

each site a = {a1, a2, . . . aN}, we define the order of P a1,a2,. . . aN by the number of

indices it carries and sum over all other indices of P a in the POVM e.o.m..

In the following, we will illustrate what we mean by ’orders of P (a)’ by applying

the developed formalism to P a1 , the probability distribution describing the site 1.

We will see that it generates a hierarchy of local equations in a very natural way

that couple to the two neighbors in the spin chain. P a1 is first order of P (a) because

it is local and contains no correlations. It is the subsystem containing only the first

site with all the information about the rest of the chain summed out. But as we can

see (Equation C.2.1) its time evolution couples to the second order in P (a) via its

neighboring site 2 and N . One can say, that the order of P a is the number of indices

that it carries. We show their evolution equations in Equation C.2.2 and C.2.3.

We use a symbolic notation for the tensor Ka0a00a000
� Ka0a000a00 and write it as

K, knowing that the tensor contraction in the first index is with T�1
a,a0 and the

second and third are antisymmetrized in the given way. The contractions with the

probability distribution at different sites are separated by a tensor product ’⌦’,

where the notation might be misleading. If there are two or more K in one term,

one has to take the tensor product first and then antisymmetrize afterwards! Then

the first order POVM equation of motion for the TFI model reads:

dP 1

dt
= i(P 1,2

· (T�1KQz ⌦ T�1KQz)

+ P 1,N
· (T�1KQz ⌦ T�1KQz)

+ P 1
· (T�1KQx)).

(C.2.1)

We recognize the terms from the Hamiltonian, the first two are the nearest-neighbour
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interaction of the first site to the second and last as we defined periodic boundary

conditions. The third term is the interaction with the external magnetic field hf ,

where we absorbed hf into the coefficient Qx. With this same notation, one can

formulate the second order POVM equation of motion for the terms entering the

first order for the first site, namely the second order with the two neighbors 2 and

N :

dP 12

dt
= i(P 1,2

· (T�1KQz ⌦ T�1KQz)

+ P 1,2,3
· (I⌦ T�1KQz ⌦Qz)

+ P 1,2,N
· (T�1KQz ⌦ I⌦Qz)

+ P 12
· (T�1KQx ⌦ I)

+ P 12
· (I⌦ T�1KQx)),

(C.2.2)

dP 1N

dt
= i(P 1,N

· (T�1KQz ⌦ T�1KQz)

+ P 1,N�1,N
· (I⌦Qz ⌦ T�1KQz)

+ P 1,2,N
· (T�1KQz ⌦ I⌦Qz)

+ P 1N
· (T�1KQx ⌦ I)

+ P 1N
· (I⌦ T�1KQx)).

(C.2.3)

The identity I is four-dimensional and is contracted with the dimension of the prob-

ability distribution according to the order of terms in brackets. The hierarchy of

equations can be continued up to the system size N , recovering the exact POVM

e.o.m. Equation 7.0.1. One can still calculate local expectation values from all or-

ders of the probability distribution, i.e. in the following example for site 1 and 2:

h�x
1 i =

X

a

P a1,a2(Qa1
x ⌦ Ia2)

=
X

a

P a1Qa1
x .

(C.2.4)
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(a) Time evolution of h�1
xi and its approxima-

tion to 2nd order truncated with a con-
stant

(b) Time evolution of h�1
xi and its approxi-

mation to 3rd order truncated with a con-
stant

Figure C.7: Time evolution of h�1
xi and its approximation to 2nd order (Equations

C.2.1, C.2.2 and C.2.3) and 3rd order truncated with a constant. h�1
xi is

calculated according to Equation C.2.4 and from exact diagonalization
of Equation 6.0.3. The deviations of the approximate solution from the
exact ones increase with time.

For an exact solution, the above equation is strictly true, for an approximation we

will use the deviation as a marker of how trustworthy the approximation is.

C.2.1 Truncating With a Constant

We define the truncation of the hierarchy with a constant to neglect the time depen-

dence of probability distributions with more than a given number of indices. When

truncating with a constant at a given order, let us say two, we just set the third or-

der of P a to its initial value with no time dependence at all. That is, only the time

dependence of local probability distributions and of the probability distributions

that contain two-point correlations are considered. The rest gets neglected.

Implementing this set of coupled differential equations and extracting the expecta-

tion value h�1
xi yields the evolution shown in Figure C.7a. The result of implementing

the third order approximation, i.e. including the time evolution for P 123 and P 12N

but setting P 1234, P 123N and P 12N�1N constant, is shown in Figure C.7b. For both

cases the GHZ-state for initial conditions and the TFI model with magnetic field

hf = 1.1 and system size N = 6 was chosen.

The deviations of the approximate solution from the exact ones increase with
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(a) 2nd order truncated with a constant
N = 2

(b) 3rd order truncated with a constant
N = 3

Figure C.8: Time evolution of h�1
xi and its approximation to 2nd and 3rd order trun-

cated with a constant, which becomes exact for N = 2, 3 respectively.

time. The exact solution is composed of at least two different oscillations, the

approximation to second order only captures one oscillation. The approximation to

third order shows qualitatively similar behavior to the exact solution but deviations

increase after the first local maximum. Clearly, the deviation from the exact solution

of the time evolution scales with time, which limits this approximation scheme to

short time dynamics.

In the limit of small system sizes, i.e. for N = 2, 3 the respective approximations

become exact. In Figure C.8 one can check that the equations lead to the correct

evolution in the case of no approximation.

C.2.2 Truncating With Mean Field

In the mean field ansatz to a given order k, all correlation functions higher than k

are approximated by their disconnected part to order k. For example, if only first

order was considered, we would approximate the probability containing two sites by

its product of local probabilities P 12
⇡ P 1P 2.

We chose the GHZ-state for initial conditions and the TFI model with magnetic

field hf = 1.1 and system sizes N = 2, 3, 6. As we can see in Figure C.9 this

approximation scheme to second order shows larger deviations for larger N . For

N = 6, the approximation with mean field for the same system shows the same

behavior as the approximation with a constant. Both approximation schemes neglect
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long distance correlations in the spin chain which are expected to build up over time

in the TFI model [Czischek et al., 2018b]. Both approximations are only valid for

short enough times.

(a) N=2 (b) N=3

(c) N=6

Figure C.9: Truncation of the local hierarchy with the mean field ansatz to second
order described in the main text. We plot the magnetization in x-
direction h�1

xi at site one as a function of time with the two methods
shown in Equation C.2.4 and exact diagonalization. Second order is
exact for N = 2, deviations increase with system size. N = 6 compares
to Figure C.7a, where the same system with truncation with a constant
is considered.
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D Appendix for Chapter 8

As described in the main text in Section 8.4, we investigate the effect of statistical

errors on the NQS solver by choosing small sample sizes. In Figure D.1, we plot

the results of the same NQS solver as in Figure 8.5, but now with sample size of

104, 105 and 106. The pluses ’+’ are the probabilities calculated from the density

matrix after exact diagonalization, they are the exact solution. We observe that

deviations are large and random for all three cases of sample size. This confirms our

considerations regarding the sample size.
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(a) Expectation value of magnetization in x-
direction at site 1. Sample size is 104.

(b) First five entries of the probability distri-
bution P

a
RBM (t) (’x’) as a function of time

and the corresponding quantity from ex-
act diagonalization (’+’). The colors as-
sign the time steps. Sample size is 104.

(c) Expectation value of magnetization in x-
direction at site 1. Sample size is 105.

(d) First five entries of the probability distri-
bution P

a
RBM (t) (’x’) as a function of time

and the corresponding quantity from ex-
act diagonalization (’+’). The colors as-
sign the time steps. Sample size is 105.

(e) Expectation value of magnetization in x-
direction at site 1. Sample size is 106.

(f) First five entries of the probability distri-
bution P

a
RBM (t) (’x’) as a function of time

and the corresponding quantity from ex-
act diagonalization (’+’). The colors as-
sign the time steps. Sample size is 106.

Figure D.1: Time evolution by RBM integrator as described in the main text and
exact diagonalization with sample size of 104 in the upper panels and
105 in the lower ones. N = 2, initial state is ground state of TFI
Hamiltonian with hf = 100 quenched to hf = 1.1.
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