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Neuronale Netzwerkreprisentation von Quantenvielteilchensystemen
und Zeitentwicklung im Isingmodell mit transversalem Feld mithilfe

von Positive Operator Valued Measure:

Neuronale Netzwerkquantenzustinde (NQZ) ziehen viel Aufmerksamkeit an, da
sie das Potential haben, als sehr ausdrucksstarker Variationsansatz fiir Quan-
tenvielteilchensysteme zu dienen. In dieser Arbeit présentieren wir die Mach-
barkeit dessen, dass NQZ basierend auf reellen Zahlen, im Gegensatz zu kom-
plexen, unitéare Zeitentwicklung 16sen kann. Dafiir verwenden wir ein neuronales
Netzwerk als generatives Modell, um sowohl Grundzusténde als auch hoch ver-
schréankte Zustande darzustellen. Die Zeitentwicklung unter dem Isingmodell mit
transversalem Feld (TFI) nach einer plétzlichen Anderung des TFI-Parameters
wird mithilfe von ’positive operator valued measure’ (POVM) in die Sprache des
maschinellen Lernens iibersetzt. Wir vergleichen unsere Ergebnisse mit denen
des exakten Diagonalisierungsverfahrens und finden heraus, dass die Genauigkeit
begrenzt und in unserer Anwendung der NQZ-Loser eventuell instabil ist. Zudem
ist der Rechenaufwand bei kleinen Systemgréfen viel grofser als beim exakten

Diagonalisierungsverfahren.

Neural Network Representation of Quantum Many-body States and
Time Evolution in the Transverse Field Ising Model by Positive Oper-

ator Valued Measure:

Neural-network quantum states (NQS) attract a lot of attention due to their
potential to serve as a very expressive variational ansatz for quantum many-
body systems. In this work, we present a proof of principle that NQS based on
real numbers, in contrast to complex ones, can solve the unitary time evolution.
We use a neural-network as a generative model to represent both ground states
and highly entangled ones. The time evolution under the transverse-field Ising
(TFI) Hamiltonian after a sudden change of the TFI parameter is transferred into
the language of machine learning by the formalism of positive operator valued
measure. We compare our results to exact diagonalization and find that precision
is limited, that in our application the NQS solver is eventually unstable and that
computational cost is much larger than for exact diagonalization for small system

sizes.
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1 Introduction

Although quantum mechanics is a century old discipline in physics, it still presents
challenging and interesting problems. The Hilbert space description of quantum
states is very simple to grasp in terms of its mathematical description of states as
vectors and operators as matrices but brings the problem of being very inefficient.
The dimension of the Hilbert space scales exponentially with system size. There
are two key aspects of the exponential scaling, the first one concerning the quantum
state itself and the second one concerning the time evolution. From an experimental
point of view, to extract the full information about a generic unknown state, one
has to perform exponentially many different measurements for linearly many par-
ticles. From the theoretical point of view, one needs exponentially scaling amount
of memory to store the state. To determine the time evolution theoretically in a
standard straight-forward approach, e.g. from the Schrédinger equation, one has to
diagonalize an exponentially large matrix.

To circumvent this issue, there are multiple approaches to deal with the expo-
nential scaling with system size, but all efficient approximation schemes turn out to
struggle in different regimes. We want to state just a few.

Quantum Monte-Carlo methods, which sample a finite number of physically rele-
vant configurations, often suffer from the sign problem when approximating infinite
sums with positive and negative contributions in the classical representation of quan-
tum states [Troyer and Wiese, 2005].

One-dimensional quantum spin systems with little entanglement can be very well
captured by simulation methods based on matrix product states (MPS), such as the
time-dependent density-matrix renormalization group (tDMRG) approach [Scholl-
wock, 2011]. Especially at quantum critical regimes where correlation lengths di-

verge, this method scales up its resources exponentially in system size.



Semi-classical methods like the discrete truncated Wigner-approximation show
good agreement to the analytical solution when applying a sudden change to the
transverse field Ising (TFI) model Hamiltonian, a quench, to the quantum critical
regime. But they suffer from instabilities for long time evolution and deviations for
quenches to intermediate distances from the quantum critical point [Czischek et al.,
2018b].

Dimensional reduction and feature extraction known from machine learning [Hin-
ton and Salakhutdinov, 2006] can be applied to wave functions [Carleo and Troyer,
2017]. Machine learning studies algorithms and statistical models that computers
use to perform tasks without explicit instructions [Bishop, 2006]. These statisti-
cal models are designed to approximate high dimensional functions. The neural-
network quantum state (NQS) is a graph that calculates the corresponding phase
and amplitude of a wave function with a chosen number of internal parameters for
exponentially many spin configurations. One can derive a learning scheme following
the Schrédinger equation on the basis of feedback from variational principles [Carleo
and Troyer, 2017].

A study of the regimes of validity for NQS [Czischek et al., 2018a| shows that
quenches to the vicinity of the quantum critical point of the TFI model require a
strongly increased number of network parameters. Also deviations to the exact time

evolution are of similar size as semi-classical approaches.

A representation of quantum many-body states as real probabilities that is also
valid for mixed states can be formulated through the connection between measure-
ment probabilities and the density matrix, the positive operator valued measure
[Carrasquilla et al., 2019b|. A description based on real probabilities has the advan-
tage that standard machine learning algorithms can be applied to represent these
states. Very recently, the application of one- and two-qubit quantum gates have

been presented |Carrasquilla et al., 2019a].

The missing link and consequent next step is a machine learning solver based on
real probabilities of the time evolution, which easily generalizes to open and mixed

systems.

In this thesis the goal is a proof of principal for a synthesis of neural network



quantum states based on positive real numbers and the unitary time evolution.
Therefore we investigate a numerical method from machine learning, the Restricted
Boltzmann Machine (RBM) [Smolensky, 1986], which is an especially simple archi-
tecture of neural networks, to approximate quantum states and exploit dimension
reduction of the parameter space. We chose a real positive representation of den-
sity matrices in order to account for mixed states, circumvent the sign problem
and to profit from standard learning schemes, especially the Contrastive Divergence
algorithm (CD). To bring a general density matrix in the desired form of a real pos-
itive function, we must first apply the method of positive operator valued measure
(POVM). The resulting function is then the probability of a set of measurement
outcomes which can be used equivalently to the density matrix. This probability
distribution determines the likelihood of any given measurement and can be repre-
sented by standard machine learning graphs like the RBM. The POVM description
of the unitary time evolution under any Hamiltonian for the resulting probability
density then arises quite naturally. It is an exact mapping and can be integrated
through step-wise training of the RBM and sampling the distribution of the next
time step. We observe that, in order to approximately solve the POVM equation
of motion, large sample sizes are needed due to statistical sampling and learning
errors.

This thesis is structured in the following way. First, we want to investigate the
information content of a many-body quantum state. By recapitulating some basics
of quantum mechanics (Section 3), we will introduce the concept of entanglement
and state reconstruction from subsystems. This motivates POVM which is one of the
two major concepts of this work, described by the following Section 4. The second
major concept, RBM, will then be introduced and its applications discussed (Section
5). Bringing these two concepts together with the equation of motion creates a
formalism for the time evolution of the neural-network representation of many-body
quantum states based on positive real numbers (Section 6). For illustration, the

results will be compared to exact diagonalization for small system sizes (Section 8).



2 Notation

Throughout this thesis we will use some standard notation.

The Pauli-matrices are

o= (04,0y,0,),

01
O = ;

10

0 —i (2.0.1)
Uy = ;

1 0

1 0
o, =

0 —1

The TFI Hamiltonian with nearest-neighbour interaction in one spatial dimension

is
Hypp ==Y olol™ —hp Y ol (2.0.2)

where the sum over i runs over all particles of the system. Boundary conditions
are periodic, i.e. the first particle is nearest-neighbour to the last one. hy is the
transverse magnetic field, the parameter of the model. If this parameter is abruptly
changed, this is called a quench and exhibits non-trivial time evolution.

We use natural units with Planck’s constant A = 1.



3 Information Content of a State

The information content of a state is the minimal set of parameters to fully represent
it [Brody and Hughston, 2000]. RBMs are often used for dimension reduction of the
parameter space. As a first application, we just want to represent some quantum
states. Therefore we need to understand how much information is stored in certain

quantum states. The standard way to do so is to investigate bipartite entanglement.

3.1 Bipartite Entanglement of Pure States

A bipartition of a closed system is a theoretical division into two subsystems A and
B. If the Hilbert space of the whole state is H, one can always find a basis such that
it can be decomposed according to the bipartition H = Ha ® Hp. |Yap) denotes
a state in ‘H, a state in H, is written as |W4) and analogue for subsystem B. In

general, |W,p) is a linear combination of states in H4 and Hp, thus

(Wap) =D cij|Va),[Vs);. (3.1.1)
1,J

In the special case in which only one coefficient ¢; ; is non-zero in Equation 3.1.1,
the state is called separable. Separability is a defining quantity of entanglement: If
the wave function is not separable, system A and system B are entangled.

As an example, let us take two spin—% states:

V1) = —=(IT1) + )

ol

(3.1.2)

[Wa) = 5 (M) + 11D + D) + ) -

N | —



If not denoted otherwise, |1) and |]) are the eigenvectors of the Pauli-z-matrix o,

defined in Equation 2.0.1:

o h=m, al=-I. (3.1.3)

In the spirit of matrix product states (MPS) [Schollwick, 2011], we investigate
the separability of the states in Equation 3.1.2 by rewriting them according to the
Schmidt decomposition. It states that one can always find two basis rotations for

the bipartition such that Equation 3.1.1 can be written as Zi:l,Q S

\I~ff4\fliB>, where
the tilde denotes the state in the rotated basis.

[U) = cij[Wa); [W5),

.3

[1001:

Sl

1

- —Tn )] 314

1
V3 Ao
= Z Si |‘I/f4‘I’ZB>

i=1,2

1

= 5+

1

with s; = 59 = \/Li From the first to the second line, we made the coefficients ¢; ;
explicit. In a next step we reshaped the dot product according to the bipartition
and finally notice that only diagonal elements contribute. The Schmidt-rank is two
for this state, meaning that the diagonal matrix connecting the bipartition has two

non-zero elements. Thus, independent of the basis, there is entanglement between



the bipartition. As a second example consider |Us):

(W) = cij[Wa); [Vp),
i

:}[1 _— 1) . 1)

2 L v, (3:15)
1 L1y (I
=M |¢>L_1 Lol

111 1{1 1|t o] 1|1 o1
201 1] V2|1 —1]||o o] V2|1 —1 (3.1.6)
=USVT.

The matrices U and V1 diagonalize the original matrix. The diagonal matrix has
one non-zero entry, there is just a product, so there is only one singular value which
means that there is no entanglement. U and V' can now be applied to the bases of

the bipartition. Our second example state looks very simple if we define the basis

1 1
NG () + 1), 7 (11 —4))) and

call the new basis the x-basis, denoted by an index x as it is the eigenvectors of the

transformation given by U and VT: (|1), 1)) — (

Pauli-x-matrix:

wa =2y ] osvi|™
T,
1
—Z= (M +1) 3.1.7
- -] | o
o o] | S|

Indeed, ¥, is a product state in the x-basis and thus not entangled at all. The

method of Schmidt decomposition is powerful because it rotates the basis locally



into a coordinate system closest to a product state but leaves the correlations (up

to a given order) between partitions unchanged.

3.2 Mixed States and Measuring Subsystems

In the last section, we investigated in two examples how two subsystems can be
differently entangled. In this section we want to investigate the information content
of the whole system by investigating the states of the subsystems. Therefore we

need to generalize our notion of states.

In general states are mixed. A description of mixed states does not only cap-
ture the statistical features arising from quantum uncertainty but also includes the
classical uncertainties. When writing an ensemble theory of quantum states, this
defines the density operator or density matrix for finite Hilbert spaces. This object
captures effects from thermal systems, open systems and all kinds of interaction with
the environment. Especially when a bipartition of a closed system is considered, the
two subsystems might be open if they are entangled. A density matrix can easily

be constructed from pure states
p=> pi|W) (T, (3.2.1)

where p; are non-negative coefficients that add up to one. Its interpretation is that
the p; are a classical probability of mixing different states |¥;), thus the name mixed

states.

A measurement of an operator O on the system that is described by a density

matrix is given by Born’s rule
(0) = Tr(Op), (3.2.2)

where (.) denotes the expectation value.

To get an intuition for density matrices, let us consider the following two examples.



The first one is the outer product of the maximally entangled state |¥;) ® (Uy]:

N —

P1 (323)

—_ o O
o o o O
o o o O
- o O =

1
the second example is a maximally mixed state with p; = 1 for all 7 in Equation

3.2.1

1 000
110 1 0 O

P2 = Z (3.2.4)
0010
0001

If the density matrix of the whole system is denoted as p and we think of a bipartition
A and B, the corresponding density matrices are defined as partial traces over the

other subsystem:

pa=Trp(p), pp="Tralp). (3.2.5)

When we look at the subsystems, we find for both cases p4 = pp = %Hzm- Notably, a
general density matrix cannot be reconstructed from its partial traces, as information
is lost in the process of taking the trace. More information is needed. To restore
the lost information, one can investigate correlation functions according to Equation

3.2.2, where the correlation (o%c*) denotes the expectation value of 0, ® o,:

1 0 0 0/|1o001
110 =1 0 0[]0 00 0
(070" =Tr | = =1,
210 0 =1 0[]0 00 0 (3.2.6)
00 0 1|1 001

(0%0%)9 = 0.



In the first line, the first matrix is 0, ® o, in numbers and the second matrix is p;.
The index denotes which of the two examples we consider. Because the expectation
values are zero, the two-point correlation equals the connected two-point correlation.
The latter encodes the statistical correlation and the quantum entanglement. While
it is one in the first example, it vanishes for the second one. The first state is
maximally entangled whereas the second state is completely random as there is no

correlation.

For a general density matrix

a b ¢ d
b* h
o= g (3.2.7)
c g ko
s h*rrop

the partial traces are given by

a+f c+h
pA:Ter: )
4+ h* k+p
- (3.2.8)
a+k b+1
pp="Trap=
b*+1* f+p

If one measures the expectation value of the diagonal operator ¢* on both subsystems
and the correlation, one can extract the full diagonal of the two-particle density

matrix:

<oi>=2a+f)—-1

<op>=2a+k)—1
v (3.2.9)

<oiop>=1-2(f+k)

p=1l—a—f—k

Measuring the other Pauli operators and their correlations, one can extract all
free parameters of the full density matrix. A more systematic approach is given by

positive operator valued measures. In this framework, which will be the topic of

10



the next chapter, a minimal set of informationally complete measurements can be
defined. As an extra feature we will demand these operators to be positive in the

operator sense i.e. to have exclusively non-negative eigenvalues.

11



4 Positive Operator Valued Measure

(POVM)

In the following section, we will present a method to systematically extract the
complete information content of a general state and map it on positive real numbers.
As the name already reveals, we will measure positive operators M@ according to
Born’s rule. But there is more to it, so let us first consider one particle before

generalizing to N particles.

4.1 One Particle

One particle with just one spin—% degree of freedom is defined by its density matrix
p as an element of the Lie algebra su(2). This is the vector space of traceless unitary
2x2-matrices together with the commutator ’[.,.]” and has three generators. Thus, it
can be spanned by the Pauli matrices. So, the density matrix is two-dimensional but
has three free real parameters. Thus, one can find a three-dimensional representation

in form of a vector 5, i.e. the Bloch representation:

— 1 — —
p(v) = 5 (Iozo + 5, - 7). (4.1.1)

From this representation we know a possible way to construct unitary positive

operators M (@ [Carrasquilla et al., 2019b]

M@ = = (Ipys + 5 - 5) (4.1.2)

1 =

where we defined a € {1,2,3,...,n} real valued three component vectors 5. This is

not the only way to construct positive operators, just a very intuitive one.

12



We demand these operators to sum up to the identity
D> MO =Ty, (4.1.3)
a=1
because then the expectation values
P(a) = Tr (M@ - p) (4.1.4)

define a probability distribution P(a), which is normalized, as can be seen from

explicit summation:

> Pla)=> Tr(M“.p)
=Tr (p ' ZQM(G)> (4.1.5)

= Tr(p)

=1.

1
If the density matrix p is defined by a spin vector §,, i.e. p = = (Iy;2 + 5, - &), the

2
probability turns out to be
P(a) = Tr(M(“) - p)
1 ;.5 £ . 5
=Tr §<H2m2+8p'0')(]12$2+5 'O') (416)

(1+35,-59),

o

where we used that o is traceless and 02 = Iy,9. It is quite instructive to see in Figure
4.1, that indeed P(a) fulfills the conditions of a normalized probability distribution,
i.e. non-negativity as 5, has maximal length one and the 5% sum up to zero.

The measurement is informationally complete (IC), if the M(® span the complete
vector space. Therefore we need at least four positive operators, as the vector space
is three-dimensional and the operators need to fulfill the normalization condition in

Equation 4.1.3.

13



52 52
53 53
st st
072 0%

(a) Tetrahedral set vectors defined in Equa- (b) Antenna set vectors defined in Equation
tion 4.1.7 4.1.8

Figure 4.1: Two sets of vectors that each define a POVM measurement set of oper-
ators via Equation 4.1.2

Let’s demonstrate such a measurement by three examples: the ’tetrahedral’

s' =(0,0,1) 32:(&0_1) 33:(_£ 2_1) 54:(_L§ _\ﬁ _1)
» Y 377 37 37 37 37 37 37 37

M' =

1 1
ME=| ¢ V8|
1

1
L V18 3
1 1
3 _ 6 6v2 V12
M° = . } . ,
— 3
| 62 + V12 3 i
1 =1 4+
4 6 62 V12
M* = ) )
=1 _ 3 1
| 6v2 V12 3 i

(4.1.7)
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the second we dub ’antenna’

st =(1,0,0),s* =(0,1,0),s* = (0,0,1),s* = —(1,1,1),

1
M ==
4
1
M? = -
4
M3=1
2
M4:1
4

11
11|
1 —i
o (4.1.8)
10
0ol
0 —1+i
1 2

and the "Pauli-4’, which is constructed from the projections of the eigenvectors of the

Pauli operators with positive eigenvalue and the fourth one such that the identity

condition 4.1.3 is fulfilled:

Ml_l Lo
310 0
e ! 11
611 1
- (4.1.9)
e ] 1
61 1
1 2 —1—z
M ==
6l_14+5 4

The first two sets are positive by construction (Equation 4.1.2) as long as the vectors

sum up to zero. Drawing the
sets their names (see Figure 4.
induced by a set of vectors (Eq

a subspace in the space of all

vectors in three dimensions gives the measurement
1). The ’'Pauli-4’ set does not have a representation
uation 4.1.2). This shows that Equation 4.1.2 defines

positive measurement sets, which is not surprising

seeing that Equation 4.1.2 fixes the trace to be % as an additional constraint.

15



For later reference, we define the overlap matrices as

T = Ty (M<a> : M(“')>
(4.1.10)
(@) | prla)

i] Ji o

where we used the Einstein sum convention to make explicit that the trace is taken
over the physical indices ¢ and j of the operator M} and not over the POVM index
a. The overlap matrices for the three POVM sets are

31 11

1 {1 3 1 1
ﬂetrahedral = E 113 1 )
1 11 3

2110

111 2 1 0

Tantenna =3z ) (4111>

81112 0

0 0 0 4

21 1 2

T 1 |1 2 1 2
Pauli—4_E 11 92 5
2 2 2 12

As we will see in the next section, we need these overlap matrices to be invertible.
One can construct POVM bases that do not fulfill this requirement [Carrasquilla

et al., 2019b]. They are excluded in this work, the given examples are indeed in-

16



vertible. There inverses are

5 —-1 -1 -1
B -1 5 -1 -1
netrahedral = )
-1 -1 5 -1
-1 -1 -1 5
6 -2 -2 0
-2 6 -2 0
Ta_nil:enna - ) (4112)
-2 =2 6 0
0 0 0 2
14 —4 —4 -1
B —4 14 —4 -1
TPauli—4:
-4 —4 14 -1
-1 -1 -1 2

4.2 N Particles

A measurement on N qubits on a chain is then defined via the tensor product of the
M@ matrices M) @ M(@2) @ .. M©@N) by the 4" possible combinations of the four
(a) at each site. From now on, whenever we write a without an index, we mean the
vector including four components at all sites. With an index ¢, the four components

at site ¢ are meant. This defines the probability distribution
P(a) =Tr (M(a - p), (4.2.1)

now with the N-particle density matrix. This relation can be inverted. The recon-

struction of the density matrix is defined by the following calculation, where we will

17



multiply a one and recognize Equation 4.2.1:

P(a) = P(a") 14,

/ "
,a

a
r(P(a’)Ta—,}a,,Ma”Ma) (4.2.2)

= Tv( M P(d) T M)

such that

p= Z P(a)T;;,M(“l)

= anp(a) (Z T(I_,;/M(a’)) ,

(4.2.3)

where a ~ P(a) means that a follows P(a) and E denotes an expectation value.

Operators O can be written as
O — ZQO(CL)M(a)a (4.2.4)

This relation can be solved for the coefficient (o of the operator in the POVM basis.

First, we multiply by M(*) and trace out physical indices
OuME") =" Qola) M M (4.2.5)

and recognize the overlap matrix 7; . on the right hand side. We multiply by its

inverse and arrive at
Qola’) = Te(OM) - T, . (4.2.6)

As it turns out when a complete set of POVM and its statistics are given (equivalent

to P(a) for large sample sizes), all expectation values can be calculated even without

18



explicitly reconstructing the density matrix:

Te(O-p) =Tr (Z Qola)M® Z P(a’)Ta—,’la,,M(a")>

! U
,a

= Y Qola)P(d)T, ), Tr <M<a> M(a”))
e (4.2.7)

= IEOLNP(G,) (QO(G»

Here, K, p(,) denotes an expectation value over samples a following the probability

distribution P(a). All information is stored in the probability distribution P(a).
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5 Restricted Boltzmann Machine (RBM)

We use a RBM to approximate a given probability distribution. In this case the RBM
is referred to as a generative model. It has polynomially many model parameters

0 = {W,c,b}. An RBM can be represented by a graph (see Figure 5.1), which can

Figure 5.1: RBM graph representing the first term v - W - h of the network energy
E(v,h) in Equation 5.0.1, where v and h are the so called visible and
hidden layer respectively and W the connecting weights. There is an all
to all connection between the two layers but no connection within them.
Thus, the model is called restricted.

be interpreted as a matrix multiplication. Each node is an entry of a vector whereas
each line is an entry of the matrix W. The vectors are referred to as layers. The
upper layer is called "hidden’, the lower one ’visible’. As a bilinear form, it defines

the so called network energy

E(v,h)=—-v-W-h—c-v—b-h. (5.0.1)

The W is the connection between visible v and hidden h layer. On both acts a bias

c and b respectively, which can be interpreted as local external fields. With this

20



quantity, the energy, at hand, one can define thermodynamic probabilities
1
P(v) =~ Zh:exp(—E(v, h)), (5.0.2)
with the partition sum

Z = exp(—E(v,h)) (5.0.3)

In most cases, the entries of the visible vector (v;) and in all cases the entries of the

hidden vector (h;) are binary (take values zero or one).

A possible interpretation of the hidden layer is that it represents the microscopic
degrees of freedom and, when summed over, give the macroscopic theory with ef-
fective interactions between the visible nodes. With this picture in mind one can

define the network free energy F'(v)
P(v) = = 3" exp(—E(v, h)) = = exp(—F(v)) (5.0.4)
= — X — = — X - U
7 h P ) 7 P )
with the partition sum as before
Z = exp(—F(v)). (5.0.5)

We use that the hidden layer does not have any intra-layer connections so that the
sum over h factorizes and that the hidden units only take binary values, i.e. are

zero or one. Thus the sum over the hidden units can be calculated explicitly:

Zexp(v-W-h+c-v+b-h):exp(c-v)ZeXp(v-W+b-h)
h h

= exp(c . V) Z H eXp((V - W + b)zhz)

h =1

» (5.0.6)
= exp(c - Vv) H Z exp((v-W 4+ b);h;)

— exp(e - v) [] (1 +exp((v - W + b))

—.

i=1
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Then the free energy can be written as

F(v) = —log (Z exp(—E(v, h)))

h (5.0.7)

=—Cc-v— Zlog(l + exp(v;Wi; + b;)).
J
Given a set of model parameters 6, we can now easily calculate the probability for

any input state v:

P(v) = %exp(c~v)H(1 +exp((v - W £ b)) (5.0.8)

5.1 Thermalization

Introduced as a thermal model by defining a Boltzmann distribution of the network
energy, why and how does the system converge to its thermal probability distribu-
tion? This question is important because we will make statistical approximations
of the probability by drawing samples from the RBM. The key insight is, that if we
define a Gibbs sampling procedure with the given probability distribution, this is a
special case of Metropolis-Hastings which is a special case of a Markov process which
guarantees that there is thermal equilibrium. So let us define the needed ingredients

one by one. In this subsection we summarize from [Gelman et al., 2013].

5.1.1 Markov Process

A Markov process is a sequence of random variables, also called sample set, in which
the distribution of the next sample only depends on the current value. Thus the
process is uniquely defined by a positive transition probability P(v'|v) for any two
samples v,v’ to go from v to v’. A sufficient condition for the existence of a stationary
distribution II(v) is detailed balance II(v")P(v|v’) = II(v)P(v'|v). The stationary
distribution is unique, if the Markov process is ergodic, that is if the number of steps

to come back to any point has finite expectation value and non-zero variance.
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5.1.2 Metropolis-Hastings

In a Metropolis process, the transition probability P(v'|v) can be written as a prod-

uct of proposal probability g(v'|v) and acceptance probability A(v’,v). It is thus a

special case of a Markov process. A new sample is proposed according to g(v'|v),

the probability of proposing v while being at v. The acceptance is often chosen to
P(')

be A(v',v) = min ( , m). The algorithm then works the following way:

start from sample v,

generate a candidate v’ from g(v'|v),
e draw a unitary random number r € [0, 1],
o if r < A(v',v), accept v" as the next sample, else reuse v.

By this scheme, a more probable sample is always added to the sample set but a less
probable state only by chance corresponding to the relative occurrence in the target
distribution P(v). The fact that the normalization of the target distribution cancels
out in the acceptance A(v’,v) makes the scheme a powerful tool to approximate a

probability distribution whose normalization is difficult to compute.

5.1.3 Gibbs Sampling

Gibbs sampling [Geman and Geman, 1984] introduces an alternating update scheme
for the hidden and visible vector respectively, based on the conditional posterior dis-
tribution (conditional sampling). It is a special case of a Metropolis-Hastings process
for the RBM. The new sample v’ is proposed for each entry of the vector v separately
(conditioned on the state of all others). As it turns out, for RBMs, the acceptance
A(v',v) is always one, thus the new sample is always accepted. Due to the structure
of the RBM, which only allows interlayer connections but no intra-layer connections,
the conditional probabilities of the visible entries, given one specific hidden vector,
are independent of each other. For binary visible units, the conditional probabil-

ity of taking the value one compared to taking the value zero is then given by the
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Input data Reconstruction 1 - Equilibrium/  fantasy”

Figure 5.2: Gibbs sampling. The RBM gets to its thermal equilibrium when alter-
nately applying Equation 5.1.3 derived in Equation 5.1.2 to the visible

and hidden layer. ’~" means that the layer takes new values following

the given probability distribution. The first reconstruction is reached
after sampling the hidden layer depending on the data and sampling the
visible layer depending on the hidden layer.

exponential of the energy difference as the partition sum cancels out:

P(v; = 1]h) _ ) Bl —
m = exp (—(E(v; = 1|h) — E(v; = 0|h))) (5.1.1)

= eXp(Wijhj + Ci)

We use that the two probabilities P(v; = 1|h), P(v; = 0|h) add up to one to express
the latter one by the first one. Then we reorder the terms and define the sigmoid

function o(z) = ) and the local energy E; = —W;h; — ¢;:

1
1+exp(—z
— P(v; = 1Jh) = exp(Wy;hy + ¢)(1 — P(v; = 1))

< P(’Ul = 1|h)(1 + eXp(Wi]-hj + CZ)) = exp(VVijhj + Ci)
1
1+ eXp(—Wijhj — Ci)

o(—E;).

<= P(v; =1]h) =

(5.1.2)

An analogue calculation is true for the conditional probability P(h; = 1|v) of the
hidden layer given the visible one. This defines the proposal probabilities. So the

evolution to equilibrium (see Figure 5.2) is given by alternately applying:

h~o(v-W +b) 51
v~o(W-h+c),
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where h ~ o(...) means that h takes a value following the probability distribution
given by o(...). One Gibbs reconstruction is defined as setting the hidden units to
one according to the conditional probability P(h; = 1|v) = o(v - W + b) and zero
otherwise for all 7 in the hidden layer and afterwards setting the visible units to one
according to P(v; = 1|h) = o(W -h+c) for all 7 in the visible layer with the hidden

units already updated.

5.2 Learning

Now we know that there is thermal equilibrium of the RBM, which is the Boltz-
mann distribution, and how to get there based on sampling. Given the weights
that determine the network energy we can pick up samples from Gibbs sampling
and approximate the probability distribution without calculating the normalization
explicitly.

Let us turn around the question. If we want to reproduce a given probability dis-
tribution with the RBM, how do we find the weights? This process is called learning.
An RBM can approximate every probability distribution with arbitrary precision if
the number of hidden nodes is large enough, which might increase exponentially
with the number of visible units. In practice we will not make use of this feature
and stick to the polynomial approximation but keep in mind that the number of
hidden nodes is closely linked to the representational power. Given a probability
distribution P(v) that we want to represent by the network Prp)s we want to find
the minimum distance between them with respect to the weights D(P(v), Prpas(v)).
Typically, one chooses the Kullback-Leibler (KL) divergence as a distance measure
[Hinton, 2002]. It approaches zero, as the two probability distributions approach
each other, but is not symmetric, thus is not a metric. The KL divergence is defined

in this context as the difference between two probability distributions P and Q:

D(P 1 Q) =3 Plo) 1og(g§zj§). (5.2.1)

Given some input data v following a probability distribution P°(v), the probability
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of visible layer after one step of Gibbs reconstruction is P'(v) and the equilibrium
distribution is P> (v).

We will apply the Contrastive Divergence (CD) learning scheme [Hinton, 2002].
For a detailed calculation see Equation B.3 in the Appendix B.1. The variation of

the distance function by one entry of the connecting weight is given by

0
oW,

(Dxw(P° || B5°) = Dxcw(Py || F5®)) = (vihy) po — (vihy)py (5.2.2)

where the expectation values of the correlation between the layers over the data
distribution P° and the first reconstruction P, enter. This expectation value is an
averages over a ‘mini-batch’, a subsample of about 20 samples. The formation of
a mini batch is to calculate expectation values efficiently. The interpretation of
the chosen error function is the following: We want the first reconstruction to have
the same distance from the network thermal distribution as the input data. Thus,
if we have learned successfully and the data distribution is roughly the thermal
distribution, then the generated distribution by one step of Gibbs sampling will also
roughly be thermal, i.e. describe the data distribution. This yields the learning

algorithm:
e Given a sample set,
e form mini batches,

e for a sample v in the mini batch:
—seth=0(v-W+b),

— define W, = vhT,

sample h ~ o(v - W + b),
— sample v ~ o(W -h + ¢),
—seth=0(v-W+Db),

— define W_ = vhT.

e average over mini batch,
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o set W to W + AW, —W_).

In the last line I introduced the learning rate A. vh™ denotes the outer product, i.c.
the correlation matrix between visible and hidden layer. It is important to set the
hidden units to the binary values before sampling the visible layer, as the hidden
layer has the role of an informational bottleneck. When the correlation is calculated,
the hidden units can be set to their probability of being one to reduce sampling noise
[Hinton, 2012].

The derivation of the learning for the biases a, b is analogue to the weights and
given by:

b < b+ A((h)p — (h) ), (5.2.3)

cc+A({(V)po —(V)p1).

Together, they are the Contrastive Divergence (CD) learning algorithm.

5.3 Error Measures

With CD we have a stochastic gradient descent method at hand that is able to
sample the gradients very efficiently in order to minimize a distance function between
the network probability distribution and the target probability distribution. How
does the chosen distance function relate to other standard distant measures? In the

following section we will briefly describe the major aspects of applied error functions.

5.3.1 Kullback-Leibler Divergence and Fidelity

The Kullback-Leibler Divergence has already been introduced in Equation 5.2.1.
As a difference between data distribution Py,, and model probability distribution

PRBM it is written:

D1 (Paatal| PreM) = Z Piata(v) 10g<£§:—;{(<1;))). (5.3.1)
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The Fidelity between two probability distributions Py, and Prpys is defined to be

F(Paata) || PreM) = <Z V/ Paata(v) - Pren(v )) : (5.3.2)

To evaluate these quantities it is necessary to know the whole probability distribu-
tions of the training data and of the network. This is exponentially expensive and

thus only applicable for small system sizes.

5.3.2 Reconstruction Error

The reconstruction error is defined to be the expectation value of the squared dis-

tance between the data vector and a reconstruction from one Gibbs-step

Direcon. = {||v — () p1||*) po. (5.3.3)

This error measure has the advantages that it is an expectation value, thus it can
approximately calculated from a mini-batch, and that the first reconstruction is very
easy to get. But there is the subtlety that a small mixing rate from the Gibbs-step
also leads to a small reconstruction error. Mixing rate is the inverse of the Markov
mixing time and describes how fast the system approaches its thermal equilibrium.
A small mixing rate is induced by large absolute values of the weights. The weights
change the most from their small initial value during the first few epochs of training,
which correlates with the major decrease of the reconstruction error. An epoch the
the phase of training in which the whole training data is used exactly once. Training
requires several epochs. A causal statement between change of the weights and
decrease of the reconstruction error cannot easily be made. Thus the reconstruction
error should be viewed as a sanity check only and large increases are a marker for

something going wrong.
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5.3.3 Log-Likelihood and Pseudo-Log-Likelihood

Equation 5.0.2 defines a likelihood function if it is viewed as a function of the network

parameters ¢ given a visible sample v
1
Lo(v) = ; exp(Ep(v, h)), (5.3.4)

where the network parameters are 6 = W, a, b and the network energy as a function
of the network parameters for a given hidden and visible sample Ey(v,h) =v - W -
h +c-v +b-h. Taking the logarithm defines the log-likelihood. Log-likelihood
is numerically more stable and still a distant measure because the logarithm is a

strictly monotonic function
1s(v)) = log(La(v)). (5.3.5)

A pseudo-likelihood is defined to be an approximation in the sense that it neglects
the conditional dependence of v; on v; for all ¢, 5. For an RBM the approximation
is exact, because the layers do not have intra-layer connections. Thus the pseudo-
likelihood can be decomposed as a product, the pseudo-log-likelihood as a sum over

Log-likelihoods of one visible v; conditioned on all others v\;:
log(Lo(v)) =Y lp(vilvys). (5.3.6)

Knowing the conditional probability,

P(v)

Plvilo) = 3.
(vifor) P(w)+ P(v,v; = 1 —v;)’ (5:3.7)
we can make a probabilistic ansatz
g = N -log (P(vi|v\;)) ,
(Poifo) (5.3.8)

i ~ U0, N),

where ¢ follows a uniform distribution. Then the expectation value of g is the
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pseudo-log-likelihood
Elg] =) " lo(vilvy). (5.3.9)

Altogether, writing v; for v with v; — (1 — v;),
P(v)
l ~N-1 —_
o) =8 tos )

NI exp(F(v)) (5.3.10)
- log (exp<F<v>> T exp(Fwi)))

= N -log(o (F(v;) — F(v))),

where o is the sigmoid function, as introduced in equation 5.1.2 and F'(v) is the free
energy. The pseudo-log-likelihood measures approximately how close the thermal
distribution of the RBM is to the data distribution. The pseudo-log-likelihood is easy
to compute and gives a good overview over the learning progress, i.e. convergence,

but it is difficult to develop an intuition for the absolute numbers.

5.3.4 Hyperparameters

Choosing suitable hyperparameters is a real issue in ML and requires some ex-
perience with the system. In this section we present the isolated effects of each
hyperparameter, they can have combined effects which are much more involved to
study. In this section we use relative descriptions like ’small value’. In Section 5.5
we present the quantitative results of hyperparameters which we found suitable from
our experience.

The number of hidden units is a defining quantity for the expressiveness of the
model, as the hidden layer is the informational bottle neck. The hidden units are
binary and each one encodes one bit of information about the correlations. Increas-
ing the number of hidden units also increases the number of model parameters and
is expected to improve the learning result but slowing down the learning.

The initial value of connecting weights W are Gaussian random values with zero
mean and 0.01 variance, the biases a and b as constant 0.1. Those values were

recommended by [Hinton, 2002|. The weights need to be small but non-zero in

30



order to have non-zero probability for the hidden units to be one and to explicitly
break symmetry.

When choosing a large learning rate A\, we expect very fast convergence in all of
the above error functions with a larger error. The CD algorithm might get stuck in
local minima of the parameter space of the model which are far away from optimal
or overshoot minima which are close to optimal.

Large number of training samples (10° for N=2) exhibit successful learning after
very few epochs.

The number of epochs is how often the network is trained with the training data.
The learning success measured by the error function is largest for the first epochs
and expected to flatten to smaller and smaller training improvements. Where these
two phases are strongly depends on the learning rate and the amount of training
data.

The size of a mini batch influences the learning process. Small batches lead to
fast decrease of the error functions but large oscillations as the averaged gradients
might point into a wrong direction. Small mini batches lead to larger calculation
times per epoch. That is due to the implementation of batch-wise updates. Small
batches tend to run into local minima or even worse do not reflect the topology of
the parameter space of the model and lead to wrong results. For large mini batches
the gradient might become very small and learning is slower.

Small sample sizes from the RBM (10° for number of visible units N = 2) lead
to large deviations of the sampled distribution from the analytic probability distri-
bution of the RBM calculated from the network parameters. Taking many samples
from the RBM via Gibbs sampling leads to small deviations from the analytic prob-

abilities.

5.4 Continuous States

For the sake of completeness, we are also interested in the question of how to handle
continuous local degrees of freedom. In the following, we will propose that contin-

uous visible units can be treated very similarly to binary ones by following three
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different approaches: Investigating the expectation value of conditional probabili-
ties, referring to existing thermal models and a limiting case. If we allow the visible
entries to take continuous values between 0 and 1, Equation 5.1.2 does not hold any
more for the conditional probability but instead we have to write for the conditional

probability density of one visible unit v; to take the value x;, given the hidden units

h:

exp(z;Wijhj + bih; + z;¢;)
fol dvexp(E(v,h))
_ : exp(z;(Wijh; + ¢;)) - (5.4.1)
Wi exp(@i(Wijh; + ¢))];
E; exp(z;E;)
exp(E;) —1°

It is plotted in Figure 5.3. We see that for x close to its boundary the conditional
probability density diverges for absolute large Fj.

xilh)

P(v;=

00 02 04 06 08 10 -15 -10 -5 0 5 10 15
Values of a continuous visible unit Local enerav at a continuous visible unit

(a) (b)

Figure 5.3: Conditional probability density in case of continuous visible units (see
Equation 5.4.1) as a function of the values z; the unit can take (a) and
as a function of the local energy E; = W;;h; 4+ ¢; in (b). It diverges for
x; close to zero and one.

The expectation value of value of the visible unit under the conditional probability

P(v; = z;|h) as a function of the local energy E; = W;;h; + ¢; is given by

E; ! —1 1

The expectation value as a function of the energy F; at site i is plotted in Figure

5.4. The expectation value has a similar shape to the sigmoid function o(£;) and
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Figure 5.4: Expectation value of the conditional probability in case of continuous
visible units (see Equation 5.4.2) and sigmoid function. Qualitatively
similar, the latter is used to approximate the first.

approximates it well for small energies with a relative factor of 3 in steepness. This
justifies the standard assumption that for continuous variables (if normalized to val-
ues € (0,1)) one can just use the value of the sigmoid function instead of stochastic

binary units [Hinton, 2002].

Another implementation for continuous states is used by [Chen and Murray, 2002],
originally introduced by [Movellan, 1998]. The stochasticity of the so called Diffusion
Network is rooted in a Langevin equation which describes diffusion processes in
classical physics - thus its name. These processes are characterized by a deterministic
(or classical) and a thermal (or quantum) probabilistic part. For the probabilistic
part, again the value of the sigmoid function is directly used as a continuous visible
variable. For the stochastic impact there are different approaches. The first one
is to hope for enough statistics resulting from the update procedure of the binary
hidden units via Gibbs sampling [Chu et al., 2018]. The second is to add a Gaussian
noise term to the visible units [Freund and Haussler, 1991].

Furthermore, [Freund and Haussler, 1991] point out that the case of continuous
visible units supplemented with a Gaussian term can be approximated by the case of
binary visible units and vice versa, both in representational power and the learning
algorithm in the limit of small weights. This limiting case, in which the sigmoid is

linear, motivates the linear model for the visible units used in [Chen and Murray,
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2002).
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5.5 Results of Stationary RBM Representation

In this section, we want to give a quantitative understanding of the learning process
by presenting the used hyperparameters (Section 5.3.4) and some of the error mea-
sures (Section 5.3) of the corresponding learning process. Therefore we study three

examples, two spin states and one example of continuous states.

5.5.1 Discrete States
One-Hot encoding

Given a density matrix or a state, one can easily get the probability distribution
(Equation 4.2.1). We use a Metropolis-Hastings method (compare Subsection 5.1.2)
to generate samples from the distribution. For our spin % systems, we chose the num-
ber of local operators to be four, so a sample of one spin can equivalently be written
as an integer 1, .. .4 or as a so called one-hot (1,0, 0, 0), (0,1, 0,0), (0,0, 1,0), (0,0,0,1)
which can be represented in the RBM as four binary visible units and treated anal-

ogously to standard binary units.

Ground State of TFI Hamiltonian

The ground state for small system sizes, e.g. N = 2 can be calculated by diagonal-
ization of the Hamiltonian for different field strengths h;. An example of hy — oo
is given in Section A.1. For N = 2, hy = 100, the tetrahedral POVM, 4 hidden
units, learning rate A = 10™*, 5-10° training samples describing PJ,, ., 25 epochs and
mini-batch size of 20, we trained the RBM with CD. These numbers of the hyper-
parameters are the result of heuristics, our experience and suggestions in [Hinton,
2012]. They might be optimized further but reliably lead to convergence of the error

functions, as can be seen in Figure 5.5.
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Figure 5.5: Error functions of training the ground state of TFI for N = 2 and
hy = 100 with hyperparameters given in the main text (Section 5.5.1).
Different error functions suggest convergence after different number of
epochs. Reconstruction error (c) after five, pseudo-log-likelihood (b)
after ten, Kullback-Leibler divergence and fidelity (a) after 15 epochs,
the weight (d) only settles in after 20 epochs.

We observe that all error functions show convergence but the plateau sets in after
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different number of epochs (see Figure 5.5). The reconstruction error decreases the
most, when the weights take absolute large values which is linked to the change of
the mixing rate, thus reconstruction error is not reliable. Kullback-Leibler diver-
gence and fidelity (Equation 5.3.2) show similar behavior and are most reliable as
they take the whole probability distributions into account but are therefore com-
putationally exponentially expensive for larger systems. Pseudo-log-likelihood gives
a qualitative approximation and only scales linearly with the number of network
parameters and the size of mini-batches. The RBM represents the ground state of
the TFI Hamiltonian with high accuracy, the residual of one minus the fidelity is

smaller than 104

GHZ State

The GHZ state is named after Greenberger, Horne and Zeilinger and is highly non-
classical in the sense that bipartitions are not separable. Written as a wave function
it is defined as
1
Wonz) = —= (IN°Y +10°). (55.1)
where N is the system size. It describes an equal superposition of all states being

in the state |1) and all states being in the state |]). If we chose the z-basis, the

eigenvectors of o, as local basis, and N = 2, the density matrix is written as

1
PGHZ — 5 (552)

- o O =
o o o O
o o o O

o O =

We train it with the same hyperparameters as above, this time we add a momen-
tum method for the updates of the network parameters, where 0.8 of the last update
gets added again, which increases stability and lowers the effect of local minima. We

show the resulting error functions in Figure 5.6.
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Figure 5.6: Error functions of training the GHZ state for N = 2 with hyperparame-

ters given in the main text. Different error functions suggest convergence
after ten epochs. Kullback-Leibler divergence and fidelity (a), pseudo-
log-likelihood (b), Reconstruction error (c) and the weight Wy (d).

We observe a small plateau at the beginning of learning, which indicates that
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the gradient is very small at the beginning. The initial values might sit a close
to a saddle point of the parameter space for the GHZ state. All error functions
change rapidly until ten epochs, when convergence sets in. One minus the fidelity
and Kullback-Leibler divergence oscillate around 10~* and do not improve further.

The highly entangled GHZ state can be represented by the RBM.

5.5.2 Continuous States

As an example for continuous visible units we take measurement data from a quan-
tum many-body experiment with ultra-cold Bosons [Kunkel et al., 2019], also per-
formed in Heidelberg. In a Bose-Einstein condensate of an elongated atomic cloud of
87TRb the short time dynamics leads to an entangled many-body state [Kunkel et al.,
2019]. We take the relative occupation numbers, i.e. the occupation number divided
by the number of atoms in the cloud, of ' = 1 hyperfine manifold n; 1,7, 1 and
F = 2 manifold ny _3, ny 12, whose difference are the spin in x-direction S, and the
quadrupole moment in yz-direction @), respectively (Figure 5.7). The squeezing,
the object of interest for the experiment, is given by the variance of the data cloud
in Figure 5.7 depending on the angle of the projection. This is shown in Figure
5.8. Training the network on the relative occupation numbers, it has to extract the

information about the squeezing on its own.
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Figure 5.7: Experimental data from [Kunkel et al., 2019] and samples from RBM.
Occupation numbers of hyperfine levels in ultracold 8" Rb carry informa-
tion about magnetization in x-direction S, and the quadrupole moment

variance

4.54

4.0

Qy-. There is spin squeezing, i.e.
indicating quantum entanglement.

an elongation along the diagonal,
The RBM is able to capture this

quantum feature from learning data of continuous occupation numbers.
Optimal training parameters are given in the main text.

Gaussian fit on projection of data

+ data from experiment
+ resampled from RBM

angle of projection axis

Figure 5.8: Spin Squeezing: Variance from Gaussian fit of projection over angle from
Figure 5.7. The RBM with continuous visible units is able to capture
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the quantum nature of trapped ions

We implemented the RBM with continuous visible units by taking the value of the



sigmoid function as the value of the visible units with the following hyperparameters:
4 visible units representing n; 41, m1 1, N2 _2, N2 +2, 30 hidden units, learning rate
A = 107*, batch size of 10, 200 epochs and trained the RBM on the occupation
numbers of 284 measurements. One can conclude that taking the value of the sigmoid
as the output for continuous visible units is justified in this case. The squeezing is

indeed captured by the network but the variance is slightly overestimated.

41



6 Time Evolution - POVM Equation of

Motion

Now, we bring together the POVM description of states representable by RBM, seen
in the previous Section 5.5, with time evolution known from standard quantum me-
chanics and derive the POVM equation of motion (e.o.m.). This can approximately
be captured and solved by RBMs (Section 8). Therefore we start with unitary time
evolution in standard quantum mechanics. In the Heisenberg picture, time evolution

of operators O(t) is given by a unitary transformation
O(t + dt) = e 4O (1), (6.0.1)

with H the Hamiltonian of the system. This can be equivalently written in the

continuous time limit d¢ — 0 and up to first order in d¢

do(t)
—q = iH.0l, (6.0.2)

where [.,.] denotes the standard commutator of two operators.

The exact time evolution p(t) of the initial density matrix py under a Hamiltonian

H is written
p(t) = exp(—iHt) - po - exp(iHt), (6.0.3)

where exp() is the matrix-exponential and can be calculated in the following sense.
If v are the eigenvalues of H and w the matrix of their eigenvectors, then exp(H) =

w - diag(exp(v)) - w'. This procedure is called exact diagonalization.

From Equation 6.0.2 we can derive the time evolution of the POVM probability
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distribution P(a) by explicitly plugging in the representation defined in Section 4.

To make clear Einstein sum convention, we also write P* equivalently to P(a):

dpam dplj "
= M4
dt de 7
=i[H, p],; M

. " . "
= iHypry M5 — ipiHy M;
¥ ¥ (6.0.4)
. a a parm—1 a’ al - ar—1 a’ ~a'l a a
s 7

_ -na prda’a arpi—1 - ~a' 70’ a”a arp—1
— QUK pep—l _jQu fa"a" pap-

_ a _1 a/a///a// a//a///a//// a//
= iP°T <K ~-K ) Q.

aa’

In the first line we take the time derivative of the POVM probability defined in
Equation 4.2.1 and use Einstein sum convention for the trace. From the first to the
second line, we plugged in the time evolution (Equation 6.0.2) of the density matrix
p. In the following we used the POVM basis for the operators and defined the trace

over three M-matrices
K" = Mg MM (6.0.5)

and used that it is cyclic to reorder the indices so that the structure of the POVM
equation of motion can be captured on first sight. The time derivative of the proba-
bility distribution P(a) is a linear transformation of P(a) and the matrix in between
contains an antisymmetric ingredient in form of K¢ — ¥a"e” T make the
structure even more apparent, we repeat our calculations with its graphical repre-
sentation introduced in [Carrasquilla et al., 2019b] in the Appendix C.1

In principle, one could also start from other equations of motion like the Lindblad
master equation and insert the POVM basis to capture the time evolution of open

systems. The aim of this thesis is just a prove of principle, so we stick to the unitary

case.
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7 Exact Solution

To check consistency of our developed theory of time evolution for the probability
distribution, let us solve small systems exactly and compare to exact diagonalization.
By writing Equation 6.0.4 as a matrix multiplication

AP (t)

= PY(t). R¥® 7.0.1
T () , (7.0.1)

we define the time evolution matrix

Raya/” — ZTC;J} (Ka/a//a/// o Ka/a//la/l) Q%/' (7.0.2>
If N is the system size, its size is 4V,4". The measurement outcomes of P are
sorted that way, that the last index is the one changing first. As an example for
N =2:a=((0,0),...(0,3),(1,0),...(1,3),...(3,3)). R*® is a real matrix whose
columns and rows add up to zero. For the time evolution to first order in the

infinitesimal time step dt, one can also write

dP*(t)
dt (7.0.3)
= (I + dtR*)P?.

Po(t+dt) = P*(t) + dt

The expression I, o + dtR“" is called pseudo-stochastic matrix [Carrasquilla et al.,
2019a]. Tts columns add up to one, thus it preserves the norm of a probability, but
its entries can be negative and positivity is not preserved in general, thus the prefix
'pseudo’. But one can choose dt small enough, such that ||I, o +dtR%% || > 0 in the

operator norm.

As a consistency check, we solve this differential equation (Equation 7.0.1) ana-

44



1.5 1.5
1.01 P 1.01 - ~
/\ /\ /\ / \ / // \ / \\
A 0.5 \ A 0.54 / \ / \.
- x \ = x / \ / \
/ & \
V' 0.0 : V.o0.04 7 ~
—-0.51 —— from P(t) —0.51 —— from P(t)
---- from diag. Hrem ---- from diag. Hrem
-1.0— T T T T -1.0+— T T T T
0 5 10 15 20 0 5 10 15 20
time time

Figure 7.1: Comparison of exact diagonalization and exact time evolution of P(a)
(Equation 7.0.4) for GHZ(N), with N = 3,4 under Hyp; with magnetic
field hy = 1.1. For both cases N = 3 and N = 4 the two curves lie
exactly on top of each other. The mapping is exact.

lytically by the matrix exponential
Pe(t) = exp (tRw’) - POt = 0). (7.0.4)

In the POVM basis, Equation 4.2.4 induces the following coefficient for the TFI

Hamiltonian
Qu=—Y _ QUQ¥ —h;Y Q¥ (7.0.5)

which enters the time evolution through the time evolution matrix R*»%. With the
GHZ-state as initial conditions for P*(t = 0), this gives the results shown in Figure
7.1a for system size of three and in figure 7.1b for system size of four spins. We see

that the developed theory is exact so far.
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8 POVM Time Evolution with RBM

In this section, we will make a proof of principle that the quantum many-body
time evolution can be solved solely with a neural network based on probability
distributions.

We propose an approach for solving the Equation 6.0.4 which is similar to the
Euler integration method but based on training the network and drawing samples
from it. We iteratively train the RBM on the probability distribution at a given
time ¢t and use the network to efficiently draw samples from P(t) + dtdg—it) which

can be used to train the network parameters for P(¢ + dt). The sampling from the

dP(t)
at

‘future distribution’” P(t + dt) = P(t) + dt is done via a Metropolis-Hastings

algorithm. The acceptance of the new sample a coming from sample a is given by

Pa(t) + dtd®
A(a,a) = (t) +di g (8.0.1)

a dpP(t)
Pe(t) 4 dt=F=

where P°(t) is either known and stored from the previous time step or can easily
be calculated from the network parameters (Equation 5.0.2). Before we present our
results, we need to answer some questions concerning representational power and

how we chose suitable hyperparameters.

8.1 Integration Step Size

An important aspect of the integration scheme with the RBM is the integration
step size dt. As this integration scheme is simply a version of Euler integration, it is
expected to be unstable in the sense that the norm is not conserved. So, for N = 2,
we integrate the equation P*(t + dt) = P(t) + dt - de—at(t) with two different step

sizes. The resulting spin expectation values can be seen in Figure 8.1.
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Figure 8.1: Numerically integrated P*(t+dt) = P*(t)+dt- dP;t(t) with Euler for two

different dt. For dt much larger than 103 the integration is unstable.

Indeed it is clear from the figure that the spin expectation value increases unphys-
ically. That is the spin expectation value should not be out of the interval [—1, 1]

for a physical spin, but it is after short times if dt is chosen to be of the order 1072.

8.2 Representational Power

An important question on the way is, if the RBM is able to learn any probability
distribution that is generated during time evolution. To answer this question, we
solve the time evolution equation of the density matrix via exact diagonalization
(Equation 6.0.3). For discrete points in time ¢, the exactly evolved density matrix
p(t) gets mapped on the POVM probability, on which we train the RBM. From
both, the exactly solved density matrix and the network parameters, we calculate
the spin expectation value and plot it in Figure 8.2. The network parameters enter
in Equation 4.2.7 through the probability distribution P(a), which is Pggp(a) in
this case (with @ = v in Equation 5.0.8). The initial state is the ground state of
TFI with magnetic field hy = 100, quenched to Ay = 1.1 for the dynamics. The
hyperparameters of training are: the number of hidden units my;y = 4, number of
epochs is 10, size of mini-batch is 10, learning rate A = 10~* and the number of
training samples is 5 - 105. The deviations are small and seem to be of statistical

nature. One can see that the training of the RBM is successful for any probability

distribution generated by time evolution.

47



0.0 -
—0.2 1
+
AN —0.4 -
E -
5
vV —0.6 1 .
+
_018_
b B from RBM
104 #* +* exact
0 1 2 3 4
time

Figure 8.2: Time Evolution of expectation value of spin in x-direction from exact
diagonalization (Equation 6.0.3) '*’ and afterwards training the RBM to
represent the state '+’ at several points in time.

8.3 Reduction of Statistical Errors

We want to reduce the statistical error of learning and sampling such that the RBM
is able to represent small changes in the probability distribution when integrating
the POVM e.o.m. with the RBM over a small time step dt. Therefore we investigate
learning and sampling behavior for different sample sizes, as this hyperparameter
reduces statistical errors.

The question one should consider is, if the Metropolis sampling from the ’future
distribution’ accurately represents the underlying probability distribution. To inves-
tigate how the sampling noise can be reduced, we vary the sample size in the range
from 10% to 10° logarithmically, train the network on a ground state of the TFI

Hamiltonian with transverse field Ay = 100 with following hyperparameters: four
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hidden units, a learning rate of A = 104, 10 epochs with mini batches of size 10. We

plot the first five measurement outcomes of the exact probability calculated directly

from the density matrix of the ground state ('*’), the probability distribution calcu-

lated from the sample set as a histogram with error bars from Metropolis Sampling

(’+’) and the probability distribution calculated from the network parameters of the

trained RBM (’x’) in Figure 8.3. We see that the probabilities calculated from the

network parameters only converge for the last two crosses, corresponding to sample

sizes of order > 10°. We also varied other parameters a little and always found the

same behavior in sample size.

probability

0.31 *  exact
0.2 1
0.11 ¥ | [ ¥
FehoekpRx =3 oK o %,
X X
0.0 1 F THER S e
0 1 2 3 4

measurement outcome a

Figure 8.3: Convergence of sampling from the exact probability distributions (*+’)

and learning result (’x’) to the exact probability distribution ("*’). First
five measurement outcomes of the exact probability calculated directly
from the density matrix of the ground state (**’), the probability dis-
tribution calculated from the sample set as a histogram with error bars
from Metropolis sampling ("+’) and the probability distribution calcu-
lated from the network parameters of the trained RBM (’x’) for logarith-
mically varied sample size in the range from 10? to 10°. The different
colors are different sample sizes, increasing from left to the right for
each measurement outcome. Error bars of probability approximated by
Metropolis sampling decrease rapidly and are negligible for sample sizes
larger than 10%, the learned probabilities only converge for sample sizes
larger than 10°.

In this context, one should ask if the sampling and learning noise is already de-

creased that much that the impact on the probability distribution of an infinitesimal
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time step is larger than the one of the noise. Therefore we investigate the stability of
the RBM integration for dt = 0. We train the RBM on the ground state (see Equa-
tion A.1) of the TFI Hamiltonian with transverse field hy = 100 with 10° samples
and draw the same amount of samples again, just to train it on those data. This
procedure is expected to be unstable in the sense that there is no force bringing the
probability distribution back to the physical state once sampling noise has driven it
away. In Figure 8.4, we see the first five entries of the probability distribution for
each of the 10 repetitions of sampling and learning. The probabilities do not change

much compared to the sampling noise for smaller sample size in Figure 8.3.

*  exact aane s
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Figure 8.4: Stability check of repetitively learning and sampling the RBM using
Metropolis Hastings Equation 8.0.1 with d¢ = 0. The first five entries of
the probability distribution of the ground state of the TFI Hamiltonian
with transverse field Ay = 100 for 10 times learning and sampling. Sam-
ple size is 10°, 4 hidden units, 10 epochs, mini batch size of 10, learning
rate of 107*. Each learning result is encoded in a different color from
left to right.

The repetitive learning and sampling is robust against noise and information loss
for a sample size of 10° for a system size of N = 2. There is the conflict, that the
RBM needs a large dt so that the physical change of the probability distribution is
larger than the sampling noise, but then Euler integration becomes unstable. To
reduce sampling and learning noise, the sampling size needs to be very large, which

immensely slows down the learning process, that needs to be repeated for every
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small time step dt.
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8.4 Results

After these preliminary considerations, we can put the Euler-integration scheme
with the RBM together with d¢ = 0.1 and sampling size of 2-10°. In Figure 8.5, one

can compare the result of the RBM with the solution from exact diagonalization.
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(b) First five entries of the probability distri-

E tati 1 f tization in x- . . .
(a) Expectation value of magnetization in x bution P&y, (1) as a function of time.

direction at site 1.

Figure 8.5: Time evolution by RBM integrator as described in the main text and
exact diagonalization. N = 2, initial state is ground state of TFI Hamil-
tonian with hy = 100 quenched to hy = 1.1. Sample size is 2 - 10° and
dt =0.1.

We train the RBM with the samples from the 'future distribution’ in ten epochs,
as it is expected that the weights only change very little and starting point is already
very close to the target distribution. We investigate how far off the integrator gets, if
smaller sample sizes are used. That way we can approximate the minimum number
and the scaling of the statistical errors. The analogous results to sample size of 2-10°
for samples sized of 10%, 10° and 10° are shown in the Appendix D. We observe that
only for a sample size of 2 - 10° the expectation value of the spin in x-direction is
approximately correct for short times. The time evolution for the TFI ground state
of hy = 100 quenched to hy = 1.1 for system size N = 2 is captured by the RBM
integrator for short times.

In our implementation for N = 2, we used the time evolution matrix R*% , defined
in Equation 7.0.1, for the Metropolis sampling in Equation 8.0.1. The problem with

this is the multiplication R®% P%(t) has exponentially many terms with system
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size. To solve this, there are multiple options. One can find approximations in
the correlation length to formulate local approximations. In the Appendix C.2, we

investigate how local approximations might be formulated in the POVM setting.

53



9 Conclusion and Outlook

A machine learning graph (RBM) has been used to represent the POVM represen-
tation of many-body quantum states. From there, we derived a POVM equation
of motion which can be solved by the RBM alone. For the RBM representation
of a steady state we showed that besides discrete systems, RBMs are also able to
represent entanglement features of quantum many-body systems with continuous
degrees of freedom by continuous visible units. For the POVM equation of motion,
we showed exact correspondence to the quantum mechanical equivalent and found
a sampling scheme for the RBM that integrates it statistically. We found out that
in order to reduce statistical sampling and learning errors, an enormous amount of
sampling data is needed. In the case of system size N = 2, a sample set of 105 was
sufficient to obtain good agreement to the solution from exact diagonalization for
short times. The developed NQS solver suffers from accumulating errors with time
and precision is limited. In our application, the NQS solver is eventually unstable
and the computational cost is much larger than exact diagonalization even for small
system sizes. By using other models than the RBM, precision and stability might
improve.

We can conclude, that RBMs are a powerful tool to represent probability distribu-
tions. The POVM setting can be used to represent any quantum state as a positive
probability distribution that can be learned by the RBM. RBMs are even able to
learn distributions with finite continuous values. The time evolution in the POVM
setting is possible, but at this very rudimentary stage of development it has no ad-
vantage over exact diagonalization. However, it has the potential to be improved
so that it scales sub-exponentially in system size and appropriate approximations
might be implemented.

Future works might profit from the sub-exponential scaling of network parameters
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to represent NQS to successfully implement a scalable NQS integrator based on real
numbers. This would enable a powerful tool to simulate relevant many-body systems

for experiments, like open systems.
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A Appendix for Chapter 3

A.1 Ground State of TFI

In the limit of Ay — oo the ground state for N = 2 written in the z-basis is

1 -1 -1 1

1
pg’roundstate(hf — OO) - Z (A].)

1 -1 -1 1,

as can be calculated for large hy by calculating the eigenvectors of the Hamiltonian
and observe convergence to the above state. It is dominated by the alignment along

the external field in x-direction.

A.2 KL-Divergence and Mutual Information as

Entanglement Measures

Having a proper probability distribution P(a) at hand after applying POVM gives us
the possibility to investigate the system from an information theoretical perspective.
The POVM description preserves factorizability, i.e. the probability distribution of a
product state is a product distribution over statistically independent sets of variables
P(a) =[], P(a;). Thus the KL-Divergence between a probability distribution and

the product of its marginals might be a measure of separability:

DIl T] Pla) = 3 Pl tos 1 s (A1)
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It is also called Mutual Information (MI). Note that it is basis dependent and a
minimization over different bases gives a basis-independent measure for separability.
This optimization over POVM bases might be an analogy to Schmidt-decomposition
in the MPS framework. MI describes how much two subsystems are correlated, i.e.
how much information they share. If we split the system into subsystems A and
B, the marginalized probability distributions are then P4(a) and Pg(a). MI might
be a good measure for entanglement entropy if the basis is optimized in the way

mentioned above.
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B Appendix for Chapter 5

B.1 Derivation of Contrastive Divergence Learning

Algorithm

In the following derivation of the learning algorithm, we follow [Hinton, 2002|, the
introduction of Contrastive Divergence. Just to underline the fact that each visible
unit is independent of the others, we introduce the following notation of a product

probability

N

l Zexp
h
Z (Z v;Wijh; + hjb; + alvl)>

h (2
S exp (S vilVighs + hybs + ag )
5o o exp( i, GiWish + hsb; + ai
[T S exp (i (X2, Wishy + i) ) exp (X2, byt )
- 5o IL S, exp (U (zj Wiih; + a)) exp(zj hjbj)

_ I fio(v)
- 2 1L fie(@)

(B.1)

The KL-divergence between the probability of all data vectors and their equilibrium

distribution can be written as
Dgr(P° || P>) ZPO ) log (P°(v ZPO ) log(P*(v))

= —(log(P°))po — (log(P>))po

29



where angled brackets denote an expectation value following the probability in the
subscript. The expectation value of the logarithmic data distribution is not depen-

dent on the network parameters. The variation of one network parameter 6, yields

— o D(P | P¥) =

i (10g(P)

89
- W 3P0 og(P(0)

) [, fuo(v)
a0, ZP ) log (Z [L; fie(0 ))
_ZPO log<Hfz ) ZPO log<ZHfz )
) %Z{,Hifiﬁ( )
_ ZP (v)aTZIOg(fi,a(’U)) ST fie(@)
—ZPO 1og Jou(v —_Zae fon®) 11 fiol®

z;ém

() TS

_ /0log fo,, 8log fg
B 00 PO 00 poo

This is essentially the difference of expectation values of the same object but eval-

(B.3)

uated at different probabilities. The first term is the expectation value over the
learning data whereas the second term is the expectation value over the equilibrium
distribution, resulting from the parameter dependence of the partition sum. The
second term is computationally costly to evaluate since in principle one has to evolve
the Markov chain of Gibbs reconstruction until convergence appears. Instead, one

constructs a different quantity as distance measure, the difference of KL-divergences,
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such that the term resulting from the partition sum cancels out:

0
5= PP I %) = D(Fy || F®))|

_ |/ oelfo,)\  _ /Oloslfu,)\ | OF) OD(Fy || B
b/ po 0p [ p 00n  OF) (B.4)

N <310g(f9m)> _<310g(fam)>
9/ o B/ 1

where the last term in the second line results from the weight-dependence of the first

Y

reconstruction P}. Empirical evidence suggests that it can be dropped and learning
is still successful [Hinton, 2002|. The interpretation of the above equation is: if the
thermal distribution of the model Pg° parametrizes the data distribution PY well,
one Gibbs sampling step samples from that same distribution. Evaluating the terms
inside the expectation value brackets yields:
il
g ) = 221
fw

_ >opvihjexp(uiWijhy + via; + hjb;)

N >onexp(v;Wish; + via; + h;b;)

_wvexp(v;Wi; 4 b)) (B.5)
—exp(viWij +b;) + 1

oW,

= UZ'O'(UiWU + bj)
= v;P(h;|v)

We can now write Equation ?? for 6,, = W;; as

0
oW,

(vihj) po = (vih;) ps

|D(P° || P3*) — D(Fy || Fy))|

, (B.6)

where P, is the probability distribution of the network after one updating step of
Gibbs sampling.
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C Appendix for Chapter 6

C.1 Graphical Representation and Calculation of

POVM Equation of Motion

Let us define the following graphical representations for the needed objects in Equa-
tion 6.0.4. We also remind the definitions in the Section 4. The Figures C.1, C.2 and
C.3 show the graphical representation for the probability distribution P(a), density

matrix p;; and for an expectation value of a product operator < O;0;... >.

As an example Hamiltonian, we choose the TFI model defined in Equation 2.0.2.

In the POVM basis, Equation 4.2.4 induces the following coefficients:

Qu=—) (QU®Q¥" +h; Q) (C.1.1)

Figure C.1: Graphical representation of probability 4.2.1. P(a) = Tr(M (a) -p).
M@ is the POVM measurement set and p the density matrix. P(a)
contains all information about the state, M(® is just an exact mapping
to real positive numbers.
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Pij = P(a)

10 ao,al, 11

Jo J1

Figure C.2: Graphical representation of density matrix as it is defined in Equation
4.2.3 as a function of the probability P, T, ;, is the overlap matrix
4.1.10 and M} is the POVM basis 4.1.3. Lines connecting two boxes
are tensor contractions.

< 0p01... >= P(CI,)

Figure C.3: Graphical representation of expectation values of product operator like
in Equation C.1.2.
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Thus, its expectation value is given by

<H>=P Q%

C.1.2
_ Z Pisditt ((ng ® Q;LH-I + hf . le)) ( )

where we defined the marginalized probability by summing P(a) over all other
sites than ¢ and ¢+ 1. For the energy expectation value of the TFIM, only two point

correlations contribute. We define

P =" Pk (C.1.3)

ak
for unequal j, k. For i,j = 1,2 we can write P% % as
P = Tr((M* @ M*)p)

= Te((M™ & M®)(py @ pa + i7" ))

= Tl"(Malp1> . Tl"(Ma2p2) + TI‘((M‘“ ® M(IQ)pglrczmected)

(C.1.4)

— Palpag + Pal,a2

connected*

We used the notation for reduced density matrices, where the density matrix of two
sites is p1 o, the reduced density matrix on site 1 is p; = Tro(p12) and analogue
for site 2. Furthermore the connected density matrix is defined by the difference

of the full density matrix and the outer product of its reduced density matrices

p‘f%meded = p12 — p1 @ p2. In particular, we see that Equation C.1.3 is still true as
> s Pronmectea = 0. The marginalized probability that contains two sites P% % and

thus also captures two-point correlations, we will later call second order.
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Figure C.4: Contraction identity given in Equation C.1.5. T_- ;/ is the overlap matrix
4.1.10 and K is the trace over three M matrices defined in Equation
6.0.5. The identity with one index has shape 4 and is summed over, the
right-hand side is a four dimensional Kronecker delta, the identity in
POVM space.

Another import equality that will be needed in the following is:

ST LR =3 T () T (nre e b

/ -1 22 / "
- Tr(M“M“) Tr (M“ MY S M >
1.
= T;;,Ta,//a/ =Ty am (C.15)

1 o al "
: : Ta,a'K ’ ’ - :[[a’a//

a///

which follows directly from the norm condition Equation 4.1.3 and the symmetry of

T, ;,. Its graphical representation is shown in Figure C.4.

The graphical representation of the above Equation is shown in Figure C.4. This
has the consequence shown in Figure C.5. Especially, the triangle representing the

tensor K vanishes, if the open index is summed over.
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]Ia// @

Figure C.5: Sum over open index a” of a contribution of Equation 6.0.4 represented
in Figure C.6. From the property of K (Equation 6.0.5) follows Fig-
ure C.4. When summing over the open index a”, the antisymmetric
structure vanishes.

Altogether, Equation 6.0.4 can be represented as shown in Figure C.6.

= P(a™) - P(a")

T} T}

a///’a// a///’a/

Figure C.6: Exact time evolution under a Hamiltonian of the probability P(a) repre-
senting a density matrix, derived in Equation 6.0.4. Ta_,,}’a,, is the overlap
matrix, K the trace over three POMVs and Qg the coefficient of the
Hamiltonian in the POVM basis.

We recognize the structure of the commutator and note that the tensor K is the
only antisymmetric object. If we sum out all open indices, no matter what the

operator coefficient () is, the whole expression will vanish identically.
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C.2 Local Hierarchy

The goal is to get rid of the exponential scaling with system size while only losing as
little information as possible. The TFI model exhibits an inherent approximation
scheme as there are only nearest-neighbour interactions. If one is interested in
observables that only contain few-site correlations or even only local observables at
site ¢, considering subsystems will probably be a good approximation. Therefore we
sum over sites in Equation 6.0.4. Reminding that the index a is a multi-index for
each site a = {ay,aq,...ay}, we define the order of P*% - 2N hy the number of
indices it carries and sum over all other indices of P* in the POVM e.o.m..

In the following, we will illustrate what we mean by 'orders of P(a)’ by applying
the developed formalism to P%, the probability distribution describing the site 1.
We will see that it generates a hierarchy of local equations in a very natural way
that couple to the two neighbors in the spin chain. P is first order of P(a) because
it is local and contains no correlations. It is the subsystem containing only the first
site with all the information about the rest of the chain summed out. But as we can
see (Equation C.2.1) its time evolution couples to the second order in P(a) via its
neighboring site 2 and N. One can say, that the order of P is the number of indices
that it carries. We show their evolution equations in Equation C.2.2 and C.2.3.

We use a symbolic notation for the tensor K**"@”" — K%"a" and write it as
K, knowing that the tensor contraction in the first index is with T L and the
second and third are antisymmetrized in the given way. The contractions with the
probability distribution at different sites are separated by a tensor product '®’,
where the notation might be misleading. If there are two or more K in one term,
one has to take the tensor product first and then antisymmetrize afterwards! Then
the first order POVM equation of motion for the TFI model reads:

dprt

E = i(P1’2 . (T_IKQZ (024 T_IKQZ)

+ PN (TRQ, 9 TUKQ.,) (C.2.1)

+ P (TT'KQ,)).

We recognize the terms from the Hamiltonian, the first two are the nearest-neighbour
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interaction of the first site to the second and last as we defined periodic boundary
conditions. The third term is the interaction with the external magnetic field hy,
where we absorbed h; into the coefficient (),. With this same notation, one can
formulate the second order POVM equation of motion for the terms entering the
first order for the first site, namely the second order with the two neighbors 2 and

N:

dp2
5 =P (TTEQ. © TTKQ.)
+ P (IeTTKQ, ®Q.)
+ PPN (17 KQ. ®1 Q.) (C22)
+ P2 (T7'KQ, ®1)
+ P2 (1T 'KQ,)),
P (K Q. e T Q)

+PYNLWY ([0, @ TLKQ,)
PN (TKQ, 910 Q.) (C.2.3)
+ PN (TT'KQ, ®1)
+ PNV (IT'KQ,)).
The identity I is four-dimensional and is contracted with the dimension of the prob-
ability distribution according to the order of terms in brackets. The hierarchy of
equations can be continued up to the system size N, recovering the exact POVM

e.o.m. Equation 7.0.1. One can still calculate local expectation values from all or-

ders of the probability distribution, i.e. in the following example for site 1 and 2:

(of) = _ P2 (Qy @ 1%)

=> PUQy.

(C.2.4)

68



1.5 2.0
— from P1
from P12
—— from P1N
-- from exact diagonalisation of Hrgm

1.0 i 15

0.5 1.0

0.0 - 0s{ = _sssseoee-
—— from P1
—0.5 from P12 0.0

-- from exact diagonalisation of Hrgm

-1.0 -0.5
0 2 4 6 8 10 0 2 4 6 8 10

time time

1
<o}>

1
<GX>

(a) Time evolution of (o) and its approxima- (b) Time evolution of (sl) and its approxi-
tion to 2nd order truncated with a con- mation to 3rd order truncated with a con-
stant stant

Figure C.7: Time evolution of (o.) and its approximation to 2nd order (Equations

C.2.1, C.2.2 and C.2.3) and 3rd order truncated with a constant. (o}) is

calculated according to Equation C.2.4 and from exact diagonalization

of Equation 6.0.3. The deviations of the approximate solution from the
exact ones increase with time.

For an exact solution, the above equation is strictly true, for an approximation we

will use the deviation as a marker of how trustworthy the approximation is.

C.2.1 Truncating With a Constant

We define the truncation of the hierarchy with a constant to neglect the time depen-
dence of probability distributions with more than a given number of indices. When
truncating with a constant at a given order, let us say two, we just set the third or-
der of P* to its initial value with no time dependence at all. That is, only the time
dependence of local probability distributions and of the probability distributions
that contain two-point correlations are considered. The rest gets neglected.
Implementing this set of coupled differential equations and extracting the expecta-
tion value (o) yields the evolution shown in Figure C.7a. The result of implementing
the third order approximation, i.e. including the time evolution for P'?* and P'?V
but setting P'#34, P23N and P12N=IN constant, is shown in Figure C.7b. For both
cases the GHZ-state for initial conditions and the TFI model with magnetic field

hy = 1.1 and system size N = 6 was chosen.

The deviations of the approximate solution from the exact ones increase with
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Figure C.8: Time evolution of (¢}) and its approximation to 2nd and 3rd order trun-
cated with a constant, which becomes exact for N = 2, 3 respectively.

time. The exact solution is composed of at least two different oscillations, the
approximation to second order only captures one oscillation. The approximation to
third order shows qualitatively similar behavior to the exact solution but deviations
increase after the first local maximum. Clearly, the deviation from the exact solution
of the time evolution scales with time, which limits this approximation scheme to
short time dynamics.

In the limit of small system sizes, i.e. for N = 2,3 the respective approximations
become exact. In Figure C.8 one can check that the equations lead to the correct

evolution in the case of no approximation.

C.2.2 Truncating With Mean Field

In the mean field ansatz to a given order k, all correlation functions higher than &
are approximated by their disconnected part to order k. For example, if only first
order was considered, we would approximate the probability containing two sites by
its product of local probabilities P2 ~ P! P2,

We chose the GHZ-state for initial conditions and the TFI model with magnetic
field hy = 1.1 and system sizes N = 2,3,6. As we can see in Figure C.9 this
approximation scheme to second order shows larger deviations for larger N. For
N = 6, the approximation with mean field for the same system shows the same

behavior as the approximation with a constant. Both approximation schemes neglect
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long distance correlations in the spin chain which are expected to build up over time
in the TFI model [Czischek et al., 2018b]. Both approximations are only valid for

short enough times.

1.4 —— fromP1 1.4 —— from P1
from P12 from P12
12 ---- from exact diagonalisation of Hrgu 1.2 ---- from exact diagonalisation of Hrem
1.0 1.0
A A
~x 0.8 ~x 0.8
Sy /\\ /\ )
v \ v
0.6 \ 0.6
\ /
0.4 / \ 0.4
0.2 / 0.2
0.0 0.0
0 2 4 6 8 10
time
(a) N=2
1.4 — from P1
from P12
1.2 ---- from exact diagonalisation of Hrsym

time

(c) N=6

Figure C.9: Truncation of the local hierarchy with the mean field ansatz to second

order described in the main text. We plot the magnetization in x-
direction (cl) at site one as a function of time with the two methods
shown in Equation C.2.4 and exact diagonalization. Second order is
exact for N = 2, deviations increase with system size. N = 6 compares
to Figure C.7a, where the same system with truncation with a constant

is considered.
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D Appendix for Chapter 8

As described in the main text in Section 8.4, we investigate the effect of statistical
errors on the NQS solver by choosing small sample sizes. In Figure D.1, we plot
the results of the same NQS solver as in Figure 8.5, but now with sample size of
10%, 10 and 105. The pluses '+’ are the probabilities calculated from the density
matrix after exact diagonalization, they are the exact solution. We observe that
deviations are large and random for all three cases of sample size. This confirms our

considerations regarding the sample size.
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Figure D.1: Time evolution by RBM integrator as described in the main text and
exact diagonalization with sample size of 10* in the upper panels and
105 in the lower ones. N = 2, initial state is ground state of TFI
Hamiltonian with iy = 100 quenched to hy = 1.1.
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