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Effektive Theorie eines Spin-1 Bose-Einstein-Kondensats in Gegenwart des
Quadratischen Zeeman-Effekts bei niedrigen Energien:

Das wohlbekannte Goldstonetheorem besagt, dass das Anregungsspektrum von
Systemen, deren lokaler Grundzustand durch spontane Symmetriebrechung
gekennzeichnet ist, masselose Moden beinhaltet. In relativistischen Theorien
entspricht die Anzahl dieser masselosen Quasiteilchen gerade der Anzahl an
gebrochenen Erzeugern der Symmetriegruppe. In nicht-relativistischen Syste-
men ist dies im Allgemeinen jedoch nicht der Fall. Stattdessen gilt, dass die
Anzahl der gebrochenen Erzeuger gleich der Zahl derjenigen Feldvariablen ist,
die ohne Massenterm in die Lagrangefunktion eingehen. Die Quantisierung
der effektiven Feldtheorie involviert die Eliminierung von Zwangsbedingun-
gen, welche beim Wechsel zwischen Lagrange-Formalismus und Hamilton-
Formalismus auftreten. Daraus ergibt sich eine Reduzierung an Freiheitsgraden,
weshalb die resultierende Zahl der masselosen Moden im Allgemeinen kleiner
als die Zahl der gebrochenen Erzeuger ist. Die zugrundeliegende Methodik
der Behandlung solcher Systeme wird présentiert und auf ein Spin-1 Bosegas
in der broken axissymmetry Phase angewandt. Mithilfe der resultierenden ef-
fektiven Theorie fiir niedrige Energien wird die Dynamik des Systems in der
Nédhe eines nichtthermischen Fixpunkts storungstheoretisch untersucht. Unter
der Annahme einer selbstdhnlichen Zeitentwicklung der statistischen Funktion
werden die entsprechenden Skalierungsexponenten berechnet und eine gute
Ubereinstimmung mit experimentellen Resultaten festgestellt.

Low-Energy Effective Theory of a Spin-1 Bose-Einstein Condensate in the
Presence of The Quadratic Zeeman Effect:

A well-known theorem due to Goldstone states that there are massless excitations
in the vicinity of a local ground state of any system which exhibits spontaneous
symmetry breaking. In a relativistic context the number of these excitation modes
equals the number of broken symmetry generators. However, in non-relativistic
systems this is generally not the case. Instead, one can only equate the num-
ber of fields whose mass matrix vanishes with the number of broken generators.
The quantization of the low-energy effective Lagrangian involves the treatment
of constraints which arise when transitioning from the Lagrangian formulation
to the Hamiltonian. This results in a reduction of the number of degrees of free-
dom and therefore the number of massless modes is in general lower than the
number of broken generators. The principles and techniques involved in treat-
ing such systems are discussed and applied to a spin-1 bose gas in the broken-
axissymmetry phase. The resulting low-energy effective theory is then used for a
perturbative analysis of its dynamics in the vicinity of a non-thermal fixed point.
Under the assumption of a self-similar time evolution of the statistical functions
we calculate the corresponding scaling exponents and find them to be in good
agreement with experimentally observed values.
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1 Introduction

In order to theoretically study the behaviour of a system at very low temperatures,
one would like to work within a low energy effective theory instead of taking all
of its degrees of freedom into account. As we know from the general scheme of
renormalization, it is not necessary to explicitly include degrees of freedom whose
energy spectrum lies above the energy scale of interest and excluding them usu-
ally simplifies the description. For this purpose one needs to identify the var-
ious modes of excitation and their spectrum. One possibility is to start with a
Hamiltonian that correctly describes the system at low temperature or even be-
yond. Diagonalizing the quadratic part gives the modes and spectra and the left-
over terms constitute interactions between these quasiparticles. By formulating
the theory within the path integral formalism one can then proceed by integrating
out those modes which have a gapped spectrum, provided that the gap is larger
than the typical energy of excitations in the system for a given experimental setup.
This results in a modification of the interaction terms for the remaining degrees
of freedom but may also contribute to the quadratic part of the remaining effec-
tive Hamiltonian and therefore to the spectrum of the low energy effective theory.
When starting from a (classical) Lagrangian description, there is also the task of
constructing the quantum Hamiltonian in the first place. While often straight-
forward, there can be complications arising at this stage. Sometimes the naive
construction of the Hamiltonian and the corresponding phase space by defining
the canonical momenta and performing the usual Legendre transformation does
not lead to a correct Hamiltonian description. This is essentially due to the fact
that the Lagrangian might not be a convex function of the time derivatives of the
fields. In this case the relation between momenta and time derivatives of fields
is not invertible and so it is not possible to express the latter in terms of the for-
mer. However, it is always possible to formally write down the usual Legendre
transformation of the Lagrangian and obtain a Hamiltonian which is a function
of fields and momenta only. This is because one either has an invertible relation,
which allows for a re-expression of the time derivatives in terms of momenta, or
one has a cancellation of the time derivative terms. In the second case this naive
Hamiltonian does not correctly describe the dynamics of the system however be-
cause here some of the Euler-Lagrange-equations impose explicit constraints on
the phase space by relating fields and momenta instead of merely providing equa-
tions of motion. This means that the real phase space of the system is a symplectic
submanifold of the naive phase space. The usual transition to the Hamiltonian for-
malism with its equations of motion relies on the phase space being the full naive
phase space not subject to any constraints and so this transition has to be modified
for cases with constraints. While being an issue already at the classical level, this is
especially important when quantizing the system since the commuation relations
of fields and momenta will generally be affected by constraints. By a certain choice
of canonical transformation this can be circumvented, however.

In order to avoid involved calculations, it might be preferable to construct a low



energy effective theory at the Lagrangian level and the quantize it instead of the
other way around. If the transition from the full Lagrangian to the effective one is
computationally simpler than integrating out all of the gapped modes in the final
Hamiltonian, then one might have a more efficient method at hand. In order to see
how this works, one should firstly note that for many systems there a several pos-
sible, qualitatively different ground states, i.e. local minima of its energy spectrum.
Typically some of the fields appearing in the original Lagrangian acquire a non-
vanishing expection value in these ground states and these values serve as order
parameters defining the particular ground state or “phase” of the system. These
non-vanishing order parameters imply that the set of field ground state values
typically is not invariant under all of the symmetries of the Lagrangian. This phe-
nomenon is referred to as spontaneous symmetry breaking and simply means that
the system’s state does not respect the system’s dynamical symmetry. A standard
example for spontaneous symmetry breaking is the ground state of a ferromag-
net (at vanishing temperature) since the Lagrangian is invariant under uniform
O(3) rotations of all of the spins but in the ferromagnetic phase all of the spins are
aligned in order to minimize the energy. This configuration of spins is clearly not
invariant under general O(3) rotations. It is however under O(2) rotations about
the axis of alignment. This goes to show that the original symmetry need not be
broken completely but generally there will be an unbroken subgroup of the orig-
inal symmetry group remaining under which the ground state remains invariant.
In the example of the ferromagnetic phase the original group O(3) is broken to
O(2). A theorem which was proven by Goldstone [20] states that whenever there
is a spontaneously broken symmetry there are gapless modes appearing in the
spectrum of excitations around the given ground state. It also states that the num-
ber of these modes is just the number of broken symmetry generators, that is the
dimensionality of the original full symmetry group minus the dimensionality of
the remaining unbroken symmetry group. This version of the theorem is only cor-
rect in the case of a relativistic QFT, however. This is precisely due to the fact that
the Lagrangian in that case is of second order in the time derivatives and therefore
convex, so there are no constraints arising at the transition to the Hamiltonian and
each of the fields associated with a broken symmetry generator becomes its own
massless degree of freedom. In the non-relativistic case one can and does have
Lagrangians of first order in the time derivatives of fields and so constraints do
arise and reduce the number of actual degrees of freedom in the quantized Hamil-
tonian. There is indeed a general method for constructing the effective Lagrangian
in each phase of the system by just using the symmetry breaking pattern. This
method was developed by Coleman, Wess and Zumino [5],[3] and might remain
valid for non-relativistic systems since the complications involved here only occur
at the stage of quantization. The central claim being that the low energy effective
Lagrangian is the so called non-linear o-model with the target space G/H, where
G is the dynamical symmetry group of the system and H the subgroup of G that
remains unbroken by the ground state. While in the relativistic case there is a clear
separation between massive fields and modes on one side and Goldstone-fields
and massless modes on the other side, in the non-relativistic case this is a priori not
clear due to the non-invertible correspondence between the classical Lagrangian
and the quantized Hamiltonian.



1.1 Motivating Non-Linear Realizations

1.1.1 The Non-Linear c-Model

The origin of the study of non-linear realizations in physics is a paper by Gell-
Mann and Levy [7] in which they consider an O(4) symmetric Lagrangian of four
fundamental fields ¥ = (7, o), where the three 7-fields describe particles called
pions and the ¢ field would be associated with a hypothetical o-particle. The sym-
metry group O(4) acts via the vector-representation on the vector of fields and
therefore linearly:

O(4) 3 R: Yi— ) RyY; (1.1.1)

This is the most common case of group actions appearing in physics and the math-
ematics of representation theory describes and categorizes these linear actions in
detail. The problem with this so-called linear o-model is that there is no evidence
for the o-particle and yet it seemed to describe the pion-fields and their symme-
try correctly. In order to remove the ¢ as and independent degree of freedom
one could make it a function of the pion fields ¢ (7). Since one wants to pre-
serve the transformation properties of the vector (77, o) under O(4) and the norm
of this vector is invariant under these rotations, we conclude that the condition
7% + o (7)? = c? with c constant must be met. Therefore we have o(7) = v/c2 — 72
and the transformation of the pion-fields under O(4) rotations follows:

3
O(4) 3 R: mar> Y Rap7tp + RaoV 2 — 72 (1.1.2)

b=1

This is clearly a non-linear transformation. Group actions of this kind are referred
to as non-linear realizations of the symmetry group. Instead of eliminating the
o-degree of freedom completely by fixing the norm of the field vector, one could
keep it but parameterize the vector space by using ¢ as a radius and define the
7t fields as coordinates on the sphere of constant radius ¢. The non-linearity of
this change of variables will then show up as a non-linearity in the transformation
property of the 7t-fields under O(4). While this kind of construction of non-linear
realizations from linear representations is rather typical, one need not make any
reference to linear models in the first place. That is, non-linear realizations can be
studied purely on the basis of group theory and differential geometry alone and
even have to be studied in this generality in order to proof that the Lagrangian for
a system that exhibits spontaneous symmetry breaking can be formulated in the
fashion we will explore in the next section.

The pion model is the first and maybe most famous model of this kind but since
then it has been generalized and applied to many systems. The term 'non-linear
o model” has been adopted for this entire class of models which are based on the
breaking of a symmetry group to one of its subgroups. In order to see why the
pion model is of this type we note that by choosing a particular point on a sphere
of fixed radius ¢ as the origin of our parameterization we break the O(4) symmetry,



since this particular point is not fixed under general rotations. It is, however, fixed
under rotations about the axis defined by the origin and this particular point on
the sphere and so there is an O(3) symmetry, with O(3) being a proper subgroup of
O(4). The sphere is isomorphic to the quotient space O(4)/O(3) and so the 7t-fields
are just coordinates on this quotient space. This is in fact the general situation
for systems in which the original symmetry group G is spontaneously broken to a
subgroup H. A parameterization of the manifold G/H corresponds to degrees of
freedom which transform non-linearly under G.



2 Spontaneously Broken Symmetries

2.1 General Construction !

The most general formalism for dealing with spontaneously broken symmetries
does not make reference to an original Lagrangian which is written in terms of
what we shall call the fundamental fields. However, it requires the use of some
more abstract differential geometry and as it turns out, one can show that the
identical result can always be obtained by starting with a Lagrangian written in
terms of some fundamental fields and following the procedure that we will lay
out in this section. By definition, these fundamental fields are acted upon by the
symmetry group through a linear representation. This - in fact non-restrictive -
simplification allows us to avoid the introduction of geometrical structures like
principal bundles and to use only basic linear algebra. Although it is often con-
venient to formulate a real Lagrangian in terms of complex fields and the linear
representation of a symmetry group in terms of a complex matrix algebra, this can
always be rewritten in terms of real fields and a real matrix representation. Since
each real field counts as a separate field we will always do just that or assume that
it has been done already.

Let G denote the full inner-symmetry Lie-group of the Lagrangian, which we
will assume to be compact and ¢ = (¢n)n=1,._n the set of fundamental fields. A
group element ¢ € G then acts on ¢ through a matrix [g]:

N

(8 =Y [gloam¥Pm 2.1.1)

m=1

We will denote the ground state expectation values of the fundamental field com-
ponents by (¢n)gs. These values differ depending on the particular phase that
the system is in and serve to define and distinguish these phases. The absence
of any space-time arguments in these equations is due to the fact that we will
only consider the case where space-time symmetries are not spontaneously bro-
ken, whether they be the relativistic Poincare group or the non-relativistic Gallilei
group. This means in particular that the ground state expectation values (¢n(x)) g
are invariant under translations and therefore do not depend on the coordinates x.
That the symmetry group G is broken to the subgroup H means that there is a sub-
Lie-group H C G such that the action of any i € H on the set of order parameters
(Yn) g leaves them invariant:

N

Y [Hom ($m)gs = (¥n)as (2.1.2)

m=1

IFor the original references see [5] and [3]. The structure and presentation of this chapter is largely
based on [20], supplemented with more detailed calculations.



Group elements that are not in H will map the original set of order parameters to
a different one. Since G is a symmetry of the theory, all of them correspond to a
ground state of equal energy and together they form a submanifold in field space
of degenerate ground states. That is, any set of order parameters generated by a
mapping with ¢ € G represents an different but equivalent ground state and we
may choose any of them as the starting point of our construction without affecting
the resulting low-energy effective theory. Next, one reparameterizes the funda-
mental fields in terms of a new set of fields that is suited to the symmetry breaking

.....

which satisty

G = {explizyw,] |z € RI™G)Y, (2.1.3)

The appearance of the prefactor i is by pure convention and one should keep in
mind that the generators w are purely imaginery matrices and hence we have a
real representation. Since G is a compact group, every field configuration can be
written as a certain group element <y acting on a special set of fields ¥:

N

¥n =Y [Vam¥Pm (2.1.4)

m=1

Since ¥ is spacetime dependent, so are y and ¢ and one should note that the num-
ber of field components in ¥ is less than N, with the missing degrees of freedom
hiding in the group element 7. The essential idea is that the degrees of freedom in
7y parameterize the submanifold of groundstate and therefore a surface of constant
potential. This should result in massless degrees of freedom because there cannot
be any terms in L which depend on the value of these fields only. Instead every
term depending on such fields has to involve their spacetime derivatives and will
be a kinetic term. In contrast the ¢ are orthogonal to this submanifold an will have
mass terms. More precisely they are defined by the following condition:

VA =1,..dimG: Y Pn[walnm (Pm)gs =0 (2.1.5)

Because any group element of H annihilates the vector () g, there are only dim(G) -
dim(H) conditions present here which result in a set of N-(dim(G)-dim(H)) solu-
tions for 1. The general ¢ will then be a linear combination of these solutions and
so there are N-(dim(G)-dim(H)) degrees of freedom constituting this field. The
choice of v and ¢ in (2.1.4) is not unique. In fact one can multiply -y from the right
by any element of 1 € H and define the group element o/ = h, as well as multi-
ply ¢ from the left by the inverse element 1! and define ¢/ = h~14. If ¢ satisfies
(2.1.5) then so does 9’ and therefore these quantities are defined only up to trans-
formations with H. This shows that the number of degrees of freedom that have
been absorbed into the group element + is in fact not dim(G) but dim(G)-dim(H).
To be precise, these degrees of freedom constitute a parameterizaion of the coset
space G/ H (where dim(G/H) = dim(G)-dim(H)) and can be thought of as coordi-



nates on the submanifold of degenerate ground states in field configuration space.
In order to choose a representative group element «y we first split the Lie algebra
g = span((wx),-1,..dim(G)) Of G into the closed sub-Lie algebra & that generates H
and a suitable complement. Let (#;);—1, _ gim(r) be abasis of hand (xa)a—1,..(dim(G)—dim(H))
such that the combined set forms a basis of g. We adopt the convention that indices
ijk... refer to t's and indices a,b,c... refer to x’s. With H being a sub Lie group we

have

[ti, 5] =1 ) Gt (2.1.6)
Ik
The set (Xa)a—1,.. (dim(G)—dim(H)) €an alway be chosen such that
[t xa] =1) CiapXp (2.1.7)
b
[xa, xp] =1 anbiti +1 anbcxc . (2.1.8)
i c

The simplification here being that all structure constants Cjj, vanish. This means
that the x generators will transform linearly under the adjoint map with respect to
elements of H. An arbitrary group element ¢ € G can now be written in the form

§ = exp

i)’ ﬂaxa] exp li 2911‘1] . (2.1.9)

The second factor, being an element of H, can be dropped to select as a represen-
tative of ¢ € G/ H the group element

dim(G/H)
Yz = exp [i Z naxa] . (2.1.10)

a=1

The 7, are called Goldstone fields and complement the set ¢ to provide a com-
plete reparameterization of the fundamental fields ¢. In order to see the kind of
terms one obtains for a Lagrangian that is expressed in terms of 7r’s and ¢’s we
can imagine ourselves explicitly inserting this reparameterization of fields into the
original Lagrangian density £. Since we assume the Lagrangian to be symmetric
under global G transformations and also local, any term not containing spacetime
derivatives will be invariant even under local transformations and so the space-
time dependence of the 77 fields will not alter the fact that -5 cancels out for such
terms. For any term involving d,,¢ we need to take into account that the derivative
acts on ¢ as well as on :

At = 5[0 + (77 ') Pl 2.1.11)

We should note once more, that for global transformations 9, — g9, and g has



to cancel out in each term. Even though 7 is spacetime dependent in (2.1.11), the
locality of £ ensures that the overall factor y; in front of the right hand side will
cancel out in each term. This means that the appearance of the Goldstone fields is
contained in T 18,473; and only involves terms which are at least of first order in
spacetime derivatives of the 7t’s. The expression 7 18y’yg can be evaluated using
Duhamel’s formula for the derivative of the exponential map:

k

d(X0) =X 3 (5

k:O

Here X : R — g¢ describes a path in the Lie algebra of G and ad denotes the
adjoint action of the Lie algebra on itself, i.e. adx(Y) = [X, Y]. In our case we have
X =1Y, 7ma(-)x, and so

[ee]

%glaﬂg = IZb nbxb))k(xa)ayna (2.1.13)

a k:O

=2 |i)_xaDa IZt Eip (77) | 9u7tp (2.1.14)
b a

In the second line we made use of the fact that

00 _1\k
kgé) % (ad(izb T, Xp) )k(xa)

is a linear combination of the generators with 77-dependent coefficients which we
named D and E. We can calculate these coefficients as a power series in 7t by eval-
uating the above expression to arbitrary order in the series over k:

1) mexe, [i Y T, ixa
C

b

00 k 1
Z 1Zb nbxb))k(xa) =Xa — 5 [i 2 T Xp, 1Xa
b

1
=X+ z Z TTp (Z Cbac-xc + Zcbaiti>
b c i

1
+ 6 Z TlpTTe (Z (Cbadccde + Cbaiccie) Xe + Z Cbadccdjtj) +
b,c

€ j

(2.1.15)

By comparing the two lines in (2.1.13) one finds

+ ...



1 1
Dab = 5ab + E ZCCbaT[C + 8 Z (Z CdbeCCea + chbICCla) 7TC7Td + e
c cd e i

(2.1.16)

1 1
=3 Y Copitc + c Y CebeCaeiTetq + - - - (2.1.17)
C e

Since we know now that the Goldstone fields appear in the Lagrangian only through
these coefficients and we would eventually like to use the symmetries of £ in or-
der to construct it without explicitly reparameterizing some previously given La-
grangian, it makes sense to study the transformation behaviour of the new fields
and of D and E in particular. This can be derived from the linear group action on
the fundamental fields:

¥ — g =gy(m)P (2.1.18)

With ¢v(7r) € G we know that there exists a representative y(7t) of ¢y(7r) and a
h(m, g) € H such that

gy(m) = (') h(m,g) . (2.1.19)

This implicitly defines the transformation of 7r under G and by comparing (2.1.18)
with (2.1.4) we find the relation

¢ =h(m,Q)d . (2.1.20)

Even though the 7’s transform in a complicated manner, the expression 719,y
transforms rather simply:

7’1(71)8;17(71) =[ v(m)] 1 oulgy ()]
o, g)y (ol () h(m, 9)]
W, g) [y~ (7 )auy () h(m, g) + (7, 8)auh (7, &)
= 7’1(71’)%7(”):’1(71,3)[ Y3y ()| h~ (, g) — [0k (7, 8) 1k (71, 8)
(2.1.21)

Here we used eq. (2.1.19) in line two and the product rule in line three. At this
point the special choice of a Lie algebra basis that was made in (2.1.7)-(2.1.8) pays
off because Cjj, vanishing ensures that the x transform linearly under H in the
sense that

Ady(x,) = hxah ™! Zpba . (2.1.22)



This can be seen by writing

h = exp [iZGjtj] (2.1.23)
j

and using the identity Ad..,(x) = expladx] together with Cjj, = 0, which ensures
that

exp [ad(izj gjt],)i| (xa) € span(x) . (2.1.24)
It also follows that the partial derivative of D with respect to 6; is
9iDap = Y_DacCicp - (2.1.25)
C

This relation will later become useful because it allows us to determine the struc-
ture of the coefficients in the Lagrangian. With H being a closed subgroup we
obviously have a similar relation for t:

Ady,(t;) = htih™! 251] (2.1.26)

One can now use (2.1.13) in order to rewrite the terms in (2.1.21) as linear combina-
tions of x and t where one should note that the second term on the right-hand-side
is a linear combination of t’s only. The linear independence of the x’s and #'s tells
us that their respective coefficients need to be equal. When writing the result in
terms of the contractions

]’58]4 — ZDabay 7-Cb Y
b

_ (2.1.27)
Ei, =) Epdumy
b

rather simple expressions are obtained:

Y x.D,, =h (Z anay> 7,) (2.1.28)

Ztiﬁiy = (ZtEW> (m,8) +i[ouh(m, g)h 1(m, g) (2.1.29)

10



Using (2.1.22), we can see from (2.1.28) by comparing matching coefficients that

Dy = Y Dac(h(,8))Depy - (2.1.30)

While the second equation could be evaluated similarly it is more useful to keep
it in its present form as we shall see later. The contraction f)ay = Y p Dap0yu 71y, is
called the covariant derivative of the Goldstone fields and it transforms under a
general ¢ € G transformation through the linear representation D of the unbroken
subgroup H, where the (7, g) defined in (2.1.19) is the group element of H corre-
sponding to g. We already have seen that the fields ¢ themselves also transform
linearly under general G transformations, namely just by the original linear action
of h(r, ) itself. However, d,,¢ does not:

0, = h(m,8)0up + (9,h(r, g))P (2.1.31)
The second term spoils the linearity of the transformation but it is essentially the

same inhomogeneous term that appeared in (2.1.29). In fact we can cancel out

the 11 in (2.1.29) and replace it by the factor § if we consider the term i} ; tiﬁiﬂlﬁ
which transforms as

i) By — iZtiE;Hz]/ = (7, Q)i Y 6By (7, 8)h(, )
— [0uh(, 9)Ih ! (71, g)h(7T, )¢ (2.1.32)

=h(m,g) [iztiﬁipﬂ;’] — [0uh (7, )]

The second term just cancels the problematic term from before if we add (2.1.31) and (2.1.32):

/Dylp = BME —+ iztiﬁi;ﬂE

= [Duf] = () D

(2.1.33)

This is a covariant derivative of the fields ¢ and transforms just like the ¢ linearly
by application of ii(7t, g). Of course one can therefore apply the same derivative to
D, itself and obtain a second order covariant derivative,

’Dvpylp = |9y, + iztiﬁiv
i

(2.1.34)

By + ZZ tiﬁiy] 1/3
- [DvDup)" = n(r,8) [DvD, )

and so on. Similarly one can define a covariant derivative of [N)ay. To that extend

11



one first calculates how the usual derivative transforms:

/

[Z Xa0yDay,
a

=9a, Zxaf)ay
L a

=0dy h(n,g) Zxaf)ayh_l(n/g)]

:h(ﬂ:,g) ;xa [avf)ay] h_l(n/g)

+ [avh(m, )] [Zanay] (,8) + h(m,g) Zanay v~ (7, 8)]
=h(m,g) ;xa [avDay] h!(m,g)
+[0uh(m, g)h (7,8 [ (Zxa au) (7, g)]
(ZXa aﬂ) (7, g)] h(r, &)[ovh™ (i, 8)]
—h(m,g) ;xa [8VDay] h(m,g)
(Qvh(m, @)~ (m,8 (ZXa au) (7, g)]
(2.1.35)
For the final step we have used
h(@,h 1) = —(@h)h 1 . (2.1.36)

The first term can be simplified using (2.1.22) and yields a linear transformation
through the adjoint representation of H on the x’s. The second term however poses
the same issue as in the case of the derivatives of {. The solution lies again in using
that the transformation of E;, generates just the right nonlinear term that appears
in this second term.

“(m,8)
i b

/
[iztiﬁiy, bef)by] —h 7'L' g [ Z beDbH
i b

—[(avh(ﬂ,g))h (r,8), h(r (beDby> h‘l(ﬂ,g)]
(2.1.37)

Once again the second terms cancel out if we add (2.1.35) and (2.1.37). Using
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iy tEw, Y xbﬁby} = —Yiab Cibaxaﬁivf)b;u one finds:

a

ib

= Zchca(h(n/g)) <avf)ay - ZCibaEivf)by>

ib
(2.1.38)
We are led to define the covariant derivative of D:
DyDay = 3uDay — Y, CivaEiv Doy (2.1.39)
ib

By comparing coefficients of x in (2.1.38) we see that this transforms just like D
itself:

[Dvﬁay}/ = ;Dab (h(ﬂ', g))Dvﬁby (2.1.40)

More and more higher order expressions can be constructed in this manner and
since it has been shown that any Lagrangian describing a system in this particular
symmetry broken phase can be expressed in terms of these building blocks, we
are left with the task of combining them into H-invariant terms. Of course we also
need to respect the spacetime symmetries which affect the possible combinations
in which derivatives appear.
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2.2 Galilean Symmetry

In a non-relativistic setting the spacetime symmetries we need to incorporate are
general translation invariance, meaning there is no explicit dependence of L on the
spacetime coordinates, as well SO(3) invariance with respect to the spacial coordi-
nates. Therefore a general Lagrangian build out of the covariant components that
were constructed in the previous chapter has the following structure:

1 : 1 o 2 .
L = Zve(‘ )Dabnb + E Z gébDacDbdncT[d + ng )Dt (Dabnb)
ab ab,c,d ab
1 3
5 Z gszacDbdvnc Vg — ZZV&S)'DM (Dabaxi nb)
ab,cd abi=1 (2.2.1)

1 . . L. .
- E Z an’-PmEDn + Z NanDabnb1Pn + ZWnDtlpn
mn

a,bn n

+ ¥ (Titfm Do + T DiimDifn ) + 3 G Dxpm - D+ -
m,n m,n

The dots represent higher order terms in D and . In order that £ be G-symmetric
we need to impose conditions on the coefficients in (2.2.1). By construction we
only need to consider transformations under H and so the condition on v reads

VheHb=1,..,(dm(G) —dim(H)): Y viDly =Y VaDac(h)Dey = ¥ vaDyp
2 ac 2
©VheHb=1,...,(dim(G) —dim(H)): Y vaDy(h) = vp
Vb =1,...,(dim(G) —dim(H)),i=1,.. .,dailm(H) ) VaCigp =0
) (2.2.2)

The last form of this condition follows by differentiating the second line, using
(2.1.25) and D, (epy) = 64, Where e is the identity element in H. Similarly we
have

Vbe=1,...,(dim(G) — dim(H)),i =1,...,dim(H) :
Y (Ciab 84X + Ciac 81/X) = 0 (2.2.3)

a

The mass matrix M has to be invariant under the same linear representation of H
under which the fundamental fields transform:

Y Moo= Y Mo [Hlomp[HlnqPptPq = Y Mpqlpthq
mn P4

m,n,p,q

(2.2.4)
& Vi=1,...,dim(H), p,g=1,...,N: Y (Mpmltilmq + Mmgq[tilmp) = 0
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Again, the second line is obtained by differentiating the first. The same condition
applies to T and G as well of course. Finally, the condition for N reads

~ ~ ! L~
Z NanD;bﬁblpél = Z NanDac(h)Dep 7t [h]nm’ub;n = Z NemDeb 7t Pm
a,bn a,b,c,m,n c,b,m
& Vb=1,...,(dim(G) —dim(H)), m=1,...,N: ) (iNpn[tilnm + NamCiap) = 0
n,a

(2.2.5)

At this point we should address the fact, that a general Lagrangian constructed
in this way will include terms that depend on the values of the Goldstone-fields
themselves and not just their derivatives. This contradicts the argument we gave
earlier for the absence of any such terms, which shows that this construction is
more general than one which starts with fundamental fields and explicitly repa-
rameterizes them in terms of Goldstone-fields and massive fields. The latter will
in general yield both gapless and gapped degrees of freedom in the quantized
Hamiltonian. If one is only interested in the low energy limit then the gapped
modes could be integrated out to give an effective theory for the gapless modes.
Alternatively, one can construct a low energy effective Lagrangian in the first place
by keeping only the Goldstone fields in the general construction outlined above.
The kind of allowed terms go beyond what we would obtain by explicit reparam-
eterization and take into account all of the possible effective interactions one could
generate by integrating out massive degrees of freedom. This general construction
is therefore really a phenomenological approach to the dynamics of a system in the
vicinity of a given phase. It correctly determines the number of relevant modes,
their dispersion relations in terms of powers of (quasi-)momentum and the struc-
ture of their interactions. It is also very suitable for an expansion of £ in powers
of fields since the building blocks are already given in terms of power series.

15



3 Constrained Quantization !

3.1 Constructing the Hamiltonian

The usual scheme for passing from the Lagrangian formalism to the Hamiltonian
formalism via a Legendre transformation relies on the Lagrangian being a con-
vex function of the time derivatives of the canonical variables. If this condition
is violated then the transition is not as simple, yet still possible. In the case of
relativistic theories, Lorentz invariance forces the Lagrangian to be quadratic and
therefore convex in the time derivatives. In the non-relativistic case we will have
these time derivatives appearing in first order only and therefore have to deal with
non-convex Lagrangians. This means that the Legendre transformation can still,
in some sense, be naively performed but is neither well defined nor invertible and
the usual deduction of the Hamiltonian equations of motion from the Lagrangian
equations of motion is no longer valid. In such cases some of the Euler-Lagrange
equations and the defining equations for conjugate momenta will actually put con-
straints on the naively defined phase space instead of merely providing equations
of motion. The physical phase space will then be the symplectic submanifold of
the naive phase space which is defined by these constraints and the naive Hamil-
tonian will coincide with the physical Hamiltonian A on this submanifold. Since
the dynamics in the Hamiltonian formalism is generated by derivatives of H in the
form of poisson brackets, it is not sufficient to know the Hamiltonian as a function
on the submanifold. Additionally, one also needs to know the normal component
of its gradient to this hypersurface.

A basic example that illustrates these points is the Lagrangian for a classical
particle with mass m and charge ¢ moving in the x-y plane, subject to an external
magnetic field and an arbitrary scalar potential V in the limit where the fields
strength B is large and the kinetic term can be dropped. In this approximation the
Lagrangian L reads

L= %(xy‘ —yx)—V(x,y) . (3.1.1)
This gives two legitimate first order equations of motion:

_c
qB

c

OV(vyY) , §=-20:V(xy) (3.1.2)

X = qB

However, the standard definition of the canonical momenta does not provide an

IFor more in-depth discussions see for example [6, 9, 10, 15]
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invertible relation between the velocities and these momenta:

oL c JdL c
Px = a = —q—B}/ s Py = @ = q_Bx (3.1.3)

While the phase space naively consists of the 2 pairs of conjugate variables (x, px)
and (y, py), it is clear that the structure of the Lagrangian itself already restricts
the actual number of degrees of freedom to 2 variables, since the momenta are just
functions of position. We can nevertheless proceed and define the naive Hamilto-
nian in the standard fashion:

H(Q,P) =) PiQi— L(Q,Q) (3.14)

In this case on obtains

H(x,y, py.py) = V(x,y) . (3.1.5)

It must be noted that we have used the constrains, that is eq. (3.1.3), in order to
cancel out the terms involving velocities. First of all this demonstrates the general
fact that the naive Hamiltonian can alway be written in terms of Q and P only.
This is because either there is an invertible relation between P and Q or, if there is
not, the terms containing Q will cancel out when using the constraints. The second
important observation is that this naive Hamiltonian coincides with the physical
Hamiltonian, that is the one which reproduces the correct dynamical equations,
only on the submanifold defined by the constraints in phase space, since by using
the constraints we effectively moved onto this physical phase space (PS). Us-
ing the constraints allows for an interchange between momenta and coordinates
which alters the derivatives of H with respect to these variables. Therefore one
cannot simply assume the usual Hamiltonian equations of motion Q = 9H/dP
and P = —9dH/9Q. If we write every such constraint in the form ¢;(Q, P) = 0,
we can use the fact that interchanging terms in the Hamiltonian by using the con-
straint conditions just amount to adding terms proportional to ¢;(Q, P). This goes
the other way around as well. Any two H and H’ that differ only by a linear com-
bination of these ¢; will be equal on the physical phase space where ¢; = 0 but
differ anywhere else on the naive phase space. The physical Hamiltonian H' which
provides the correct dynamics by the standard Hamiltonian equations of motion
should therefore take the form

1

where the A; are suitable Lagrange multipliers that need to be determined. The
Hamiltonian equations of motion are of course expressable in terms of Poisson
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brackets. For any function f(Q, P) we have

f={fH} , {fgt=) <aa—éi§—§ - aa_zéaagi) (3.1.7)

i

In order that the dynamics be consistent with the constraints we need to impose
the conditions

{gH'} = {gy H} + L Aidgy, 01} +{pp A} =0 V(Q,P) € PS

& Ao HY = {gp H + L Adgj 91} =0 v(Q,P) € PS
(3.1.8)

Ideally, these would just fix the Lagrange multipliers but in general there are sev-
eral possibilities at this point. If the matrix My = {¢;, ¢;} is invertible on PS then
we refer to the ¢ as a set of second class constraints and (3.1.8) can be explicitly
solved for the A;. If Mj; is singular then one can mix the set of constraints in an
invertible manner by defining ¢} = i Tijp; with Tj; invertible such that the set ¢
splits into two subsets ¢}, ;.. and @}y .. These have the properties

MIIJ - { ( golznd class ) i’ ( (P/2“dclass ) j } invertible’

3.19

{((P/Ptclass)i ’ (P]/} =0 ( )
That is, the first class constraints commute with any other constraint. The con-
sistency conditions for the second class constraints determine their respective La-
grange multipliers appearing in H'. Since Mj is always skew symmetric, there
have to be an even number of second class constraints because otherwise this
matrix could not be invertible. The consistency conditions for the first class con-
straints read

{(¢hucass) i H} =0 Y(Q,P) € PS (3.1.10)

If any of these is not trivially satisfied then it has to be added as another, so called
secondary constraint to the original set of primary constraints. This process will
then be repeated, adding more and more constraints until, after a finite number of
repetitions, the consistency conditions for the first class constraints are either con-
tradictory or trivially satisfied. The first case implies an inconsistent dynamical
system with the inconsistency already present at the level of the Euler-Lagrange
equations, an example being the Lagrangian L(Q, Q) = Q. In the second case each
of the first class constraints commutes with H' and is therefore a generator of a
symmetry of H'. In the field-theoretic setting we will see that the constraints are
local functions and therefore generate gauge symmetries of the Hamiltonian. This
explains why the Lagrange multipliers of first class constraints remain undeter-
mined, since adding these constraints to H is equivalent to evolving the system
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with a Hamiltonian that does not include them and then subsequently performing
a finite gauge transformation. Since different values of a variable that are related
by a gauge transformation need to be identified in order to obtain the physical de-
grees of freedom, the two different Hamiltonians become in fact equivalent after
modding out these gauge symmetries.

Equations of motion for any function f(Q, P) are now obtained by calculating
{f,H'}. Constraints can be used freely in order to interchange variables after the
Poisson brackets have been evaluated but not before. There is however an alter-
native to using the full Hamiltonian H ' which also allows for the constraints to be
used freely at any stage without affecting the equations of motion. This method is
known as Dirac brackets and will be explored in the following section.

3.2 Dirac Brackets

Since we can choose the Lagrange multipliers of any first class constraints in H' to
vanish and by denoting the second class constraints from now on merely as ¢ we
are left with

H = H—i—Z)\i(pi

_ (3.2.1)
=H— ZMIJ 1{([)]', I‘I}(p1
L)

In the second line the Lagrange multipliers of the second class constraints were
explicitly expressed by solving the corresponding consistency conditions (3.1.8).
Now we have

f=AfHY={f H} = L M; {g, HHS, 91} (322)

ij

This suggests that we could use the naive Hamiltonian H instead of H' if we
replace all Poisson brackets by Dirac brackets, which are defined as

{f.g¥os = {f.8} — LAS o} My {oy.8} - (3:2.3)
1)

Since the Dirac bracket of any constraint with any other function clearly vanishes,
one can use constraints before calculating Dirac brackets without affecting the re-
sult when it is evaluated on PS.

This approach is particularly relevant if we want to quantize the classical theory
because the canonical procedure dictates that the canonical variables should be
replaced by operators and Poisson brackets by commutators. This poses an issue
since Poisson brackets of constraints with other functions generally do not vanish
even after applying all of the constraints. Therefore the corresponding commuta-
tors would yield non-vanishing operators on the physical Hilbert space while the
constraints themselves have to vanish on any physical state. This is contradictory
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and calls for a modification of the quantization procedure in such circumstances.
By replacing the Dirac brackets instead of Poisson brackets with commutators this
issue is completely solved. The downside however is that the canonical commu-
tations relations of the Q’s and P’s are now altered and in general not that easy to
work with. As it turns out this can as well be circumvented by choosing canon-
ical variables that are better suited to the situation. As Maskawa and Nakajima
showed in [11], one can always perform a canonical transformation on the origi-
nal set of canonical variables in a way such that the new set is split into two subsets
(QP) and (Q, P) of canonically conjugate pairs. The crucial property of these sub-
sets is that the even number of second class constraints in these coordinates just
read Q = 0 and P = 0. Therefore in these coordinates we have M = S where
S is the canonical symplectic metric in n dimensions and n is the number of
second class constraints. This implies M~! = —M and when we calculate Dirac
brackets in these coordinates we find a simple relation:

{f.8tos = {f.8} + 3. [{f, QH{Pig} — {f, Pi}{Q }]

={f.g} - ZI; { aaéi aagi — aa;;i aaéj (3.2.4)
:Z{af og  df af}

d0Q; dP;  dP; 0Q;

i

This is just the usual Poisson bracket in terms of the unconstrained variables (P,Q)
only. Since by construction Dirac brackets commute with the application of con-
straints, we can just set @ = 0 and P = 0 in the naive Hamiltonian H after rewrit-
ing it in terms of these new variables and then calculate the equations of motions
of the remaining variables in terms of standard Poisson brackets. These standard
Poisson brackets are to be replaced by commutators and therefore the canonical
commutation relations are preserved. Of course one could just as well perform a
canonical transformation on the complete set of operators that satisfy some altered
commutation relations in order to recover the canonical ones while simultaneously
having a subset of the new operators representing the constraints.

3.3 Field Theory

In a field theoretical setting the formalism of constrained quantization essentially
remains the same as for point particles which are after all just the 0+1 dimensional
case of a field theory. The first difference is that the Lagrangian will now be written
as an integral over a local Lagrangian density

L= / ExLP(x), h(x), V(x)) . (3.3.1)

The canonical momenta P are analogously defined as

P,(x) :== oL (x/0yi(x) . (3.3.2)
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For general functions A of the field variables which take the form

A= / BrA(p(x), P(x), Vi (x), VP(x)) (3.3.3)

one defines the Poisson bracket as follows:

[ [0ASB  6BIA
(A,B) == / d XZLS_WS_R 5957, ™) (3.3.4)

i

The variational derivative 6 F /Jf is defined as

OF = O g 9
37 = o760~ & VA 032

With these definitions everything works analogously to the procedure outlined in
the previous section. The naive Hamiltonian will be

H= [ &Y Rd(x) ~ Lp0, §1x), V9(0) (336)

with the i either being expressed in terms of fields and momenta or canceling out
in cases where constraints ¢;(1(x), P(x)) are present. The physical Hamiltonian
can then be written as

H' = H+ [ & M99, P9) a9, P(x)) (337)

and the consistency conditions may lead to new constraints until we are left with
as consistent set of first class constraints and a set of second class constraints. The
spacial argument in the constraints can be viewed as part of the index and can
therefore think of every ¢; as a (continuous) set of constraints. Any (@1stqjass); (X)
generates a symmetry of H via the Poisson bracket

0H = 6{(¢15tclass)i (X),H} =0 (3.3.8)

and since it generates a local transformation of the fields, we see that it indeed
corresponds to a gauge symmetry.

The necessity for using this more general framework of quantization in the context
of field theory can be traced back to the structure of the Lagrangian (2.2.1), which
is in general of first order in time derivatives due to the symmetry group being
the Galilean group. A standard example for a Lorentz symmetric system would
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be any scalar field theory of the form

Lacainr = 5(09)° ~ V(9), 339

where V is a potential that only depends on ¢ and not its derivatives. Standard
canonical quantization then yields the Hamiltonian

1

Hscalar = 7

1
>+ §(V¢)2 +V(9), (3.3.10)
with 7 being the conjugate momentum of ¢. The Feynman path integral con-
structed from this Hamiltonian then takes the form

Z= /D(pDrcexp {1/ o — %nz - %(w)z ~V(¢)] . (3.3.11)

The integrand formally looks like a Legendre transform and since the Hamilto-
nian and the Lagrangian are just Legendre transforms of each other, we expect the
action to be expressable in terms of the Lagrangian L.,1,; Since the integrand is
quadratic in 71, we can make this explicit by completing the square and performing
the integration over 77 which indeed yields

Z = / D¢ exp [i /x %(ayq)y ~ V()| . (3.3.12)

However, the integrand in the path integral formulation will in general not be
quadratic in the momenta. This is the case for the non-relativistic theories that will
be discussed in the following chapters in particular. We will therefore make the
ansatz that the integrand can be taken as a classical Lagrangian without integrat-
ing out any fields and instead treating all of them as independent. This effectively
doubles the number of degrees of freedom artificially in the sense that canonical
quantization introduces a conjugate momentum for each of the fields, which are in
reality of course already conjugate pairs. It is therefore clear that constraints must
appear in order to reduce the number of degrees of freedom. We will show that the
more general constrained quantization reproduces the correct Hamiltonian and
then use the more general freedom of field re-definitions in the Lagrangian frame-
work in order to apply the coset construction of the previous chapter.
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4 Spin-1 BEC with Quadratic Zeeman Effect

In this chapter we will apply the techniques that were presented in the previous
two chapters to a gas of spin-1 particles at very low temperature. This system
will be modeled by a Hamiltonian describing non-relativistic particles with a free
dispersion relation that is quadratic in momenta, interacting via a two-particle
contact interaction which is spin-dependent and exhibiting a quadratic Zeeman
shift induced by an external magnetic field. Instead of directly writing down this
Hamiltonian we will start with a suitable Lagrangian and show that the correct
Hamiltonian can be derived from it. This will first of all demonstrate the procedure
of constrained quantization in a comparatively simple example before we move
on to more complicated cases. It also allows us to do the reparameterization of the
Lagrangian in terms of Goldstone-fields and massive fields explicitly instead of
just looking at the general construction of low energy effective Lagrangians based
on the symmetry breaking. The latter could also be done by just looking at the
symmetries and local ground states of the Hamiltonian. First we will look at a
model that includes a density-density interaction but does not take into account
the spin structure of the interaction. After that we will include the spin structure
and compare the results of both the explicit calculation in terms of reparameterized
tields, as well as the results of the general coset construction in each of these cases.
The symmetry groups of the two Lagrangians differ, which affects the structure of
the allowed terms in the coset construction.

4.1 U(N)-Symmetric Lagrangian

We postulate that the correct Lagrangian density for spin-N particles with density
interaction written in terms of N complex fields (¢1, ..., 1¥N) € CN takes the form

o o) (o ]

2

NI =
N [0Q

i=1

N
[; i

N
+u ;l/fi*llfi
(4.1.1)

The last term is the total particle number density operator times a chemical po-
tential which acts as a Lagrange multiplier that fixes the total number density to a
given value n and whose value is to be determined together with the ground state
field expectation value when solving the classical equations of motion which corre-
spond to a stationary phase analysis in the path integral formalism. It is important
to note that this term does not alter the symmetry of L. In fact the symmetry group
of this Lagrangian is U(N) and one possible choice of a basis for the Lie algebra is
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the following set of nine complex, hermitian matrices:

010 0 —i 0 00 1 0 0 —i 1 0
x= (100, o=1]i 0 0/, x3=1{0 0 0|,x4=|00 0|,xs=101
000 0 0 0 100 i 0 0 0
000 00 0 0 0 0 0

te=10 0 1|,67=1[0 0 —i|,tg=|0 1 0], o= 1[0 1

010 0i 0 00 —1 0 0

(4.1.2)

The reason for using this particular basis will become clear once we identify the
ground states of this system. L is of course a real function and can be written in
terms of 2N real fields, namely the real and imaginary parts of the ;. If we define

i = (Y +ivn)/ V2, (4.1.3)

we obtain

N

L= Z lPlzatlI)ﬂ Pi10ti2) — ﬁ(vwn Vi + Vipio - VIPiZ)]
i=1

(4.1.4)

g (v i LBy
-3 <Z(¢’121 + 95 ) E; Ph + 9h).

i=1

4.1.1 Hamiltonian in the Fundamental Field Formulation

In order to verify that £ produces the correct Hamiltonian and to illustrate con-
strained quantization, we will now explicitly quantize the theory in terms of the
fundamental fields. Because the action S is the spacetime integral of £, the term
in (4.1.4) involving time derivatives can be exchanged for YN, i,9:y;; by partial
integration with respect to the time variable. The definition of the canonical mo-
menta yields N constraints:

Qi1 = 77[]1,2 — Pi,l , Qip = Pi,2 ,With i=1,...,N . (415)

By calculating their Poisson brackets we find that M = S(N), i.e. the symplectic
metric and since det(S) = 1, we have N second class constraints. In this case it
is actually easier to just calculate the Dirac brackets instead of changing variables
since they turn out to be equal to the Poisson brackets. The naive Hamiltonian
density reads

N
H = Z o (Vi - Vi + VP - VPy) +

OOIOQ

1:1 1=1

(£ +28)) 43 (s +23).




(4.1.6)

Here we have already used the constraints in order to replace half of the fields
with momenta. The remaining fields and momenta obey canonical commutation
relations if we replace Dirac brackets by (-i) times the commutators and so we are
led to define the creation and annihilation operators ® and ® implicitly via

P = % (®f +@) ,  Pa= % (o] - @) 4.1.7)

These obey the standard commutation relations

@i(x), ¥ (y)| = 60 (x—y) . (4.1.8)

Inserting these relations into (4.2.9) and using partial integration with respect to
the spacial derivatives in the first term gives

N 2
vt (V)48 Ncb*cp Ncb*cb 419
H—i;q’i 5Pt 5 ; i Di —Vi; R T (4.1.9)

which is indeed the correct Hamiltonian density including the chemical potential
term. The coherent state path integral constructed from this Hamiltonian takes the
form

i 3 11 1 ¢ (2 2 N
D(Y,¥)exp| [ Y |5i(¢ioepi — o) — ==V - Vo | — < ( Yoo | +u)_wis|,
x i 2 2m 2 = =
(4.1.10)

where the complex fields ¥ are just the eigenvalues obtained by applying annihila-
tion operators ® to coherent states. The replacement ¢; = (5 + itp) / /2 is there-
fore just the transition from creation and annihilation operators to canonical fields
and momenta as formulated in the path integral setting if we identify ¢;» = P;;. In
this sense the action in (4.1.10) is still written in terms of the Hamiltonian and one
could make the transition to a Lagrangian by integrating over the momenta only
in order to obtain a function of canonical fields and their derivatives. However, the
approach we have taken here is to view the integrand in (4.1.10) as a Lagrangian
by treating the momenta P;; as canonical fields ¢;, instead at the cost of introduc-
ing constraints at the transition to the Hamiltonian formalism. These have to arise
because we already know that there are really only three independent canonical
fields ¢;; and their conjugate momenta. The advantage of this point of view is
that one can re-construct the Hamiltonian after changing from fundamental fields
to Goldstone- and massive fields by following the same procedure of constraint
quantization as before, since changing variables in the Lagrangian results in a
Hamiltonian which could as well be obtain by a canonical transformation from
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the original Hamiltonian and is therefore completely equivalent. This procedure
is of course equivalent to re-defining field variables in the path integral in order to
diagonalize the quadratic part of the integrand, but one does not have to deal with
functional determinants and a standardized procedure breaks this transformation
down into a step of transformations that can be determined more easily.

The connection with the path integral formalism allows us to compare and match
the parameters of the Goldstone-Lagrangian obtained by explicit reparameteriza-
tion with the coefficients that we need to introduce in the general construction and
therefore to combine the advantages of both approaches.

4.1.2 Explicit Parameterization in the Symmetry Breaking
Ground State

By employing a stationary phase analysis and taking into account that the expec-
tation value of the total particle number density is a fixed number 1, one finds that
there is only one phase and that one representative ground state, prior to quantum
corrections, is characterized by the set of order parameters

(¥ yoy = (V11,0,...,0) (4.1.11)

with ¥¢ = [y, ..., ] the set of complex fields. Simultaneously one finds that the
chemical potential must take the value

u=gn . (4.1.12)
In the case N=3 we have (¥¢)y3, = (v/1,0,0) and the Lie algebra basis (4.1.2) is
the result of determining the linear subspace of u(3) which leaves the set of order
parameters invariant and then choosing the other basis elements such that the
conditions (2.1.7)-(2.1.8) are satisfied. The set {t} generates a representation of
the unbroken subgroup H, which in this case is U(2). The set {x} are the broken

generators of U(3). In order to perform the change of field variables we have to
switch to the purely real fields

Y = 11, Y12, Y21, Y22, Y31, ¥32] (4.1.13)

where we have

(Y )ue = (v 2n,0,0,0,0, 0) : (4.1.14)

Also the set of generators must be replaced by their counterparts in the real repre-
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sentation, which are purely imaginary due to our choice of convention, see 2.1:

000i00 00-i 000 0000 0 in
00-i000 000 —i00 0000—i0
r_ [ 0i0000| of— [i00 000| o — [ 000000
1= -i00000|/*2= [0i0 000[{/*3= | 000000
000000 000 000 0i0000
000000 000 000 L—i000 0 0
0000 —i 0 0i0000 00 0 0 0 01
00000 0 0004300 000001
r_ 100000 0 r_ i r_ i
X4= 160000 0 |’5= | 00-i000|f6={0000-i0 (4.1.15)
i0000 0 00000 i 000 i 00
0i000 0 0000-i0 L00—i0 0 0
000000 000000 000000
000000 000000 000000
g — (000100 [ 4+ _ [000i00 | gr_ {000 i 00
7= 100000—i|’/8= |00-i000 |/'9= [00-i00 0|~
00i 000 00000 —i 00000 i
000100 0000i 0 000 0-i0
We can now determine the massive field ¢ via the condition (2.1.5):
6
— . ~.. 'r.. . —_
Va=1,...,5: Z i - [ixz]ij (¥j) yga) = O
ij=1 (4116)

= §=[V2n+§1,00,0,0,0]

This choice of parameterization ensures that the ground state expectation value of
all of the fields vanish and therefore the resulting Hamiltonian will be the sum of
the constant ground state energy and operator terms with vanishing expectation
value. By inserting the relation

P = exp{iXa7ta} P (4.1.17)

into (4.1.4) and expanding to quadratic order in the fields we find that the free part
Ly of the Lagrangian has the following structure:

5 5 5
. . 1 1 - - - -
Lo=) Naftapr + ) hapTtaTly = 5 Y. gaana~V7tb—E(M¢1¢1+GV1/J1-V¢1)
a=1 ab=1 a,b=1
0 %2888 0n0O00
0 M -n0 0 00
N = 0 , 8= 100400 ,h:[ooom]
0 000%#0 0 0-n00
—V2n 00002 000O0O0
G:m,MIZgTZ

(4.1.18)

From this it follows that the canonical momenta are just linear combinations of
the field variables and therefore we have six constraints which can be expressed
as linear combinations of fields and momenta. After defining a vector of all the
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variables

V= (7T1,...,7T5,1’Z?1,P1,...,P6) (4119)

we can write

P = Z[C]invn ’

n

0n 000 0 —-10 0 0 0 0

00-700 0 0 0 0 -10 0 (4.1.20)
[C] = 00000-210 0 0 0 —10

-n0 000 0 0 -10 0 0 0

000nr0 0 0 0 -10 0 0

00000 O 0 0O O 0 —1

It is now possible to choose six new constraints which are equivalent to the old
ones but simultaneously form a set of three canonically conjugate pairs of vari-
ables. First we find the Poisson brackets of the old constraints:

R
n
Heuol = Qs = |9 0 5 5 5V (4.1.21)
0 —2n O 0 0 0
0 0 —vV2n 0 0 O

Solving the equation [f][{¢;, ¢;}|[t]" = S®) for the transformation matrix [f] and
then calculating [t][C] one finds that one of many possible choices is the following
one:

!/
(P1:Z[C]invn 7
n
0n 000 0O —-10 0 0 0 O
00-n00 0 OO0 0 —-10 O
/ 000 00-v2700 0 0 -1 0 (4.1.22)
_ 1 1
[C'l=140000 0 04 0 00 o
00040 0 0 0-4 00 0
00000 O 0O O 0 0 ——L

V2n

This forms the basis for a canonical transformation with the special properties de-
scribed in chapter 3.2. The general form of this canonical transformation will be

Mok ok k% ok * X ok * X %k E
X ko ok ok ok * X ok * X%k *
k ok ok kX * * X * k0 ok *
0n 000 0 —-10 0 0 0 0
00-n00 0 00 0 -10 0
00000-v2n 0 0 0 0 -1 0
Cl= s ¥ &% ¥ © & & & & & (4.1.23)
T**** * *T * X%k *
10000 0 04 0 00 O
000410 0 0 0 -4 0 00
1
(00000 0 00 0 00— |
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The *-entries need to be determined via the condition

[c]sMc)t =512 | (4.1.24)

The solution is not unique of course and in fact the solution space is so large that
it seems impractical to compute the most general solution. By making some edu-
cated guess regarding the relevant entries of this matrix we find that one particular
solution is

|
I=

—_

—_
col o o

_
|
_

(4.1.25)

O O O OO oOoO0oR= O

o O O O
OQ‘HO OO ODODDO O O

‘ =

=

©C oMk O O OO CcoO O
O oo oOoNTOoOOIOO O
o
o
|
o o o oooﬁooooo
S
oo o ocoovool oo o
cococ ocovoo lcoo o

©c oY o o coocococ o

o
©c 3
|

N
‘H

L Nl

The defining property of this matrix implies that the inverse is easily calculated as

(€]t = —sMc)Ts(12) (4.1.26)

The relation between the old variables V and the new ones V' is given by
Vi=) [Cl;'V] (4.1.27)
j

We can now re-express the free part of the Hamiltonian in terms of the primed
coordinates and momenta and set

Yy=Ps =g =P =Ps=P=0 , (4.1.28)

as this is the form the constraints take in these new coordinates and the special
transformation that we constructed ensures that using these constraints does not
affect any results one could calculate from the Hamiltonian. The naive free Hamil-
tonian resulting from (4.1.18) is

1 o~ 1 5 B 1
Hy = /V d3x Z (EMl]lPllP] + EGIJVIPI . V%) + E Zgabvn—a . Vn—b (4.1.29)
ij ab
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After defining Fourier components of fields as

=) exp{ik-x}P(k) , (4.1.30)
k
which satisfy the commutation relations

(109, B<)) = Toide e @.131)

we find the Hamiltonian in terms of these to be

Ho=VZZ(1 Miji (K )%(—k)+§Gij|k|2¢i<k>$j<—k>)+§Zbgab|k|2ﬁa(k>ﬁb<—k>.

k ij
(4.1.32)

After changing to the primed variables we can introduce creation and annihilation
operators

N

a?(k>=\/¥ [9i(—k) —iK (L)), ai(k) =/ [$il) +iH )] . (4133)

These satisfy the commutation relations

{ai(k),a (K)} = 60w - (4.1.34)

After replacing The canonical fields and momenta with these creation and annihi-
lation operators, the Hamiltonian takes the form

= ¥ AT [H4)
Lk (4.1.35)
Alk) = (a{(k»a1<—k>,a;<k>,az<—k>,u§<k>,a3<—k>)

The quadratic form [#] can be diagonalized by a bosonic Bogoliubov transforma-
tion which preserves the commutation relations. The resulting spectrurn consists

of three dispersion relations which can be expressed using ¢(k) = M as
wy (k) = e(k)
w(k) =e(k) (4.1.36)
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And the free Hamiltonian takes the form

Ho =} wi(k)a] (k)ai(k) (4.1.37)
k,i

Contrary to the naive view that the massive fields should give rise to gapped
modes and the Goldstone fields should give rise to gapless modes, we see that
in this case they all combine via the elimination of constraints to give three gap-
less modes. It is therefore a priori not clear what kind of spectrum one should
expect. However, as we will see in the next section, we get the same result by just
taking into account the Goldstone fields but using the most general form of the
Lagrangian based on the symmetries. It will turn out that some of the additional
terms in the quadratic part of the Lagrangian are precisely those which are gener-
ated by integrating out the massive field. It is in this sense that the general claim
of the low energy effective theory being the corresponding non-linear c-model re-
mains valid for the U(N) system.
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4.1.3 General Coset Construction in the Symmetry Breaking
Ground State

The general construction of a low energy Lagrangian based on the symmetry break-
ing pattern starts with the Lie algebra of the symmetry group U(3), which in this
case is broken to the subgroup U(2). Following the notation of subsection 2.1 we
have x1 = xj, .., x5 = x5, ts = tg , ..., tg = t5. In order to write down the general
effective Lagrangian in terms of Goldstone fields, i.e. the non-linear -model with
the target space U(3)/U(2), we need to determine the coefficients in (2.2.1) via the
conditions (2.2.2) and (2.2.3). Keeping in mind that only the symmetric part of g*/*
contributes to £, one finds that

¥ =(0,0,0,0,vs) (4.1.38)

and

g/ 0 0 0 0
0 g/ 0 0 0
[gt/"] =10 0g/xo0 o0 . (4.1.39)
0 0 0 g o
0 0 0 0 g

The Lagrangian therefore has the structure

t

= V5 ZDSaﬂa + Z { (D1aD1b + D2aDapy + D3aDap + Daa Dy ) + gTDSaDSb} Tta Tty

X
+y {% (D1aD1p + D2aDsp + D3aDp + DyaDay) + %DsaDsb] V7, -V, +
ab
(4.1.40)

In this case the terms involving the covariant derivative of D only give total deriva-
tives which do not contribute to the Lagrangian density. The structure constants
of the set of generators provide the power series of D}, and by collecting all of the
terms of order two in powers of Goldstone-fields we obtain the free Lagrangian
density

t
Lo = vs7t5 + Vs [(711700 — 702711 ) + (713774 — 714703)] + %né + g; [711 + 73 + 713 + 714}

X X
—g%SVT% Vs — g% [Vﬂfl -V + V- Vi, + Vs - Vg + Vi - V7T4]
(4.1.41)
The very first term can be dropped, being a total derivative. In the presence of first

order time derivative terms for a given field the second order derivative terms for
that field can be treated as perturbative interactions in the low energy limit and so
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we see that we can write the free Lagrangian as

t
ﬁo =Vs [(7T17T2 — 7'(27:(1) + (7'[37:(4 — 7'(47:(3)] + %n_%
— %V@ - Vs — % [V -V + V- Vi + Vg - Vit + Vi - Vg

(4.1.42)

We can already see at this stage that there will be one mode corresponding to 75
which should have a linear dispersion relation while the fields 771, 1, and 713, 714
pair up to form two modes with quadratic dispersion relations. The definition of
the canonical momenta gives an invertible relation between 7t5 and P5 and four
constraints:

t .
Ps = 855715
7T
0-100 -0 0 0 o
1 7t
7= 1 (0010 0 00 ——= 7;4 (4.1.43)
= 5 _1 1
V2|1 0000-7=0 0 1132
1 3
0001 0 0= O B

In this form the constraints form two pairs of canonical variables and we therefore
have four second class constraints and no additional ones are generated by the
consistency conditions. The naive Hamiltonian takes the form

1 X X
H = —tP52+ %Vm; -V s+ g% [V -V + V-V + Vg - Vg + Vi - Vi)

2855
(4.1.44)

and the constraints can be eliminated by performing the following canonical trans-
formation:

[ 1 0 0 0 0 © w 0 0 0]

M7t ] 0 1 0 0 0 0 & [ 701 ]
ﬂé _/v5 1 U
o 0 70 0 0-—7= 0 0 0 off>
n% 0 0 /% 0 0 0 0 0 - ;V5 0| 7
Sl=| 0 0o 0 01 0 o o 0 ofl|™ , (4.1.45)
P o -% o o0 0 } o o o ofl|h
llzg 0o 0o o0 -%o0 o0 o 1 0 o0 %

3 Vg 1 3
P F 0 0 00 0 -7 0 0 0f|p
L P5 0 0 0 /Fo o0 0 L o oflLh.

5
Lo 0o o0 o0 0 o0 o o o ol
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which transform the constraints into the conditions

=, =Py =P, =0 . (4.1.46)

The Hamiltonian in terms of Fourier components therefore reads

1 [gY . . A A X 1.2 A N
n=3 %kz (A1 (=K) A7 (k) + 75 (—k) A5 (k) ) + g5k 7t (—k) 75 (k)
(4.1.47)
+8V151 K2 (B} (=X) P} (k) + Py(—k) P (K)) + s PL(—k) PL(K)

After replacing the fields and momenta with creation and annihilation operators
the Hamiltonian can be diagonalized via a bosonic Bogoliubov transformation and
the spectrum one obtains is

FiTh x
wip(k) =k 41le , wi(k) = [k|\/ghsg%s . (4.1.48)
5

The free Hamiltonian takes the standard form

Ho = Ziwi(k)ai*(k)ai(k) (4.1.49)
—

4.1.4 Interactions

The interactions of lowest order in the Goldstone fields are just the quadratic term
that we neglected in the free Lagrangian:

t
Linto(2) = g% [ﬁ% + 755 + 75 + ﬁﬂ (4.1.50)

Since the dispersion of the modes associated with 7t to 774 is quadratic in |k| this
interaction is proportional to |k|*. There is however an interaction of lower order
in |k|. By expanding (4.1.40) further we find the interaction terms of third order in
the Goldstone fields to be

£int,O(3) 28535 (7117t — a7ty + TT47t3 — TU37T4) U5 @150
— 855 [V — maVrmy + m3Viy — my Vs - Vs o

After applying the canonical transformation, replacing fields with creation and
annihilation operators and then applying the bosonic Bogoliubov transformation
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we obtain the interactions

oy = oS8yl
, \/_2\/— (855855) vs 1© V[k+K]

(e (-10a1 (1) — a} (k) () + 2} (~K)na(K) — a}(~ I )z (10
%45152 gsts) D IKE K [ad e K) = as(— (ke +1)]

o (1)1 () + af (=) a1 (k) + a} (k) az(K) + af (—K )z (k)|
(4.1.52)

A} (k4 1) + a3~ (k+K))]

3
where V is the volume of the system. The first term is of order |k|2 and the second

5
one of order |k|2.
The interactions to fourth order in the fields take the form

Lin,0(4) = TG -terms  + GGV, - Vi -terms (4.1.53)

where the indices i, j, m, n run over 1,...,4. All of these terms contribute interac-
tions that are proportional to \k\4 but do not involve the Bogoliubov mode aJ.
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4.1.5 Matching Coefficients

After writing down the path integral of the Lagrangian written in terms of Goldstone-
and massive fields we can integrate out the latter and obtain a Lagrangian purely
in terms of Goldstone fields which we can then compare to the one obtained via
the general construction method. This allows us to match the so far arbitrary coef-
ficients.

[ e [ £
:/D(n) {exp [/ a§1habnaﬂb zgaana Vﬂb]

'/D(lp) exp {/ - (28”11712+ LV% : lel) - \/%7'@/31]}
/ {exp /VZ Z Hab (7ta)1c(7tb) k_zgab’k’ (7a)k (ﬁb)—k]

k ab=1
/D 1/3 exp /VZ —= 1/)1 [<2gn—|— ’k!2> 51<_k'] (llil)k’ — Oy —k'@(ﬁs)k(lf)ﬂk/ ]
I K/ 2M ) 4 J
ex 14 ha a — -2k )
/ { p/ ;abzl b(7a) Kk 2ng( )(ﬂb)k]

- exp

/VZ |1<| )k(ﬁS)k] }
Pk 2gn + 53

(4.1.54)

In the first step the action has been separated into terms which do not involve ¢,
and those which do. In the second step the integral over space was replaced by
a sum over Fourier components. After completing the square in the path integral
over ; this integral can be evaluated where an overall constant factor has been
dropped since it cancels in the calculation of any correlation functions. By ex-

panding the factor — e in powers of |k| we can write the free part of the action
2g1’l+m

as

A A 1 A A 1 2 2
=/ < b(7ta)k () —x — Egab|k|2(7fa)k(7'(b)k) + 2_(7T5)k(7'(5)7k
k ab=1 8
5 1 1
:/ é bnarcb + gTL’S — E abzlgabVTCa VTL'b
(4.1.55)
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By comparing (4.1.18) and (4.1.41) we find that

vs=-n, ¢, =0 gt=1/g, ¢ =n/M, Es=n/M . (4.1.56)

With these values the dispersion relations (4.1.48) indeed match up with (4.1.36).
If we define

1 n n
vs(a) = (—n), g55(7) = Ty gulo) =+ &55(A) =A- -7 (41.57)
then the spectrum (4.1.48) is invariant if we keep ¢ = a and ¢y -A = 1 and the
interactions (4.1.52) acquire the pre-factors % and % respectively. This shows that
the relative proportions of the terms in the General Lagrangian is still arbitrary
after fixing the dispersion relations.
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4.2 Spin 1 - Lagrangian with Quadratic Zeeman-Effect

We postulate that the correct Lagrangian density written in terms of three complex
fields (11,2, ¢3) € C° takes the form

311 1 ?
L= Z |:21 ¢1 atlpl Eblatlpl*) - %v¢1 v¢1:| Y (Z lpl 17[]1)

=1 (4.2.1)
3 C1 *¢ x¢ * % *
Y 5 (9ifiwn) - (Tmdm) =0 (piva -+ yipe) + lei ¥
ij,l,m=1 i=

The matrices f appearing here denote the three spin generators in the spin-1 rep-

resentation:
1 010 ; 0 -1 0 10 O
f1=—1(1 0 1 , H=—11 0 -1 , f5=10 0 O (4.2.2)
\/5 010 \/E 0 1 0 0 0 —1

Rotations are generated by these matrices in the sense that ¢, — (exp [15 : ﬂ )abPb-

The last term in (4.2.1) describes the quadratic Zeeman effect and if this term was
absent then £ would be completely symmetric under SO(3). The presence of this
term however means that this symmetry is explicitly broken to SO(2), namely ro-
tations about the z-axis which are generated by f3. There is also a U(1) symmetry
which is obvious in the formulation using complex fields and whose generator is
just the unit matrix 1. Again, one needs the last term in order to fix the total par-
ticle density but now the different spin components will have different chemical
potentials and we need to be clear on whether this term breaks any symmetry ex-
plicitly, which in fact it does not, as can be seen from the fact that neither 1 nor f3
mixes the different components.

L is a real function and can be written in terms of six real fields, namely the real

and imaginary parts of the ¢,. If we define , = (.1 + ips2) /+/2 then we get

3
L= Z{ (P01 — Pi1dein) — (Vlllﬂ Vi + Vi - V’,Ulz)}

i=1

3 2 3 5
co 1| = S R R

Y (Z (%21 + 1,0122)) -Y 5 Yk + YofiPp + ipatip — ipnfipn

o1 i=1

3
=5 (vhrvho v vh) + D1 (v +vd)
(4.2.3)
Furthermore, by introducing the vector

Y = (Y11, Y12, Y21, P22, Y31, P32] (4.2.4)
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as well as the real form of the spin matrices F we can simplify the notation and
write

L= 2w, — L vy ve — Oy.y)2 - (‘Pf?"f) : (‘I’f"l’)

2M 1 1
—g¥FRY + u¥ - ﬂ

N[~

(4.2.5)

The real matrices F are obtained from the complex f by matching the results of
either applying f to the complex fields and then splitting the vector into real and
imaginary components or applying the real matrices F to the real version of the
field vector. One finds

001000 00 0 1 00 1000 0 0
1 (000100 1 /00 -10 00 0100 0 O
F, — 100010 F, — 0-10 0 01 Fa— | 00000 0
1 \/E 010001 |~ 1 _\/E 10 0 0 —10|~ 3 00000 O
001000 00 0-100 0000 -1 0
000100 00 1 0 00 0000 0 —1

(4.2.6)

Similarly, one finds the real version of the symmetry generators. Here it has to be
kept in mind that the change in the complex field components is actually propor-
tional to if,, 1§}, and so one needs to apply this method of matching results to if
instead of f. Also since we follow the convention of always writing finite transfor-
mations as exp[iX] we need to multiply the real matrix version of the generators by
(—1i). We thereby obtain the two symmetry generators in the real-field formulation
as

010000 0i0000
000000 000300
— — i
Xy = 000000 / X = 00-i000 (4.2.7)
00000 -i 000001
000010 0000-0

Hamiltonian In The Fundamental Field Formulation

The quantization procedure is completely anologous to the one for the U(N) La-
grangian. The very first term in (4.2.3) can be exchanged for 213:1 Pin0t i1 by partial
integration with respect to the time variable. The definition of the canonical mo-
menta yields six constraints:

i1 = Pi2 — Pi1 , Pi2 = Pio ,with i=1,2,3 (4.2.8)

By calculating their Poisson brackets we find that M = S©), i.e. the symplec-
tic metric and since det(S) = 1 we have six second class constraints.Their Dirac
brackets are again just equal to their Poisson brackets. The naive Hamiltonian
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density reads

e

2
3
H = (lell Vi + VP - VPﬂ <Z lpll + P )
i=1

1]
[Sy

i

iy + Pk P + i £ Py — ipnfij’Pﬂ’ +q(7y + Ph + 93, + P3y)

1
4m
3
Z

a
8

(1P121+P121) /

tu

H.
g L
[unty

(4.2.9)

where we have again used the constraints in order to replace half of the fields with
momenta. The remaining fields and momenta again obey canonical commutation
relations if we replace Dirac brackets by (-i) times the commutators and so we
define the creation and annihilation operators ®' and @ just as in (4.1.7). Inserting
these relations into (4.2.9) and using partial integration with respect to the spacial
derivatives in the first term gives

SRR V& o (& . o
H=) @ (‘%q’i)+5 Y P +
i1 i=1

3
+q (cp{q)l + ‘D}Lq):s) —puy ofe;
i=1

5. 2
> i@
i=1

(4.2.10)

which is indeed the correct Hamiltonian density.

4.2.1 Explicit Parameterization in The Broken-Axisymmetry
Phase

The method of stationary phase approximation allows one to determine the differ-
ent local minima of the Hamiltonian and to identify the order parameters in each of
the different phases. One of the solutions, referred to as the broken-axisymmetry
phase (BA), is characterized by the ground state expectation values of the real fun-
damental fields being

¥, = (,/n(%—FQ),O,m,O,%W/n (%+Q),o> 42.11)

From here on we use

Q=-1-, with (—%) <Q<0 (4.2.12)

4ncq

instead of 4.
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One simultaneusly determines the chemical potential to take the value

p=mn(co+c(1+2Q)) . (4.2.13)

This ground state breaks the SO(2)xU(1) symmetry completely since the equation
(iX; + BiXo) (¥Y)gs = 0 only has the trivial solution « = f = 0. We now deter-
mine the massive fields ¢ via the condition (2.1.5):

6
Z_: [iXa ]y <'1DJ>BA Z Pi - [(Xo; <¢J>BA

1]—

Pi-
[\/ +Q +1‘l]1’¢4/ (1_2Q +¢2/ \/2+4 ¢4/\/n(%+Q>+¢3/¢4]

(4.2.14)

The choice of parameterization for the first, third and fifth component ensures that
the ground state expectation value of every field appearing here vanishes and so
we should end up with a Hamiltonian which is the sum of the ground state energy
and terms with vanishing expectation values. By inserting the relation

P = exp{iXa7ta } P (4.2.15)

into (4.2.3) and using the fact that the structure constants of the Lie algebra are
trivial we can write the Lagrangian as

2 . 2
L= [ )i+ - XX — 57 (WW+ Y Ve Vg | )
a=1 ab=1
_% (§-§) - % (J)?ti]) : tﬁﬁtﬁ) —qPFg +

(4.2.16)

Expanding to quadratic order in the fields we find that the free part £y of the
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Lagrangian has the following structure:

£:

N =

)3 P

ij

L~ 1 I 1 . 1 -
ZNaiﬂal/Ji — E ZgabVﬂa -V, + (Tijl[)ﬂ’bj — EMlllljllpl — §G1]Vlljl -V )
ai ab

[_,Fn@m) 0 n(3+Q) o} e nlt29) g

—V/n(3+Q) —/n(1-2Q) —/n(5+Q) 0 0 &

[0 0 0 -3 470 0 0

0 0 0,/ 0 547 0 0

1 7 G: 1

o 0o o -1 0 0 4 0

[ F VRS o 0 0 0 mag

[ 2 (co(14+2Q)+4c1Q) n(co+2c1)/ %—ZQZ 2 (co(14+2Q)—4¢1Q) n(co+2cq) 0

n(co+2c1)4/ 1 —2Q2 nco(1-2Q) n(co+2c1)/ 5 —2Q2 0

%(C0(1+2Q)—4C1Q) n(C0+2C1) H(C0+2C1)\/ %—ZQZ %(C0(1+2Q)+4C1Q) 0
8nc

L 0 0 0 _172%3

(4.2.17)

From this it follows that the canonical momenta are just linear combinations of
the field variables and therefore we have six constraints which can be expressed
as linear combinations of fields and momenta. After defining a vector of all the

variables

V = (7'[1,7'(2,1/]1,...,¢4,P1,...,P6) (4218)
we can write
q)i:Z[C]inVn ’
n
[00 0 0 0 -1 001000
00 0 0 0 735000100 101
00 0 0 0 -1 000010 (4.2.19)
[Cl=lo0sv2ra0 0 —2y2730 0 100000
00 %y274Q \/n(1-2Q) %y274Q 0 010000
1 1+2 1
00 -/ 18 ! 0 000001 |
/ /
q’i:Z[C]inVn ’
n
[00 0 0 -1 0 100 0 i
00 0 0 o 0 010 0
00 0 0 -1 0 001 0
/
[C'l= |00 -L(7+2Q) -1/1-2Q2 1(1-2Q) 0 7\/n(21+4Q) /52000 1(20-1)
00 -1v/31-202 1(20-3) -1/1-2Q2 o 0 —/52R o000 1/1-202
00 1(1-20 -1/T1-202 -1(7+2Q) o© \/n(21+4Q) —/H2X o000 10-1)

42




(4.2.20)

This forms the basis for a canonical transformation with the special properties de-
scribed in chapter 3.2. The general form of this canonical transformation will be

- % ok * * * * * * * % ok * -
* ok * * * * * * k ok ok *
LS * * * * kS * k ok 3k *
00 0 0 0 -1 0 0 100 0
00 0 0 0 s 0 0 010 0
00 0 0 0 -1 0 0 001 0
L * * * * * * k ok 3k *
[C] = | ** * * * * * * * ok ok *
* % * * * * * * * % ok *
00 —4(7+2Q) —iv/1—2Q2 1120 o ’\/n(zl+4Q) —/H2 000 10-1)
00-1y/1-202 1l20-3) -1/1-20% o 0 /52000 1y/T20Q2
00 1120 -1v/1-2Q2 -1(7+2Q) o \/n(21+4Q) —/H2 000 120-1) |
(4.2.21)

The *-entries again need to be determined via the condition [C]S(1?)[C]T = §(12),
By making some guesses regarding the relevant entries of this matrix we find that
one particular solution is

0 0 0 0 0 L _ o -1

0 n(2+4Q) n(2+4Q)
0o 1 0 0 0 0 0 o /e Jhxe | juxe
0 4/n(2+4Q) 0 0 0 1 0 0 1 0 1
0 0 0 0 0 -3 0 0 1 0 0
0 0 0 0 0 o 0 0 0 1 0
0 0 0 0 0 —3 0 0 0 0 1
0o 0 0 . 0 0 1 0 0 0 0
1 __n(1420Q 1
0o 0 1V/n(2+4Q) — L §y/n(2+4Q) 0 0 1 0 0 0
0 0 -1 W= -1 0 0 0 0 0 0
0 —-3(7+2Q) -1v1i-207 {a1-200 o0 - \/n(leQ) —VER 0 0 0
0 0 ~1Vi2Q2 120-3) -1y1-207 o 0 /52 o0 0 0
0 0 $(1-2Q) —1v/3-2Q* —}(7+2Q) © \/n(leQ) /52 0 0 0
(4.2.22)
The relation between the old variables V and the new ones V' is given by
_ 1y
Vi=) [Cl;'V, (4.2.23)
j

We can now re-express the free part of the Hamiltonian in terms of the primed
coordinates and momenta and set ¢, = ¢} = ¢, = P; = P. = P/ = 0 as this is the
form the constraints take in these new coordinates and the special transformation
that we constructed ensures that using these constraints does not affect any results
one could calculate from the Hamiltonian. The naive free Hamiltonian resulting
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from (4.2.17) is

1 .- 1 - - 1
H = /V d3x Z <§Mijlpi¢j + EGilePi . V%) + 5 Zgaanfa -Vm, (4.2.24)
ij ab

After defining Fourier components of fields as

=Y exp{ik-x}p(k) , (4.2.25)
k
which satisfy the commutation relations

. 1
{#i(k), B} = 0010 (4.2.26)

we find the Hamiltonian in terms of these to be
1 s 2
H =V L (M09 + SGIPR00G () ) + 5 5007
L)
(4.2.27)

After changing to the primed variables we can introduce creation and annihilation
operators

o100 = /L [0 BT, i) =\ [0+ iB(R)] . @228

These satisfy the commutation relation

{ai(k),a (K)} = 60w - (4.2.29)

After replacing The canonical fields and momenta with these creation and annihi-
lation operators, the Hamiltonian takes the form

H =Y Af(k)[H];;Aik) |,
ik (4.2.30)
Ak) = (a1 (1), a1 (), a3 (), n2(—k), a3 k), a3( k) )

The quadratic form [#] can be diagonalized by a bosonic Bogoliubov transforma-
tion which preserves the commutation relations. The resulting spectrum consists

44

k)



2
of three distinct dispersion relations which can be expressed using ¢(k) = % as

wi(k) = y/e(k) [e(k) +9)]

2\ 2
(ZC%TZZ - %) —n(co + 3cq) (4c3n? — g?)e(k)

wr(k) = |e(k) [e(k) + (e — e1)] + 2632 — L~ ; ,
\ \ + (nz(co +3c1)? — (co + 2¢1) > e2(k)

1

2 2_f 2_nc c 2n? _ 2
w3(k) = |e(k) [e(k) +n(co — c1)] +2cin? — 7 + (2 ' 2) (co+3c1) (41 q-)e(k)

2 2
\ + (nz(co +3¢1)% — (co + 2c1)Z—> 2(k)
1
(4.2.31)
In the limit k — 0 we find
wl(O) =0 ,
2 2
w,(0) = 2n2c2—q—)— 2n2c2—q—‘ ,
2(0) ¢( 172 1772 (4.2.32)
q* q*
w3(0) = @#%—5)+2MQ—E‘

It is therefore clear that there will always be two gapless modes with linear disper-
sion relation and one gapped mode where the gap is

A =\/|4n2ct —g?| . (4.2.33)

Also in the case c; = g = 0 these dispersion relations reduce to (4.1.36) with ¢ = ¢y,
as one would expect since the SO(2)xU(1) model reduces to the U(3) model.

These results are in agreement with results obtained from standard Bogoliubov-
theory ([17]).
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4.2.2 General Coset Construction in The Broken-Axisymmetry
Phase

The general construction of a low energy Lagrangian based on the symmetry break-
ing pattern starts with the Lie algebra of the symmetry group SO(2)xU(1), which in
this case is broken to the trivial subgroup. Following the notation of subsection 2.1
we therefore have x; = Xj and x, = X, with all of the structure constants vanish-
ing. This implies D,}, = 6,1, and if we want to write down a quadratic Lagrangian
density in terms of Goldstone fields only then it takes the form

o1 o 1
L= ZVaDabNb + 5 Z 8;bDacDbd7TC7Td ) Z 8apPacDpa V7ic - Vg

ab ab,cd ab,c,d
8.2 8.2 t i > S» 2
= V1701 + Vo7l + 771’1 + 77@ + g7t — > (V) — 3 (V)™ — ¢,V - mo

(4.2.34)

The first two terms can be dropped, being total derivatives. For the canonical
momenta one finds

P =gl +8hm , Pr=ghito+ gl (4.2.35)

Unless g1,95, = g!,2, these relations are invertible and there are no constraints.
The justification for assuming this case is that it yields the correct number of gap-
less modes. One therefore has to have some prior knowledge of the system or
additional arguments in order to choose between different possibilities when fol-
lowing the general scheme. Inverting (4.2.35) gives

_852131—8521)2 7 _g§1P2_8§2P1
= F f _ t2 7 2= 7% ¥ 2
811822 — 812 811822 — 812
1 KN ES R
H — P P 22 12 + 2V Vi 11 812
2(81185 — 812°%) P P] {—giz 811l [P 2 [V V) gh &) |Vm
(4.2.36)

s

The Hamiltonian density as a function of fields and momenta is therefore a block
diagonal quadratic form and by redefining the fields and momenta using an O(2)
rotation and its inverse we can diagonalize either one of the blocks while pre-
serving the commutation relations.Thus, without loss of generality, we can take
the matrix [¢] to be diagonal and therefore the Hamiltonian density in terms of
Fourier components to be

%:

N =

0 1/851 St 8&%»| (k)
(4.2.37)

[Pi(k) Py(K)] [l/ sz 0 HAl(_k)]%uqz (k) Aa(K)] [gfl g’l‘z] [ﬁl(—k)]
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Defining creation and annihilation operators

turns the Hamiltonian into the quadratic form

2 2 2 2
$+g’1‘1|k\ —$+g’1‘1|k\ g1 K| g1 K|
a1 (k) 2 2 2 2 al (k
Y Pt B et et L ot
=7 ’ 2 2 2 2| +

4 zZ((k)) 81 /K| 81 /K| é*‘gﬁﬂk‘ —é+g§2|k\ a2( klz ’

A 2 2 2 2 a2(=

821 /K| 821 /K| —+enlk® F+gh K|
8 8

(4.2.39)

which can be diagonalized by a bosonic Bogoliubov transformation:

88%1 1 81185 + 1/ 8528% 2 + 851285,7 + 281185 (2852 — 8118%,)
Hy = Z\ \/ 5o ol |k|b] (k)b (k)
k 811822
85811 T 8118% — \/85228)1(12 +811°8%° + 281185 (2831 — 8118%) .
+ k|b; (k)ba (k)
Zgilgéz
(4.2.40)

The general construction therefore predicts that in the low energy limit there should
be two relevant modes with linear dispersions and different sound velocities.

4.2.3 Interactions

Unlike the U(3)-symmetric Lagrangian there are no interaction terms which origi-
nate from the lowest order derivative terms in the general Lagrangian which pro-
vides the free part of the Lagrangian. This is simply due to the fact that D, = 6,1,
Therefore all of the allowed interactions must be purely products of derivatives of
the Goldstone-fields. The great disadvantage in this case is that their coefficients
do not follow by simply matching those of the free Lagrangian to the correspond-
ing ones appearing in the explicitly reparameterized version. This showcases that
the power of the general coset construction depends on the structure of the sym-
metry breaking pattern. It is most useful for systems where the number of broken
generators is low, which implies a small number of Goldstone-fields, while hav-
ing a large unbroken group H, which provides great constraints on the coefficients
appearing in the Lagrangian. Additionally, if the Lie algebra of the symmetry gen-
erators is non-abelian, then in general the coefficients of the free Lagrangian are
not independent of the ones for the most relevant interaction terms, such that one
can obtain both the spectrum and the interactions simultaneously.

For our Spin-1 system we need to do some more work in order to see which of
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the allowed interaction terms are in fact present.

4.2.4 Matching Coefficients

In order to get the interactions we can use the reparameterized original Lagrangian
within the path integral formulation and integrate out the massive fields, which
are absent in the general construction, since we are only interested in the effective
theory for the Goldstone fields and corresponding modes:

[ e [ £

:/D(ﬁ) {exp 27‘(V/ Z—— Z gab|k| ()i (7o) —k—w

ab 1
/D glAJ exp |2V / Z —— Z l[)l K,w [(Mi]’ + ’k’zGij +inij> (5k,_k/(5(w —f—w/)
W I K 1] 1
2 A
+ Z Qaiji (_w - w/) (ﬁa)fkfk’,fwfw’ + O(|k|2ﬂ?2)] (l/}j)k’,w’
a=1
2 4 A
+ Z ZNai(ﬁa)k,w(iw)(sk,—k(s(w + w/)(l[]j)k/,w’] }
a=1li=1
. 13 24 .
« [DE)exp |27V [ =3 Y ganlkl (o)t ()
Wk a,b=1
1 4 -1 , R
+§ Z (Ml] + |k| Gl] + ICUT1]> Naiij<7Ta)k,w(7Tb)—k,—w
ab=1i=1
1 2
= [P exp |27V [ Y3 ¥ ganlkP (Rl () s
W x a,b=1
> (1+20Q, ., . 1

1 . .
tow 10,0 (ﬂl)k,w(ﬁl)—k,—vaC0+Cl(7fz)k,w(7T2)—k,—w) +]

—70 | + ...
1Q co+c1 2

1
gaana Vrm, + (

(4.2.41)

The integration over the massive fields is again done by completing the square.
The third equality holds up to terms of third order in the fields and in the penul-
timate step the inverse quadratic form has been expanded to zeroth order in |k|
and w to get the lowest order terms contributing to the free action. By comparing
(4.2.17) and (4.2.34) we can match the coefficients:

1420 1 (1420 "
g = 100 g = ot ol s = %/ = M S =281=0
(4.2.42)
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By plugging these values into (4.2.40) we find the dispersion relations

_ /] _Meote)

which are in accordance with the low energy limit of (4.2.31) if we only take the
ungapped modes into account. In order to obtain the interaction terms we need to
take into account the term in the propagator for i which is proportional to 7. The
inverse of this propagator to first order in 77 and to lowest order in derivatives is
given by

2
<Mij +|k|*Gj + inij) (W + ')+ Y Quiji (—w — w') (fa) kK, —w—a
a=1

2 4
~(M)y e wd(w+a)+ Y. Y (M), Qanm( M)r;jli (—w—w') () kW —w—w

a=1nm=1

(4.2.44)

The second term gives rise to interaction terms o 7r°> . Both the propagator and
the term linear in ¥ also contain a term o |k|27'c2 which neither contributes to
the free action nor to the third order interaction terms. In particular there is no
term o 77(V71)2 which would contribute interactions in terms of the quasiparticle

creation and annihilation operators that scale as |k|3/ 2. The present interaction

3/2

terms o 77° scale as |k as well.
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5 Scaling Analysis

5.1 Spin-1 - Scaling of Quasi-Particle Occupation
Number

5.1.1 Spatio-Temporal Scaling

For the purpose of studying the dynamics near non-thermal fixed points of the
Spin-1 bose gas, we can perform a scaling analysis of the scattering integrals which
can be derived from the low energy effective Hamiltonian and by assuming that
kinetic theory is a valid approximation. For reference see e.g. [2],[4],[12],[14]. The
statistical function for quasi-particle excitations in terms of the creation and anni-
hilation operators introduced in (4.2.40) reads

falle,t) = (b3 (k)b ) ) G1.1)

Constructing the coherent state path integral for a Schwinger-Keldish contour from
the diagonalized Hamiltonian gives us

7= / D(B)D(D) exp [ /t,C ;;if;a(k)atba(k) — 0a(K)Ba(K)ba(K)
—0 (|k|%(b/15)3) —0 (|k|2(b/5)4> . }

(5.1.2)

Where (b/b)" denotes terms which are of third total order in b and b. The free
propagator is therefore

5
(0) ab
GV (w, k)p gy e (5.1.3)

which in the diagrammatic calculations of the self energy contributes Dirac-distributions
d(w(kq) £ w(ky) £ ...) in the dispersions appearing in the integrals. By combin-
ing the 3- and 4-vertices Fig. 5.1 of the lowest order interactions we obtain the set
of diagrams Fig.5.2 which contribute to the proper self-energy and where internal
lines are now to be taken as full propagators. Solid lines represent the mode associ-

/ / ’ . N .
’ ’ ’ . N 7
, , , , N ,
’ ’ ’ . N P
’ ’ ’ 7 N
— - < x
N N N PR
\ \ N . N
\ \ N , N
\ \ N . N
\ \ N . N

Figure 5.1: 3- and 4- vertices appearing in the interation Hamiltonian
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Figure 5.2: Lowest order diagrams contributing to the proper self energy

ated with 711 which originates from the magnetic field breaking the SO(3) symme-
try, while dashed lines represent the Bogoliubov-mode associated with total-phase
transformations. Within the framework of kinetic theory where all processes are
assumed to involve only on-shell contributions this leads to the set of kinetic equa-
tions

3tfi(k) = Lis[fl(k,t) + La[f](k,t) Li=1,2. (5.1.4)

The scattering integrals receive contributions from all of the self-energy diagrams,
ie.

halflO6) o [ Ik/al (Maf20/a,) + dafifalde/a ) + Misflk/a ) S +w(a) =),
Ralflle ) o | k/al (Aaaffi/at) + 222 folkc/a )+ Aaaf(k/q,1)) (el & eola) &),

halfltet) o | k/a/plt (miaff/a/e ) + mafif30c/a/p 1)) d(ew(k) (@) +w(p) ..),

Lalfl(k,t) °</qp!k/q/p\4 ('Yz,lff(k/q/p,t)+vz,zf1f22(k/q/p,t)) S(wk) T w(q) tw(p)*+...),
(5.1.5)

where the notation is supposed to indicate that there are several terms contribut-
ing in each case which differ in the way the momenta are combined. Since the
structure is the same for all of these and the scaling behaviour follows from this
structure alone, we do not write them down individually. Keeping only the high-
est powers in f; will later be justified by looking at the momentum dependence of
f. The scaling ansatz for self-similar time evolution is given by

fillkt) =s? f(sk,s Ft) (5.1.6)
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We allow for a different scaling exponent «; for the different modes but assume
that they both obey self-similar time evolution as well as § being the same since
this required in order to obtain a well defined scaling exponent for scattering inte-
grals. Consistency with the time evolution equation allows one to determine the
exponents «;, Bi. For that purpose we need to calculate the scaling coefficients of
the scattering integrals. Since each integral involves a sum over terms of different
order in the statistical functions f;, one can in general not identify a single, overall
scaling exponent. We will therefore make the ansatz of assuming either f; > f,
or f > f1. In this case the terms of highest power in the corresponding statistical
function will dictate the scaling of each scattering integral. Under the assumption
f1 > f» and with d denoting the dimensionality of space we find

11,3 [f] (k, t) = Siﬂ1'311,3 [f] (Sk,S_%t) With ;1/11,3 =d + 2 — Zﬂ

p
La[fl(k, t) = s M1AT 4[f] (sk,s_%t) with p14=2d+3— 3%
(5.1.7)
Lalfl(kt) = s " L[fl(sk,s F1)  with s =d+2- 23
Lalf](k t) = s #2241 4[f] (sk,s_%t) with 14 =2d+3— 3%,

The kinetic equations dictate that a; = 1 — y;8 where y; is to be taken either as y;
if the scattering integral I;; dominates over the other one or as both y; = pi3 = 4
if neither one is to be neglected. In the first case one already obtains a complete
set of equations that determined the exponents uniquely while in the second case
another condition needs to be added. One possibility is total energy conservation
in which case the relation

E= /wl(k A1) + @ (K) fo(k, £)

<w1 (sk)f1(sk,s ﬂt) + wy(sk) fo(sk, s ﬁt)) (5.1.8)

o

s
= /& (Sl_/flan(k)fl(krt) 5 Pl falle t))

requires a1 = ap = B(d + 1). Alternatively one oftem seems to find that quasi-
particle numbers are conserved in certain regimes and so we can make the ansatz
that each particle number is conserved and the relation

nj = /kfi(k,t) = /ksdfi(sk,s_ét) = /ksds_?fi(k,t) (5.1.9)

provides the conditions a; = Bd, which again requires that a; = ap. We can now
go through all of the possibilities starting with the consistent solution obtained by
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imposing equal scaling exponents for 3- and 4- scattering integrals:

iz =Hia = wa=ap=1+d , p=1 (5.1.10)

In all of the other cases we need to separately consider the possibility of the I
integrals being dominant over the other one and vice versa. For the case of number
conservation one finds

123: K] = 0y =
(5.1.11)
=4 K1 = 0y =

W RN
=

I
W= N =

For the case of energy conservation, where we will use primed exponents, one
finds

I =3: n =d+1 ,

/ / /

1= & p
4. rr , (5.1.12)
l=4: 061—0&2—d+1 7 :B

1
1

Of course the result obtained by assuming a certain scattering integral dominating
over the other should always be consistent with that assumption. After inserting
the obtained solutions for &« and  into the equations for the scattering exponents
(5.1.7) we identify the smaller exponent as the one whose corresponding integral
is the dominant one at sufficiently late times and small momenta. That this should
be the case is indicated by their scaling relations in (5.1.7).

For the case of number conservation we find

Iz dominant = Uiz=2-—d , Mig=3—d (5.1.13)
I; dominant = piz=2—d , Hia=3—d o

Since in both cases p;3 < pij4 we conclude that that only the assumption of I3
dominating leads to a consistent solution.
For the case of energy conservation we find

I; dominant = la=—d , 4= —d
3 dom His s (5.1.14)
Iy dominant = piz=—-d Hia=—d ,

meaning that the relative importance is expected to not change as time goes on.
However, this poses no inconsistency, since there is a common scaling exponent
for both integrals. This solution is also the same as the one obtained by making
the ansatz that there should be a common exponent in the first place.

The results one obtains after assuming that f, > f; are exactly identical and
since in all cases the scaling exponents are the same for f; and f,, it seems plausible
that one can drop the assumption of either one f; dominating and extrapolate these
results by choosing a1 = a from the beginning. From now on we will make this
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more special ansatz for all calculations.

5.1.2 Shape of the Scaling Function

The scaling ansatz can be rewritten as

ft) = (t/ tres) fo [t/ trefl K,

(5.1.15)
with the universal scaling function
fo(k) = f(k, tref) (5.1.16)
If one makes a similar scaling ansatz for the spatial form of the scaling function
itself, i.e.
fs(k) = s"fs(sk) (5.1.17)
then the kinetic equation yields
(@ = B) fs(k) = trefl[fs](K) (5.1.18)

The scaling behaviour of fs implies that the scattering integral obeys fixed time
scaling as well, namely

h[fsl(k) = s [ fs] (sk, tref)

7

(5.1.19)
assuming that I; dominates the fixed time kinetic equation. We therefore find

K=~y (5.1.20)

The spatial scaling exponents of the scattering integrals follow straightforwardly
from (5.1.5):

[|=3:
Il =4:

s =4 +2 = 2K (5.1.21)
Hxa =2d+3—3x o

This results in the following scaling exponents:

K3 =d+2
5.1.22
l=4: K4:d—}—g ( )

Since k¥ > 0 in all cases, we can assume that for small momenta f(k,¢) > 1 and
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hence only the highest power in f needs to be kept in the scattering integral. In-
serting the same x = x; into (5.1.21) gives

M3 —Mxa =1 —d—1>0 (5.1.23)

independently of I. The scaling of the scattering integrals indicates that at small
momenta that [; which has the smallest y,.; dominates and so for consistency we
must have k = x4.

5.2 Spin-1 - Scaling of Goldstone-Field Correlator

5.2.1 Spatio-Temporal Scaling

Instead of the quasi-particle correlation function we can also look at the correlator
of the Goldstone-fields:

Eap(k t) == (ma(K, t) 71 (—K, 1)) (5.2.1)

Since the quadratic part of the Lagrangian is of the form

1
Lfree = Ena(k/ w) [wzgab - g§b|k|z] nb(_k, —(U) (5.2.2)

we conclude that G(0) « m and therefore the spectral function takes in

the on-shell approximation the form

p(k, w) [0(w —w(k)) —d(w+ w(k))] (5.2.3)

1
w(k)
The interaction vertices contribute the following scaling factors if k — sk where
w(k) o |k| is used:

° = w(k)w(p)w(q) o [kllpllq]

2. (5.2.4)
(Vr)*7 = k- pw(q) o [K[|plq]
Therefore the 3-vertex y(k, p, q) scales as
v(sk,sp,sq) =s>y(k,p,q) - (5.2.5)
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Similarly we have for the 4-vertex:

= w(k)w(p)w(q)w(r) o« |k||p|q||
(Vr)** = k- pw(q)w(r) « |k[|p[|q]r] (5.2.6)
(Vm)* = (k-p)(q-r) +perm. o |k||p||q]1]

Which implies that the 4-vertex A(k, p, q, r) scales as

A(sk,sp,sq,st) = s*A(k,p,q,1) . (5.2.7)

The scattering integrals and their scaling are then given by

2 1 2 d+6-3-2% 1
Ig(k,t)oc/ph/\ ey oo =) s P Lk t)

2 1 3 2d+8—4-3%—1
14(k,t)o</p/qw g o E ) s P Lk, t)
(5.2.8)

Unsurprisingly, one obtains the same scaling exponents as before and the solutions
for « and B are the ones calculated above.

5.2.2 Relating Goldstone-Fields to Experimental Observables

In experiments with Spin-1 bose gases the universal scaling dynamics has already
been observed and the data seems to indicate that essentially only one degree of
freedom needs to be taken into account [13]. Using the complex spin matrices
F and the creation and annihilation operators ¢}, ¥, for the magnetic sublevel
m € {1,0, —1} one can define the spin fluctuation operators

ﬁi = Zrlp;[Fi]mm’lpm’- (5.2.9)

In the experiment the components in the x-y-plane are measured and it is found
that the absolute value of this transverse spin is essentially fixed while it phase
is the dynamic degree of freedom. By using the parameterization in terms of
Goldstone-fields and massive fields that we have adopted in this work, one can
identify this phase as one of the Goldstone-fields. By neglecting fluctuations in all
massive fields we have

Py = ei(”ﬁ@)\/% +Q, yo=¢e™/1-2Q, elm7m, /% +0Q. (5.2.10)

Here we use operators and coherent state eigenvalues interchangably. We then

56



find the following relation:

Bo= B tif,
= V2 (-1 + yiwo) (5:211)
— M 0y/1_4Q2,

The phase angle measured in the experiment therefore corresponds to the Goldstone-
field 7r; which is associated with the broken SO(2) symmetry. In the experiment
c1 ~ ¢o/100 and since Q ~ 1 we also have g ~ c;. The dispersion relations (4.2.43)
therefore show that the mode associated with 77 is of much lower energy com-
pared to the total phase mode and it is therefore unsurprising that it is this mode
which is predominantly occupied as the system approaches equilibrium.

The phase angle correlation function used in [13] is therefore just the Fy;(k, f)
introduced in (5.2.1). Since the scaling exponents for this correlator are the same
as the one derived in 5.1.1 and 5.1.2 for any given case, we can draw the conclusion
that for the case of quasi-particle number conservation the correlator is of the form

Fii(k, t) & ka(£)]k| @12 (5.2.12)

where kx (t) o t~P. This means that in an effectively one-dimensional system we
expect the phase angle correlators to scale in momentum as |k| ™" with xg,e, = 2.5.
The observed value is kexp ~ 2.6 and therefore the prediction based on the spin-
1 model with quadratic Zeeman effect is much closer to the experimental results
than the previously predicted xyny) = 2 (see (5.3.4)).

Since the experimental setup involves a trapping potential, deviations from a
perfectly free, one-dimensional system are to be expected and an effort could be
made to quantify the effect that for example the degrees of freedom in the trans-
verse directions have on this result.
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5.3 U(3) - Scaling of Quasi-Particle Occupation
Number

5.3.1 Spatio-Temporal Scaling

The same scaling analysis can be done for the U(3) symmetric Hamiltonian we
studied in section 4.1. Previous versions of this analysis [12] were based on tak-
ing the more general U(N) model with N field components, then going to the
large N limit and neglecting the linear Bogoliubov mode. In that case one finds
a decoupling of the leftover modes and so both the 3-vertices as well as the 4-
vertices that need to be taken into account involve only one mode interacting with
itself. However, if restrict ourselves to N=3, this does not necessarily seem to be a
valid approximation. Since the 3-vertex involve the interaction of two soft modes
(wj o \k\z) with one Bogoliubov mode (wp o |k|) and their spectra have different
|k|-dependence, the energy-conserving Dirac distribution appearing in the scat-
tering integral I3 does not exhibit a well defined scaling behaviour. Instead we
can make the ansatz that at sufficiently low energies and late times the predom-
inantly occupied modes are the soft ones. Integrating out the Bogoliubov mode
turns this 3-vertex into a 4-vertex for the soft modes which scales exactly like the
4-vertex (4.1.53) that was already present in the Hamiltonian if one assumes that
wp(k) > wji(k) for all total momenta k involved in the scattering of two soft
modes via the Bogoliubov mode. We therefore find

Li[f](k,t) o / k[*f3(k/q/p,t) 6(wi(k) £ ...) + similar terms
P : . (5.3.1)
L[f](k,t) = s ™[ f](sk,s Ft) with 4 :2d—|—2—3E

Together with the relations for conservation of number or energy we find the so-
lution

5:% o=t (5.3.2)

for number conservation and

d+2

Bi=—5 , = —% (5.3.3)
for energy conservation. These results are in agreement with the ones calculated
in [12] for corresponding assumptions but differ significantly from the ones calcu-
lated for the spin-1 model. This is also the case for the momentum-dependence of
the scaling function which for the U(N)-model is given by

Ku@B) = d+1. (534)
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6 Conclusion and Outlook

We have seen that the general methods for the construction of low-energy effec-
tive theories in systems which exhibit spontaneous symmetry breaking lead to
Lagrangians whose quantization requires a systematic treatment of constraints. It
was shown that this constrained quantization produces results which are consis-
tent with those obtained from standard Bogoliubov-theory.

The dynamics of a Spin-1 bose system were explored using these methods based
on a model which involves only a spin-independent contact interaction, as well as
a model which includes a spin-dependent interaction and a quadratic Zeeman-
shift. The additional terms in the second model changed the internal dynamical
symmetry group G from U(N) to U(1)xSO(2) and therefore the symmetry breaking
pattern on which the construction of low-energy effective theories is based. The
consequences were worked out in two different approaches. Firstly, the funda-
mental fields appearing in the full Lagrangian were replaced by a different param-
eterization, which is suited to the particular local ground state or phase around
which we wanted to expand the theory. This parameterization was constructed
from the symmetry breaking pattern and separated the field-degrees of freedom
into Goldstone-fields and massive fields. The resulting Lagrangian was then quan-
tized using the method of constrained quantization. Contrary to naive expectation,
we have seen that it is not straightforward to predict the type of dispersion rela-
tions appearing in the free Hamiltonian from the number of fields of either type.
For example, the U(N)-symmetric model involved one massive field, which cor-
responds to the total density, but there was no gapped modes in the final Hamil-
tonian. This is because the constraints appearing in the quantization procedure
mixed the various fields in such a way, that the excitation modes correspond to
combinations of the field fluctuations which are massless. This approach was com-
pared to a general construction, which uses only symmetries and their braking
pattern. In particular we have studied the case where a Lie group of internal sym-
metries G is spontaneously broken to a subgroup H. We have seen that Galilean
spacetime symmetry combined with a gradient expansion and the properties of
the coset space G/ H greatly restrict the structure of effective Lagrangian at low
energies. The number of quasi-particles could be deduced as well as their dis-
persion relations up to some free parameters, which depend on the details of the
system instead of the symmetries only. We then showed that the two approaches
match up if one employs a path integral formulation and integrates out the mas-
sive fields. It also became clear that the usefulness of the general approach greatly
depends on the structure of the symmetries and the breaking pattern. For the
U(N)-symmetric model both the quadratic part of the Hamiltonian, as well as
the lowest order interactions originated from the same terms in the general La-
grangian and therefore had identical coefficients. This allowed us to obtain all of
the relevant information for the application of the effective theory by only con-
sidering the Gaussian part of the full Lagrangian. For the U(1)xSO(2)-symmetric
model this was not the case due to the symmetry group being abelian and it there-
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fore turned out to be less useful to consider the general approach. However, we
were able to predict that there must be two massless modes with linear disper-
sion relations in the broken-axisymmetry phase and therefore the four massive
fields appearing in the full Lagrangian needed to contribute a gapped mode. This
was indeed found to be the case by treating the full Lagrangian explicitly and, af-
ter integrating out the massive fields, we obtained the lowest order interactions.
Combined with the spectrum, these constitute the relevant information required
for a perturbative analysis of self-similar scaling at non-thermal fixed points.

Assuming that the non-equilibrium dynamics of the system in the vicinity of
the broken-axisymmetry ground state is governed by a self-similar evolution of
the statistical function for the Goldstone-fields, we were able to derive the scal-
ing exponents from perturbation theory. The U(N)-model has been studied before
in the large-N approximation and we found that for N=3 certain simplifications
that have been made previously are problematic with respect to the scaling be-
haviour of the scattering integrals. However, we found that the statistical function
of the soft modes behaves under reasonable assumptions just as predicted earlier.
More interestingly, the model which includes spin-dependent interactions and the
quadratic Zeeman shift did not require any of these assumptions in order to ob-
tain a consistent set of equations for the scaling exponents. The results differed
from the simpler model both in terms of the scaling in time and in terms of the
momentum dependence of the scaling function.

Furthermore, we found that of the two massless modes predicted by the U(1)xSO(2)-
symmetric model, one is much less energetic than the other if one considers the
parameters of an experiment in which the non-equilibrium dynamics has been
studied ([13]). The fact that the systems behaviour in the experiment seems to be
well described by a single phase angle matches the expectation of the lower mode
being occupied predominantly. We were able to identify the phase angle as the
Goldstone-field associated with that mode and therefore our results for the scaling
evolution should hold for the phase angle correlators that are measured in the ex-
periment. Indeed, the momentum dependence of the scaling function is described
by a scaling exponent x, whose measured value of kexp ~ 2.6 is in good agreement
with our prediction ke, = 2.5 for a one-dimensional system. This theoretical
value is also an improvement over the prediction from the U(3)-symmetric model
where xyy3) = 2. The remaining discrepancy may hint at corrections due to the fact
that the experimental setup is not truly a one-dimensional free gas but involves a
trapping potential.

Future research along this line could involve the application of the techniques
which have been used in this work to the polar and ferromagnetic phases of the
spin-1 bose gas and make corresponding measurements in order to see whether
this kind of universal dynamics occurs here as well and is in accordance with
the predicted scaling exponents. Also, it might be possible to include corrections
to take into account the deviation from a perfectly one-dimensional system and
thereby to obtain even better predictions.
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