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Abstract: Quantum algorithms have demonstrated promising speed-ups over classical
algorithms in the context of computational learning theory - despite the presence of noise.

In this work, we give an overview of recent quantum speed-ups, revisit the Bernstein-
Vazirani algorithm in a new learning problem extension over an arbitrary cyclic group
and discuss applications in cryptography, such as the Learning with Errors problem. A
defining advantage of quantum algorithms is parallelism, the ability to evaluate a function
on a superposition of inputs. When solving a learning problem or attacking a cryptographic
scheme, a quantum adversary can potentially exploit such parallelism and gain a substantial
advantage over classical adversaries.

We turn to post-quantum cryptography and investigate new notions of security under
non-adaptive quantum chosen-ciphertext attacks. In particular, we propose symmetric-key
encryption schemes based on quantum-secure pseudorandom functions and permutations
that fulfill our definitions. In order to prove security, we introduce a novel indistinguisha-
bility game, together with a blinding argument, and show that, in an oracle model, no
quantum query algorithm making superposition queries can reliably distinguish between
the class of Boolean functions that only differ at a single random location.

Finally, we discuss current progress in quantum computing technology and the imple-
mentation of quantum algorithms with a special focus on the ion-trap architecture. More-
over, we shed light on the relevance and effectiveness of common noise models adopted in
computational learning theory.
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Abstract: Quantenalgorithmen sind vor allem im Bereich des maschinellen Lernens deut-
lich effizienter als konventionelle klassische Algorithmen - trotz Fehlerbehaftung.
In dieser Arbeit verschaffen wir einen Überblick über aktuell erzielte Erfolge, erweitern
den bekannten Bernstein-Vazirani Algorithmus als ein Lernproblem über beliebigen zyklis-
chen Gruppen und diskutieren potentielle Anwendungen in der Kryptographie, wie beispiel-
sweise das Learning with Errors Problem. Ein wesentlicher Vorteil von Quantenalgorithmen
besteht darin eine Funktion anhand von einer quantenmechanischen Überlagerung mehrerer
Zustände auszuwerten. Aus diesem Grund hat ein Angreifer in Besitz eines Quantencom-
puters einen deutlichen Vorteil bei maschinellen Lernproblemen sowie bei Angriffen auf ein
Kryptosystem gegenüber einem konventionellen Angreifer.

Wir beschäftigen uns außerdem mit der Post-Quanten-Kryptographie und untersuchen
neue Sicherheitsstandards gegenüber nicht-adaptiven Angriffszenarien anhand von Quanten-
algorithmen. Im Anschluss dazu führen wir symmetrische Kryptosysteme anhand pseu-
dozufälliger Funktionen und Permutationen ein, welche sicher vor Angreifern in Besitz von
Quantencomputern sind. Um die Sicherheit unserer Kryptosysteme zu beweisen, entwick-
eln wir ein neuartiges Sicherheitsspiel und zeigen damit, dass Quantenalgorithmen in einem
Orakelmodell nicht zwischen Booleschen Funktionen unterscheiden können, die sich zufällig
an einer Stelle unterscheiden.

Schließlich geben wir einen Überlick über den aktuellen Fortschritt in der Entwicklung
von Quantencomputern, speziell über die Implementierung von Quantenalgorithmen in der
Ionenfallen-Architektur. Außerdem untersuchen wir inwiefern übliche Fehlermodelle aus
dem Bereich des maschinellen Lernens auch tatsächlich realistisch in der Praxis sind.
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0 List of Abbreviations

⊥ reject symbol

CPA chosen-plaintext attack

CPTP completely positive and trace preserving

CCA1 non-adaptive chosen-ciphertext attack

CCA2 adaptive chosen-ciphertext attack

DecIND decisionally indistinguishable encryptions

DecIND-QCPA decisional indistinguishability under quantum chosen-plaintext attack

DecIND-QCCA1 decisional indistinguishability under non-adaptive quantum chosen-ciphertext attack

DecLWE Decision Learning with Errors

IND indistinguishable encryptions

IND-CPA indistinguishable encryptions under chosen-plaintext attack

IND-CCA1 indistinguishable encryptions under non-adaptive chosen-ciphertext attack

IND-CCA2 indistinguishable encryptions under adaptive chosen-ciphertext attack

IND-QCPA indistinguishable encryptions under quantum chosen-plaintext attack

IND-QCCA1 indistinguishable encryptions under non-adaptive quantum chosen-ciphertext

IND-QCCA2 indistinguishable encryptions under adaptive quantum chosen-ciphertext attack

LWE Learning with Errors

LPN Learning Parity with Noise

NP nondeterministic polynomial time

P polynomial time

PAC probably approximately correct

PPT probabilistic polynomial time

POVM positive operator valued measure

PRF pseudorandom function

PRP pseudorandom permutation

QCPA quantum chosen-plaintext attack

QCCA1 non-adaptive quantum chosen-ciphertext attack

QCCA2 adaptive quantum chosen-ciphertext attack

QFT quantum Fourier transform

QPRF quantum-secure pseudorandom function

QPRP quantum-secure pseudorandom permutation

QPT quantum polynomial time

SKES symmetric-key encryption scheme

SEM semantic security

SEM-CCA1 semantic security under non-adaptive chosen-ciphertext attack

SEM-CCA2 semantic security under adaptive chosen-ciphertext attack

SEM-QCCA1 semantic security under non-adaptive quantum chosen-ciphertext attack
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1 Introduction

Most of our present day communication takes place on the internet and produces enormous
amounts of personal data. Whereas traditional notions of security are mainly concerned
with electronic mail or bank transfers, today’s security needs have since expanded to many
unexpected areas such as smartcards, medical devices or modern cars. Cryptography, un-
derstood as the science of secure communication, is becoming increasingly revelant for our
safety in the modern world. For many years, popular cryptographic protocols such as RSA,
the Diffie-Hellman key-exchange (D-H) or ellyptic curve cryptography (ECC), have served
greatly as building blocks to establish secure communication, despite lower costs and ever
increasing computational power on the markets. It was Peter Shor’s 1994 breakthrough
discovery of efficient quantum algorithms for the factoring of integers and the computation
of discrete logarithms [Sho94] that truly drew the attention towards the field of quantum
computation and its potential impact on cryptography. Many of the protocols still in use
today, such as RSA, D-H or ECC, are completely broken by attackers in possession of quan-
tum computers running Shor’s algorithm. This discovery is oftentimes regarded as the
beginning of a new race towards post-quantum cryptography, a security standard for secure
classical communication, even in the presence of quantum computers [BL17]. While quan-
tum cryptography in itself has provided us with entirely new forms of communication, such
as quantum key distribution [NC10], it is reasonable to assume that some form of classi-
cal communication will nevertheless continue to exist for years to come. Even as reliably
fault-tolerant quantum computers have yet to be built, the cryptographic community has
nevertheless started shifting towards a new direction in which the feasibility of classical
cryptography in a quantum world presents us with an important challenge.

A common approach in cryptography is the integration of hard computational prob-
lems towards the implementation of secure communication. Consider, for example, the well
known RSA protocol whose security is based on the fact that factoring large integers is
believed to be computationally intractable. Ever since the discovery of Shor’s algorithm,
the search towards computational hardness in a quantum world has dominated the cryp-
tographic community. Since 2005, the Learning with Errors (LWE) problem [Reg05] has
gained the status of a promising cryptographic basis of hardness, in particular in a post-
quantum setting. The central promise of the LWE problem lies in a reduction in which it is
shown to be as hard as worst-case lattice problems [Reg09], a class of computational prob-
lems believed to be hard for more than two decades. Consequently, it is tempting to build
cryptographic constructions on the basis of the LWE problem and achieve security under the
assumption that worst-case lattice problems remain hard for quantum computers. Apart
from being a candidate for security against quantum computers, companies like Google
and IBM have also shown interest in variants of LWE due to its promise for light-weight
implementation. As of today, the security of lattice-based cryptography against quantum
computers remains one of the key areas of modern research in cryptography.1

1For an excellent review on modern cryptography in the age of quantum computers, we re-
fer to a popular science article in a 2015 issue of Quanta Magazine: www.quantamagazine.org/
quantum-secure-cryptography-crosses-red-line-20150908/
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In a nutshell, given an integer n, a modulus q and secret string s ∈ (Z/qZ)n, the LWE

problem can be stated as follows:

Recover a secret string s given a set of noisy linear equations on s.

In particular, let us consider the case in which the length of the string is n = 4, the
modulus is given by q = 23 and (with probability less than 1/2) each equation is of small
additive error ±1. The goal is now to find s based on the following set of noisy linear
equations, where each sample of coefficients on s is chosen uniformly at random:

11s1 + 2s2 + 13s3 + 19s4 ≈ 8 mod 23

14s1 + 6s2 + 19s3 + s4 ≈ 5 mod 23

3s1 + 15s2 + 4s3 + 2s4 ≈ 0 mod 23

4s1 + 6s2 + 20s3 + 15s4 ≈ 11 mod 23

7s1 + 18s2 + 8s3 + 9s4 ≈ 21 mod 23

8s1 + 5s2 + 17s3 + 12s4 ≈ 10 mod 23

...

16s1 + s2 + 11s3 + 22s4 ≈ 14 mod 23

If q is prime, the integers modulo q form a finite field under addition and multiplica-
tion, hence, given enough samples on s, there exists a unique solution to the problem. In
our case, the hidden string to be determined is s = (12, 0, 7, 2). If not for the error, the
secret string can be recovered in polynomial time O(n3) using Gaussian elimination after
observing n linear independent equations, where n denotes the length of the string. Let
us also note that the probability of acquiring n linear independent equations on s after
only observing n sample queries is easily shown to be both greater than a constant and
independent on n.

The difficulty in decoding noisy linear equations lies in the fact that the errors prop-
agate during the computation, hence amplify the uncertainty and ultimately lead to no
information on the actual secret string. As the best known algorithm for the LWE problem
runs in time O(2n) [BKW03], the problem is believed to be asymptotically intractible for
classical computers. Moreover, due to the reduction in [Reg05], any breakthrough in LWE

would also most likely imply an algorithm for lattice-based problems.

In an earlier problem, Bernstein and Vazirani [BV93] considered the task of determin-
ing a hidden string from inner product of bit strings in a setting where an algorithm is
granted input access to evaluations of the function (here ⊕ denotes addition modulo 2):
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Bernstein-Vazirani Problem:

Recover a string s ∈ {0, 1}n by making input queries to a Boolean function given by
fs : {0, 1}n → {0, 1}, where

fs(x) = s1 · x1 ⊕ ...⊕ sn · xn = 〈s, x〉 mod 2.

This problem features a curious resemblance to a variant of the LWE problem in which the
modulus is given by q = 2, the algorithm is free to choose all inputs (instead of receiving
samples uniformly at random) and where the noise is absent from all evaluations of the
function. In the classical query setting, we observe that a single query to the function can
only reveal as much as one bit of information about the secret string s. In fact, this can
easily be done by considering queries on strings ei = (0, ... , 1, ... , 0), where the i-th index
is 1 and ei is 0 everywhere else. Any algorithm performing such queries thus achieves an
overall query complexity of O(n) when determining the secret, as each query reveals a single
bit:

fs(ei) = 〈s, ei〉 mod 2 = si, (1.1)

so that s is fully determined after a total of n queries to the function. Therefore, it is
tempting to approach the LWE problem in this simplified model.

In this thesis, we consider the Bernstein-Vazirani problem in a setting in which an
algorithm is given quantum access to the function, hence is able to exploit quantum paral-
lelism and to evaluate the inner product simultaneously on a superposition of inputs. More
formally, the algorithm can evaluate fs through a quantum operation, a black box whose
inner workings regarding the computation of the function are unknown to the algorithm.
In particular, we intoduce the notion of an oracle, a quantum operation Ofs that allows for
the reversible evaluation of a function f upon a set of inputs as follows:

Ofs :
∑

x,y∈{0,1}n
αx,y |x〉 |y〉 −→

∑
x,y∈{0,1}n

αx,y |x〉 |y ⊕ fs(x)〉 . (1.2)

Remarkably, as Bernstein and Vazirani [BV93] showed, only a single oracle query to the
the function as in (1.2) is sufficient to determine the secret string. We generalize this model
to a cyclic group Z/qZ of arbitrary integers q in a new learning problem extension of the
Bernstein-Vazirani algorithm and discuss its speed-up over classical algorithms. Cross et al.
[CSS14] have recently demonstrated a robustness of quantum learning for certain classes of
noise in which samples are also likely to be corrupted. While this setting is known to cause
most learning problems intractable for classical algorithms, the analogue using quantum
samples remains easy. This fact recently allowed Grilo et al. [GK17] to independently
find an efficient quantum learning algorithm for LWE, a special variant of our proposed
extended Bernstein-Vazirani algorithm in which q is prime. While this algorithm does not
solve the LWE problem in its original formulation using classical samples, it does however
suggest further caution when allowing access to quantum samples in any cryptographic
application. Nevertheless, not even a quantum computer receiving classical LWE samples,
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i.e. classical strings of noisy linear equations, seems to be able to challenge the hardness
of LWE [Reg09]. For this reason, LWE is believed to be an excellent basis of hardness in
post-quantum cryptography.

While quantum superposition access is regularly shown to be a powerful model, it also
possesses limitations. Our goal in this work is also to find such limitations in order to
provide quantum-secure encryption schemes, even in a setting in which an attacker has
quantum access to the encryption procedure. An essential building block for the construc-
tion of secure cryptographic schemes is found in so-called pseudorandom functions, a family
of keyed functions that seem indistuinguishable from random functions to any adversary
with limited computational recources. In fact, recent breakthroughs in quantum cryptogra-
phy allow for quantum-secure pseudorandom functions that are secure, even if an adversary
is given the ability to evaluate the function using quantum superpositions. Remarkably,
as shown by Zhandry in 2012, such constructions can be built using the classical sample
hardness of LWE in the quantum world [Zha12]:

If LWE with classical samples is hard for quantum computers, then there exist quantum-
secure pseudorandom functions.

As parallelism remains one of the key features of quantum algorithms, the goal is to exploit
the nature of complex-valued amplitudes of quantum states and cause them to interfere
around the desired outputs through the use of quantum operations. Only then, a final
measurement of the state collapses the superposition into the desired outcome with high
probability. The following fact guarantees that quantum parallelism can be achieved for all
efficiently computable functions [NC10]:

Any classical efficiently computable function has an efficient circuit description, hence can
also be implemented efficiently using a quantum computer. Moreover, the quantum circuit
for the function consists entirely of unitary gates and can thus be evaluated on a superposi-
tion of inputs due to the linearity of quantum mechanics.

A fundamental question arises immediately. Just how powerful is knowledge represented in
a quantum superposition evaluating a function on all of its inputs? This thesis is concerned
with both the limitations and exploitation of quantum parallelism in the context of modern
cryptography.
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2 Main Results

Let us now give an overview of the main contents provided in this thesis.
In Chapter 3, we review selected topics modern cryptography required for the pro-

posed constructions in this thesis. We introduce the concept of symmetric-key encryption
schemes (SKES), a setting in which two agents, say Alice and Bob, share a matching secret
key prior to their communication. In order to encrypt messages, Alice first runs an encryp-
tion algorithm that requires the use of her key and later sends the resulting ciphertext over
to Bob. Since Bob knows about the secret key, he can run a decryption algorithm upon
Alice’s ciphertext and decode the message. In order to prove the security of symmetric-
key encryption schemes, we introduce several relevant notions of security. Moreover, we
define the concept of pseudorandom functions, a crucial building block in symmetric-key
cryptography that allows for constructions of SKES of precisely such security. Moreover,
we quantify limited computational power by introducing the notion of efficient adversaries
who run algorithms with at most polynomial running time with regard to some security
parameter relevant to the underlying cryptographic scheme. Finally, we define the LWE

problem rigorously and discuss its applications in cryptography.
In Chapter 4, we present the most important developments in the theory of quantum

computation to date. To this end, we introduce the concept of qubits, unitary quantum
operations and the quantum circuit model. We present a universal set of quantum gates
that enables a quantum computer to approximately perform any quantum operation. Fur-
thermore, we discuss the no-cloning theorem, a fundamental feature of quantum mechanics
that forbids the copying of quantum information. This fact highlights one of the defining
aspects of quantum cryptography and provides a crucial assumption for the majority of the
work in this thesis. Most importantly, we give examples of quantum parallelism and show
how to prepare a quantum state that evaluates a given function simultaneously over the
range of its inputs. In this context, we introduce the concept of quantum oracles, essentially
a quantum gate that acts as a black box and grants an algorithm input access to a given
function. Finally, we turn to noise and decoherence in quantum computing architectures
and give examples of elementary error correcting codes.

In Chapter 5, we review several of the well known quantum algorithms that solve
certain computational tasks faster than any known classical algorithm and provide the foun-
dation for the algorithms of the later chapters. In particular, we introduce theDeutsch-Josza
algorithm, the earliest quantum speed-up ever to be found in a black box model. Moreover,
we introduce the Bernstein-Vazirani algorithm as the original predecessor of the extended
Bernstein-Vazirani algorithm. Finally, we present Simon’s period finding algorithm, a highly
useful tool to attack block-ciphers in symmetric-key cryptography.

In Chapter 6, we introduce the quantum Fourier transform (QFT) over arbitrary finite
abelian groups as a fundamental operation adopted in the majority of all the algorithms
discussed in this thesis. The Fourier transform is particularly useful in exploiting the
symmetries of a given problem and allows us to generalize the Bernstein-Vazirani algorithm
over arbitrary cyclic groups. Finally, we discuss efficient quantum circuit implementations
that compute the QFT.
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In Chapter 7, we introduce useful language from computational learning theory in
which we frame the main algorithms in this thesis. We consider a setting in which a learner
(an algorithm) is asking for samples from a black box oracle whose inner workings are
unknown. The goal of the learner is to determine a concept, such as a secret boolean func-
tion, based on the information that is being presented by the samples. As samples may
be subjected to noise, errors are likely to get amplified, resulting in oftentimes highly non-
trivial tasks that are computationally intractable for classical computers. In particular, we
consider the Learning Parity with Noise (LPN) problem, an early predecessor of the LWE

problem, as an instance of a computational learning problem. Once we define the analogous
learning problem in a setting in which the oracle is providing quantum samples, we inves-
tigate how these computational tasks become easy for quantum computers. We approach
a quantum LWE analogue by first proposing a new generalization of the Bernstein-Vazirani
algorithm over an arbitrary cyclic group and show that the secret string can be determined
with high probability.

Algorithm 6. There exists a quantum algorithm for the extended Bernstein-Vazirani prob-
lem that can be amplified towards a success probability of 1 − δ by requesting O(log 1/δ)

many samples independently of n, whereas the classical query complexity is given by Ω(n).

In addition, we compare our results to an independent 2017 proposal by Grilo and Kerenidis
that proves that, in the quantum oracle setting, the extended Bernstein-Vazirani algorithm
(in the special case where q is prime) solves the LWE problem given enough quantum sam-
ples.

In Chapter 8, we take a turn towards studying the limitations of quantum algorithms
in order to find secure constructions for post-quantum cryptography. While the previous
chapter focused on quantum speed-ups at solving learning problems by means of super-
position samples, this chapter investigates the limitations of quantum algorithms instead.
We discuss the effects of blinding of quantum algorithms, a setting in which we modify
the function to which the algorithm is given oracle access to at a single location and study
its subsequent output states. In particular, we prove a blinding lemma that states that
any quantum query algorithm produces output states that remain negligibly close in ex-
pected trace distance, irrespective of modification at a single random location. Finally,
we introduce a new indistuinguishability game, the RelabelingGame, a setting in which a
distinguisher has quantum oracle access to a known function and a challenger randomly
modifies the output of the function at a single location halfway through the game. The
goal of the distinguisher is thus to determine whether such modification occurred after an
initial query phase. Using a blinding argument, we prove:

Proposition 8.3. Let f : {0, 1}n −→ {0, 1}m be a function. Then any quantum poly-
nomial time algorithm D making oracle queries to Of wins the RelabelingGame with at
most negligible probability 1

2 + ε(n).
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In Chapter 9, we extend the notions of classical indistinguishability to a quantum
world. We make use of the blinding argument and propose secure constructions under a
quantum chosen-ciphertext attack. In this scenario, a quantum adversary exercises control
over the functionality of the scheme and is able to influence an honest party into quantumly
generating ciphertexts, as well as decrypting ciphertexts of the adversaries choice for some
period in time. We introduce several notions of security, such as decisionally indistinguish-
able encryptions and semantic security, and prove that our proposed constructions satisfy
our definitions. Finally, we give two secure constructions based on either quantum-secure
pseudorandom functions, or quantum-secure pseudorandom permutations.

In Chapter 10, we discuss state-of-the-art quantum computing technology with a
particular focus on the ion-trap architecture. We give a detailed introduction to how qubits
are realized in a physical system and how quantum gates can be performed through the use
of lasers. Furthermore, we discuss sources of noise and decoherence in physical systems in
order to investigate the effectiveness of noise models from the previous chapters. Finally,
we discuss the performance of recent implementations of quantum algorithms discussed in
this thesis.
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3 Cryptography

The history of cryptography dates back to over two millenia. Ever since the birth of civi-
lization and the invention of writing, people required ways of transmitting secret messages
using ciphers, intended to be read only by the receiver and yet difficult to decode for oth-
ers. Since the 1970s, cryptography amounted to a well-established scientific discipline by
henceforth adopting a rigorous mathematical foundation. This crucial change marks the
beginning of modern cryptography. Many of the popular encryption schemes still in use
today, such as the RSA encryption scheme, were already developed in the early years of
modern cryptography. Typically, it is the hardness of certain computational problems that
serves as a foundation for security. For example, as in the case of RSA, the security of the
encryption scheme is related to the hardness of factoring large integers. In other words, we
believe a scheme is secure, if no efficient adversary with limited computational recources is
capable of breaking the scheme. Peter Shor’s discovery of an efficient quantum algorithm
for the factoring of integers marked the beginning of an entirely new era of cryptography, a
so-called post-quantum cryptography. It is from here on, that the search for quantum-secure
cryptography began. In the following sections, we provide an overview of selected topics in
modern cryptography required for the main results in this thesis.

3.1 Preliminaries

Let us first introduce some necessary notation and formalism from theoretical computer
science and cryptography. For additional reading, we refer to [KL15].

For bit strings x ∈ {0, 1}n of arbitrary length n = |x|, we associate a product space
{0, 1}∗ containing all such strings of finite length. A function ε : N→ R is called negligible
if, for every polynomial p, there exists an integer N such that for all n > N , it holds that:
ε(n) < 1

p(n) . Typically, we adopt negligible functions in the context of a success probability
that decreases to an inverse-superpolynomial rate, hence cannot be amplified to a constant
by a polynomial amount of repetitions. An algorithm is a sequence of (possibly nondeter-
ministic) operations that terminates after a finite amount of steps upon any given input, say
x ∈ {0, 1}∗. We say an algorithm is efficient if it has polynomial running time with respect
to a size parameter of a given computational problem, i.e. if there exists a polynomial p(x)

such that, for any input x ∈ {0, 1}∗, the computation of A(x) terminates after at most p(|x|)
steps. A probabilistic polynomial time (PPT) algorithm is a procedure with an additional
random tape (such as a random number generator) that results in efficient, yet possibly
nondeterministic, computations. We adopt the popular unary convention of representing
the seed of efficient randomized algorithms by 1n = 11...1, highlighting a polynomial de-
pendence with respect to the length of the input, contrary to a polylog dependence in the
general case where dlog2(n)e bits are needed to specify the length of a given input (here, d·e
denotes the ceiling function). With x $←−X, we denote a procedure an outcome x is sampled
uniformly at random from a finite set X. If D is a probability distribution, we denote the
sampling of an outcome according to D by using the notation x← D. Upon finite sets X
and Y , we define the corresponding (finite) set of all possible functions from X to Y as
{F : X → Y}. An oracle is a black box machine O that assists a given algorithm with a par-
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ticular computational task at unit cost, for example an evaluation of an unknown function
upon a given input or the sampling from an unknown probability distribution. Typically, if
A is an algorithm, we denote oracle access to O using the notation AO. Finally, throughout
this thesis, we employ the usual asymptotic O-notation denoting an upper bound, where for
a given function g(n), we define O(g(n)) = {f(n) : ∃c ∈ R,∃n ∈ N such that 0 ≤ f(n) ≤
c g(n), ∀n ≥ n0}. Similarly, we denote an asymptotic lower-bound Ω(g(n)) as the set of
functions Ω(g(n)) = {f(n) : ∃c ∈ R,∃n ∈ N such that 0 ≤ c g(n) ≤ f(n), ∀n ≥ n0}.

3.2 Symmetric-Key Cryptography

Symmetric-key cryptography concerns the scenario in which two agents, say Alice and Bob,
share a mutual secret key k prior to their communication and want to send messages to
each other. In order to encrypt messages, Alice first chooses a message m and runs an
encryption algorithm Enck(m) that requires the use of her key and later sends the resulting
ciphertext c over to Bob. Since Bob knows about the secret key, he can run a decryption
algorithm Deck(c) upon Alice’s ciphertext and decode the message. In general, we consider
randomized encryption in order to avoid replay attacks, while only requiring decryption to
be deterministic.

Definition 3.1. A symmetric-key encryption scheme (SKES) is a triple of PPT algorithms
Π = (KeyGen,Enc,Dec) on a finite key space K, message space M and ciphertext space C,
where KeyGen : N→ K, Enc : K×M→ C, Dec : K×C →M and, for a security parameter
n, we require:

1. (key generation) KeyGen: on input 1n, generate a key k ← KeyGen(1n);

2. (encryption) Enck: on message m ∈M, output a ciphertext Enck(m);

3. (decryption) Deck: on cipher c ∈ C, output a message Deck(c);

4. (correctness) (Deck ◦ Enck)(m) = m.

In order for communication under a given symmetric-key encryption scheme to be
secure against eavesdroppers, we require that, without knowledge of the secret key, any ci-
phertext must look sufficiently random and reveal little to no information about the actual
message.

In the next section, we provide several widely used notions of security for symmetric-key
encryption. For further reading, we refer to [KL15].

– 13 –



3.3 Security Notions

3.3.1 Computational Security

Due to the well known P-NP problem, i.e. the seeming impossibility of finding efficient algo-
rithms for certain hard computational problems, and the fact that we consider adversaries
who operate probabilistically, an important notion of security is provided by computational
security based on the following principle:

A cipher must be practically secure (if not mathematically secure) against adversaries with
limited computational recources.

This brings us to the following definition of computational security:

Definition 3.2 (Computational Security). A scheme Π is computationally (or asymptoti-
cally) secure if every PPT adversary succeeds at breaking Π with at most negligible probability
with respect to the security parameter of Π.

Since a negligible success probability is smaller than the inverse of any polynomial, no
efficient algorithm is capable of amplifying the success probability, i.e. capable of breaking
the encryption scheme by sheer repetition. Therefore, we regard any algorithm that breaks
a particular scheme with at most negligible probability as not significant.

3.3.2 Computational Indistinguishability

Another important notion of security for a given symmetric-key encryption scheme is indis-
tinguishability of encryptions, in particular under a chosen-plaintext attack. In this model,
an adversary has partial control over the encryption procedure and can generate encryp-
tions of arbitrary messages. This attack corresponds to a scenario in which an attacker is
able to influence an honest party into generating ciphertexts of the adversaries choice, thus
potentially resulting in an advantage at decoding other ciphers of interest. In the following,
we specify this model in a security game between an adversary and a challenger:

Definition 3.3 (IND-CPA).
Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme and consider the INDGame

between a PPT adversary and challenger, defined as follows:

1. (initial phase) the challenger chooses a key k ← KeyGen(1n) and bit b $←−{0, 1};

2. (pre-challenge phase) as part of a learning phase, the adversary is given access to an
encryption oracle Enck in order to generate encryptions. Upon each choice of message
m, the adversary receives a ciphertext c ← Enck(m). Finally, the adversary chooses
two messages m0 and m1, and sends them to the challenger.

3. (challenge phase) the challenger replies with Enck(mb) and the adversary continues to
have oracle access to Enck;

4. (resolution) the adversary outputs a bit b′ and wins the game if b′ = b.
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We say that Π has indistinguishable encryptions under a chosen-plaintext attack (or is
IND-CPA-secure) if, for every PPT A, there exists a negligible function ε(n) such that:
Pr[A wins INDGame] ≤ 1/2 + ε(n).

An even stronger notion of security for a given symmetric-key encryption scheme is
security under chosen-ciphertext attacks. In this variant of the INDGame, an adversary not
only exercises control over the encryption scheme as before, but can also non-adaptively
decrypt messages unrelated to a ciphertext of interest (as highlighted in the pre-challenge
and challenge phase). Therefore, such an attack corresponds to a scenario in which an
attacker is able to exercise control over an honest party into generating ciphertexts, as well
as decrypting ciphertexts of the adversaries choice for some period in time. In the following,
we specify this model in another security game between an adversary and a challenger:

Definition 3.4 (IND-CCA1).
Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme and consider the INDGame

between a PPT adversary and challenger, defined as follows:

1. (initial phase) the challenger chooses a key k ← KeyGen(1n) and bit b $←−{0, 1};

2. (pre-challenge phase) as part of a learning phase, the adversary is given access to
both an encryption oracle Enck and decryption oracle Deck. Upon each choice of
message m, the adversary receives a ciphertext Enck(m) and, upon each ciphertext
c, the adversary receives a plaintext Deck(c). Finally, the adversary chooses two
messages m0 and m1, and sends them to the challenger.

3. (challenge phase) the challenger replies with Enck(mb) and the adversary continues to
have oracle access to Enck only;

4. (resolution) the adversary outputs a bit b′ and wins the game if b′ = b.

We say that Π has indistinguishable encryptions under a chosen-ciphertext attack (or is
IND-CCA1-secure) if, for every PPT A, there exists a negligible function ε(n) such that:
Pr[A wins INDGame] ≤ 1/2 + ε(n).

Finally, we can additionally extend the previous notion of IND-CCA1 security by also
granting the adversary adaptive decryption access after the challenge phase. This model
corresponds to IND-CCA2 security, a variant in which the adversary exercises full control
over the encryption scheme, both before and after the challenge phase. Remarkably, there
exist classical symmetric-key encryption schemes that satisfy each of the security definitions
provided in this chapter. A major contribution of this thesis is to provide constructions
that satisfy these notions, even in a setting in which the adversary is granted quantum
superposition access, again both to the encryption and decryption procedure. In the next
section, we introduce important tools to realize such cryptographic schemes.
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3.3.3 Semantic Security

In semantic security, the challenge phase corresponds to choosing a challenge template
instead of a pair of messages. Contrary to the INDGame, the intuition for this security game
is that the adversary seeks to compute something meaningful about the message of interest
during the challenge phase. Thus, we consider challenge templates consisting of a triple of
classical circuits (Samp, h, f), where Samp outputs plaintexts from some distribution DSamp,
and h and f are functions over messages m ← Samp. Upon receiving an encryption of a
randomly sampled message m according to Samp, the goal of the adversary is to output
some new information f(m), given some side information h(m) on the message. In providing
an adversary with a CCA1 learning phase, we can consider the following notion of security.

Definition 3.5 (SEM-CCA1). Let Π = (KeyGen,Enc,Dec) be an encryption scheme, and
consider the experiment SEMGame with a PPT A, defined as follows.

1. (initial phase) A key k ← KeyGen(1n) and bit b $←−{0, 1} are generated;

2. (pre-challenge phase) A receives access to oracles Enck and Deck, then outputs a
challenge template consisting of (Samp, h, f);

3. (challenge phase) A plaintext m← Samp is generated; A receives h(m) and an oracle
for Enck only; if b = 1, A also receives Enck(m).

4. (resolution) A outputs a string s, and wins if s = f(m).

We say Π is semantically secure under a non-adaptive chosen-ciphertext attack (or is
SEM-CCA1) if, for every PPT A, there exists a PPT S such that the challenge templates
output by A and S are identically distributed, and there exists a negligible function ε(n)

such that:∣∣∣∣∣ Pr
k

$←−K
[A(1n,Enck(m), h(m)) = f(m)] − Pr[S(1n, |m|, h(m)) = f(m)]

∣∣∣∣∣ ≤ ε(n),

where, in both cases, the probability is taken over plaintexts m← Samp.

Fortunately, as shown in [KL15], semantic security and indistinguishability are equiv-
alent notions of security, in particular under non-adaptive chosen-ciphertext attacks.

Theorem 3.6. Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme. Then,
Π is IND-CCA1-secure if and only if Π is SEM-CCA1-secure.

In Chapter 9, we introduce variants under quantum chosen-ciphertext attacks and
prove the equivalence of both definitions. While semantic security is a much more intuitive
notion of security, it is oftentimes much harder to prove security in practice. Therefore,
it is convenient to provide security proofs under indistinguishable encryptions and refer to
such an equivalence for a more natural notion of security.
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3.4 Pseudorandom Functions

In this section, we turn to pseudorandom functions, a popular building block in symmetric-
key cryptography. Historically, the first instance of provably-secure pseudorandom func-
tions was proposed in the Goldreich, Goldwasser and Micali construction [GGM86] using
pseudorandom generators, which in turn rely on the existence of one-way functions. The
effectiveness of pseudorandom functions lies in the property of seeming indistinguishable
from a perfectly random function to any efficient distinguisher with limited computational
power. The security properties of pseudorandom functions are perhaps best explained in
an indistinguishability game between a distinguisher (a PPT algorithm) and a challenger.
Upon the start of the game, the challenger chooses a random bit b whose outcome de-
termines whether the game is being played with a perfectly random function (sampled
uniformly at random from the finite set of all possible functions over given finite domain
and range) of the challengers choice, or a pseudorandom function for a freshly generated key.
Next, the challenger presents the distinguisher with an oracle for the given function who is
then free to evaluate the function upon arbitrary inputs. Finally, the distinguisher wins by
outputting a bit b′ = b. Since the distinguisher is assumed to have limited computational
recources, thus essentially running a PPT algorithm, the claim of pseudorandomness is that
the outputs will look sufficiently random. Therefore, the probability that the distinguisher
makes a decision in a game against a pseudorandom function and outputs a bit, say b′ = 1,
is negligibly close to a game in which the distinguisher is playing against a perfectly random
function. We formalize this observation in the following definition:

Definition 3.7. (Pseudorandom Function)
Let f be a keyed function f : K × X → Y on a key-space K, a domain X and a range Y.
We say PRF = {fk}k∈K is a family of pseudorandom functions if, for every choice of key k
and for all PPT distinguishers D, there exists a negligible function ε(n) such that:∣∣∣∣∣ Pr

k
$←−K

[Dfk(1n) = 1] − Pr
f

$←− {F :X→Y}
[Df (1n) = 1]

∣∣∣∣∣ ≤ ε(n) (3.1)

Consider, for example, the following SKES using a pseudorandom function, as found in
Proposition 5.4.18 in [Gol04]. In this scheme, the pseudorandom function is used to both
encrypt and decrypt messages using the same key.

Construction 3.8. Upon a security parameter n, let K = {0, 1}n be a key space and let
{fk}k∈K be a family of keyed functions over K, where fk : {0, 1}n −→ {0, 1}n. Then, let
Π = (KeyGen,Enc,Dec) be the symmetric-key encryption scheme defined as follows:

1. (key generation) KeyGen: on input 1n, generate a key k $←−{0, 1}n;

2. (encryption) Enck: on message m, choose a randomness r $←−{0, 1}n and output a
ciphertext Enck(m; r) = (r, fk(r)⊕m);

3. (decryption) Deck: on cipher (r, c), output Deck(r, c) = c⊕ fk(r);

4. (correctness) (Deck ◦ Enck)(m; r) = (fk(r)⊕m)⊕ fk(r) = m.
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In fact, this scheme already satisfies the notion of IND-CPA security, for example as
shown in [KL15]. In Chapter 9, we introduce a class of quantum-secure pseudorandom
functions and prove the IND-CCA1 security of this scheme, even in a setting in which
the adversary is given quantum superposition access to the encryption oracle Enck and
decryption procedure Deck.

In the next section, we provide a formal definition of the Learning with Errors problem,
as introduced in [Reg09].

3.5 Learning with Errors

The Learning with Errors problem can be stated in multiple variants, such as the search
problem or the decision problem. In the following, we begin by first defining the Learning
with Errors search problem, as introduced in the introductory section.

Definition 3.9 (LWE Problem).
Let n ≥ 1 be a security parameter, let q be a prime and let χ be a discrete probability
distribution over errors in Z/qZ. Let s ∈ (Z/qZ)n be a secret string and let As,χ be the
probability distribution on (Z/qZ)n × Z/qZ that performs the following:

1. Sample a uniformly random string a ∈ (Z/qZ)n.

2. Sample an error e ∈ Z/qZ according to error distribution χq.

3. Output (a, 〈a, s〉 + e), such that all additions are performed in Z/qZ with respect to
the modulus q.

We say that a PPT algorithm A solves the Learning with Errors problem LWEq,χ with
modulus q and error distribution χ if, for any s ∈ (Z/qZ)n and an arbitrary number of
independent noisy samples from As,χ, A outputs the secret s with nonegligible probability.

Typically one chooses an error distribution χη,q ∼ N (0, η2q2) that follows a discrete
Gaussian distribution rounded to the nearest integer and reduced modulo q, where the noise
magnitude η > 0 is taken to be 1/poly(n). Chebyshev’s inequality allows us to conveniently
control the standard deviation ηq towards a sharply peaked error distribution around the
origin for an appriopriate choice of parameters η and q. As Regev argues, there are several
reasons that speak in favor of the hardness of the LWE problem, particularly its close
relationship to lattice-problems and the Learning Parity with Noise problem [CSS14], both
studied extensively and believed to be hard. Since LWE can be thought of as a generalization
of the LPN problem, we believe that LWE must also be hard. Furthermore, the best known
classical algorithms for solving the LWE problem so far run in exponential time [BKW03].
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3.5.1 Decision Learning with Errors

A related variant of the LWE problem is found in the task of determining whether a given
sample results from a noisy linear equation on a secret string, or a genuine uniformly random
sample.

Definition 3.10 (Decision LWE).
Let LWEq,χ be given by a sampling probability distribution As,χ for a string s ∈ (Z/qZ)n

and let U be the uniform distribution over (Z/qZ)n × Z/qZ. We say that LWEq,χ satisfies
the decisional LWE assumption (DecLWEq,χ) with modulus q and error distribution χ if, for
all PPT distinguishers D, there exists a negligible function ε(n) such that:∣∣∣∣∣ Pr

s
$←− (Z/qZ)n

[DAs,χ(1n) = 1] − Pr[DU (1n) = 1]

∣∣∣∣∣ ≤ ε(n), (3.2)

where U outputs uniform samples (a, u) $←− (Z/qZ)n × Z/qZ.

Remarkably, as Oded Regev showed, there exists a simple reduction of the LWE search
problem towards the decisional LWE problem. While it is clear that an efficient algorithm
for the search LWE problem implies the existence of an algorithm for the decisional LWE

problem, the opposite implication is guaranteed by the following lemma:

Lemma 3.11 ([Reg09], Decision LWE to Search LWE).
Let n ≥ 1 be a security parameter, q be a prime and let As,χ be a sampling probability
distribution As,χ for a string s ∈ (Z/qZ)n and discrete probability distribution χq,η over
errors in Z/qZ. If A is an algorithm that solves the DecLWEq,χ problem with nonegligible
probability over a uniform choice of strings s, then there exists an efficient algorithm A’
receiving samples from As,χ that solves the search LWE problem with probability exponentially
close to 1.

3.5.2 Symmetric-Key Constructions and Security

Let us now consider the following symmetric-key encryption scheme motivated by the LWE

hardness assumption, as suggested in [Reg05].

Construction 3.12 (LWE-SKES).
Consider the symmetric-key encryption scheme Π = (KeyGen,Enc,Dec), defined by:

1. (key generation) on input 1n, KeyGen generates a key s $←− (Z/q Z)n;

2. (encryption) for each bit b ∈ {0, 1}, use As,χ to encrypt as follows:

Encs(b) = (a, 〈s, a〉+ b ·
⌊q

2

⌋
+ e); (3.3)

3. (decryption) upon cipher (a, c), output 0 if the outcome of Decs(a, c) = c − 〈a, s〉 is
closer to 0 than

⌊ q
2

⌋
, else output 1.

4. (correctness) (Decs ◦ Encs)(b) = b (with high probability as long as e <
⌊ q

4

⌋
)
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Using the decisional LWE assumption, we can easily show that LWE-SKES indeed sat-
isfies a notion of indistinguishability under a chosen-plaintext attack.

Theorem 3.13. Let Π = (KeyGen,Enc,Dec) be the LWE-SKES encryption scheme from
Construction 3.12. Then Π is IND-CPA-secure.

Proof. We introduce a hybrid game by modifying the security game in a way that is indis-
tinguishable (to any PPT adversary) from the original game in order to arrive at a security
game in which the challenge is perfectly hidden.

Game 0: In the standard hybrid, the adversary is playing the IND-CPA security game for
the original scheme Π in Construction 3.12. Prior to the challenge, the adversary
chooses message bits b0, b1 and is given access to an encryption oracle Encs(·). Upon
receiving a challenge cipher (a∗, c∗)← Encs(b), the adversary may perform additional
queries to the encryption oracle and the goal is to decide whether the challenge cor-
responds to an encryption of b0 or b1.

Game 1: In the this hybrid, the challenger instead responds with uniformly random sam-
ples (a, c) $←− (Z/qZ)n×Z/qZ upon each encryption query, as well as with a challenge
(a∗, c∗) $←− (Z/qZ)n × Z/qZ. From the decisional LWE assumption in Definition 3.10
and Lemma 3.11, it follows that no PPT adversary can distinguish between genuine
LWE samples or uniformly random samples (both with b

⌊ q
2

⌋
added to them).

Since adopting this hybrid game only negligibly affects the success probability of any PPT

adversary, we arrive at a security game in which the adversary cannot win, except with at
most negligible probability better than guessing at random.

3.5.3 Separation Result

Let us now conclude this chapter with a simple separation between the two notions of
security from Section 3.3 and show that there exist schemes that are IND-CPA-secure but
not IND-CCA1-secure. Using the LWE-SKES scheme, we can easily prove such a separation.
The intuition is that decryption oracle access in this scheme allows the adversary to evaluate
the noisy inner product upon arbitrary inputs. As a result, the adversary can determine
parts of the secret key using only a few queries to its decryption oracle.

Lemma 3.14. Let Π = (KeyGen,Enc,Dec) be the LWE-SKES encryption scheme from
Construction 3.12. Then Π does not satisfy IND-CCA1-security.

Proof. In the IND-CCA1 security game for Π, the adversary chooses message bits b0, b1
and is given access to an encryption oracle Encs(·), as well as a decryption oracle Decs(·).
Upon receiving a challenge cipher (a∗, c∗)← Encs(b), the adversary may perform additional
queries to the encryption oracle (but not to the decryption oracle) and the goal is to decide
whether the challenge corresponds to an encryption of b0 or b1. In order to query the
decryption oracle, the adversary may choose a pair (a, c) ∈ (Z/qZ)n×Z/qZ and receive an
output Decs(a, c) = c − 〈a, s〉 = b

⌊ q
2

⌋
+ e for an unknown error e. Depending on whether

the output is closer to 0 or to
⌊ q

2

⌋
, the adversary can guess the underlying encryption with
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high probability. This suggests the following attack in order to determine the secret key s:
The adversary queries its decryption oracle onto pairs (ei, c), where ei = (0, ... , 1, ... , 0) and
where the i-th index is 1 and ei is 0 everywhere else. Thus, Decs(ei, c) = c−〈ei, s〉 = b

⌊ q
2

⌋
+e.

Next, the adversary computes c − Decs(ei, c) = si + e. By repeating this procedure and
computing Xi = c−Decs(ei, c) a number of times, the adversary can average out the noise
for the i-th component of s, thereby obtaining a nonnegligible advantage in the security
game.
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4 Quantum Computation

Quantum information processing is concerned with the storage and manipulation of infor-
mation in a quantum system. The fundamental unit of information is the qubit, a quantum
two-level system of states |0〉 and |1〉. Fortunately, nature presents us with many ways
of realizing a qubit in a physical system. Typical representations of a qubit are found in
the two spin 1/2 states of a particle, the vertical or horizontal polarization of a photon or
simply a ground and excited state in the energy spectrum of an atom. In this chapter, we
give a brief overview of the most important concepts in the theory of quantum computing
to date. For further reading, we refer to [NC10]. With regard to the physical realization of
quantum computers, we refer to Chapter 10.

4.1 Formalism

A quantum system is a Hilbert space H, a complex vector space together with an inner
product 〈·|·〉. A qubit is a quantum system |ψ〉 of mutually orthogonal basis states |0〉 and
|1〉, given by a normalized state vector of amplitudes |α|2 + |β|2 = 1, where

|ψ〉 = α |0〉+ β |1〉 . (4.1)

Contrary to classical bits of information that carry definite states of either 0 or 1, a qubit
can be represented as a continuous superposition of two basis states. By introducing angular
degrees of freedom φ and θ, a qubit can be visualized as a point on the Bloch sphere, as in
Figure 1, and written as2

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (4.2)

Given two quantum systemsHA andHB, the composition results in a joint quantum system
given by H = HA ⊗HB, the tensor product of the two systems. Thus, for |ψ〉A ∈ HA and
|φ〉B ∈ HB, the product state is given by |ψ〉A ⊗ |φ〉B. For example, if |ψ〉A = α |0〉+ β |1〉
and |φ〉B = δ |0〉+ γ |1〉, then:

|ψ〉A ⊗ |φ〉B = αδ |0〉 ⊗ |0〉+ αγ |0〉 ⊗ |1〉+ βδ |1〉 ⊗ |0〉+ βγ |1〉 ⊗ |1〉 . (4.3)

For the sake of brevity, we often write |ψ〉 |φ〉 = |ψ〉A ⊗ |φ〉B. Furthermore, we shall also
frequently adopt the notation |00〉 instead of |0〉 |0〉, as well as |01〉, |10〉 and |11〉. This
allows us to conveniently represent |ψ〉 |φ〉 using a decimal instead of a binary expression:

α0 |0〉+ α1 |1〉+ α2 |2〉+ α3 |3〉 . (4.4)

In general, a collection of n qubits forms a register of size n:

|Ψ〉 =
∑

x∈{0,1}n
αx |x1〉 |x2〉 ... |xn〉 , (4.5)

2Note that we ignore the contributions from an overall phase as it produces no observable effects.
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Figure 1: ([Wil13]) The Bloch sphere.

where, due to normalization, we require
∑

x |αx|2 = 1. Equivalently, we can also consider
the above as a superposition of 2n different states in a decimal expression:

|Ψ〉 =

2n−1∑
x=0

αx |x〉 . (4.6)

Excluding the overall phase, the description of an n-qubit state already requires an enormous
amount of 2n − 1 many complex numbers, as Hn2 ∼= C2n. This fact can be exploited in
quantum parallelism, which we discuss in the subsequent chapters. More generally, for
d ≥ 2, it is also useful to consider qudits, a quantum system of computational states
|0〉 , |1〉 , ..., |d− 1〉 in a register of size n:

|Ψ〉 =
∑

x∈(Z/dZ)n

αx |x1〉 |x2〉 ... |xn〉 . (4.7)

Similarly, by adopting a decimal expression, we can write:

|Ψ〉 =

dn−1∑
x=0

αx |x〉 . (4.8)

In this case, the computational space Hnd ∼= Cdn features an enormous amount of qn − 1

different states. The use of qudits is particularly useful in the context of the LWE problem of
the later sections. While qudits are certainly more difficult to realize in a physical system,
they can easily be emulated with qubits by using a block encoding in which each qudit is
packed into dlog2(d)e many qubits.

A quantum system with a well-defined state vector |ψ〉 in H is said to be pure. The
most general state of a quantum system, however, is a mixed state described by a density
operator ρ ∈ D(H), the set of positive semidefinite Hermitian matrices of trace equal to 1.
We can interpret the density operator as a statistical ensemble of pure states |ψi〉, where
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∑
i pi = 1, pi ≥ 0 and

ρ =
∑
i

pi |ψi〉 〈ψi| . (4.9)

If ρ is pure, then ρ has rank 1 and we can conveniently write ρ = |ψ〉 〈ψ|. Furthermore,
we can distinguish between pure and mixed states by using the fact that tr(ρ2) = 1, if and
only if ρ is pure, whereas tr(ρ2) < 1, if and only if ρ is mixed.

4.2 Unitary Evolution

In the previous section, we introduced the concept of a qubit, a quantum system |ψ〉 de-
scribed by a continuous superposition of states |0〉 and |1〉. Computation, understood as
simply the manipulation of encoded information such as bits, requires a notion of what
transformations are possible within a certain model of computation. Just as in Turing’s
abstract model of computation, it is necessary to define a model together with a set of rules
on how to operate symbols stored on the equivalent of a tape by a set of instructions. In
order to define what computation means in the quantum model of computation, we require
one of the postulates of quantum mechanics:
The time evolution of a closed quantum system is governed by the Schrödinger equation,

i~
d |ψ〉
dt

= H |ψ〉 , (4.10)

where ~ is Planck’s constant andH is the Hamiltonian operator of the system. If the Hamil-
tonian is time-independent, the Schrödinger equation gives rise to the following dynamics
of the state vector:

|ψ(t)〉 = exp

(−iHt
~

)
|ψ(0)〉 . (4.11)

The associated time-evolution operator,

U = exp

(−iHt
~

)
, (4.12)

is a unitary evolution operator, i.e. satisfies UU † = 1, and allows us to write (4.11) as:

|ψ(t)〉 = U |ψ(0)〉 . (4.13)

Consequently, we can also write the unitary evolution of a density operator as

ρ(t) =
∑
i

pi |ψi(t)〉 〈ψi(t)| =
∑
i

pi U |ψi(0)〉 〈ψi(0)|U † = Uρ(0)U †. (4.14)

Since an ideal qubit is required to be a closed quantum system, any unitary time-evolution
describing a computation corresponds to a rotation on the Bloch sphere. Furthermore,
the time-evolution of a quantum system under a given stationary Hamiltonian is reversible
through its Hermitian adjoint U †. Consequently, all unitary quantum gates must be inher-
ently reversible. As we discuss in the next sections, this fact has important consequences
for many elementary operations.
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4.3 Quantum Measurement

The measurement postulate of quantum mechanics specifies how information is retrieved
in the quantum model of computation. Thus, in accordance with the laws of quantum
mechanics, a measurement of a quantum state translates into classical measurement out-
comes according to a set of rules. In this section, we highlight the most relevant notions of
measurement required for the work contained in this thesis.

Quantum measurements are described by a set of measurement operators {Mm} act-
ing on the state space of a given system. These operators obey a completeness relation∑

mM
†
mMm = 1, where m labels the measurement outcome of the associated measure-

ment operator. Let |ψ〉 be the state vector of the system prior to measurement. Then, the
probability that outcome m occurs is:

p(m) = 〈ψ|M †mMm |ψ〉 . (4.15)

The post-measurement state is subsequently renormalized and given by:

Mm |ψ〉√
〈ψ|M †mMm |ψ〉

. (4.16)

For example, given the qubit from the previous sections,

|ψ〉 = α |0〉+ β |1〉 , (4.17)

a measurement in the computational basis is defined by two measurement operators, where
M0 = |0〉 〈0| and M1 = |1〉 〈1|. Each measurement operator is Hermitian, since M2

0 = M0

and M2
1 = M1, so that the completeness relation is obeyed. The probabilities of the

respective outcomes are given by:

p(0) = 〈ψ|M †0M0 |ψ〉 = 〈ψ|0〉 〈0|ψ〉 = |α|2 (4.18)

p(1) = 〈ψ|M †1M1 |ψ〉 = 〈ψ|1〉 〈1|ψ〉 = |β|2. (4.19)

Consequently, a measurement results in |0〉 with probability |α|2, and |1〉 with probability
|β|2. This brings us to a special case of measurements, the class of projective measurements.
Here, the measurement operators are given by hermitian operators {Pm}, so-called projec-
tors, that obey a completeness relation

∑
m Pm = 1 and satisfy PnPm = δn,mPm.

The probability to observe the outcome m is given by:

p(m) = 〈ψ|Pm |ψ〉 , (4.20)

whereas the post-measurement state is

Pm |ψ〉√
〈ψ|Pm |ψ〉

. (4.21)

A final class of more general measurements we consider is that of POVM measurements
(Positive-Operator-Valued Measure) [NC10], where the post-measurement state is of little
interest and the concern lies on the outcome probabilities corresponding to a set of mea-
surement operators. In this context, a set of positive semidefinite measurement operators
{Em} is employed such that

∑
mEm = 1.
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4.4 Universal Quantum Gates

In this section we introduce elementary quantum gates, in particular those that allow for
universal quantum computation. In Section 4.2, we observed that all quantum gates must
correspond to unitary transformations, and are thus inherently reversible. While classical
universality of logic gates is achieved by using only a NAND gate, we require a certain
universal set of at least three elementary gates for quantum computation.

Let us begin with a few examples of single-qubit quantum gates. A simple set of
single-qubit gates are the X,Y, Z-gates, resembling the Pauli matrices σx, σy and σz:

X =

[
0 1

1 0

]
Y =

[
0 − i
i 0

]
Z =

[
1 0

0 − 1

]
(4.22)

Consider, for example, a qubit |ψ〉 = α |0〉 + β |1〉. In vector representation, we compute
the action of the X-gate as follows:

X |ψ〉 =

[
α

β

]
·
[

0 1

1 0

]
= β |0〉+ α |1〉 . (4.23)

One of the most frequently used operations in quantum computing is that of the Hadamard
gate, which is given by

H =
1√
2

[
1 1

1 − 1

]
. (4.24)

The Hadamard gate, often described as a square root of the X-gate, completes only half of
a 180◦ rotation on the Bloch sphere and maps the basis states onto an equal superposition
and back:

|0〉 H←→ |+〉 =
|0〉+ |1〉√

2
|1〉 H←→ |−〉 =

|0〉 − |1〉√
2

(4.25)

Another important single-qubit gate is the phase-shift gate in which φ denotes the angle of
rotation. The special case where φ = π/4 is often referred to as the T-gate:

φ =

[
1 0

0 eiφ

]
, T =

[
1 0

0 eiπ/4

]
. (4.26)

In addition, we consider the rotation operators around the x, y and z axis:

Rx(θ) =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
Ry(θ) =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
Rz(θ) =

[
e−i

θ
2 0

0 ei
θ
2

]
. (4.27)

In fact, any unitary single-qubit operation U can be decomposed using the rotation opera-
tors above.

Theorem 4.1 ([NC10], Theorem 4.10).
The two rotation operations Rx and Ry comprise a basis for all single-qubit operations: For
every 2× 2 unitary operation U , there exist real numbers α, β, γ and δ such that:

U = eiαRx(β)Ry(γ)Rx(δ).
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Let us now conclude our discussion on quantum gates with two-qubit gates, perhaps
the most striking class of operations found in quantum computers. Early work by Deutsch,
Eckert and Josza suggests that this class of gates is precisely the set of operations that
entangles qubits with one another, thereby providing the foundation for most quantum
computations. The most important two-qubit gate is the controlled-NOT (CNOT) gate,
an operation that performs a bit flip on a target bit if and only if the control qubit is |0〉.
Another important gate is the Toffoli (CCNOT) gate, a three-qubit gate that flips the last
qubit only if and only if all three inputs correspond to |1〉. The matrix representations are
given by:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , Toffoli =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0


(4.28)

Equivalently, these two-qubit and three-qubit gates can also be written as the following
operations:

CNOT: |x〉 |y〉 −→ |x〉 |x⊕ y〉 (4.29)

Toffoli: |x〉 |y〉 |z〉 −→ |x〉 |y〉 |z ⊕ x ∧ y〉 , (4.30)

where ⊕ denotes addition modulo 2 and ∧ denotes the AND operation (Table 1). Finally,
we also consider the controlled-Z (CZ) gate, an operation that features an additional minus
sign and has the following matrix representation:

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (4.31)

The following theorem states ensures that quantum computation is indeed universal using
only a limited set of gates.

Theorem 4.2 (Universal set of quantum operations, [Deu89] [Kit97]).
The Hadamard gate, the Toffoli gate and phase-shift gate comprise a universal basis for any
quantum operation: For every D ≥ 3, there exists l ≤ 100(D log 1

ε )
3 such that every unitary

D × D matrix U can be approximated by a sequence of the above unitary gates to ε > 0

degree of accuracy:
|Ui,j − (Ul · · · U1)i,j | < ε,

where the index (i, j) denotes the entries of the respective matrices.

While a basis for quantum computation is not limited to precisely the set as given in
Theorem 4.2, it nevertheless provides a convenient choice of elementary gates.
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4.5 The No-Cloning Theorem

One of the most defining aspects of quantum information is the fact that it cannot be
copied. The No-Cloning Theorem is attributed to Wooters and Zurek [WZ82] and can in
brief be stated as follows:

There exists no universal quantum operation that can make an identical copy of an
unknown quantum state.

We give a short proof by contradiction, as for example found in [Wil13], that illustrates
the impossibility of such an operation: Suppose there exists a two-qubit operator U with
the above properties. Thus, if we take an arbitrary qubit |ψ〉 = α |0〉 + β |1〉 as input, we
expect:

U |ψ〉 |0〉 → |ψ〉 |ψ〉 (4.32)

= (α |0〉+ β |1〉)(α |0〉+ β |1〉) (4.33)

= α2 |0〉 |0〉+ αβ |0〉 |1〉+ βα |1〉 |0〉+ β2 |1〉 |1〉 . (4.34)

Due to the universality of the U operation, we also have that:

U |0〉 |0〉 → |0〉 |0〉 (4.35)

U |1〉 |0〉 → |1〉 |1〉 . (4.36)

However, we must now conclude that U violates the linearity of quantum mechanics, since

U(α |0〉+ β |1〉) |0〉 = α2 |0〉 |0〉+ β2 |1〉 |1〉 , (4.37)

where, for general α and β, these two expressions (4.32) and (4.37) are not equal.

4.6 The Quantum Circuit Model

A quantum computation typically starts out in some initial state |00...0〉, then performs a
sequence of single-qubit and two-qubit gates and finally ends with a measurement in the
computational basis. The quantum circuit model provides us with a convenient way of
representing any quantum computation pictorially.

(a) quantum wire

U
(b) unitary gate (c) measurement

Figure 2: The quantum circuit model. Quantum wires (a) represent the history of single
qubits in time progressing from left to right. Single-qubit unitary gates (b) are represented
as a box applied to a single quantum wire. Measurements (c) of qubits are provided by
projective measurements in the computational basis.

In the following, we consider the representations of a Hadamard gate acting on an initial
state |0〉, as well as a CNOT gate and a CZ gate.
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|0〉

|1〉

H

H

|0〉+|1〉√
2

|0〉−|1〉√
2

(a) Hadamard gates

|x〉

|y〉

|x〉

|x⊕ y〉
(b) CNOT-gate

|1〉

|1〉 Z

|1〉

|i〉
(c) CZ-gate

Figure 3: Single-qubit gates and two-qubit gates. The Hadamard gates (a) each act on
a single quantum wire. The CNOT gate (b) adds the value of the control qubit into the
target qubit. The CZ-gate (c) performs a phase flip only if both the control and target
qubit are |1〉.

|0〉
|0〉

H

|Φ+〉 = 1√
2
(|00〉 + |11〉)

|1〉
|1〉

Figure 4: A quantum circuit that prepares an entangled state |Φ+〉 (as indicated by the
dashed line), the famous Einstein-Podolsky-Rosen (EPR)-pair |Φ+〉 = 1√

2
(|00〉+|11〉). Here,

a final measurement in the computational basis results in the outcome |1〉 |1〉.

4.7 Quantum Parallelism

In the previous sections, we recognized that unitary quantum gates are inherently reversible.
Can we, nevertheless, still simulate classical computation using only reversible gates? Con-
sider for example, the classical NAND gate, as shown in Table 1. The NAND-gate, a
universal logic gate for classical computation, is inherently irreversible. Knowing that the
output is 1, we cannot conclude with certainty whether the input was in fact 00, 01 or 10.
More generally, consider the problem of computing the following transformation:

x
f−→ f(x) (4.38)

If f is a bijective operation, we can reverse this transformation and recover the input.
However, if f is irreversible, we can attach the input and still achieve an overall reversible
operation, as follows:

(x, y)
f−→ (x, y ⊕ f(x)). (4.39)

Note that, when performing this operation twice, we obtain the original input pair. A
well known trick due to Charles Bennet allows us to compute irreversible transformations
using only reversible quantum gates at the expense of a few additional registers. By simply
attaching additional input registers prior to the evaluation of the function, a reversible
unitary transformation Uf is possible in which later registers can be uncomputed. As a
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Inputs: Outputs:
A B A AND B
0 0 0
1 0 0
0 1 0
1 1 1

Inputs: Outputs:
A B A NAND B
0 0 1
1 0 1
0 1 1
1 1 0

Table 1: Two classical logic gates: AND(∧) and NAND(↑).

result, this allows us to define operations, such as:

|x〉 |y〉 Uf−→ |x〉 |y ⊕ f(x)〉 , (4.40)

where U †fUf = 1. This subsumes an evaluation of f , as we can initialize the second qubit
to y = 0 and compute the output of f as follows:

|x〉 |0〉 Uf−→ |x〉 |f(x)〉 (4.41)

One of the essential features of quantum algorithms is quantum parallelism, the ability
to prepare a superposition of states for simultaneous evaluation.
Consider a simple boolean function f : {0, 1} → {0, 1} and suppose we have access to a
unitary gate that evaluates f onto the presented inputs, such as in (4.40). By preparing
two initial states |0〉 |0〉 and applying a single Hadamard gate onto the first register, we can
evaluate f and exploit quantum parallelism (Figure 5). The result of such a transformation

|0〉

|0〉

H
Uf |ψ〉

Figure 5: A quantum circuit that prepares a superposition |ψ〉 which simultaneously
evaluates f on both 0 and 1.

is an output state:

|ψ〉 =
1√
2

∑
x∈{0,1}

|x〉 |f(x)〉 =
1√
2

(|0〉 |f(0)〉+ |1〉 |f(1)〉). (4.42)

Remarkably, the transformation achieves a superposition that contains information on both
f(0) and f(1). Simultaneous evaluation of a function is what gives power to quantum par-
allelism: a single quantum evaluation of a function can result in a state that features
evaluations of f in superposition. However, if one were to measure the state in the compu-
tational basis, it would simply collapse and reveal only a random evaluation of the function.
Notice that, by generalizing this to a collection of n-qubits, the amount of evaluations of the
function grows exponentially in n. Consequently, research on quantum algortithms concerns
techniques that exploit such information hidden in the superposition to one’s advantage.
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4.8 Decoherence

As with any physical implementation of a computing device, not all operations can be done
perfectly and there remains an unavoidable risk of error. Typically, one distinguishes be-
tween two classes of errors. We encounter both memory errors that occur during storage
of information, as well as operational errors that occur during manipulation of stored in-
formation. In the section on error correcting codes, we provide further discussion on how
to correct for such errors.

4.8.1 Quantum Noise Models

In order to develop a successful noise model, we follow [NC10] and adopt a theory of
quantum channels and the operator-sum-representation. In this framework, we consider
noise models as discrete state changes without reference to time.
For the remainder of the section, we let ρ be a quantum system of computational states
|0〉 and |1〉 and define the action of a noisy quantum channel by a completely positive and
trace preserving (CPTP) operation E , where for operation elements E0 and E1, we have:

ρ −→ E(ρ) = E0ρE
†
0 + E1ρE

†
1. (4.43)

A simple quantum noise channel is the bit-flip channel that, with probability η > 0, maps
the state |0〉 to the state |1〉 and vice-versa:

E0 =
√

1− η ·
[

1 0

0 1

]
, E1 =

√
η ·
[

0 1

1 0

]
. (4.44)

Thus, in the operator-sum-representation, we can now write the bit-flip channel as:

ρ −→ EX(ρ) = (1− η)ρ+ η XρX†, (4.45)

where X corresponds to the bit-flip gate from the earlier sections.
Consider now the case of a single qubit, a quantum system that starts out in a pure

state ρ = |ψ〉 〈ψ|, where |ψ〉 = α |0〉+ β |1〉. Under the bit-flip channel E , the state evolves
into a statistical mixture according to (4.45). Therefore, with probability 1− η, we recover
the original state,

|ψ〉 = α |0〉+ β |1〉 , (4.46)

and, with probability η, we find the system in a state:

|ψ⊥〉 = β |0〉+ α |1〉 . (4.47)

This noise model is often called classification noise and will be highly relevant for the
quantum learning algorithms of the later sections.

Another elementary quantum noise channel is the phase-flip channel that, with proba-
bility η > 0, maps the state |1〉 to the state − |1〉, where

E0 =
√

1− η ·
[

1 0

0 1

]
, E1 =

√
η ·
[

1 0

0 − 1

]
. (4.48)
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Thus, in the operator-sum-representation, we can also write the phase-flip channel as:

ρ −→ EZ(ρ) = (1− η)ρ+ η ZρZ†, (4.49)

where Z corresponds to the phase-flip gate from the earlier sections.
A much more ideal noise model for quantum computation is the amplitude damping

channel. This noise channel EAD corresponds to a scenario in which a photon is sponta-
neously emitted with some probability γ.

ρ −→ EAD(ρ) = E0ρE
†
0 + E1ρE

†
1, (4.50)

where the transition matrix operators are given by:

E0 =

[
1 0

0
√

1− γ

]
, E1 =

[
1
√
γ

0 0

]
. (4.51)

Thus, E1 corresponds to the emission of a photon and a quantum of energy is lost to the
environment. The operator E0, corresponds to the case where the state remains unchanged
and a photon is not yet lost but the amplitudes are adjusted appropriately.

Finally, we consider the depolarizing channel, a devastating type of noise model in which
all quantum information is lost to the environment and the quantum state gets replaced by
a maximally mixed state with some probability η:

ρ −→ ED(ρ) = (1− η)ρ+ η
1

2
, (4.52)

where 1

2 is the maximally mixed state.

4.8.2 Independent Noise Models

The most commonly adopted noise model in computational learning theory is that of inde-
pendent noise. For example, in the LWE probblem each state or sample is independently
corrupted by some probability. Most generally in the context of qubits, we consider inde-
pendent noise by extending the noise models from this section onto quantum registers.

Consider a register of n qubits |Ψ〉, where

|Ψ〉 =
∑

x∈{0,1}n
αx |x1〉 |x2〉 ... |xn〉 . (4.53)

By, for example, extending the bit-flip channel from this section independently onto the
entire register, the result is a state

|Ψ〉 =
∑

x∈{0,1}n
αx |x1 ⊕ e1〉 |x2 ⊕ e2〉 ... |xn ⊕ en〉 , (4.54)

where each error ei is sampled from a Bernoulli distribution of noise rate η > 0:

Bern(η) =

{
1, with probability η

0, with probability 1− η.
(4.55)

Note that, upon a choice of error distribution, an independent noise model also translates
naturally in the context of qudits instead of qubits.
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4.9 Error Correcting Codes

In his seminal 1948 paper A Mathematical Theory of Communication [Sha48], Claude Shan-
non put forward a revolutionary view on the concept information and errors in communi-
cation. Instead of investing tedious effort to avoid them on a technical level, it is not only
possible, but oftentimes even favorable, to simply correct them. In the 1950s, John von
Neumann developed very successful error correcting codes in order to address noise origi-
nating in the relay architecture of present computer techology. Today’s transistors achieve
near-perfect fault tolerance, hence error correcting codes often do not even have to be ap-
plied. By adding additional redundant information to each bit of information, one can
realize error correction.

Suppose the task is to store a single bit of information for some desired time interval
T ≥ 0. Regardless of whether an operation takes place, we consider memory errors that
can occur spontaneously. We denote the probability that such an error occurs after time T
by p. A simple way to protect the storage of information against these affects is by adding
redundance. For example, consider the following three copies of each instance of the bit:

0 −→ 000 (4.56)

1 −→ 111. (4.57)

The probability that there are no errors is given by (1 − p)3. Hence, after time T , the
three bits 000 remain the same. The probability that there is an error in one of the bits is
3p(1 − p)2, resulting in either 001, 010 or 100. Finally, the probability that there are two
or more errors is 3p2(1 − p) + p3. The error correction scheme now works as follows: By
measuring all the bits and taking the majority vote, we can easily rule out single bit errors.
Our correction method thus assigns the measurement outcomes of the bitstrings as follows:

{000, 001, 010, 100} −→ 0 (4.58)

{111, 110, 101, 011} −→ 1. (4.59)

The error correction method above is correct with probability pc = 1−3p2 +2p3. Compared
to the previous error probability of p, we gain as long as pc ≥ 1 − p. This translates into
an error probability of at most p < 1

2 . By dividing the time interval into slices ∆t = T/N

and applying the error correcting code repeatedly after reach slice, one can reach arbitrarily
close success probabilities which grow in N [NC10][CZ01].

Consider now the problem of quantum error correction by analogy to classical error
correction. Due to the quantum nature of information, a new framework is needed to cor-
rect for errors. This becomes apparent as we consider a number of differences as compared
to classical error correction. According to the No-Cloning Theorem 4.5, there is no machine
that can make a copy of an unknown quantum state. Therefore, the naive attempt of simply
copying quantum information in order to achieve redundancy is not possible. Moreover, a
signifcant feature of quantum states is that the parameters describing them are continuous.
Consequently, quantum noise is also continuous and requires correction to reach up to infi-
nite precision, hence demanding unbounded recources. And finally, classical error correction
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requires read-out or state detection of the bit sequence in order to detect errors and correct
them. In particular, measuring a quantum state generally destroys the state and makes
recovery impossible. The quantum fault-tolerant threshold theorem [Pre98][AB08] states
that, as long as the noise level is below a certain threshold (typically around 10−4− 10−2),
any quantum computation can be performed with arbitrarily small error by adopting error
correction. Most notably, Shor’s code [Sho95] achieves error correction for arbitrary single-
qubit errors, including bit-flips and phase errors. In the following, we give a simple example
of a three qubit quantum error correcting code, known as the bit-flip code.

Suppose the task is to store a single qubit |ψ〉 = c0 |0〉+c1 |1〉 in a state that is unknown
to us. Analogous to the classical case, we assume that after some time T a bit flip occurs
with probability p such that the state |ψ〉 is taken to the corrputed state X |ψ〉. The bit
flip error thus results in a new state |ψ⊥〉 = c0 |1〉+ c1 |0〉. First, we begin by preparing the
following encoding into a sequence of three logical qubits

|0〉 −→ |0〉L ≡ |000〉 (4.60)

|1〉 −→ |1〉L ≡ |111〉 . (4.61)

We can realize this encoding in a quantum state |ψ〉L = c0 |000〉 + c1 |111〉. A circuit that
performs this operation upon |ψ〉 is given by:

Figure 6: A quantum circuit that prepares the state c0 |000〉+ c1 |111〉.

The probability that there are no errors in the state |ψ〉L is given by (1− p)3. Hence,
after time T , the three qubits remain the same. The probability that there is an error in
just one of the qubits is 3p(1−p)2, resulting in either (X⊗1⊗1) |ψ〉L, (1⊗X⊗1) |ψ〉L or
(1⊗1⊗X) |ψ〉L. Finally, the probability that there are two or more errors is 3p2(1−p)+p3.
The quantum error correcting code now works in two steps, as in the classical code from
the previous section. First, errors are being detected and then subsequently being corrected
for in the second step using a recovery procedure. To this end, consider the following sets
of (incomplete) projection operators:

P0 = |000〉 〈000|+ |111〉 〈111| (4.62)

P1 = |100〉 〈100|+ |011〉 〈011| (4.63)

P2 = |010〉 〈010|+ |101〉 〈101| (4.64)

P3 = |001〉 〈001|+ |110〉 〈110| . (4.65)

The first projection operator corresponds to the case where there is no error, and the
other operators correspond to a single bit-flip on one of the qubits, respectively. In any
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error correcting code, the goal is to infer information on what error has occured without
destroying the superposition |ψ〉 altogether. The design of the code should therefore aim at
projecting |ψ〉L into mutually orthogonal spaces in which we can detect the type of the error
and reversibly restore the original state without at any point destroying the information.
We begin by first measuring the operators above for the state |ψ〉L. Starting with P0,
whenever we obtain 1, we leave the state as it is knowing no error occured. If we obtain 0,
we continue by measuring the next projector P1. If we obtain 1, we know that a bit flip
occured on the first qubit, and we correct by applying the (X⊗1⊗1) operation. Similarly,
we can correct for all single bit-flip errors as in the classical error correcting code and gain
an advantage as long as p < 1

2 .

4.10 Quantum Oracles

An important abstraction in computational complexity theory and the study of decision
problems is the use of oracle machines, or oracles. First introduced in the context of Turing
machines, oracles act as a black box that assist a Turing machine in a given computational
task. When presented an input x, such as an integer or a string, the oracle solves an instance
of a decision problem at unit cost and returns the outputO(x) (typically a YES/NO answer)
back to the Turing machine. While this computational setting is certainly highly abstract,
it does however contribute enormously to our understanding of complexity classes and
is commonplace in theoretical cryptography, particularly when providing arguments for
security. Oracles also turn out to be highly useful in quantum computing, especially in the
study of quantum algorithms. Most notably, Grover’s search algorithm [Gro96] relies on the
use of a quantum oracle that recognizes solutions to a given search problem. Many of the
earliest quantum algorithms, such as the Deutsch-Josza algorithm [DJ92], the Bernstein-
Vazirani algorithm [BV93] or Simon’s algorithm [Sim97] are also devised in an oracle model.
In order to make an oracle evaluation reversible, we rely on the technique from the previous
section. For our purposes, a quantum oracle O, is a unitary operation,

|x〉 |y〉 −→ |x〉 |y ⊕O(x)〉 , (4.66)

acting as a black box that can be accessed by a quantum computation. The inner workings
of the quantum oracle are unknown to the computation, but can evaluate upon inputs in a
reversible manner, see (Figure 7). Consider now a collection of n-qubits, a quantum register

|x〉

|y〉
O

|x〉

|y ⊕O(x)〉

Figure 7: Quantum oracle.

of size n. As a unitary gate, the oracle obeys the linearity of quantum mechanics and can

– 35 –



|x〉

|y〉
O(f)

|x〉

|y ⊕ f(x)〉

(a) Quantum Membership Oracle

OEX(f) |Ψ〉

(b) Quantum Example Oracle

Figure 8: The quantum membership oracle (a) can be queried on arbitrary inputs during a
quantum computation. The quantum example oracle (b) responds to queries by outputting
a uniform superposition |Ψ〉 over all evaluations of the function.

therefore be queried on a superposition over all inputs:∑
x,y∈{0,1}n

αx,y |x〉 |y〉 −→
∑

x,y∈{0,1}n
αx,y |x〉 |y ⊕O(x)〉 (4.67)

More generally, we also further differentiate between two variants of oracles, so-called mem-
bership oracles and example oracles.

4.10.1 Membership Oracles

Consider, for example, a boolean function given by f : {0, 1}n −→ {0, 1}. In a membership
oracle model, the oracle provides direct unitary input access to the function f which is
to be evaluated. Upon input x ∈ {0, 1}n and additional register y ∈ {0, 1}, we define a
membership oracle for the function f as an operation:

Of : |x〉 |y〉 −→ |x〉 |y ⊕ f(x)〉 . (4.68)

The oracle can thus be queried as a quantum gate at any step of a quantum computation.

4.10.2 Example Oracles

In the setting of computational learning theory from the subsequent chapters, we consider
uniform example oracles OEX(f) as a black box that only outputs uniform samples for a
given function. Thus, upon each query, the oracle replies with a state:

|Ψ〉 =
1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉 (4.69)

In the context of quantum example oracles, we also consider samples that are corrupted by
noise. In particular, as the example oracle consists of a quantum circuit that evaluates f
on a superposition of all inputs, this operation is naturally prone to errors. We consider
two models of noise in this setting.

First, we consider uniform example states |Ψ〉 that suffer from a bit-flip error in the
final result register through a noise channel EX of magnitude η > 0, see (4.45). Equivalently,
we can also express the fact that |Ψ〉 is turning into a mixture by again sampling an error
from a Bernoulli distribution of noise parameter η, resulting in a state

|Ψ〉 =
1√
2n

∑
x,y∈{0,1}n

|x〉 |f(x)⊕ e〉 . (4.70)
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Moreover, in a model resembling the LWE problem, we consider independent noise in the
result register for each element in the superposition:

|Ψ〉 =
∑

x∈{0,1}n
αx |x1〉 |x2〉 ... |xn〉 |f(x)⊕ ex〉 . (4.71)

Upon a choice of error distribution, such an independent noise model also translates natu-
rally in the context of qudits instead of qubits.
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5 Quantum Algorithms

Ever since the dawn of quantum computation, it was speculated that quantum computers
could solve certain computational problems faster than any conventional classical com-
puter. Historically, the first abstract model of universal computation was proposed by Alan
Turing in his seminal 1936 paper, a discovery that henceforth greatly shaped the field of
theoretical computer science. The Church-Turing thesis famously suggests that any model
of computation appears at most as powerful as a Turing machine:

Any intuitively computable algorithmic process can be simulated efficiently by a Turing
machine.

The importance of efficient algorithms is made more precise in computational com-
plexity and concerns only computations of polynomial amounts of elementary operations,
thus highlighting the set of problems that can be solved with a feasible use of computa-
tional recources. On the contrary, inefficient algorithms require superpolynomial amounts
of recources (typically exponential) and become computationally infeasible as the size of
the problem increases. The observation that the laws of physics are fundamentally quan-
tum mechanical ultimately led David Deutsch to speculate on the prospect of computing
devices that behaved inherently quantum mechanical. Deutsch’s insights into universal
quantum computation [Deu85] and the discovery of the first quantum algorithm outper-
forming classical counterparts [DJ92] provided unforseen challenges for the Church-Turing
principle. Shor’s factoring algorithm [Sho94] provided further evidence that quantum com-
puters could indeed solve computational problems for which no efficient classical algorithm
is known. Still today, it is not clear whether a quantum model of computation is indeed
capable of efficiently simulating any physical system in nature, i.e. whether a quantum
extension of the original thesis, the Quantum Church-Turing principle, holds.

In this section, we review some of early quantum algorithms that offer substantial
quantum speed-ups, such as the Deutsch-Josza algorithm [DJ92], the Bernstein-Vazirani
algorithm [BV93] and Simon’s algorithm [Sim97], each providing the basis for the algorithms
of the later sections. In this thesis, we regard a quantum algorithm as a sequence of
unitary operations, i.e. computations, operating on a product state space, for example
H = Hinput⊗Hwork ⊗Houtput, in analogy to the tape of a Turing machine. Upon an input
state |ψ0〉 ∈ H, the quantum polynomial time (QPT) algorithm runs an efficient quantum
circuit consisting of a sequence of unitary operations:

|ψ〉 = UTUT−1UT−2...U1 |ψ0〉 , (5.1)

where T denotes a polynomial (in terms of the dimension of H) amount of operations.
Hence, the algorithm generates an output state |ψ〉, typically followed by a measurement
in the computational basis. In this chapter, we consider problems in a membership oracle
model, as discussed in Section 4.10. Here, the goal of the algorithm is determine a secret
property of a given function f by making queries to an oracle for f . Moreover, the oracle
serves as a black box and can be accessed with queries Of : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 at unit
cost during the computations as follows:

|ψ〉 = UTOfUT−1OfUT−2 . . . U2OfU1 |Ψ0〉 . (5.2)
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5.1 Deutsch-Josza Algorithm

Consider the problem of determining whether a boolean function f : {0, 1}n → {0, 1} is
either constant or balanced, i.e. 0 for half of the inputs and 1 else, as appeared in [DJ92]:

Algorithm 1 Deutsch-Josza Algorithm

Input: A quantum black box oracle Of for a boolean function f which is either constant
or balanced.

Output: Outcome |0n〉 if and only if f is constant, else f is balanced.

Procedure:

1. Initialize (n+ 1)-qubits |0n〉 |1〉 and apply the Hadamard transform H⊕(n+1):

−→ 1√
2n

∑
x∈{0,1}n

|x〉 |−〉

2. Query the quantum oracle, resulting in a phase-kickback :

−→ 1√
2n

∑
x∈{0,1}n

(−1)f(x) |x〉 |−〉

3. Throw away the last register and then apply another Hadamard gate H⊗n:

−→ 1√
2n

∑
x,y∈{0,1}n

(−1)〈x,y〉(−1)f(x) |y〉

4. Measure the entire output state.

|0〉

|0〉
...

|0〉

|1〉

H

H

H

H

Of

H

H

H

...

Figure 9: A quantum circuit whose outcome determines whether a boolean function is
constant or balanced using only a single query to the membership oracle.
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We can verify the correctness of the algorithm as follows: If we measure the final ouput
state of the algorithm in the computational basis for the outcome |0n〉, we observe that

p(0n) =

∥∥∥∥∥∥ 1√
2n

∑
x∈{0,1}n

(−1)f(x) |0n〉

∥∥∥∥∥∥
2

=
1

2n

∑
x∈{0,1}n

(−1)f(x). (5.3)

Thus, the amplitudes interfere constructively towards a probability of 1 if f is constant,
whereas they interfere destructively around a probability of 0 whenever f is balanced.
Note that the quantum algorithm only required as much as a single query to the oracle.
Classically, in the worst-case setting, any algorithm requires Ω(2n−1 + 1) classical queries
to the oracle in order to learn more than half of the evaluations of the function.

5.2 Bernstein-Vazirani Algorithm

Another potentially interesting problem in complexity theory is the task of determining a
hidden string from inner product of bit strings. In 1993, Bernstein and Vazirani [BV93] ini-
tiated the field of quantum complexity theory and proposed a quantum algorithm achieving
a superpolynomial speed-up over classical algorithms. In the following, we state a popular
variant of the original algorithm and discuss its speed-up. In brief, the problem can be
stated as follows:

Bernstein-Vazirani Problem:

Recover a string s ∈ {0, 1}n by querying an oracle for a boolean function fs : {0, 1}n → {0, 1}
given by

fs(x) = s1 · x1 ⊕ ...⊕ sn · xn = 〈s, x〉 mod 2.

In the classical membership oracle setting, we observe that a single query to the function
can only ever reveal as much as one bit of information about the secret string s. In fact,
this can easily be done by considering queries on strings ei = (0, ... , 1, ... , 0), where the
i-th index is 1 and ei is 0 everywhere else. An algorithm performing such queries achieves
an overall query complexity of O(n) when determining the secret, as each iteration reveals
only a single bit of the hidden string by querying

fs(ei) = 〈s, ei〉 mod 2 = si, (5.4)

so that s is fully determined after a total of n queries to the function.

In the quantum membership oracle model, Bernstein and Vazirani showed that only a
single quantum query to the oracle is sufficient [BV93]:
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Algorithm 2 Bernstein-Vazirani Algorithm

Input: A quantum black box oracle Ofs for a boolean function fs, where fs(x) = 〈s, x〉.
The task is to determine s ∈ {0, 1}n.

Output: The secret string with only a single query to the oracle.

Procedure:

1. Initialize (n+ 1)-qubits to |0n〉 |1〉 and apply the Hadamard transform H⊕(n+1):

−→ 1√
2n

∑
x∈{0,1}n

|x〉 |−〉

2. Query the quantum oracle, resulting in a phase-kickback :

−→ 1√
2n

∑
x∈{0,1}n

(−1)〈s,x〉 |x〉 |−〉

3. Throw away the last register and then apply a Hadamard gate H⊗n:

−→ 1√
2n

∑
x,y∈{0,1}n

(−1)〈s,x〉(−1)x·y |y〉

4. Measure the entire output state.

|0〉

|0〉
...

|0〉

|1〉

H

H

H

H

Ofs

H

H

H

...

Figure 10: A quantum circuit for the Bernstein-Vazirani problem. The secret string is
determined after only a single query to the membership oracle.
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Thus, if we now measure the final ouput state of the algorithm in the computational basis
for a particular outcome m ∈ {0, 1}n, we observe that

p(m) =

∥∥∥∥∥∥ 1√
2n

∑
x∈{0,1}n

(−1)〈s,x〉(−1)x·m |m〉

∥∥∥∥∥∥
2

(5.5)

=
1

2n

∑
x∈{0,1}n

(−1)(s1⊕m1)x1(−1)(s2⊕m2)x2 · · · (−1)(sn⊕mn)xn (5.6)

=
1

2n

 ∑
x1∈{0,1}

(−1)(s1⊕m1)x1

 ∑
x2∈{0,1}

(−1)(s2⊕m2)x2

 · · ·
 ∑
xn∈{0,1}

(−1)(sn⊕mn)xn


=

1

2n

n∏
j=1

1∑
xj=0

(−1)(sj⊕mj)xj (5.7)

=
1

2n

n∏
j=1

(
1 + (−1)sj⊕mj

)
. (5.8)

Note that the probabilities of measuring any output states m 6= s vanish due to (5.8).
Consequently, the amplitudes interfere constructively towards a probability of 1 if every bit
of the output state m is equal to s.

5.3 Simon’s Algorithm

A well known problem in classical complexity theory is the retriaval of a promised hidden-
shift in the pre-image of a boolean function. In 1997, Dan Simon [Sim97] proposed a
quantum period finding algorithm with surprising consequences for cryptography, an algo-
rithm in which the secret shift is determined using only linear amounts of queries to the
oracle. Recently, Kaplan et al. [KLLP16] showed how to break symmetric-key encryption
schemes based on block-ciphers using Simon’s algorithm. In the following, we state the
original problem and discuss the relevant algorithm:

Simon’s Problem:

Given a function f : {0, 1}n → {0, 1}n and the promise that there exists s ∈ {0, 1}n such
that, for any pair (x, y) ∈ {0, 1}n, it holds that f(x) = f(y) if and only if x = y or x⊕y = s,
the goal is to find s.

The best known classical probabilistic algortihm for collision finding is known to have a
complexity of Ω(2n/2) in the number of its queries. Simon’s algorithm, the quantum algo-
rithm for solving the above problem, features a query complexity of O(n) [Sim97].
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Algorithm 3 Simon’s Algorithm

Input: A quantum black box oracle Of for a boolean function f with the promise of a
hidden-shift s ∈ {0, 1}n. The task is to determine s.

Output: The hidden shift s ∈ {0, 1}n after O(n) many queries.

Procedure:

1. Initialize 2n-qubits and apply the Hadamard gate H⊕n onto the first n registers:

−→ 1√
2n

∑
x∈{0,1}n

|x〉 |0〉

2. Query the quantum oracle:

−→ 1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉

3. Perform a measurement onto the second half of n registers, resulting in an outcome f(z)

and causing the remaining registers to collapse to the state:

−→ 1√
2n

(|z〉+ |z ⊕ s〉)

4. Apply another Hadamard gate H⊗n onto the first register:

−→ 1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z(1 + (−1)y·s) |y〉

5. Measure the entire output state. Note that, since vectors with the property s·y = 1 have
an amplitude of 0, a measurement in the computational basis results in a random y

that is orthogonal with respect to s. Repeat the previous steps for enough samples
of y in order to find s by Gaussian elimination.

|0n〉

|0n〉

n

n

H⊗n

Of

H⊗n

|f(z)〉

Figure 11: A quantum circuit for Simon’s problem. The secret string is determined after
O(n) many repetitions given enough linearly independent measurement outcomes.
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Typically, after repeating the procedure in the order of only O(n) queries, the full set of
basis vectors can be found with high probability. In the case that there are multiple collisions
due to more than one secret shift, that is, for any x other than f(x) = f(x⊕ s), Kaplan et
al. [KLLP16] provide theorems on the trade-off between the number of repetitions and the
success probability of the algorithm. In Chapter 10, we discuss the performance of recent
implementations of Simon’s algorithm on two different quantum computing architectures.

6 The Quantum Fourier Transform

The quantum Fourier transform (QFT) is arguably the most important and most widely
used tool in the design of quantum algorithms. Many of the known algorithms, such as the
Deutsch-Josza algorithm, Shor’s factoring algorithm, quantum phase estimation, quantum
order finding, Simon’s algorithm or the Bernstein-Vazirani algorithm rely substantially on
its use. In the previous section, we encountered the Hadamard transform as a single qubit
gate H that performs the following operation:

H |x〉 =
1√
2

1∑
y=0

(−1)x·y |y〉. (6.1)

Implicitly, we have already encountered the single-qubit quantum Fourier transform of or-
der n = 1. In fact, the Hadamard transform can be thought of as a QFT over the group
Z/2Z that takes single qubits in the computational basis and maps them to the Hadamard
basis. The underlying principle of the Fourier transform already starts to show, namely,
that the QFT acts as a change of basis in which the amplitudes of individual states of the
computational basis are related to the amplitudes of the entire computational space. The
amplitudes of the transformed states are the so-called characters of the Fourier transform.
In this chapter, our goal is to introduce a general qudit extension of the Hadamard trans-
form, the QFT on the cyclic group Z/qZ, where q is any integer. By extension, we also
obtain the QFT over any finite Abelian group. More importantly, we discuss how the QFT

can be efficiently implemented on a quantum computer. Historically, the earliest non-trivial
variant known to be efficiently computable on a quantum computer is the Fourier transform
over the group Z/2nZ, due to Deutsch [Deu85]. The general variant of the quantum Fourier
transform where q is an arbitrary integer is less common, but also mentioned as a side note
in [NC10]. Kitaev [Kit95] was the first to generalize this variant of the Fourier transform
using quantum phase estimation. Evidently, this breakthrough immediately led to the gen-
eralization over finite Abelian groups, as we will discuss in detail in the next section. In
both cases, we review efficient quantum circuit implementations and thus provide the basis
for addressing the QFT in the extended Bernstein-Vazirani problem.
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6.1 The Quantum Fourier Transform over Finite Abelian Groups

The Fourier transform can be defined on arbitrary groups and we can extend the same
principle of basis change into the language of groups and group algebras. For further reading
on the Fourier transform on groups, we refer to the survey [CD10] or the supplementary
chapters in [NC10]. In this thesis, we concern ourselves with the case of finite Abelian
groups.
Consider a finite Abelian group (G, ∗) of order |G| = N and let CG = span{|g〉 : g ∈ G}
be the associated group algebra of G over C. Each element |x〉 ∈ CG can be uniquely
expressed as a linear combination of basis vectors and complex coefficients:

|x〉 =
∑
g∈G

αg |g〉 , where αg ∈ C. (6.2)

Since G is finite Abelian, there exists a basis Ĝ ⊆ CG of dimension |Ĝ| = N that consists
of N distinct irreducible characters χ ∈ Ĝ, where χ : G −→ C and χ(a ∗ b) = χ(a) · χ(b)

([CD10], Appendix B). Moreover, if χ, χ′ ∈ Ĝ are two irreducible characters, then:∑
x∈G

χ(x) ∗ χ′(x) = N δχ,χ′ . (6.3)

Definition 6.1. Let (G, ∗) be a finite Abelian group of order |G| = N and let Ĝ be the basis
containing the set of N distinct characters χ : G −→ C.
The quantum Fourier transform FG on the group G is defined as the operation:

|x〉 −→ 1√
N

∑
χ∈Ĝ

χ(x) |χ〉 . (6.4)

Consider now the case where G is given by the group G = (Z/NZ,+) and N is any
integer. In this case, the irreducible characters χ : Z/NZ −→ C are given precisely by
the primitive N th roots of unity ωN = e

2πi
N . Thus, for every y ∈ Z/NZ, the character

χy(x) = ωxyN is uniquely determined. By choosing an orthonormal basis |0〉 , |1〉 , ..., |N〉 of
Ĝ in Fourier space, we can identify (6.4) as:

|x〉 −→ 1√
N

∑
y∈Z/NZ

ωx·yN |y〉 . (6.5)

Furthermore, we can associate the Fourier transform FG with the operator:

FG =
1√
N

∑
x,y∈Z/NZ

ωx·yN |y〉 〈x| . (6.6)

Let us briefly state the following fact, analogous to as in Eq.(6.3), regarding orthogonality
of the roots of unity:

Proposition 6.2. ∑
y∈Z/NZ

ωx·yN ω−x
′·y

N = N δx,x′ . (6.7)
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Proof. Consider first the case when x = x′. Then, for all y ∈ Z/NZ, we find ω(x−x′)y
N = 1

and the above sum clearly adds up to N . If x 6= x′, we can apply the partial sum formula
of the geometric series and compute:

1 + ωx−x
′

N + (ωx−x
′

N )2 + ...+ (ωx−x
′

N )N−1 =
1− (ωx−x

′

N )N

1− ωx−x′N

= 0. (6.8)

We can apply Proposition 6.2 in order to show that FG is indeed a well defined unitary
operation:

FGF†G =
1

N

∑
x,y∈Z/NZ

ωx·yN |x〉 〈y|
∑

x′,y′∈Z/NZ

ω−y
′·x′

N |y′〉 〈x′| (6.9)

=
1

N

∑
x,x′,y,y′∈Z/NZ

ωx·y−x
′·y′

N δy,y′ |x〉 〈x′| (6.10)

=
1

N

∑
x,x′,y∈Z/NZ

ω
(x−x′)·y
N |x〉 〈x′| =

∑
x,x′∈Z/NZ

δx,x′ |x〉 〈x′| = 1. (6.11)

According to the fundamental classification of finite abelian groups [CD10], any finite
Abelian group G is structurally equivalent, i.e. isomorphic, to a direct product of cyclic
factors whose orders are prime powers. Let |G| = N and let N = pr11 . . . prkk be the unique
prime factorization of N , then:

G ∼= Z/pr11 Z× . . .× Z/prkk Z. (6.12)

Moreover, the basis Ĝ of irreducible characters is given by products of irreducible characters
of the respective factors in (6.12). Consequently, following [CD10], the quantum Fourier
transform on finite Abelian groups G is given by:

FG = FZ/pr11 Z ⊗ . . .⊗FZ/prkk Z. (6.13)

For example, let G = ((Z/NZ)n ,+). Then, for any y ∈ (Z/NZ)n, we can associate a
unique irreducible character χy : Z/NZ −→ C such that for all x ∈ (Z/NZ)n:

χy(x) = χy(x1) · · · χy(xn) = ωx1·y1+...+xn·yn
N . (6.14)

Hence, the quantum Fourier transform FG over the group G = (Z/NZ)n is given by:

|x1〉 |x2〉 . . . |xn〉 −→
1√
Nn

∑
y∈(Z/NZ)n

ωx1·y1+...+xn·yn
N |y1〉 |y2〉 . . . |yn〉 , (6.15)

where, from now on, 〈x, y〉 = x1 · y1 + . . . + xn · yn. In the following sections, we consider
different variants of groups G and derive a quantum circuit implementation that realizes the
corresponding Fourier transformations. Before we give efficient circuit implementations, we
require additional remarks.
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Let G be the group G = (Z/NZ,+) and consider the shift operator U(1) that performs the
the following operation:

U(1) : |x〉 −→ |x+ 1〉 , (6.16)

where x+ 1 is the cyclic addition mod N . We can verify that U(1) =
∑

x∈Z/NZ |x+ 1〉 〈x|
is unitary, since:

U(1)U(1)† =
∑

x∈Z/NZ

|x+ 1〉 〈x|
∑

x′∈Z/NZ

|x′〉 〈x′ + 1| (6.17)

=
∑

x,x′∈Z/NZ

|x+ 1〉 〈x|x′〉 〈x′ + 1| =
∑

x∈Z/NZ

|x+ 1〉 〈x+ 1| = 1. (6.18)

Therfore, we can prove the following statement that connects our previous discussion on
the quantum Fourier transform with the shift operator, as appeared in the work of Kitaev
[Kit95]:

Proposition 6.3. The shift operator U(1) is diagonal in the Fourier basis:

FG U(1)F†G =
∑

y∈Z/NZ

ωyN |y〉 〈y| . (6.19)

Proof. Let the operators be represented by:

FG =
1√
N

∑
x,y∈Z/NZ

ωx·yN |y〉 〈x| , U(1) =
∑

z∈Z/NZ

|z + 1〉 〈z| and

F†G =
1√
N

∑
x′,y′∈Z/NZ

ω−y
′·x′

N |y′〉 〈x′| .

Using Proposition 6.2, we compute:

FG U(1)F†G =
1

N

∑
x,y,x′,y′∈Z/NZ

ωx·yN ω−y
′·x′

N |y〉 〈x | y′ + 1〉 〈x′| (6.20)

=
1

N

∑
y,x′,y′∈Z/NZ

ω
(y′+1)·y
N ω−y

′·x′
N |y〉 〈x′| (6.21)

=
∑

y,x′∈Z/NZ

ωyN

 1

N

∑
y′∈Z/NZ

ωy
′·y
N ω−y

′·x′
N

 |y〉 〈x′| (6.22)

=
∑

y,x′∈Z/NZ

ωyN δy,x′ |y〉 〈x′| (6.23)

=
∑

y∈Z/NZ

ωyN |y〉 〈y| . (6.24)
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6.2 Efficient Circuit Implementations

One of the earliest efficient circuit implementations was found for the QFT of order N = 2n,
as provided by the following theorem:

Theorem 6.4 ([BV93]). For any integer n and order N = 2n, there exists an efficient quan-
tum circuit that uses O(n2) elementary gates and performs the quantum Fourier transform
on any of the orthonormal basis states orthonormal basis |0〉 , |1〉 , ..., |N − 1〉:

|x〉 −→ 1√
2n

∑
y∈Z/2nZ

ωx·yN |y〉 . (6.25)

|x2〉

|x1〉

|x0〉

H Z T

H Z

H

1√
2
(|0〉+ e2πi·0.x2x1x0 |1〉)

1√
2
(|0〉+ e2πi·0.x1x0 |1〉)

1√
2
(|0〉+ e2πi·0.x0 |1〉)

Figure 12: A quantum circuit that performs the QFT for three qubits using the following
elementary gates: Hadamard (H), Controlled-Z (Z) and the Controlled-π/4 Phase-shift (T).

In particular, in the case of N = 2n, we can use a binary representation x =
∑n−1

j=0 2jxj
so that x = x1x2...xn. Moreover, it is also helpful to introduce the binary fraction notation
[0.x1...xm] =

∑m
i=1 2ixi. This allows us to write the QFT in terms of a separable product of

n-qubits [NC10]:

|x〉 → 1√
2n

2n−1∑
y=0

ωx·yN |y〉 (6.26)

=
1√
2n

∑
y∈{0,1}n

ω
x
∑n−1
j=0 2jyj

N |y1〉 ... |yn〉 (6.27)

=
1√
2n

n−1⊗
j=0

∑
yj∈{0,1}

e2πixyj/2
n−j |yj〉 (6.28)

=
n−1⊗
j=0

|0〉+ e2πi
∑n−1
k=0 2j+k−nxk |1〉√

2
(6.29)

(6.30)

Next, we would like to extend the QFT onto an arbitrary cyclic group Z/NZ, by using a
technique due to Kitaev [Kit95]. Following [CD10], we can derive this transformation using
quantum phase estimation, an efficient quantum procedure for the estimation of eigenvalues
for a given unitary operator [NC10]. The goal is to perform the QFT over FZ/NZ and map
a state |x〉 into the Fourier basis |x̂〉, as follows:

|x〉 −→ |x̂〉 =
1√
N

∑
y∈Z/NZ

ωx·yN |y〉 . (6.31)

– 48 –



Let us first note that by additionally attaching the input state in Eq.(6.31), it is straightfor-
ward to realize the above operation as a two-qubit operation using elementary gates. This
can be verified as follows: First prepare the state |x〉 |0〉 and create a uniform superposition
in the second register:

|x〉 |0〉 −→ 1√
N

∑
y∈Z/NZ

|x〉 |y〉 . (6.32)

Consider now applying a controlled phase-shift gate |x〉 |y〉 −→ ωx·yN |x〉 |y〉. As a result, the
output is thus transformed into:

1√
N

∑
y∈Z/NZ

|x〉 |y〉 −→ 1√
N

∑
y∈Z/NZ

ωx·yN |x〉 |y〉 . (6.33)

However, due to entanglement of the registers, straightforward erasure of the first register
is not possible. At this point, however, we can make use of the quantum phase estimation
procedure that allows us to efficiently approximate the eigenvalues of a given unitary oper-
ator with n = O(logN) bits of precision [NC10]. According to Lemma 6.3, the eigenvalues
of the shift operator U(1) are precisely given by the roots of unity ωN . Thus, we can
approximately perform the following unitary operation P:

|x̂〉 |0〉 −→ |x̂〉 |x〉 (6.34)

By reversing the above operation and applying P†, we arrive at the desired outcome:

|x̂〉 |x〉 −→ |x̂〉 |0〉 . (6.35)

Finally, we refer to the following highly efficient realization of the QFT due to Hales and
Hallgren:

Theorem 6.5 ([HH00]). For arbitrary integers N , where n = log(N), and any ε > 0, there
exists an efficient quantum circuit that uses O(n log n

ε + log2 1
ε ) many gates and approxi-

mately performs the quantum Fourier transform on orthonormal basis states |0〉 , |1〉 , ..., |N − 1〉
up to a fidelity of ε:

|x〉 −→ 1√
N

∑
y∈Z/NZ

ωx·yN |y〉 . (6.36)
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7 Quantum Learning Algorithms

Quantum computers can indeed solve certain problems faster than classical computers, as
demonstrated in Section 5. The tasks we considered so far all concerned static learning tasks
with well-defined entities free of noise and error. As decoherence still poses a major threat
to current quantum computing architectures, the promise of successfully running quantum
algorithms is still largely dependent on the extent to which fault-tolerant computing is
currently realized. The theory of quantum error correction has been crucial in establishing
the prospect of fault-tolerant quantum computing in the near future. Currently, noise in
quantum computing architectures is regarded as fatal and believed to substantially slow
down most quantum improvements over classical algorithms. In this chapter, we review
recent work by Cross, Smith and Smolin [CSS14], showing that quantum algorithms can
indeed solve certain tasks in the presence of certain classes of noise, much to the contrary of
their classical counterparts. We introduce tasks from computational learning theory, such
as the Learning Parity with Noise (LPN) problem which concerns the decoding of random
linear binary codes. The LPN problem is conjectured to be classically intractable, as the
best known algorithms require sub-exponential numbers of recources [BKW94]. However,
learning in the quantum setting remains easy despite the presence of noise. Furthermore,
we discuss its consequences in a related setting in which we consider the LWE problem with
quantum samples. To this end, we propose a new generalization of the Bernstein-Vazirani
algorithm of Section 5 and present recent results by Grilo and Kerenidis [GK17], demon-
strating a successful amplification of the success probability in the presence of noise.

7.1 Computational Learning Theory

We begin by introducing a few basic notions from computational learning theory, following
a recent survey on quantum learning theory by Arunachalam and de Wolf [AdW17].
Let us start with a few relevant definitions regarding the objectives of learning.

A concept class C =
⋃
n≥1

Cn is a collection of concepts (typically Boolean functions) in

which each set Cn is to contains all concepts f : {0, 1}n −→ {0, 1}. We consider learning
problems as a setting in which a learner A, i.e. an algorithm, is given access to either a
membership or example oracle for a target concept f ∈ Cn and the task is to then find a
hypothesis h ∈ Cn that agrees with the concept f upon some measure of accuracy. In other
words, having access to a black box oracle, the goal of the learner is to correctly identify
the oracle that corresponds to the target concept. Note that all definitions in this section
also translate naturally in the context of a computational space Z/qZ, where q ≥ 2 is any
integer. Next, we specify variants of learning models, both in the classical, as well as in the
quantum setting.

– 50 –



7.1.1 Exact Learning

Definition 7.1 (Classical Exact Learning).
In a classical exact learning model, a learner A for a concept class Cn is given access to
a membership oracle Of for a target concept f ∈ Cn and the task is to find a hypothesis
h ∈ Cn that agrees with the target concept f on all the inputs in {0, 1}n. Upon input
x ∈ {0, 1}n, the membership oracle Of outputs a label f(x).
We say an efficient algorithm A is an exact learner for Cn if, for every f ∈ Cn, there
exists δ > 0 such that, with probability 1 − δ, A outputs a hypothesis h where for all
x ∈ {0, 1}n : h(x) = f(x).
We refer to the query complexity of A as the maximum number of requests to the membership
oracle, over all f ∈ Cn, as well as over the internal randomness needed to achieve the desired
success probability of 1− δ.

Definition 7.2 (Quantum Exact Learning).
In a quantum exact learning model, a learner A for a concept class Cn is given access to
a quantum membership oracle Of for a target concept f ∈ Cn and the task is to find a
hypothesis h ∈ Cn that agrees with the target concept f on all the inputs in {0, 1}n. Upon
input x ∈ {0, 1}n and y ∈ {0, 1}, the membership oracle performs the operation:

Of : |x〉 |y〉 −→ |x〉 |y ⊕ f(x)〉 .

We say an efficient quantum algorithm A is an exact learner for Cn if, for every f ∈ Cn,
there exists δ > 0 such that, with probability 1 − δ, A outputs a hypothesis h where for all
x ∈ {0, 1}n : h(x) = f(x).
Similarly, we now refer to the quantum query complexity of A as the maximum number of
quantum queries to the membership oracle, over all f ∈ Cn, as well as over the internal
randomness needed to achieve the desired success probability of 1− δ.

7.1.2 PAC Learning

In this section, we introduce a variant called probably approximately correct (PAC) learning,
a model in which we consider uniform example oracles contrary to membership oracles. We
begin by specifying the learning model in the classical, as well as quantum setting.

Definition 7.3 (Classical PAC Learning).
In a PAC learning model, a learner A for a concept class Cn is given access to a uniform
example oracle OEX(f) for a target concept f ∈ Cn and the task is to find a hypothesis
h ∈ Cn that agrees with the target concept f on at least a 1 − ε fraction of the inputs in
{0, 1}n.
Upon each query, the example oracle OEX(f) samples a label f(x) uniformly at random.
We say an algorithm A is a PAC learner for Cn if, for every f ∈ Cn, there exists an ε > 0

and δ > 0 such that, with probability 1− δ, A outputs a hypothesis h, where:

1. Pr
x∈{0,1}n

[h(x) = f(x)] ≥ 1− ε.

2. A runs in time and uses a number of queries that is poly(n, 1/ε, 1/δ).
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We refer to the query complexity of A as the maximum number of requests to the example
oracle, over all f ∈ Cn, as well as over the internal randomness needed to achieve the
desired success probability of 1− δ. The (ε, δ)-PAC sample complexity of a concept class C
is given by the minimum sample complexity over all (ε, δ)-PAC learners for Cn.

Definition 7.4 (Quantum PAC Learning).
In a quantum PAC learning model, a learner A for a concept class Cn is given access to
a quantum example oracle OEX(f) for a target concept f ∈ Cn and the task is to find a
hypothesis h ∈ Cn that agrees with the target concept f on at least a 1 − ε fraction of the
inputs in {0, 1}n.
When queried, the example oracle OEX(f) responds with a quantum state:

1√
2n

∑
x∈{0,1}n

|x1〉 . . . |xn〉 |f(x)〉 .

We say a quantum algorithm A is a quantum PAC learner for Cn if, for every f ∈ Cn, there
exists an ε > 0 and δ > 0 such that, with probability 1− δ, A outputs a hypothesis h, where:

1. Pr
x∈{0,1}n

[h(x) = f(x)] ≥ 1− ε.

2. A runs in time and uses a number of queries that is poly(n, 1/ε, 1/δ).

We refer to the query complexity of A as the maximum number of requests (at unit cost)
to the example oracle, over all f ∈ Cn, as well as over the internal randomness needed
to achieve the desired success probability of 1 − δ. The (ε, δ)-PAC sample complexity of a
concept class C is given by the minimum sample complexity over all (ε, δ)-PAC learners for
Cn.

Definition 7.5 (PAC Learnable Classes).
We say a concept class C =

⋃
n≥1

Cn is classically (or quantumly) PAC learnable if, given an

example oracle for any target concept f ∈ C, there exists a PAC algorithm such that, for
any ε, δ ∈ (0, 1/2), the algorithm

1. outputs an ε-approximation h of f with probability 1− δ.

2. runs in time and uses a number of queries that is poly(n, 1/ε, 1/δ).

In the next section, we apply these definitions to the learning party with noise problem and
consider classical, as well as quantum algorithms.
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7.2 Learning Parity With Noise

Consider the following well known computational problem resembling a noisy variant of the
Bernstein-Vazirani problem in Chapter 5:

Learning Parity With Noise Problem:
Recover the secret s ∈ {0, 1}n from the class of parity functions fs : {0, 1}n → {0, 1} by
making queries to a uniform example oracle of Bernoulli noise rate η < 1/2, where

fs(x) = s1 · x1 ⊕ ...⊕ sn · xn mod 2 = 〈s, x〉 mod 2. (7.1)

In the noiseless case, this problem amounts to Gaussian elimination given enough linearly
independent samples. Following [CSS14], the probability that n queries to the example
oracle Ofs produce a set of linearly independent examples is given by:

(
1− 2−n

)
·
(
1− 2−n+1

)
· · ·
(

1− 1

2

)
=

n−1∏
j=0

(
1− 2j−n

)
. (7.2)

A simple proof by induction shows that this probability is in fact greater than 1/4 for any
integer n > 1. In the noiseless case, the class of parity functions is clearly PAC-learnable.
In fact, any algorithm that fails with constant probability less than some p ∈ (0, 1) can
be repeated in the order of O(log1/p 1/δ) to reduce the probability of failure below δ > 0.
In the case of a noise rate η < 1/2, it is known that the LPN problem is an average-case
version of the NP-hard problem of decoding a linear code, hence the LPN problem is thus
classically intractable.

In the quantum setting, this problem remains easy even in the presence of noise, as
shown in [CSS14]. Our goal is to first define the LPN problem in a quantum oracle model us-
ing uniform quantum samples and show that the LPN problem is quantumly PAC-learnable.
First note its resemblance to the Bernstein-Vazirani problem based on queries from a uni-
form example oracle.

Learning Parity With Noise:
Recover the secret s ∈ {0, 1}n from the class of parity functions fs : {0, 1}n → {0, 1}, where
fs(x) = s1 · x1⊕ ...⊕ sn · xn mod 2 = 〈s, x〉 mod 2, by querying a quantum example oracle
OEX(fs, η) of noise rate η < 1/2. Upon each query, OEX(fs, η) outputs uniform quantum
sample given by:

|Ψs〉 =
1√
2n

∑
x∈(Z/2Z)n

|x1〉 . . . |xn〉 |〈x, s〉 ⊕ e〉 ,

where the error follows e ∼ Bernoulli(η).

Let us first treat the problem in the noiseless case. Consider the following algorithm,
as in [CSS14]:
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Algorithm 4 Quantum Parity Learning

Input: A quantum example oracle OEX(fs) acting as a black box that outputs ideal uni-
form quantum samples. The task is to determine s ∈ {0, 1}n.

Output: The secret string s ∈ {0, 1}n with probability 1/2.

Procedure:

1. Query OEX(fs) and receive a uniform quantum example state |ψfs〉, where

|ψfs〉 =
1√
2n

∑
x∈{0,1}n

|x1〉 |x2〉 . . . |xn〉 |fs(x)〉

2. Perform a Hadamard gate onto all n+ 1 registers:

−→ 1√
2

(|0n〉 |0〉+ |s〉 |1〉)

3. Measure the entire output state. Read out s if the last register is |1〉, else output ⊥.

... Ofs

H

H

H

H

|s1〉
|s2〉
...

|sn〉
|1〉

Figure 13: A quantum circuit for the quantum parity learning algorithm. With probability
1/2, the final register is measured to be in the state |1〉 and the secret string can be read
out immediately.
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The second step in Algorithm 4 can easily be verified using Proposition 6.2, as follows:

H⊗(n+1) |ψfs〉 =
1√
2

1

2n

∑
yn+1∈{0,1}

∑
x,y∈{0,1}n

(−1)〈x,y〉(−1)〈x,s〉·yn+1 |y1〉 |y2〉 . . . |yn〉 |yn+1〉

=
1√
2

 1

2n

∑
x,y∈{0,1}n

(−1)〈x,y〉(−1)〈x,0〉 |y1〉 |y2〉 . . . |yn〉 |0〉

+
1

2n

∑
x,y∈{0,1}n

(−1)〈x,y〉(−1)〈x,s〉 |y1〉 |y2〉 . . . |yn〉 |1〉


=

1√
2

 ∑
y∈{0,1}n

δy,0 |y1〉 |y2〉 . . . |yn〉 |0〉 +
∑

y∈{0,1}n
δy,s |y1〉 |y2〉 . . . |yn〉 |1〉


=

1√
2

(|0n〉 |0〉+ |s〉 |1〉).

Let us now consider the LPN problem in its original setting of constant Bernoulli noise
rate. Now the learning algorithm is given access to quantum samples that are described
as a mixture of both noisy and noiseless samples. Surprisingly, even in this model, the
amplitudes interefere constructively as in the previous algorithm after the use of Hadamard
gates, as discussed in [CSS14].

Algorithm 5 Learning Parity With Noise

Input: A quantum example oracle OEX(fs, η) acting as a black box that outputs quantum
states prone to a parity bit flip error with probability η. The task is to determine s.

Output: The secret string s ∈ {0, 1}n with probability 1/2, independent of η.

Procedure:

1. Query OEX(fs, η) and receive a uniform quantum state |ψfs〉, where e ∼ Bern(η):

|ψfs〉 =
1√
2n

∑
x∈{0,1}n

|x1〉 |x2〉 . . . |xn〉 |fs(x)⊕ e〉

2. Perform a Hadamard gate onto all n+ 1 registers.

−→ 1√
2

(|0n〉 |1〉+ |s〉 |0〉) (with probability η)

−→ 1√
2

(|0n〉 |0〉+ |s〉 |1〉) (with probability 1− η)

3. Measure the entire output state. Read out any nonzero string, else output ⊥.
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7.3 Extended Bernstein-Vazirani Algorithm

In this chapter, we introduce a novel qudit extension of the well known Bernstein-Vazirani
problem in a computational learning setting by considering the problem over the cyclic
group G = (Z/qZ,+), where q is any integer. In solving this problem, we provide the basis
for the quantum LWE problem.

Extended Bernstein-Vazirani Problem:
Recover the secret s ∈ (Z/qZ)n from the class of functions fs : (Z/qZ)n → Z/qZ by making
queries to a uniform example oracle for

fs(x) = s1 · x1 + ...+ sn · xn mod q = 〈s, x〉 mod q, (7.3)

where q is any positive integer.

Similar to the noiseless LPN problem, the classical query complexity of the above prob-
lem is given by Ω(n). In the quantum setting, we are given a quantum example oracle Ofs
and the goal is to solve the extended Bernstein-Vazirani problem. In the following, we show
that the above problem is exactly learnable by Algorithm 6 and discuss its applications for
the LWE problem. Surprisingly, our proposed algorithm achieves a success probability in
terms of Euler’s totient function ϕ : N −→ N. Upon input q, the output ϕ(q) is defined as
the number of integers k such that gcd(k, q) = 1. Using Euler’s product formula, we can
also write the probability that Algorithm 6 succeeds as:

ϕ(q)

q
=

∏
primes p|q

(
1− 1

p

)
. (7.4)

The curious quotient ϕ(q)/q is of deep importance to number theory and has been studied
for many decades. In the 1950ies, Schinzel and Sierpiński proved that {ϕ(n)/n : n = 1, 2, ...}
is dense in the interval (0, 1) ⊂ R, highlighting that the ratio is highly nontrivial. Therefore,
it is not possible to find a unique limit as q approaches infinity. Euler’s product formula,
Eq. (7.4), gives us an intuition on how large ϕ(q)/q is, depending on the prime factorization
of q. If q is prime, we observe a simple ratio of q−1

q , hence a high probability for Algorithm
6 to succeed. Using a result due to Rosser and Schoenfeld [RS62], we can also bound the
success probability of Algorithm 6 in the case where q > 2:3

ϕ(q)

q
>

1

eγ log log(q) + 3
log log(q)

, (7.5)

where eγ = 1.7810724... is Euler’s constant. For our purposes, this ratio is still constant and
the algorithm can be repeated to amplify the success probability as it fails with constant
probability less than some p ∈ (0, 1). Thus, if Algorithm 6 is to succeed after m repetitions
with probability 1−δ, we require O(log1/p 1/δ) samples and time poly(m,n, log 1

δ ). Surpris-
ingly, the sample complexity is independent of n, whereas the classical query complexity is
given by Ω(n).

3In the case of q = 2, the problem is the noiseless variant of the LPN problem from Section 7.2.
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Algorithm 6 Extended Bernstein-Vazirani Algorithm

Input: A quantum example oracle OEX(fs) acting as a black box for the inner product
function fs(x) = 〈s, x〉 mod q, where s ∈ (Z/qZ)n is to be determined.

Output: s ∈ (Z/qZ)n with probability ϕ(q)/q, where ϕ(q) = |(Z/qZ)×|.

Procedure:

1. Query OEX(fs) and receive a quantum example:

|Ψs〉 =
1√
qn

∑
x∈(Z/q Z)n

|x1〉 . . . |xn〉 |fs(x)〉 .

2. Perform the Fourier transform FG onto the last register:

1√
qn

1√
q

∑
x∈(Z/qZ)n

∑
y∈Z/qZ

ω〈s,x〉·yq |x1〉 |x2〉 . . . |xn〉 |y〉

3. Measure the last register and obtain a random outcome k ∈ Z/qZ:

1√
qn

∑
x∈(Z/qZ)n

ω〈s,x〉·kq |x1〉 |x2〉 . . . |xn〉 |k〉

4. Perform the inverse Fourier transform F⊗n†G onto the first n registers:

|ks1〉 |ks2〉 . . . |ksn〉 |k〉

5. If gcd(k, q) = 1, invert |ks〉 by multiplying each register by k−1 and discard the last
register (or else output ⊥):

|s1〉 |s2〉 . . . |sn〉

... Ofs

Fq

F†
q

F†
q

F†
q

|ks1〉
|ks2〉
...

|ksn〉
|k〉

Figure 14: A quantum circuit for the extended Bernstein-Vazirani algorithm.
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7.4 Learning With Errors

Finally, we can state the algorithm for the LWE problem with quantum samples. While
the Extended-Bernstein-Vazirani algorithm we introduced works for any integer modulus
q, Grilo and Kerenidis [GK17] independently proposed a similar algorithm, specifically for
the case when q is prime, in order to solve the LWE problem using quantum samples.

Theorem 7.6 ([GK17]). Let q be a prime in [2n
γ
, 2 · 2n

γ
], where γ ∈ (0, 1), and let

OEX(fs, χ) be a quantum example oracle for fs = 〈s, x〉 that outputs samples

|Ψs〉 =
1√
qn

∑
x∈(Z/q Z)n

|x1〉 . . . |xn〉 |〈x, s〉+ ex〉

where the errors ex are i.i.d. random variables drawn according to χη,q which is symmetric
around 0 and where η = polylog(q).
Let s be the output of the Extended Bernstein-Vazirani algorithm. Then:

1. Pr[k = 0 and output ⊥] = 1
q

2. Pr[ output = s| output 6= ⊥] ≥ q
24(q−1)η

3. E[Pr[ output = s| output 6= ⊥]] ≤ 1
qn .

Finally, we also state the result under amplification of the success probability.

Theorem 7.7 ([GK17], Quantum Algorithm for LWE). For symmetric error distributions
χη,q of noise magnitude η = polylog(q) around 0, the Extended Bernstein-Vazirani algo-
rithm can be amplified to solve LWE q,χ towards a success probability of 1− η by requesting
O(n log 1

η ) many samples and running in time poly(n, log 1
η ).
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8 Blinding of Quantum Algorithms

In the previous chapters, we focused on the exploitation of quantum superposition queries
and showed how to achieve speed-ups over classical algorithms. Let us now take a turn
towards investigating the limitations of quantum algorithms, in particular in the context
of post-quantum cryptography. Our goal is to provide secure cryptographic schemes, even
in a setting in which the adversary has quantum access to the encryption or decryption
procedure.

Naturally, we investigate the limitations of quantum algorithms in an oracle model.
In this setting, a quantum algorithm receives a quantum membership oracle for a given
function and is allowed to query the function on a superposition of inputs. We denote
quantum access to a function f for a given algorithm A by adopting the notation A|f〉.

8.1 Blinding Lemma

Let us begin by making an important observation: The overlap of two identical n-qubit
states remains sufficiently close to unity, even if one of the states is modified at a random
location. Therefore, it seems, not even a quantum algorithm receiving output states from
an oracle succeeds at determining a random modification in an exponentially large domain
with high probability. In fact, we can prove this result as a consequence of the following
technical lemma:

Lemma 8.1 (Blinding Lemma).
Let A be an efficient quantum algorithm making at most Q = poly(n) queries to an oracle Of
for a function f : {0, 1}n −→ {0, 1}m, where n is a security parameter and m = poly(n).
If x∗ $←−{0, 1}n is a random location in the domain of f and s $←−{0, 1}m is a randomly
sampled string, then any output states produced by algorithm A remain negligibly close in
trace distance when replacing the value of f(x∗) with the string s:

E
s,x∗

[
δ(AOf (1n),AOfs (1n))

]
≤ 2Q√

2n
, (8.1)

where

fs(x) =

{
s, for x = x∗

f(x), for x 6= x∗.
(8.2)

Proof. We can write any QPT algorithm A with access to an oracle Of as a sequence of
unitary computations U0, ..., UQ and oracle queries, followed by a measurement. Running
A(1n) upon an initial state |φ0〉 thus produces an output state according to:

|φf 〉 = UQOfUQ−1Of . . . U1OfU0 |φ0〉 . (8.3)

A final measurement of the output state |φf 〉 through a choice of POVM gives rise to
a probability distribution over outcomes according to measurement operators E = {Ei}.
From Lemma A.1 it follows that, if the trace distance between two output states is bounded
by ε, then the statistical distance between outcome distributions produced by any POVM
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over these states is no more than ε. Let therefore x∗ $←−{0, 1}n, s $←−{0, 1}m and consider
P : {0, 1}n −→ {0, 1}m, where

P (x) =

{
f(x∗)⊕ s, for x = x∗

0, for x 6= x∗.
(8.4)

If we can show that modifying the oracle functionality from f to f ⊕ P results in neg-
ligibly close output states, then we can easily conclude that the expected trace distance
E
[
δ(|φf 〉 , |φf⊕P 〉)

]
must also be negligible. In order to prepare for a hybrid approach, we

first show that replacing the functionality of a single oracle query results in statistically
close output distributions. To this end, we define the k-th hybrid states as:

|φk〉 = UQOf⊕PUQ−1 . . .Of⊕PUkOf . . .OfU0 |φ0〉 (8.5)

|φfk〉 = UkOfUk−1 . . .OfU0 |φ0〉 . (8.6)

This allows us to bound the total expected distance between the output states as follows:

E
[
δ(|φf 〉 , |φf⊕P 〉)

]
≤ E

[
Q∑
k=1

δ(|φk〉 , |φk−1〉)
]

=

Q∑
k=1

E [δ(|φk〉 , |φk−1〉)] . (8.7)

Next, we bound two successive hybrids by using invariance of the trace distance with respect
to simultaneous unitary transformations:

δ(|φk〉 , |φk−1〉) = δ(UQOf⊕P . . .Of⊕PUkOf . . .OfU0 |φ0〉 , UQOf⊕P . . .Of⊕PUk−1Of . . .OfU0 |φ0〉)
= δ(OfUk−1 . . .OfU0 |φ0〉 ,Of⊕PUk−1Of . . .OfU0 |φ0〉)
= δ(Of |φfk−1〉 ,Of⊕P |φ

f
k−1〉)

= δ(|φfk−1〉 ,OfOf⊕P |φ
f
k−1〉)

= δ(|φfk−1〉 ,OP |φ
f
k−1〉)

Therefore, we can find the following upper bound for the expected trace distance:

E
[
δ(|φf 〉 , |φf⊕P 〉)

]
≤ Qmax

|ψ〉
E [δ(|ψ〉 ,OP |ψ〉)] (8.8)

= Qmax
|ψ〉

E
[√

1− | 〈ψ| OP |ψ〉 |2
]

(8.9)

≤ Qmax
|ψ〉

√
1− E [| 〈ψ| OP |ψ〉 |]2. (8.10)

Consider now a projector Π∗ onto suppOP = span{ |x∗〉 |y〉 | y ∈ {0, 1}n}, hence OP can
now be written as the identity operator, except on the range of Π∗. Using the reverse
triangle inequality, we find:

| 〈ψ| OP |ψ〉 | = | 〈ψ| OPΠ∗ |ψ〉+ 〈ψ| OP (1−Π∗) |ψ〉 | (8.11)

≥ −| 〈ψ| OPΠ∗ |ψ〉 |+ |1− 〈ψ|Π∗ |ψ〉 | (8.12)

≥ 1− 2 〈ψ|Π∗ |ψ〉 . (8.13)
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Consequently, for any output state |φf 〉 produced by query algorithm A, we can now bound
the expected trace distance as follows:

E
[
δ(|φf 〉 , |φfs〉)

]
≤ Qmax

|Ψ〉

√
1− E [〈ψ| OP |ψ〉]2 (8.14)

≤ Qmax
|Ψ〉

√
1− (1− 2E [〈ψ|Π∗ |ψ〉])2 (8.15)

≤ Q

√
1−

(
1− 2

2n

)2

≤ 2Q√
2n
. (8.16)

8.2 Relabeling Games

Let us now conclude the blinding lemma from the previous section and formalize the notion
of quantum blindness towards the class of functions that differ at a random location. To
this end, we introduce a new indistinguishability game that allows us to prove the security
of our proposed constructions under a quantum chosen-ciphertext attack in the subsequent
chapters.

Definition 8.2 (RelabelingGame).
Let Of be a quantum oracle for a function f : {0, 1}n −→ {0, 1}m and consider the experi-
ment RelabelingGame with a QPT algorithm D, defined as follows:

1. (initial phase) a bit b $←−{0, 1} and strings x∗ $←−{0, 1}n and s $←−{0, 1}m are generated;

2. (query phase) D receives oracle access to f , as provided by Of : |x〉 |y〉 −→ |x〉 |y ⊕ f(x)〉;

3. (challenge phase) D continues to have access to Of if b = 0 only; else D receives an
oracle Ofs, where

fs(x) =

{
s, for x = r∗

f(x), for x 6= r∗.
(8.17)

4. (resolution) D outputs a bit b′ and wins the game if b′ = b.

We say D is a distinguisher for the RelabelingGame, if D wins with high probability, i.e.
with nonnegligible probability better than guessing at random.

Proposition 8.3. Let f : {0, 1}n −→ {0, 1}m be a function. Then any QPT algorithm
D making oracle queries to Of wins the RelabelingGame with at most negligible probability
1
2 + ε(n).

Proof. Our goal is to use the blinding argument from Lemma 8.1 and show that any mea-
surement of the output states generated by D results in negligibly close output distributions,
irrespective of which of the oracles is being used by the challenger.
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The view of D is the following: Upon an initial state |Ψ0〉, D(1n) performs a number
of Q unitary computations U1, U2, ..., UQ, as well as alternating queries to Of prior to the
challenge phase:

|Ψf 〉 = UQOfUQ−1OfUQ−2 . . . U2OfU1OfU0 |Ψ0〉 . (8.18)

During the challenge phase, D is given oracle access to Oϕ, where ϕ : {0, 1}n −→ {0, 1}m
and the goal is to determine whether ϕ = f or ϕ = fs, for some x∗ $←−{0, 1}n and
s $←−{0, 1}m. Thus, D proceeds in the challenge query phase (denoted by ↑) and gener-
ates a quantum state after a total of T queries:

|Ψf
ϕ〉 = UTOϕUT−1OϕUT−2 . . . UQ+2OϕUQ+1

↑
UQOfUQ−1 . . . U2OfU1OfU0 |Ψ0〉 . (8.19)

According to Lemma 8.1, any quantum query algorithm produces negligibly close output
states if the underlying functions differ at a single location. Consequently, any output states
produced by D must also lie within negligible trace distance, as we can bound the distance
between the output states as follows:

E
s,x∗

[
δ(|Ψf

f 〉 , |Ψ
f
fs
〉)
]
≤ E

s,x∗

[
δ(|Ψf

f 〉 , |Ψ
fs
fs
〉)
]
≤ 2T√

2n
. (8.20)

Using Markov’s inequality, we conclude that for a negligible distance 2−n/4:

Pr
s,r∗

$←− {0,1}n

[
δ(|Ψf

f 〉 , |Ψ
f
fs
〉) ≥ 2−n/4

]
≤ 2n/4 E

s,r∗

[
δ(|Ψf

f 〉 , |Ψ
f
fs
〉)
]
≤ 2−n/4+1 T.

Hence, from Lemma A.1, it follows that any POVM measurement of the final output states
of D reveals at most negligibly close outcome distributions. Finally, we have:∣∣∣∣∣ Pr

s,r∗
$←− {0,1}n

[D|fs〉(1n) = 1] − Pr [D|f〉(1n) = 1]

∣∣∣∣∣ ≤ 2−n/4+1 T = ε(n). (8.21)

The RelabelingGame provides us with an important limitation of all quantum query al-
gorithms, in particular when proving the security of our proposed constructions from the
next chapter. As a direct consequence of blinding, we can prove the indistinguishability of
several hybrid games in the next chapter on post-quantum cryptography.
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9 Post-Quantum Cryptography

Let us now extend the security notions behind chosen-ciphertext attacks from Chapter 3.3
to a world of quantum computers. In particular, we consider adversaries who receive quan-
tum oracle access to both encryption and decryption at various times during the security
game. While the case of quantum CCA2-security has already been introduced in [BZ13], we
investigate a less powerful model by considering non-adaptive quantum chosen-ciphertext
attacks. In this security notion of quantum CCA1, an adversary is given quantum superpo-
sition access to both encryption and decryption prior to the challenge phase, followed by a
final phase of adaptive challenge access to the encryption oracle.

Our goal is to exploit the blindness of quantum query algorithms towards the class of
functions that only differ at a single location in order to provide secure constructions under
a non-adaptive quantum chosen-ciphertext attack. To this end, we first define both the
IND-QCCA1, a close variant of DecIND-QCCA1 as well as the SEM-QCCA1 security game,
and then propose schemes based on quantum-secure pseudorandom functions and permu-
tations that fulfill our definitions.

9.1 Security Under Non-adaptive Quantum Chosen-Ciphertext Attacks

In this section, we extend the definitions from Chapter 3.3 and introduce notions of security
in the context of quantum adversaries. In providing a quantum encryption oracle Enck,
each query is answered by choosing a randomness and encrypting each message in the
superposition from the r−family of unitary operations such that:

Enc :
∑
m,c

αm,c |m〉 |c〉 −→
∑
m,c

αm,c |m〉 |c⊕ Enck(m; r)〉 (9.1)

Typically, we consider the case of sampling a randomness r $←−{0, 1}n of equal length to a
message space, where m ∈ {0, 1}n. Moreover, we consider the quantum decryption oracle
Deck to be deterministic, hence each oracle query is answered upon a superposition of
ciphers as follows:

Dec :
∑
c,s

βc,s |c〉 |s〉 −→
∑
c,s

βc,s |c〉 |s⊕ Deck(c)〉 (9.2)

Note that, since Enck and Deck are required to be PPT algorithms provided by the under-
lying symmetric-key encryption scheme, both (9.1) and (9.2) correspond to efficient and
reversible quantum operations.

– 63 –



9.1.1 Indistinguishability

We begin by first introducing a notion of indistinguishability in the context of a quantum
chosen-ciphertext attacks.

Definition 9.1 (IND-QCCA1 Security).
Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme and consider the INDGame

between a QPT adversary A and challenger C, defined as follows:

1. (initial phase) On input 1n, C generates a key k ← KeyGen(1n) and a bit b $←−{0, 1};

2. (pre-challenge phase) A receives oracles Enck and Deck, then sends (m0,m1) to C;

3. (challenge phase) C replies with Enck(mb) and A receives an oracle for Enck only;

4. (resolution phase) A outputs a bit b′, and wins if b = b′.

We say Π has indistinguishable encryptions under non-adaptive quantum chosen-ciphertext
attack (or is IND-QCCA1-secure) if, for every QPT A, there exists a negligible function ε(n)

such that: Pr[A wins INDGame] ≤ 1/2 + ε(n).

9.1.2 Decisional Indistinguishability

In a similar manner, we can define a decisional variant of the indistinguishability security
game in which the goal of the adversary is to decide whether the challenge corresponds to
an encryption of a previously selected message, or an encryption of a random message. By
means of an elementary simulation proof, we can easily observe an equivalence in security
of the two definitions.

Definition 9.2 (DecIND-QCCA1 Security).
Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme and consider the DecINDGame

between a QPT adversary A and challenger C, defined as follows:

1. (initial phase) On input 1n, C generates a key k ← KeyGen(1n) and a bit b $←−{0, 1};

2. (pre-challenge phase) A receives oracles Enck and Deck, then sends m to C;

3. (challenge phase) C replies with Enck(m), if b = 0, or else with Enck(u) upon a
uniformly random message. Then, A receives an oracle for Enck only;

4. (resolution phase) A outputs a bit b′, and wins if b = b′.

We say that Π has decisionally indistinguishable encryptions under non-adaptive quantum
chosen-ciphertext attack (or is DecIND-QCCA1-secure) if, for every QPT A, we have
Pr[A wins DecINDGame] ≤ 1/2 + ε(n).

Proposition 9.3. Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme.
Then, Π is IND-QCCA1-secure if and only if Π is DecIND-QCCA1-secure.
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9.1.3 Semantic Security

In this section, we first introduce semantic security under a QCCA1 learning phase and then
prove an important equivalence between our notion of indistinguishability and semantic
security.

Definition 9.4 (SEM-QCCA1). Let Π = (KeyGen,Enc,Dec) be an encryption scheme, and
consider the experiment SEMGame with a QPT A, defined as follows.

1. (initial phase) A key k ← KeyGen(1n) and bit b $←−{0, 1} are generated;

2. (pre-challenge phase) A receives access to oracles Enck and Deck, then outputs a
classical challenge template consisting of (Samp, h, f);

3. (challenge phase) A plaintext m← Samp is generated; A receives h(m) and an oracle
for Enck only; if b = 1, A also receives Enck(m).

4. (resolution) A outputs a string s, and wins if s = f(m).

We say Π is semantically secure under non-adaptive quantum chosen ciphertext attack (or is
SEM-QCCA1) if, for every QPT A, there exists a QPT S such that the challenge templates
output by A and S are identically distributed, and there exists a negligible function ε(n)

such that:∣∣∣∣∣ Pr
k

$←−K
[A(1n,Enck(m), h(m)) = f(m)] − Pr[S(1n, |m|, h(m)) = f(m)]

∣∣∣∣∣ ≤ ε(n),

where, in both cases, the probability is taken over plaintexts m← Samp.

9.1.4 Equivalence of Indistinguishability and Semantic Security

Let us now show the equivalence of the notions we introduced in this chapter.

Theorem 9.5. Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme. Then,
Π is IND-QCCA1-secure if and only if Π is SEM-QCCA1-secure.

Proof. Suppose Π is IND-QCCA1-secure, i.e. has indistinguishable encryptions. Let A be a
QPT algorithm against SEM that receives a challenge Enck(m). Define a QPT simulator S
that also challenges SEM but simply runs A as a subroutine as follows: Instead of receiving
Enck(m) during the SEM challenge, S relies only on the side information h(m), in particular
the plaintext length |m|, and simulates A’s encryption and decryption oracles by making
use of its own QCCA1 learning phase. At the challenge phase, S simply encrypts the
string 1|m| and forwards Enck(1|m|) to A. After another emulated learning phase, S finally
outputs the same target f(m) that A outputs. Since Π has indistuinguishable encryptions
by assumption, A’s success probability must be negligibly close to the original SEM game
of S.

Now, suppose Π is not IND-QCCA1-secure, hence there exists a QPT distinguisher A
against IND-QCCA1-security. This allows us to build a distinguisher D running A as a
subroutine against the SEM security game as follows: By using its oracles from the QCCA1
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learning phases, D simulates the IND-QCCA1 security game of A by simply forwarding all
queries to its own oracles. At the QIND challenge phase, A prepares two messages (m0,m1)

and presents them to D. Then, D prepares a SEM challenge template (U, h, f), where U
describes the uniform distribution over plaintexts {m0,m1}, the side information is given
by the length of the messages and where the target function f(m) concerns the function
that distinguishes between m0 and m1, i.e. f(m0) = 0 and f(m1) = 1. Using this SEM

template, D receives a ciphertext Enck(m) and presents it to A as an IND-QCCA1 challenge.
Finally, D simply outputs whatever target bit A outputs. By assumption, A succeeds with
nonnegligible probability and therefore D breaks the SEM-QCCA1 security game.

9.2 Quantum-secure Pseudorandom Functions and Permutations

In order to find constructions for quantum-secure symmetric-key cryptography, we require
the use of appropriate building blocks. Let us now extend the concept of secure pseudo-
random functions from Chapter 3.4 to a setting in which an adversary in possession of a
quantum computer can query the function on a superposition of inputs. Remarkably, one
can find quantum-secure constructions for pseudorandom functions that are secure in this
model. Moreover, as shown by Zhandry [Zha12], one can construct quantum-secure PRF’s
either from the assumption that LWE is hard with classical samples or from the existence
of quantum one-way functions.

Definition 9.6 (Quantum-secure Pseudorandom Function).
Let {fk}k∈K be a family of pseudorandom functions on a key-space K, a domain X and a
range Y. QPRF = {fk}k∈K is a function family of quantum-secure pseudorandom functions
if (for every choice of key k) fk looks indistinguishable from a perfectly random function,
hence if, for every QPT distinguisher D, there exists a negligible function ε(n) such that:∣∣∣∣∣ Pr

k
$←−K

[D|fk〉(1n) = 1] − Pr
f

$←− {F :X→Y}
[D|f〉(1n) = 1]

∣∣∣∣∣ ≤ ε(n) (9.3)

A special variant of pseudorandom functions is realized in keyed permutations on
strings, which can be obtained directly from purely standard assumptions on the exis-
tence of one-way functions [Zha16]. We distinguish between quantum-secure and strong
quantum-secure pseudorandom permutations.

Definition 9.7 (Quantum-secure Pseudorandom Permutation).
Let {πk}k∈K be a family of keyed permutations operating on bit strings of domain X upon
a key-space K. QPRP = {πk}k∈K is a funcion family of quantum-secure pseudorandom
permutations if (for every choice of key k) πk looks indistinguishable from a random per-
mutation on strings in X , hence if, for every QPT distinguisher D, there exists a negligible
function ε(n) such that:∣∣∣∣∣ Pr

k
$←−K

[D|πk〉(1n) = 1] − Pr
π

$←− SX

[D|π〉(1n) = 1]

∣∣∣∣∣ ≤ ε(n), (9.4)

where SX denotes the set of all permutations over strings in X .
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In order to realize security under a quantum chosen-ciphertext attack, we require an
even stronger notion of pseudorandomness, in particular in the presence of a decryption
oracle. Fortunately, there exist constructions for the following standard, as considered in
[Zha16].

Definition 9.8 (Strong Quantum-secure Pseudorandom Permutation).
A family of pseudorandom permutations {πk}k∈K is a function family of strong quantum-
secure pseudorandom permutations QPRP if both πk its inverse permutation π−1

k look in-
distinguishable from a random permutation, hence if, for every QPT distinguisher D, there
exists a negligible function ε(n) such that:∣∣∣∣∣ Pr

k
$←−K

[D|πk〉|π−1
k 〉(1n) = 1] − Pr

π
$←− SX

[D|π〉|π−1〉(1n) = 1]

∣∣∣∣∣ ≤ ε(n). (9.5)

Finally, we provide schemes based on the above building blocks of pseudorandom functions
and permutations that are quantumly secure under a quantum-chosen ciphertext attack we
introduced in this thesis.

9.3 Secure Constructions

In this section, we prove the post-quantum security of two symmetric-key encryption
schemes. For the first scheme, we revisit the PRF scheme in Construction 3.8, as introduced
in Chapter 3.4, and show that it is secure under a non-adaptive quantum chosen-ciphertext
attack. The intuition is that, once the pseudorandom function is taken to be quantum-
secure, the pre-challenge phase reveals at most a polynomial amount of evaluations of the
pseudorandom function, despite the presence of a decryption oracle. Note that, in this
scheme, the encryption oracle only reveals a single functional evaluation of the PRF at a
random location at a time. The decryption oracle, however, can additionally serve as a
membership oracle for the function of the underlying encryption scheme. Thus, the adver-
sary can generate superposition queries to a PRF fk over the entire input space by simply
preparing a uniform superposition over the first register and initializing the second register
to the all-zero state:

Deck :
∑

r∈{0,1}n
|r〉 |0〉 −→

∑
r∈{0,1}n

|r〉 |fk(r)〉 . (9.6)

At first sight, however, it is not clear whether being able to generate superpositions gives
the adversary additional power during the challenge phase. Therefore, we have to bound
the amount of information that quantum query algorithms can learn in a suitable way.
Our goal is to show that this advantage is still negligible and that Construction 3.8 has
decisionally indistinguishable encryptions, even in the presence of decryption oracles under
a non-adaptive quantum chosen-ciphertext attack. Finally, due to the equivalence results
from the previous section, our proposed scheme then also satisfies indistinguishability of
encryptions and semantic security.

Theorem 9.9. Let QPRF be a family of quantum-secure pseudorandom functions. Then,
Π = (KeyGen,Enc,Dec) from Construction 3.8 is DecIND-QCCA1 secure.
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Proof. Our goal is to show that any QPT adversary A wins the DecIND security game with
a QCCA1 learning phase with at most negligible probability. To this end, we introduce a
sequence of indistinguishable hybrid games until we arrive at a security game in which the
challenge is perfectly hidden and the adversary cannot win.

First, we replace the QPRF from the original security game with a perfectly random
function. According to QPRF security, we only negligibly affect the overall success proba-
bility. In the setting where the adversary is classical, this hybrid typically completes the
proof, as the probability that the challenge randomness is being revealed outside the chal-
lenge is negligible. However, this does not translate directly to a QPT adversary performing
quantum queries, as discussed at the beginning of the chapter.

We proceed with a final hybrid game in which we use that quantum query algorithms
are blind towards the class of functions that only differ at a single location, as in Lemma 8.1.
To this end, we modify the same random function at a single location during the challenge
phase in a way that is indistinguishable to the adversary, thus making it impossible to
succeed for the remainder of the game.

With this in mind, we consider the following sequence of hybrid games:

Game 0: In this hybrid, the adversary is playing the standard DecIND security game
for the scheme in Construction 3.8. Prior to the challenge, the adversary chooses a
message m and is given quantum superposition access to both, the encryption oracle
Enck, as well as the decryption oracle Deck. Upon receiving a challenge cipher c∗,
the adversary may perform additional queries to Enck only and then decide whether
the cipher corresponds to a genuine encryption (r∗, fk(r

∗)⊕m) or an encryption of a
uniformly random string (r∗, fk(r

∗)⊕ u).

Game 1: Replace the QPRF fk from the previous scheme with a perfectly random function
f throughout the entire security game. The challenge is now to distinguish the pair
(r∗, f(r∗)⊕m) from an encryption of a uniformly random string (r∗, f(r∗)⊕ u).

Game 2: In this hybrid, the challenger adopts the same random function but now keeps
track of all randomness values previously used for encryption. If a collision occurs
and an encryption of the challenge ciphertext is to be answered with a randomness
previously seen by the adversary, the challenger aborts the game and the adversary
wins.

Game 3: In the final hybrid, the challenger keeps track of all randomness values as before,
as well as adopts the same random function f until the challenge phase of the game.
Then, at the start of the phase, the challenger replaces the challenge value f(r∗) with
a uniformly random value s $←−{0, 1}n and, for the remainder of the game, continues
answering encryption queries with the modified function:

fs(x) =

{
s, for x = r∗

f(x), for x 6= r∗.
(9.7)
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Suppose there exsits a QPT adversary A that wins Game 0 with nonnegligible probability,
hence there exists some polynomial p(n) such that:

Pr[A wins DecINDGame] ≥ 1/2 + 1/p(n). (9.8)

Our claim is that the same adversary must (up to at most negligible probability) also suc-
ceed at Game 3 in which the challenge is perfectly hidden by means of a hybrid argument.

Game 0 vs. Game 1:
Since we assumed the PRF fk to be quantum-secure, we can replace it with a perfectly
random function and only negligibly affect the success probability in Eq.(9.8). Note that
an adversary A that succeeds at Game 0 but not at Game 1 (i.e. A only wins with at most
negligible probability), allows us to build an fk−distinguisher that violates QPRF security.
We can verify this fact, as follows: Let D be the distinguisher that is given quantum oracle
access Oϕ to a function ϕ : {0, 1}n −→ {0, 1}n whose goal is to output 0, whenever ϕ is
a perfectly random function and to output 1, if ϕ = fk for some k. D now proceeds as
follows: It simulates the DecIND-QCCA1 security game of A by responding to quantum
queries using oracles Encϕ and Decϕ that can be implemented based on the output of Oϕ.
If A wins the DecIND-QCCA1 game and outputs b′ = b, then D outputs 1, and outputs
0 otherwise. Note that, if ϕ = fk, then the output of D when running A is identical to
that of A in Game 0. Similarly, if ϕ = f , then the output is identical to that of A in
Game 1. The adversary A is efficient, hence D is also efficient by construction. Moreover,
since we assumed that A succeeds with nonnegligible probability in Game 0, so does the
distinguisher D, and for infinitely many n:∣∣∣∣∣ Pr

k
$←− {0,1}n

[D|fk〉(1n) = 1] − Pr
f

$←− {F :{0,1}n→{0,1}n}
[D|f〉(1n) = 1]

∣∣∣∣∣ ≥ 1/p(n)− ε(n).

Therefore, our crucial assumption of QPRF security is broken by this distinguisher and we
conclude that A must also win Game 1 with nonnegligible probability.

Game 1 vs. Game 2:
Since the challenger keeps track of all randomness values R previously used for encryption,
the adversary is guaranteed to receive fresh randomness in {0, 1}n \ R, else the game is
aborted. Moreover, as the probability of sampling the same randomness twice is negligible,
the difference between these two games is only negligible with regard to the overall success
probability in the security game.

Game 2 vs. Game 3:
At first sight, the challenge from Game 2 looks uniformly random. However, since the
adversary has quantum oracle access to the function f , it is possible to generate superpo-
sitions over the entire input space. In principle, these states contain quantum information
on the challenge value f(r∗) and our goal is to show that this advantage is still negligible.
We make use of a blinding argument and argue that, for any quantum adversary playing
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DecIND-QCCA1, Game 2 and Game 3 are indistingiushable. Thus, up to negligible prob-
ability, the view of the adversary is that of Game 3 in which the challenge is perfectly
hidden and he cannot succeed.

Any quantum adversary playing the DecIND-QCCA1 game can be separated into a
quantum query routine A0(1n) prior to the challenge, as well as final routine A1(1n) at
the challenge phase. Consequently, this must also hold for the QPT adversary A from
Game 2, whose routines we can describe as follows: Upon an initial state |Ψ0〉, A0(1n)

performs Q unitary computations U1, U2, ..., UQ and alternating queries to the encryption
and decryption oracle and outputs:

|Ψf 〉 = UQODecUQ−1OEncUQ−2 . . . U2ODecU1OEncU0 |Ψ0〉 . (9.9)

At the challenge phase, A1(1n) continues to perform encryption oracle queries with respect
to f , as well as final unitary computations UQ+1, UQ+2, ..., UT upon |Ψf 〉 and generates:

|Ψf
f 〉 = UTOEncUT−1 . . . UQ+2OEncUQ+1 |Ψf 〉 , (9.10)

where T is the total number of queries and unitary computations. Finally, after completing
both routines, A measures the final output state and outputs b′.
Suppose now that the adversary A succeeds at Game 2 but not at Game 3, i.e. A only
wins with at most negligible probability. We argue that the same adversary must then win
the RelabelingGame, hence must violate Proposition 8.3.

Let D be the distinguisher playing the RelabelingGame and receiving a quantum oracle
Oϕ for a function ϕ : {0, 1}n −→ {0, 1}n whose goal is to output 0, whenever ϕ is a perfectly
random function and to output 1, if ϕ = fs for some x∗ $←−{0, 1}n and s $←−{0, 1}m. Let D
now proceed as follows: It simulates the DecIND-QCCA1 security game of A by responding
to quantum queries using oracles Encϕ and Decϕ that can be implemented based on the
output of Oϕ. If A wins the DecIND game and outputs b′ = b, then D outputs 1, and
outputs 0 otherwise. Note that, if ϕ = f , then the output of D when running A is identical
to that of A in Game 2. Similarly, if ϕ = fs, then the output is identical to that of A in
Game 3. The adversary A is efficient, hence D is also efficient by construction. Moreover,
since we assumed that A succeeds with nonnegligible probability in Game 2, so does the
distinguisher D, and for infinitely many n:∣∣∣∣∣ Pr

s,r∗
$←− {0,1}n

[D|fs〉(1n) = 1] − Pr[D|f〉(1n) = 1]

∣∣∣∣∣ ≥ 1/p(n)− ε(n). (9.11)

Therefore, we conclude that A must also win Game 3 with nonnegligible probability, else
we observe a violation of Proposition 8.3.

Note that, in Game 3, the DecIND challenge phase now amounts to the impossible
task of distinguishing between two uniformly random strings. Therefore, since the view
of A is indistinguishable from such a challenge of perfect secrecy, we must now arrive at
an overall contradiction and conclude that no such QPT algorithm A with nonnegligible
success probability exists.
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In summary, we must therefore conclude that for any quantum algorithm A playing the
DecIND-QCCA1 game:

Pr[A wins DecINDGame] =
1

2
+ ε(n). (9.12)

Finally, as a direct consequence of the equivalance results of Section 9.1.4, let us conclude
the previous result with the following additional observation:

Corollary 9.10. Let QPRF be a function family of quantum-secure pseudorandom func-
tions. Then, Π = (KeyGen,Enc,Dec) from Construction 3.8 is both IND-QCCA1-secure, as
well as SEM-QCCA1-secure.

As pointed out classically in [KL15], the PRF scheme is easily malleable by an adversary
with adaptive decryption oracle access in a CCA2 learning phase. Therefore, Construction
3.8 is neither secure under classical nor quantum adaptive chosen-ciphertext attacks.

Finally, we provide another symmetric-key encryption scheme based on pseudorandom
permutations that recently appeared in work by Gagliardoni et al. [GHS16]. As for the
previous construction, we follow a similar proof and introduce indistinguishable hybrids and
a blinding argument.

Construction 9.11. For a security parameter n, let both µ = poly(n) and τ = poly(n).
Upon a key space K = {0, 1}µ+τ , consider a function family of keyed permutations {πk}k∈K
operating on bit strings of length µ + τ and define a symmetric-key encryption scheme
Π = (KeyGen,Enc,Dec) as follows:

1. (key generation) KeyGen: on input 1n, generate a key k $←−{0, 1}n;

2. (encryption) Enck: on message m ∈ {0, 1}µ, choose a randomness r $←−{0, 1}τ and
output Enck(m; r) = πk(m||r);

3. (decryption) Deck: on cipher c ∈ {0, 1}µ+τ , output the first µ bits of the string
produced by Deck(c) = π−1

k (c) = m || r;

4. (correctness) (Deck ◦ Enck)(m; r) = π−1
k (πk(m||r))µ = m.

Let us now prove the security under a non-adaptive quantum chosen-ciphertext attack.
Again, the intuition is that, once the strong pseudorandom permutation is taken to be
quantum-secure, the pre-challenge phase reveals at most a polynomial amount of evalua-
tions of the pseudorandom permutation, despite the presence of a decryption oracle for the
permutation and its inverse. Therefore, no adaptive access to a quantum encryption oracle
is sufficient to succeed at the challenge.

Theorem 9.12. If QPRPm+τ is a family of strong pseudorandom permutations, then the
scheme Π = (KeyGen,Enc,Dec) from Construction 9.11 is DecIND-QCCA1-secure.
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Proof. As in the previous construction, our goal is to show that any QPT adversary A
wins the DecIND-QCCA1 security game with at most negligible probability. We introduce a
sequence of indistinguishable hybrid games until we arrive at a security game in which the
challenge is perfectly hidden and the adversary cannot win. First, we replace the strong
QPRP from the original security game with a perfectly random permutation operating on
bit strings of length µ+τ . According to QPRP security, we only negligibly affect the overall
success probability. Next, we introduce a hybrid in which the challenger keeps track of
all randomness values that are being used in the game and chooses a fresh value for each
encryption. Finally, we proceed with a hybrid game in which we exploit the blindness of
quantum algorithm towards relabeling at a single location Lemma 8.1. To this end, we
relabel the same random permutation at a single location during the challenge phase in a
way that is indistinguishable to the adversary, thus making it impossible to succeed for the
remainder of the game. Consider the following sequence of indistinguishable hybrid games:

Game 0: Original security game with QPRP πk and challenge randomness r∗.

Game 1: Replace the QPRP πk with a random permutation π ∈ Sm+τ .

Game 2: Guarantee fresh randomness for each new encryption, else abort.

Game 3: Relabel at the challenge phase with s $←−{0, 1}µ+τ :

πs(x||y) =

{
s, for y = r∗

π(x||y), for y 6= r∗.
(9.13)

Suppose there exsits a QPT adversary A that wins Game 0 with nonnegligible proba-
bility, hence there exists some polynomial p(n) such that:

Pr[A outputs b′ = b] ≥ 1/2 + 1/p(n). (9.14)

Our claim is that the same adversary must (up to at most negligible probability) also suc-
ceed at Game 3 by means of a hybrid argument.

Game 0 vs. Game 1:
Since we assumed the strong QPRP πk to be quantum-secure, we can replace it with a
random permutation π on the bit strings of length µ + τ and only negligibly affect the
success probability in Eq.(9.14). Note that an adversary A that succeeds at Game 0 but
not at Game 1 (i.e. A only wins with at most negligible probability), allows us to build a
πk−distinguisher that violates QPRP security when receiving quantum oracle access to Oϕ
and Oϕ−1 , where ϕ is a function ϕ : {0, 1}µ+τ −→ {0, 1}µ+τ . As in the previous proof, we
can construct a distinguisher D by running A such that and for infinitely many n:∣∣∣∣∣ Pr

k
$←− {0,1}n

[D|πk〉|π−1
k 〉(1n) = 1] − Pr

π
$←− Sm+τ

[D|π〉|π−1〉(1n) = 1]

∣∣∣∣∣ ≥ 1/p(n)− ε(n). (9.15)
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Therefore, our crucial assumption of strong QPRP security is broken by this distinguisher
and we conclude that A must also win Game 1 with nonnegligible probability.

Game 1 vs. Game 2:
Since the challenger keeps track of all randomness values R previously used for encryption,
the adversary is guaranteed to receive fresh randomness in {0, 1}n \ R, else the game is
aborted. Moreover, as the probability of sampling the same randomness twice is negligible,
the difference between these two games is only negligible with regard to the overall success
probability in the security game.

Game 2 vs. Game 3:
Again, as in the proof for the previous construction, the challenge from Game 2 looks
uniformly random. However, since the adversary has quantum oracle access to the random
permutation π, it is possible to generate superpositions over the entire input space. Here,
these states contain quantum information on the challenge value π(·||r∗) and our goal is
to show that this advantage is still negligible. We make use of a blinding argument and
argue that for any quantum adversary playing DecIND-QCCA1, Game 2 and Game 3 are
indistingiushable. Thus, up to negligible probability, the view of the adversary is that of
Game 3 in which the challenge is perfectly hidden and he cannot succeed.

Any quantum adversary playing the DecIND-QCCA1 game against Construction 9.11
can be separated into a pre-challenge routine A0(1n), as well as final challenge routine
A1(1n). Upon an initial state |Ψ0〉, A0(1n) performs Q unitary computations U1, U2, ..., UQ
and alternating queries to the encryption and decryption oracle and outputs:

|Ψπ〉 = UQODecUQ−1OEncUQ−2 . . . U2ODecU1OEncU0 |Ψ0〉 . (9.16)

After the challenge, A1(1n) applies final encryption oracle queries with respect to π, as well
as final unitary computations UQ+1, UQ+2, ..., UT upon |Ψπ〉 and generates:

|Ψπ
π〉 = UTOEncUT−1 . . . UQ+2OEncUQ+1 |Ψπ〉 , (9.17)

where T is the total number of queries. Finally, after completing both routines, A measures
the final output state and outputs b′.
Suppose now that the adversary A succeeds at Game 2 but not at Game 3, i.e. A only
wins with at most negligible probability. We argue that the same adversary must then win
the RelabelingGame, hence must violate Proposition 8.3.

Let D be the distinguisher playing the RelabelingGame given quantum oracle access Oϕ
to a function ϕ : {0, 1}µ+τ −→ {0, 1}µ+τ whose goal is to output 0, whenever ϕ is a perfectly
random function and to output 1, if ϕ = πs for some x∗ $←−{0, 1}µ and s $←−{0, 1}µ+τ . D
now proceeds as follows: It simulates the IND-QCCA1 security game of A by responding
to quantum queries using oracles Encϕ and Decϕ that can be implemented based on the
output of Oϕ. If A wins the DecIND-QCCA1 and outputs b′ = b, then D outputs 1 and
outputs 0 else. Note that, if ϕ = π, then the output of D when running A is identical to
that of A in Game 1. Similarly, if ϕ = πs, then the output is identical to that of A in
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Game 2. The adversary A is efficient, hence D is also efficient by construction. Moreover,
since we assumed that A succeeds with nonnegligible probability in Game 2, so does the
distinguisher D, and for infinitely many n:∣∣∣∣Pr

s,r∗
[D|πs〉(1n) = 1] − Pr

s,r∗
[D|π〉(1n) = 1]

∣∣∣∣ ≥ 1/p(n)− ε(n). (9.18)

Therefore, we conclude that A must also win Game 3 with nonnegligible probability, in
violation of Proposition 8.3.

Finally, note that in Game 3, as in the previous proof, the DecIND challenge phase
again amounts to the impossible task of distinguishing between two uniformly random
strings. Therefore, since the view of A is indistinguishable from such a challenge of perfect
secrecy, we must now arrive at an overall contradiction and conclude that no such QPT

algorithm A with nonnegligible success probability exists. In summary, we must therefore
conclude that for any quantum algorithm A playing the DecIND-QCCA1 game:

Pr[A wins DecINDGame] =
1

2
+ ε(n). (9.19)

Consequently, again as a direct consequence of the equivalance results of Section 9.1.4,
we can conclude the previous result with the following additional observation:

Corollary 9.13. Let QPRF be a function family of quantum-secure pseudorandom func-
tions. Then, Π = (KeyGen,Enc,Dec) from Construction 9.11 is both IND-QCCA1-secure,
as well as SEM-QCCA1-secure.
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10 The Physical Realization of Quantum Computation

The simulation of quantum systems turns out to scale surprisingly poorly on conventional
classical computers. In order to simulate N spin 1/2 particles and to solve the Schrödinger
equation, one needs to store vectors of size 2N , as well as manipulate matrices of size
2N × 2N . Due to this exponential scaling, it is well known that classical computers are
highly inefficient in simulating the dynamics of quantum systems. This fact has already
puzzled physicists in the 1980s, who hypothesized that an intrinsically quantum mechanical
computer could potentially be more suitable for these tasks. In fact, it is often attributed to
Richard Feynman [Fey82] to have been the first to speculate on the possibility of building
quantum computers. The prospect of building a computer that would outperform any clas-
sical computing architecture and efficiently simulate quantum physics seemed captivating.
In 1989, David Deutsch gave the first example of a quantum algorithm for a black box
problem which could be solved faster with quantum mechanical means than with classical
ones [Deu89]. Perhaps most notably, it was Peter Shor’s 1994 discovery of efficient quantum
algorithms for the factoring of integers and computing discrete logarithms [Sho94] that truly
drew the attention towards the field of quantum computation. Only a few years later, Ig-
nacio Cirac and Peter Zoller proposed a physical system of trapped ions on which quantum
information processing could be realized [CZ95]. In this architecture, single trapped ions
are engineered to carry quantum information and are both manipulated and measured with
focused laser beams. Already within a year’s time, David Wineland’s group at National
Institute of Standards and Technology achieved a breakthrough in ion-trap quantum com-
puters [MMKW99], namely a controlled bit flip on a single ion. This experiment is often
considered as the birth of experimental quantum computation. In this chapter, we give a
basic introduction to trapped-ion quantum computers. To this end, we follow an excellent
survey on trapped-ion computation by Häffner and Blatt [HRB08]. In later sections, we
also describe recent implementations of quantum algorithms and further advances in the
field.

10.1 DiVincenzo Criteria

All quantum information processing is concerned with the storage and coherent manipula-
tion of information in a quantum system. In the previous chapters, we showed how quantum
computers could solve certain mathematical problems faster than classical computers using
the principles of quantum mechanics. In order to harness this quantum speed-up, how-
ever, one has to realize quantum computation in a physical system. Fortunately, nature
presents us with many possible ways of realizing a qubit in a physical system. As typical
representations of a qubit are found in the two states of a spin 1/2 particle, the verti-
cal or horizontal polarization of a photon or simply the ground and excited states of an
atom, each representation comes with its own drawbacks and advantages. While photons
are easy to generate, they have proven to be difficult to interact on the basis of nonlinear
materials alone [NC10]. Similarly, both the observation and control of spin states poses
great difficulty, unless a carefully engineered environment is achieved. An example of such
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circumstances is realized in a trapped-ion quantum computer, where ions are confined in a
potential trap and subsequently cooled.

In 1996, David DiVincenzo, at the IBM Thomas J. Watson Research Center, proposed
the following list of guidelines for a successful physical implementation of a quantum com-
puter: [DiV00]

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple initial state.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A universal set of quantum gates.

5. A qubit-specific measurement capability.

Having the possibility of a functioning interface between quantum computers and devices
for quantum communication in mind, DiVincenzo also added two additional requirements:

6. The ability to interconvert stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified locations.

Currently, the trapped-ion computer is oftentimes regarded as the leading quantum com-
puting architecture, while the runner-up technology is believed to be that of the solid-state
architecture of superconducting qubits [LMRD17]. In this thesis, we present the ion-trap
quantum computer as a model for quantum computation and discuss its fundamental prop-
erties and capabilities. When performing quantum information processing, such as the
algorithms from the previous chapters, the ability to coherently manipulate as well as store
information with low rates of error is crucial. Decoherence of quantum systems poses enor-
mous difficulty to both of these tasks. In the next section, we will outline the extent to
which trapped ion computation satisfies these criteria.

– 76 –



10.2 Ion-Trap Implementation

In this section, we discuss the physical realization of quantum computation on the basis of
the ion-trap, the most successful quantum computing architecture to date. As the repre-
sentation of a qubit is found in the hyperfine levels of an ion, we begin with a section on
the hyperfine structure of atoms and continue with the experimental setup in the subse-
quent chapter. In the following chapters thereafter, we discuss how the ion-trap quantum
computer satisfies DiVincenzo’s Criteria, as well as the extent to which all the necessary
ingredients for the implementation of quantum algorithms of the previous chapters are re-
alized. In particular, we show how to perform elementary single-qubit and two-qubit gates
using focused laser beams. Finally, in the last section, we present a recent performance
comparison between a state-of-the-art solid-state device running the same algorithms.

10.2.1 Hyperfine Structure

In order to realize a qubit as a physical carrier of information, one has to represent it in an
appropriate two-level quantum system. Following DiVincenzo’s criteria, the task is to define
a qubit that is not only well-characterized, but can also be controlled and manipulated for
the purpose of information processing. In the ion-trap quantum computer, a qubit is found
in the internal atomic states of the ion. Although a single trapped ion features a broad
energy landscape, sophisticated use of lasers allows us to isolate just two levels in the energy
spectrum of the atom. Alkali atoms present a popular choice for ion-trap experiments, as
they feature a single valence electron in the outer shell, thus offering a simple and well-
studied electronic structure. Typical ion candidates are the alkaline earth metals 9Be+,
24Mg+, 40Ca+, as well as 171Yb+, which, once ionized, behaves quite similarly. Each ion
comes with a different mass and electronic transition at a certain wavelength, both highly
relevant factors for trapping, as well as laser manipulation. For example, while lighter ions
carry less inertia and are therefore easier to trap, they tend to exhibit electronic transitions
at wavelengths in the deep ultra-violet that are less suitable for fiber-optics.

At high resolution, the atomic spectrum is known to feature a splitting of energy levels
into further substructures, the so-called fine structure and hyperfine structure. Neither of
the two structres are explained in the original Bohr model or predicted by Schrödinger
theory and result from spin contributions of the electron spin and nuclear spin. The atomic
states relevant for the representation of a qubit result from the sum of electron spin S

and nuclear spin I, giving a total of F = S + I, where F is the total angular momentum.
Using the long-lived states of the hyperfine structure, especially long coherence times can
be achieved which, in this regard, make ion traps an ideal choice for a quantum computer.

Particularly the ytterbium isotope 171Yb+ has become a favorable choice in recent
experiments [DLFL16][FHM16] due to its large hyperfine splitting and strong 2S1/2 ↔
2P1/2 electronic transition around a wavelength of 369.53nm. An example of the hyperfine
structure of 171Yb+ is shown in Figure 15. This particular isotope exhibits long trapping
lifetimes and, due to its strong electronic transition, it is well suited for broadband laser
manipulation, as well as integration with optical fibers.
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Figure 15: ([Mon13]) The spin contribution to the atomic energy levels of 171Yb+. The
hyperfine splitting results from the interaction between the spin-1/2 electron and the spin-
1/2 nucleus.

Typically, the qubit is taken to be the two (first-order magnetic field-insensitive) hyperfine
levels of the 2S1/2 ground state [OYM07]:

|0〉 ≡ 2S1/2 |F = 0,mF = 0〉
|1〉 ≡ 2S1/2 |F = 1,mF = 0〉 .

Here, F andmF denote the quantum numbers assosciated with the total angular momentum
and its projection along the quantization axis defined by an applied magnetic field of 5.2G.
Since the magnetic quantum number is mF = 0, the two hyperfine states carry only a
quadratic Zeeman shift. Consequently, the 171Yb+ ion features a particular insensitivity
with respect to magnetic field fluctuations. Often in the ion-trap literature, the notation
|g〉 = |0〉 and |e〉 = |1〉, denoting the ground and excited states respectively, is adopted
in order to avoid confusion around additional coupling with vibrational modes of the ion
chain. The qubit frequency splitting between the above 2S1/2 states is in the order of
ν0 = 12.642821 GHz. Most notably, Monroe et al. [OYM07] have measured average qubit
coherence times of 2.5(3)s that are significantly longer than the typical gate operation time
at microseconds.

10.2.2 Experimental Setup

The main component of an ion-trap quantum computer is an electromagnetic trap, a vac-
uum chamber surrounded by four cylindrical electrodes. In order to produce the necessary
trapping potential towards axial confinement of the ions, the end caps of the rods are bi-
ased at different voltages. However, as we will show now, trapping ions by means of static
electric fields alone is not possible. Earnshaw’s theorem states that a charged particle can-
not be confined in three dimensions by static electric fields, as the divergence of the field
vanishes in empty space. This fact can easily be verified in the following short argument.
Let r0 = (x0, y0, z0) denote the coordinates of the charge. Then, for any trapping poten-
tial, we require that the particle returns to its equilibrium position once it is displaced.
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Figure 16: ([Mon13]) The University of Maryland ion-trap at the Chris Monroe lab, 2013.
Each dot represents a single 171Yb+ ion exhibiting state dependent fluorescence when driven
by individual focused laser beams. A CCD camera collects fluorescence from the scattering
of photons and creates an image over thousands of measurements.

Consequently, we demand from the potential energy U(r) that:

∇U(r0) = 0, ∇2U(r0) > 0. (10.1)

However, since the electric potential energy is given by U(r) = qΦ(r), where Φ is the
electrostatic potential, we must conclude from Gauss’ law that:

∇2U(r) = q∇2Φ(r) = 0. (10.2)

Thus, the electric potential obeys the Laplace equation and violates the previous condition
Eq.(10.1) we required for the desired potential trap. In order to achieve confinement,
one has to adopt time-varying electric fields that, on average, create an effective trap in
three dimensions. In practice, this is can be realized in a rf Paul trap [POF58], where a
combination of both static as well as oscillating electric fields switching at rates around
radio frequency produce an effective harmonic trap. As a result, a potential of quadropole
geometry is generated that confines a charge in all three dimensions. A linear rf Paul trap
can also succesfully confine several ions simultaneously along its trap axis (typically taken
to be the ẑ-axis)[Pau90]. Since the vibrations of trapped ions around their equilibrium
positions are strongly coupled due to the Coulomb interaction, motion of any one single ion
induces a joint oscillation in all other ions. The Hamiltonian describing the motion of N
confined ions together with the Coulomb repulsion is given by:

H =

N∑
j=1

M

2

(
p̂2
j

M2
+ ω2

xx
2
j + ω2

yy
2
j + ω2

zz
2
j

)
+

N∑
j=1

∑
i>j

e2

4πε0|r̂j − r̂i|
, (10.3)
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where M is the mass of a single ion and ωx, ωy and ωz describe the frequency of oscillation
along the respective directions. For the sake of simplicity, one typically considers a linear
Paul trap design in which only a single motional direction along the trap axis is selected
for in which all ions lie along the ẑ-axis. If the displacement due to the oscillations is
much smaller than the spatial separation between the ions, we can describe the vibrations
(i.e. phonons) in an harmonic oscillator approximation [WMI98]. At low temperature, the
linear chain of ions freezes into a crystal where, for a quantum of vibrational energy ~ωz, the
desired cooling requires both that kBT � ~ωz, as well as that the thermal energy T drops
below the energy difference of the two atomic levels. A chain of N ions exhibits various
normal modes of vibration, both radial and axial, each at frequencies independent of N .
The axial mode of lowest frequency is given by the center-of-mass mode (COM), a collective
motion of the entire ion chain along the trap axis. In order to control and encourage such
joint motion in the COM mode, it is necessary to surpress vibrational modes of higher
frequency (such as relative or radial motion) by applying Doppler-cooling and preparing
the ions in their motional ground state [WI79].

The use of resonant laser light is a fundamental component of the ion-trap com-
puter and appears throughout multiple stages of quantum information processing, such
as groundstate-cooling, qubit initialization, qubit gate-operations and state detection. In
order to achieve state initialization, sophisticated use of optical pumping can drive hyperfine
transitions into short-lived and energetically distant states that subsequently decay back
to the ground state according to known selection rules (Figure 17). Measurement, or state
detection, works using state dependent fluorescence as follows: If the qubit state is in the
excited state |1〉, the 369.53 nm light applied for detection is nearly on resonance, and the
ion exhibits fluorescence by scattering many photons. If, however, the state is in the ground
state |0〉, very few photons are scattered and we observe a dark state. Finally, a photon
count results in accurate state detection. Moreover, as we discuss in the subsequent chap-
ters, manipulation of qubits can be realized as an optical Rabi oscillation under resonant
laser light.

Let us conclude this section by briefly summarizing how ion-trap quantum computers fulfill
the DiVincenzo criteria:

1. A scalable physical system with well characterized qubits: The atomic hy-
perfine states are exceptionally long lived and serve as an ideal choice for qubits, see
[OYM07]. Though scalable in principle, complications typically arise in both mass
and mode structure of sufficiently long ion chains. Modern techniques circumvent
these problems and address scalability by means of ion-transport among multiple ion
traps [WMI98][FHM16].

2. The ability to initialize the state of the qubits to a simple initial state: State
initialization is achieved using optical pumping, a technique that prepares hyperfine
ground states with average fidelities > 0.99, for example [OYM07].
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Figure 17: ([OYM07]) Optical pumping for state initialization (a) and state detection (b)
of 171Yb+. The nuclear spin is given by I = 1/2. Appropriate polarization of the incoming
laser beam can exploit atomic selection rules and initialize the desired groundstate.

3. Long relevant decoherence times, much longer than the gate operation
time: Typical coherence times of modern ion-trap architectures average around a
few milliseconds and are therefore several orders of magnitude longer than the time
scale required for quantum gate operations, see [OYM07].

4. A universal set of quantum gates: All single-qubit gates can be performed using
laser pulses that drive Rabi oscillations between the two atomic levels. Two-qubit
gates are implemented by exploiting the long range Coulomb interaction, such as in
the original proposal by Cirac and Zoller [CZ95]. Quantum information from a single
ion can be transferred into the common motional degree of freedom of the entire ion
string using a sideband transition by focused laser pulses. Such conditional quantum
dynamics are sufficient to give rise to elementary two-qubit gates needed for universal
computation. Moreover, sources of error during larger scale quantum operations can
be controlled for by more sophisticated types of multiparticle entanglement, such as
Mølmer-Sørensen interactions [MS99].

5. A qubit-specific measurement capability: Measurements are performed using
state dependent fluorescence in which photon scattering allows for state read-out of
individual qubits.

10.2.3 The Hamiltonian

In this section, we discuss the basic Hamiltonian of a single trapped ion interacting with near
resonant laser light. The two-level approximation is valid in this regime, as all other atomic
levels are energetically far away and highly detuned. Similar to a spin-1/2 system under
a time-dependent magnetic field, the two-level atom undergoes an optical Rabi oscillation
under the action of the electromagnetic field.
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Let us consider a Hamiltonian of a two-level system interacting with a quantized har-
monic oscillator of vibrational modes through a laser beam, where:

H = Hatom +Hfree +Hint. (10.4)

Recall from the previous section that the Hamiltonian describing the free motion of a single
ion along the trap axis in an effective harmonic potential can be written as:

Hfree =
p2

2M
+

1

2
Mω2

zz
2, (10.5)

where ωz is the frequency of oscillation around the equilibrium position in the ẑ direction.
If the coupling to the external field is small and the ion inside the vaccum chamber is
well isolated from its surroundings, its motion becomes quantized and we can introduce
raising and lowering operators z =

√
~

2Mωz
(a+a†) and p = i

√
~Mωz

2 (a−a†). Consequently,
together with the Hamiltonian corresponding to the internal atomic levels, we can write:

Hatom = ~ωeg
σz
2

(10.6)

Hfree = ~ωz
(
a†a+

1

2

)
. (10.7)

In the following, we will denote H0 = Hatom +Hfree. The Hamiltonian Hint describes the
atom-light interaction of the ion with the laser. Following Wineland et al. [WBB03], the
interaction between the ion and the electric field of the laser beam is given by:

Hint(t) = −~d · ~E = −~d · E0 ε̂L cos(kz − ωLt+ φ), (10.8)

where ~d is the electric dipole operator, ~E is the (classical) electric field, E0 the field strength,
z is the position operator of the ion for displacement from its equilibrium position, ε̂L is
the laser beam polarization, ωL is the frequency of the laser, k is the laser beam’s k-vector
parallel to ẑ (the axis of the trap) and where φ is the phase of the laser at the mean position
of the ion. In the dipole approximation, ~d can be further expanded in terms of the internal
states of the atom, since it is proportional to σ+ + σ−, where σ+ = |e〉 〈g| and σ− = |g〉 〈e|.
By introducing the Rabi flop frequency Ω = −E0

~ 〈e|~d · ε̂L|g〉 and the Lamb-Dicke parameter

η = k
√

~
2Mωz

, we can express Eq.(10.8) as:

Hint(t) = ~
Ω

2
(σ+ + σ−)

(
ei(η(a+a†)−ωLt+φ) + e−i(η(a+a†)−ωLt+φ)

)
. (10.9)

Taking the width of the ion’s oscillation along the trap axis at low temperatures to be small
compared to the wavelength of the incoming laser beam, we can apply the Lamb-Dicke
limit (η

√
〈(a+ a†)2〉 � 1) and further expand the relevant exponential from Eq.(10.9):

eiη(a+a†) = 1 + iη (a+ a†) + O(η2). (10.10)

It is now convenient to work in the interaction picture H′int = eiH0t/~Hinte
−iH0t/~. Using

the Baker-Campbell-Hausdorff lemma,

eαABe−αA = B + α [A,B] +
α2

2!
[A, [A,B]] +

α3

3!
[A, [A, [A,B]]] + ..., (10.11)
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Figure 18: ([HRB08]) Transitions between atomic levels and phonon modes.

we get the following identities:

eiωza
†a t
[
1 + iη (a+ a†)

]
e−iωza

†a t = 1 + iη (ae−iωzt + a†eiωzt) (10.12)

eiωegσzt/2σ+e
−iωegσzt/2 = σ+e

iωegt. (10.13)

By applying a rotating wave approximation and assuming near resonance ∆ = ωL−ωeg ≈ 0,
we ignore all rapidly oscillating terms of the form exp(±i(ωL + ωeg)t) and find:

H′int(t) = ~
Ω

2
σ+ e

−i(∆t−φ)
[
1 + iη (ae−iωzt + a†eiωzt)

]
+ h.c. + O(η2). (10.14)

A second rotating wave approximation assumes that only one transition at a time is con-
sidered, now gives the Hamiltonian:

H′int(t) =
~Ω

2

[
σ+e

−i(∆t−φ) + σ−e
i(∆t−φ) + iη(σ+e

−i(∆t−φ) − σ−e−i(∆t−φ))(ae−iωzt + a†eiωzt)
]

(10.15)
We can now identify three different cases of interest with respect to the detuning of the
laser beam, the so-called carrier and sideband transitions:[HRB08]

1. The carrier transition (ωL = ωeg, ∆ = 0):

HC = ~
Ω

2
(σ+e

iφ + σ−e
−iφ). (10.16)

In this regime, transitions |g〉 |n〉 ↔ |e〉 |n〉 between the atomic states of the ion can
be performed.

2. The blue sideband transition (ωL = ωeg + ωz, ∆ = ωz):

H+ = i~
Ω

2
η (σ+a

†eiφ − σ−ae−iφ). (10.17)

This allows for the creation of a phonon mode and simultaneous excitation of the
atomic state: |g〉 |n〉 ↔ |e〉 |n+ 1〉.
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3. The red sideband transition (ωL = ωeg − ωz, ∆ = −ωz):

H− = i~
Ω

2
η (σ+ae

iφ + σ−a
†e−iφ). (10.18)

Simultaneous to exciting the atomic state of the ion, a phonon mode is destroyed.
Thus the following transitions can be performed: |g〉 |n〉 ↔ |e〉 |n− 1〉.

Note that the red sideband Hamiltonian is formally equivalent to the well-known Jaynes-
Cummings Hamiltonian in quantum optics that describes a two-level atom interacting with
a quantized mode of an optical cavity. Since the Coulomb interaction provides a strong
coupling among the ions, the entire chain of ions exhibits various normal modes of motion,
each at different frequencies, such as center-of-mass mode, the stretch mode or the axial
mode [HRB08]. In order to describe the full Hamiltonian of a linear crystal consisting of
N ions, we can introduce a sum over all single ion contributions and respective vibrational
modes of the entire ion chain, as follows:

H0 =

N∑
j=1

~ωeg
σzj
2

+
N∑
l=1

~ωzl

(
a†l al +

1

2

)
(10.19)

H′int =
N∑
j=1

~Ωj

2
σ+j e

−i(∆t−φ) exp

(
i
N∑
l=1

ηjl [ale
−iωzt + a†l e

iωzt]

)
+ h.c.. (10.20)

Repeating the analysis of the single-ion Hamiltonian, we can write the interaction Hamil-
tonian in the rotating wave approximation and the Lamb-Dicke limit as:

H′int =
N∑

j,l=1

~Ωj

2

[
σ

(j)
+ e−i(∆t−φ) + σ

(j)
− ei(∆t−φ) + iηjl(σ

(j)
+ e−i(∆t−φ) − σ(j)

− ei(∆t−φ))(ale
−iωzt + a†l e

iωzt)
]

(10.21)
Here, we applied ground-state cooling and prepared only the lowest frequency COM mode
in which the same phonon is shared among all ions in the crystal. In this regime, we can
implement a two-qubit gate using the common motional degree of freedom as a bus to
transfer conditional information among the ions. In the next sections, we describe how to
realize single-qubit gates, as well as two-qubit gates, in the ion-trap quantum computer.

10.2.4 Single-Qubit Gates

In Chapter 4.4, we discussed how all quantum operations can be broken down into a se-
quence of single qubit and two-qubit operations. A major advantage of trapped-ion quantum
computers lies in the fact that single-qubit operations are particularly easy to implement,
as well as to control through the use of resonant laser light. In fact, we can show that
any single-qubit operation corresponds to a rotation on the Bloch sphere and can thus be
realized as a Rabi oscillation between the two qubit levels using a resonant laser pulse. In
practice, such tuning of appropriate pulse parameters takes place at the control interface
given by an acousto-optical modulator (AOM) [DHL05].
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Consider a two-level system that starts out in some internal state |ψ〉 = cg |g〉 + ce |e〉
at time t = 0. Under a stationary Hamiltonian, the subsequent time-evolution after time τ
is governed by the unitary dynamics:

|ψ(τ)〉 = exp

(−iHτ
~

)
|ψ(0)〉 . (10.22)

Considering the stationary Hamiltonians HC ,H+ and H− from the previous section under
radiation of pulse length τ and respective detuning, we arrive at unitary dynamics which
induce the following rotations:

RC (θ, φ) = exp
(
−iθ/2 (σ+e

iφ + σ−e
−iφ)

)
(10.23)

R+ (θ, φ) = exp
(
−iθ/2 (σ+a

†eiφ − σ−ae−iφ)
)

(10.24)

R− (θ, φ) = exp
(
−iθ/2 (σ+ae

iφ + σ−a
†e−iφ)

)
, (10.25)

where the control parameters θ = Ωτ (or θ = Ωητ for the sideband evolution) and phase
φ determine the nature of the rotation. Note that the phase parameter φ of the laser at
the start of the interaction experiment is completely arbitrary but sets the reference for
all subsequent operations. We can identify the result of any of the above dynamics by a
rotation operator R(θ, φ) acting on |ψ〉 in terms of a rotation in the equatorial plane by φ
and a rotation θ in the vertical plane. For example, in the case of the carrier evolution, this
allows us to decompose the evolution as:

RC (θ, φ) = exp
(
−iθ/2 (σ+e

iφ + σ−e
−iφ)

)
(10.26)

= 1 cos θ/2− i(σx cosφ− σy sinφ) sin θ/2 (10.27)

=

(
cos θ/2 −ieiφ sin θ/2

−ie−iφ sin θ/2 cos θ/2

)
(10.28)

Thus, by fixing φ appropriately, we can now identify the following set of rotation operators
in the x and y plane:

Rx(θ) =

(
cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

)
(10.29)

Ry(θ) =

(
cos θ/2 − sin θ/2

sin θ/2 cos θ/2

)
(10.30)

In order to obtain Rz(θ), we can use a natural decomposition into rotations around the x
and y axis by writing Rz(θ) = Ry(

π
2 )Rx(θ)Ry(−π

2 ). Thus, rotations around the z axis are
given by the rotation operator:

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(10.31)

In fact, any unitary single-qubit operation U can be decomposed using the rotation oper-
ators above, as stated in Theorem 4.1. Consider, for example, a resonant pulse of length
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Ωτ = π which realizes a 180◦ rotation (up to an overall phase):

Rx(π) |ψ〉 = −iσx |ψ〉 . (10.32)

Another important gate is the Hadamard gate, which we can now realize as a π
2 -pulse in

the y-plane and write H = Ry(π/2). For example, given the initial state |g〉, we can easily
create an equal superposition by performing a Hadamard π

2 -pulse:

H |g〉 = Ry(π/2) |g〉 =
|g〉+ |e〉√

2
. (10.33)

Starting from an initial state |g〉, we can also prepare any pure state |ψ〉 on the Bloch sphere
(Figure 1) by an appropriate choice of control parameters θ = Ωτ and φ using the unitary
dynamics in Eq.(10.26):

|ψ〉 = cos

(
θ

2

)
|g〉+ eiφ sin

(
θ

2

)
|e〉 . (10.34)

If the laser is slightly detuned, we can repeat the analysis above for sideband rotations that
at the same time increase the vibrational modes. Notice that now the control parameters
are θ = Ωητ and φ.

10.2.5 Two-Qubit Gates

According to early work by David Deutsch [Deu89], a universal set of gates can be achieved
using single-qubit and two-qubit gates only. In the previous section, we introduced the
means to generate single-qubit operations under laser radiation and subsequent Rabi oscil-
lation. In order to describe a system of a linear chain of ions, each mutually coupled with
the Coloumb interaction, one has to adopt a Hamiltonian that includes total contribution
of all ions.

An early proposal for a two-qubit gate can already be found in the Cirac and Zoller
[CZ95] design of the ion-trap computer. The idea of the Cirac-Zoller-gate is the following:
A red sideband pulse onto the first ion transfers information from the atomic state into the
motional degree of freedom, conditioned on its state. Once the ion begins oscillating, it
affects the entire string of ions due to the strong Coulomb repulsion. Thus, the second ion
can now be addressed with operations that are conditioned on the motional state of the
first ion. Finally, another red sideband transition reverses the motional state and causes
the first ion to return to its original state. The procedure works as follows:

1. A laser beam tuned to the red sideband frequency ωeg − ωz and length θ = π is
focused on the first ion. Depending on the atomic state of the ion, a transfer into
the motional degree of freedom may occur. Consequently, if the ion starts out in the
ground state, no state transfer occurs due to the detuning. If the ion is in an excited
state, a phonon mode is created:

|g〉 |0〉 −→ |g〉 |0〉
|e〉 |0〉 −→ −i |g〉 |1〉 .
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Figure 19: ([CZ01]) The two-qubit Cirac-Zoller gate.

2. A second laser tuned to the red sideband frequency with duration θ = 2π is now
focused onto the second ion. This induces a 2π rotation between |g〉 |1〉 and an
auxiliary hyperfine state |a〉 |0〉. Note that the design of the transition is such that all
other states |g〉 |0〉, |e〉 |0〉, and |e〉 |1〉 are left untouched, as there is insufficient energy
to drive any of these levels. As a result, the following qubit operation is performed
at the second ion:

|e〉 |0〉 −→ |e〉 |0〉
|e〉 |1〉 −→ |e〉 |1〉
|g〉 |0〉 −→ |g〉 |0〉
|g〉 |1〉 −→ − |g〉 |1〉

3. A final laser beam tuned to the red sideband frequency ωeg − ωz and length θ = π is
focused on the first ion to remove the motional quantum and restore the first ion to
its original state.

|g〉 |0〉 −→ |g〉 |0〉
|g〉 |1〉 −→ −i |e〉 |0〉 .

In summary, the Cirac-Zoller gate performs the following two-qubit operation:

R
(1)
− (π, 0) R

(2)
− (2π, 0) R

(1)
− (π, 0)

|g〉 |g〉 |0〉 −→ |g〉 |g〉 |0〉 −→ |g〉 |g〉 |0〉 −→ |g〉 |g〉 |0〉
|g〉 |e〉 |0〉 −→ |g〉 |e〉 |0〉 −→ |g〉 |e〉 |0〉 −→ |g〉 |e〉 |0〉
|e〉 |g〉 |0〉 −→ −i |g〉 |g〉 |1〉 −→ i |g〉 |g〉 |1〉 −→ |e〉 |g〉 |0〉
|e〉 |e〉 |0〉 −→ −i |g〉 |e〉 |1〉 −→ −i |g〉 |e〉 |1〉 −→ − |e〉 |e〉 |0〉

The operation, as shown above, realizes the controlled-Z (CZ) gate. In the 2-qubit repre-
sentation, it can be written as a unitary matrix:

U =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (10.35)
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By using a Ramsey-type experiment with two additional single-qubit π/2 pulses, the CZ-
gate is easily turned into a CNOT gate, as follows:

=
H Z H

Figure 20: Using a CZ gate and two π/2-pulses that perform Hadamard gates, one can
construct a CNOT gate.

In the next section, we discuss recent implementations of many of the algorithms we
present in this thesis.

10.2.6 Quantum Algorithms with Trapped Ions

Ever since the first quantum algorithms emerged after Deutsch’s algorithm was first pro-
posed, many algorithms have in fact been implemented on a quantum computer. In this
respect, the ion-trap quantum computer still largely dominates all other architectures due
to its long coherence times, a fact we discuss in the next section. Deutsch’s algorithm
was first successfully implemented as early as 2003, using 40Ca+ ions [GHRL03]. Typical
fidelities on identifying the function classes exceeded over 0.9.

The most comprehensive report on the implementation of quantum algorithms up to
date was recently published by Monroe at al. at the University of Maryland [DLFL16].
Using a linear chain of five 171Yb+ hyperfine qubits, a programmable interface allows the
implementation of the Deutsch-Josza and Bernstein-Vazirani algorithm, Simon’s algorithm
and the quantum Fourier transform. It was highlighted in the publication that, compared to
other architectures such as the solid-state implementations, the ion-trap quantum computer
is more flexible since it is easy to program by external fields and can thus be reconfigured
to run any of the above algorithms.

Figure 21: ([DLFL16]) The Maryland ion-trap setup. A user-interface is provided that
allows versatile programming of a five-qubit ion-trap computer to run any algorithm.

– 88 –



Figure 22: ([DLFL16]) Decomposition of two-qubit gates. Here (a) refers to the CNOT
gate and (b) refers to the CP gate. In order to achieve two-qubit operations that are less
prone to errors, Monroe et al. adopt decompositions into multiple single-qubit gates prior
and after the two-qubit (XX)-gates based on Mølmer-Sørensen interactions [MS99].

The setup of the programmable ion-trap computer is as follows: At the top of the
hierarchy, we find a flexible interface that allows a user to program the specifications of the
desired algorithm. Here, a standard set of universal gates such as the Hadamard, the CNOT
or the CP gate are available for programming . In analogy to a classical compiler, a quantum
compiler translates these gates to a set of native gate instructions consisting of single-qubit
rotation pulses or two-qubit Ising-like gates due to Mølmer-Sørensen interactions [MS99].
All native gates are finally performed as external light pulses originating from the acousto-
optical modulator (AOM). In the usual setup, all ions are confined inside a linear rf-Paul
trap and cooled near their motional ground state using Doppler cooling. As a result,
the chain of ions freezes into a linear crystal, with equal spacing of around 5µm. Next,
the use of lasers and optical pumping achieves efficient state initialization, as described
in [OYM07]. All quantum gate implementations follow coherent rotations using Raman
transitions to drive both, atomic transitions, as well as vibrational transitions, in which
lasers are focused on all of the ions in the chain simulatenously. Thus, in order to address
ions individually, each Raman beam is split into a static array of beams processed at
the AOM, which then focuses the beams onto the individual ions. Measurement is the
result of driving transitions near 369nm of wavelength and simulatenously collecting state
dependent fluorescence from each ion. In practice, this is done by using a multi-channel
photo-multiplier tube (PMT). Thus, if the qubit is in the state |1〉, the laser is on resonance
and state-dependent fluorescence can be collected. Else, if the qubit is in the state |0〉, the
laser is sufficiently detuned and a dark state is observed.

At the bottom of the hierarchy, qubit operations are performed via pairs of Raman
beams from a single 355nm YAG mode-locked laser. Here, the single qubit rotations Rϕ(θ)

are performed by a Raman beat-note of defined amplitude, phase and duration at the qubit
resonance frequency ν0 = 12.642821GHz. As introduced in Section 10.2.4, θ describes the
rotation angle and φ is determined by the duration and phase-offset of the beat-note and is
programmed at the appropriate AOM channels. The two-qubit gates are performed using
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Figure 23: ([DLFL16]) A five-qubit implementation of the Deutsch-Josza (a) and
Bernstein-Vazirani algorithm (b).

Figure 24: ([DLFL16]) A five-qubit implementation of the quantum Fourier transform.

nearest-neighbour Mølmer-Sørensen interactions [MS99] (XX-gates), a more sophisticated
interaction for multi-particle entanglement which produces effective conditional dynamics
in order to realize two-qubit gates such as CNOT. Moreover, the Raman beat-notes are
tuned close to resonance ν0, yet slightly detuned down to ν0±νx by an offset νx, in order to
induce the necessary coupling. In addition to our previous discussion on single-qubit and
two-qubit gates, Debnath et al. used a modern variant of MS-interactions by decomposing
a CNOT gate into geometric phase gates, an approach that preserves the action of the
CNOT, yet allows for an efficient and less error-prone realization by using the collective
motion of the chain [MS99][HRB08].
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In an attempt to explore novel architectures towards more scalable ion traps, Fellek
et al. [FHM16] at the Georgia Institute of Technology have independently implemented
the Bernstein-Vazirani algorithm with a chain of 171Yb+ qubits using ion-transport in a
microfabricated planar surface trap. Similarly, the algortihm succeeded at determining the
unknown string with a success probability of 97.6%, for two ions, and 80.9% in the case of
three ions, using only a single oracle query. The gate implementations and optics are simi-
lar to the Maryland setup: Single qubit gates are performed using a laser at 355nm wave-
length driving Raman transitions. Two-qubit gates are also provided by nearest-neighbour
Mølmer-Sørensen interactions [MS99].

10.2.7 Decoherence and Sources of Error

In this section, we discuss decoherence mechanisms and error sources that drive imperfec-
tions in trapped ion quantum computation. Just like in classical computation, a bit flip
error |g〉 ↔ |e〉 in a quantum state is devastating. As in most quantum devices, these
errors typically occur during population inversion of the energy eigenstates of the system
due to photon absorption or spontaneous emission and propagate through all subsequent
computations. Thus, in any qubit manipulation requiring the use of lasers, there is some
probability of driving an unwanted transition to other electronic levels.

In practice, alkali-earth-like metals, such as 171Yb+, exhibit lifetimes of metastable
states at about 2 − 3s [OYM07], hence the coherence time of hyperfine states is several
orders of magnitude longer than the gate times ranging at microseconds. This fact makes
ion-trap quantum computers surprisingly resistant to memory errors. On the contrary,
external charge fluctuations in superconducting devices suffer considerably from bit-flip
errors.

In terms of operational errors, both the original Cirac Zoller proposal and the XX-
gates using nearest-neighbour Mølmer-Sørensen interactions are highly affected by popula-
tion changes due to motional heating. Electromagnetic background radiation at the trap
frequencies can create motional quanta that subsequently corrupt two-qubit operations.
For example, due to the collective motional degree of freedom of the ion chain and the
need for strict ground-state cooling, any two-qubit operation in the Cirac Zoller proposal
is significantly prone to highly correlated errors as a result of spontaneous emission or elec-
tromagnetic radiation. This suggests that independent noise models, such as in Section 4.8,
are non-physical in the context of an ion-trap architecture.

Phase flip errors are more subtle and have important fatal consequences in most quan-
tum computations, as demonstrated in the well known Ramsey experiment. The phase
evolution of a hyperfine state depends strongly on the magnetic field. A superposition of
two state evolves due to individual magnetic moments and thus experiences dephasing due
to energy fluctuations resulting from a fluctuating magnetic field. Typically, phase flips
occur if the rf-Paul trap exhibits voltage fluctuations at the trap electrodes. In fact, the
coherence time of ion-trap quantum computers is currently mostly limited by magnetic field
fluctuations in the order of just a few milliseconds [HRB08]. Due to the fact that 171Yb+

produces qubits with the same magnetic moment mF = 0, the ytterbium ion is a popular
choice to reduce dephasing effects.
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In order to address errors during large scale computations in the future, one strives
to adopt error correction, a procedure we discussed in Section 4.9. As one increases the
number of qubits in a linear ion-trap architecture, i.e. the size of the ion chain, the ad-
dressing of individual ions with focused lasers onto the chain becomes increasingly difficult
and complicates two-qubit operations with additional practical sources of error. Moreover,
growing mass of the ion chain also results in reduced coupling on the sideband transitions
through the Lamb-Dicke parameter.
In the next section, we shed light on the overall performance of the ion-trap architecture,
as compared to a solid-state device.

Figure 25: ([LMRD17]) Performance comparison between an ion-trap quantum computer
compared to a solid-state architecture when running the Bernstein-Vazirani algorithm and
Simon’s hidden-shift algorithm.
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10.3 Performance Comparison of Quantum Computing Architectures

In the previous sections, we described how new advances in quantum computing technol-
ogy made it possible to program algorithms from a high level user interface. To this date,
particularly the ion-trap and solid-state architectures have reasonably grown in maturity,
allowing for a variety of standard algorithms to be tested and evaluated for performance.
Recently, IBM has launched a public-access demonstration of a five qubit superconduct-
ing device that can be run via their Quantum Experience cloud service.4 Building up on
previous work at the University of Maryland [DLFL16], Linke et al. [LMRD17] from the
Monroe group put forward a state-of-the-art comparison between the two leading quantum
technologies, its own local ion-trap implementation vs. IBM’s superconducting transmons,
using the Quantum Experience platform. It was shown that, overall, the ion-trap quantum
computer currently achieves higher success probabilities over the solid-state implementation
from the IBM platform. Average success probabilities for running the Bernstein-Vazirani
algorithm ranged around 85.1% for ion-traps, and around 72.8% for the superconducting
device [LMRD17], see Figure 25. Particularly concerning gate times, noticable differences
were observed. Typical ion-trap gate times for single-qubit operations for an ion-trap com-
puter averaged at around 20µs and 250µs for two-qubit gates, while superconducting circuits
reached times of only 130ns and around 250 − 450ns, respectively. Overall, while current
solid-state devices feature vastly higher clock-speeds, the ion-trap currently shows substan-
tially higher absolute fidelities and longer coherence times. Nevertheless, the runner-up
technology of the solid-state architecture offers a substantial promise for scalability. It re-
mains to be seen which of the two architectures, if any, is going to establish itself as the
leading scalable quantum computing technology of the future.

11 Conclusion

In this thesis, we shed light on how quantum algorithms achieve promising speed-ups over
classical algorithms in the context of computational learning theory, even in the presence of
noise. As quantum computational supremacy has yet to be demonstrated for a well-defined
problem using only a few noisy qubits, the study of quantum learning remains a particularly
relevant area of research. For further reading on the current status of quantum computa-
tional supremacy, we refer to an article by Harrow and Montanaro [HM17]. For an overview
of recent progress in quantum learning theory, we refer to the survey by Arunachalam and
de Wolf [AdW17].

By investigating the limitations of quantum algorithms through the use of blinding,
we proposed suitable constructions for new notions of security under non-adaptive quan-
tum chosen-ciphertext attacks. The pursuit of useful quantum-secure classical encryption
schemes remains one of the key challenges in post-quantum cryptography. Therefore, fur-
ther research is now needed to investigate whether classical communication is ultimately
feasibile in a quantum world. Finally, for further reading on the current status of post-
quantum cryptography, we refer to a recent article by Bernstein and Lange [BL17].

4The IBM quantum experience platform can be found at https://www.research.ibm.com/ibm-q/
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12 Open Problems

Due to the fact that LWE is easy once algorithms receive quantum superposition access to
noisy samples on the secret string, it is tempting to explore circumstances in cryptogra-
phy under which such access is granted. While it is reasonable to assume that providing
such quantum access is ill-advised for public-key cryptography, it remains an open problem
whether there are other realistic scenarios. One possible direction to investigate is program
obfuscation, a recent breakthrough in cryptography which concerns the process of obscuring
software or code in order to preserve functionality, yet hide sensitive information on the
program itself with at most polynomial slowdown. An attacker in possession of a quantum
computer could, in principle, implement the obfuscated circuit and then query it in super-
position. Since indistinguishability obfuscation allows us to turn symmetric-key encryption
schemes into public-key encryption schemes [SW14], this could potentially open up a door
to providing quantum access to LWE samples in the context of the LWE-SKES.

Many of the classical notions of security are still widely unexplored in a quantum world,
making both quantum cryptography and classical quantum-safe cryptography a highly rel-
evant field of research. In 2016, Gagliardoni, Hülsing and Schaffner [GHS16] provided se-
curity standards of quantum indistuingishability under quantum chosen-plaintext-attacks
and proposed secure quantum encryption schemes for which such security notions can be
achieved. Further research is now needed to investigate secure constructions under a quan-
tum chosen-ciphertext attack, in particular regarding a quantum indistinguishability notion
of QIND-QCCA1. This indistinguishability setting naturally generalizes the QCCA1 learn-
ing phase we considered in this thesis to a now fully quantum challenge phase in which the
challenge ciphertext is also a quantum state. Thus, in the QIND-QCCA1 indistinguishability
game, both the learning phase and the challenge phase concern fully quantum communi-
cation. While many classical constructions for CCA2 security already exist, it also remains
an open problem to define a fully quantum notion of indistinguishability for QCCA2 that
allows for secure quantum encryption schemes.
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A Supplementary Material

Lemma A.1 ([Wil13]). Let ρ,σ ∈ D(H) be quantum states and consider any POVM
E = {Ei}i∈I . We define pi = tr[ρEi] and qi = tr[σEi] as the corresponding probability
distributions over measurement outcomes labeled by i ∈ I. Then, the statistical distance
between the distributions pi and qi is upper bounded by the trace distance between ρ and σ:

δ(pi, qi) ≤ δ(ρ, σ). (A.1)

Proof. Since ρ−σ is Hermitian, we can use spectral decomposition to find a set of orthogonal
vectors such that it is diagonalized:

ρ− σ =
∑
i

λi |i〉 〈i|. (A.2)

Furthermore, consider splitting the vectors in terms of positive and negative eigenvalues by
defining:

P :=
∑
λi≥0

λi |i〉 〈i|, Q :=
∑
λi<0

|λi| |i〉 〈i|. (A.3)

P and Q have orthogonal support and we can write |ρ − σ| = |P − Q| = P + Q, as the
absolute value of a Hermitian operator takes the absolute value of its eigenvalues. Let
E = {Ei}i∈I be any POVM. Then, it follows that:

δ(pi, qi) =
1

2

∑
i

|tr[Eiρ]− tr[Eiσ]|

=
1

2

∑
i

|tr[Ei(ρ− σ)]|

=
1

2

∑
i

|tr[Ei(P −Q)]|

≤ 1

2

∑
i

tr[Ei(P +Q)]

=
1

2

∑
i

tr[Ei|ρ− σ|]

=
1

2

∑
i

tr|ρ− σ|

= δ(ρ, σ),

as the POVM E requires that
∑

iEi = 1.

Lemma A.2 ([NC10]). Let ρ = |ψ〉 〈ψ| and σ = |φ〉 〈φ| be pure states. Then the trace
distance between ρ and σ can be expressed in terms of the fidelity:

δ(ρ, σ) =
√

1− F (ρ, σ)2 =
√

1− | 〈ψ|φ〉 |2. (A.4)

Lemma A.3 ([KL15], Markov’s inequality). Let X be a nonnegative random variable.
Then, for any a > 0:

Pr [X ≥ a] ≤ E[X]

a
(A.5)
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