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Bogoliubov Theorie von Quantenfluktuationen um den Horizont eines
akkustischen schwarzen Lochs in einem zweikomponentigen Bose Einstein

Kondensat

Wir betrachten eine einfache Realisierung eines Ereignishorizontes im Fluss eines eindi-
mensionalen, zweikomponentigen Bose Einstein Kondensates. Unsere Rechnungen
basieren ausschliefllich auf der mikroskopischen Bogoliubov Theorie fiir Bose Einstein
Kondensate, in der symmetrische und antisymmetrische Freiheitsgrade entkoppeln. Auf
die Gravitationsanalogie beziehen wir uns nur, um die akustische Metrik zu berechnen.
Wir untersuchen das Signal in der zwei-Punkt Dichtekorrelation, welches mit dem Ana-
log von spontaner Hawkingstrahlung assoziiert wird, in verschiedenen Konfigurationen,
in welchen ein Horizont nur in den antisymmetrischen Freiheitsgraden auftritt, wihrend
der Fluss in den symmetrischen Freiheitsgraden iiberall unter Schallgeschwindigkeit
bleibt. Explizite Berechnungen zeigen, dass das Hawkingsignal nur in den antisym-
metrischen Freiheitsgraden auftritt. Wir beobachten auch ein Hawking-artiges Korre-
lationssignal in einer Konfiguration, in welcher die Quasiteilchen eine effektive Masse
haben.

Bogoliubov theory of quantum fluctuations around acoustic black hole hori-

zons in a two component Bose Einstein condensate

We consider a simple realisation of an event horizon in the flow of a one-dimensional
two-component Bose Einstein condensate. Our calculations are completely based on
the microscopic Bogoliubov theory of dilute Bose Einstein condensates where symmet-
ric and anti-symmetric degrees of freedom decouple. Reference to the gravitational
analogy is only made to calculate the acoustic metric. We study the two-point density
correlation signal associated with the analogue of spontaneous Hawking emission in
several configuration, where a horizon only occurs in the anti-symmetric regime, while
the flow stays overall subsonic in the symmetric regime. Explicit calculations show
that the Hawking signal is only present in the anti-symmetric regime. We also find a
Hawking-like long-range correlation signal in a configuration, where the quasi-particles
have an effective mass.
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1 Introduction

Einstein’s theory of general relativity predicts that a sufficiently compact mass can de-
form spacetime to form a black hole, an object with such a strong gravitational field
that nothing, not even light, can escape from it once it has crossed its event horizon.
Therefore, for a long time black holes were considered to be totally ”black” and only
indirectly observable through the behaviour of matter orbiting around it outside the
horizon.

In 1974 Stephen Hawking showed [1, 2] that if one takes quantum mechanics into ac-
count, stationary black holes are no longer ”black” but emit a steady flux of thermal
radiation as if they where black bodies with a temperature inversely proportional to
their masses. Though due to the in general extremely high mass of a black hole this
temperature is many orders of magnitude smaller than the 2.7K of the cosmic microwave
background, making it virtually impossible to observe the Hawking signal. However be-
cause of the radiation black holes are expected to lose mass which would increase the
rate of emission. In his letter Stephen Hawking predicts the lifetime of a black hole to
be of the order 1071 (M/MQ)3 s [1], which is, for a black hole of solar mass, much longer
than the current age of the universe. But a much smaller black hole, formed by the fluc-
tuations in the early stages in the live of the universe [3], might exist. Such a primordial
black hole would have almost completely evaporated by today and the temperature of
its Hawking radiation would be high enough to be actually observable.

However, to this date Hawking radiation is unobserved in space. Yet in recent years the
possibility of creating analogue black holes in the lab and observing the Hawking signal
in this analogue models of gravity became very real.

In 1981 W. G. Unruh proposed an analogy between sound propagation in non-homogeneous
media and light propagation in curved space-times. He predicted, that in a transsonic
fluid flow a thermal spectrum of sound waves should be emitted. Indeed, the point of
transition from a subsonic upstream to a supersonic downstream flow acts on sound
waves as an analogue of an event horizon. If the flow remains stationary across such
a sonic horizon, one expects to obtain a thermal flux of phonons with a temperature

of kgT = hk/2m, where k is the gradient of the flow velocity evaluated at the hori-
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zon. Analogue to the arguments which lead to gravitational black-hole evaporation [2],
quantum virtual particles can tunnel out near the sonic horizon and are then separated
by the background flow. This gives rise to correlated currents emitted away from the
horizon, both inside and outside of the sonic black hole.

In [4] W. G. Unruh gives a nice colourful introduction to the acoustic analogy about
hyper-intelligent fish living in the oceans of Discwold, the location of Terry Pratchetts
Discworld series of novels. The waterfall at the edge of Discwordl is called Rimfall and
for the hyper-intelligent fish it was a boundary, a horizon, beyond which nothing could
be heard. The fish realised, that the screams of those who travelled to close to this
horizon, were infinitely bass shifted arbitrarily far into the future, though in no case
could anything ever be heard from beyond the horizon. W. G. Unruh actually first
used this analogy in a colloquium at Oxford University in 1972 to explain classical black
holes. Years later, in 1981, he realised that the equations of motion for sound waves and
those near a black hole are identical and that the quantisation of the sound waves would
produce thermal radiation just as Hawking had predicted for black holes [1]. Since then
many different setups that behave in the same way were proposed.

In the last decade sonic horizons have been realised in different experimental configura-
tions. In [5, 6] a dump hole configuration for surface waves on a tank of moving water
was realised and the observation of conversion of positive frequency waves into negative
frequency waves was reported. This can be considered as a classical analogue of the
Hawking effect [7]. Though note that in this case the Hawking radiation results from a
disturbance external to the system. Therefore the observed effect is a stimulated emis-
sion. Also among the experimental configurations where a sonic horizon was realised
are ultrashort pulses moving in optical fibers [8] or in a dielectric medium [9] and laser
propagating in a non-linear luminous liquid [10]. Other realisations of an acoustic event
horizon were proposed in theoretical works. For instance using a ring-shaped chain of
trapped ions [11], an electromagnetic wave guide [12], graphene [13, 14] or edge modes
of the filling fraction v = 1 quantum Hall system [15].

The specific implementation of the acoustic analogy using Bose Einstein condensates was
first proposed by Garay et al.[16], followed by many others [17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28]. In [29, 30, 31, 32] an exciton-polariton superfluid was considered, which is
a likely candidate for experimental observation in the near future. Dilute Bose Einstein
condensates have nice properties from the theoretical as well as the experimental point
of view. From the first, the equations of motion for the condensate and the phonons, as
well as the approximations they involve, are well understood [33]. And from the second,

the advances in the cooling and manipulation of ultracold atomic gases as well as the



control of their physical properties in the last years have been great. The realisation
of an acoustic horizon in the flow of a Bose Einstein condensate past an obstacle has
been reported in [34] and last year Jeff Steinhauer claimed he had observed quantum
Hawking radiation and its entanglement [35].

In [24, 36] two point density correlations have been proposed as an observable quantity
to identify the spontaneous Hawking emission. In contrast to the gravitational case, it
is possible in the analogy to extract information from the interior of an acoustic black
hole. Therefore measuring a correlation signal between the currents emitted inside and
outside of the black hole can give insight on the Hawking effect. This correlation signal
appears to be only slightly affected by the thermal noise [26] hence seems to be a more

efficient measure of the Hawking effect than direct detection of the Hawking phonons.

In this thesis we study the signatures of Hawking radiation in a two-component Bose
Einstein condensate. Such a system sustains two types of elementary excitations, both
with different long-wavelength velocities. This makes it possible to realise a unique
configuration, where a sonic horizon only occurs for one of the elementary excitations
but not for the other. We consider such a configuration for different sets of coupling
parameters. This gives us the opportunity to go beyond the usual Hawking effect of
massless phonons and consider a Hawking effect of massive particles.

Our calculations are based on a direct application of the standard Bogoliubov theory
of dilute condensates. A reference to the gravitational analogy is only made when we
derive the acoustic metric. To simplify matters we consider a step-like configuration
where the transition from the subsonic to the supersonic region happens on a very short
length scale. Despite the formally infinite surface gravity of this configuration, there is

still a thermal-like Hawking emission at a temperature fixed by the healing length.



2 Theoretical background

2.1 Bogoliubov theory of a two-component Bose Einstein

condensate with a background flow

Throughout this whole thesis we use a unit system with A = 1.
Two coupled Bose Einstein condensates in one spacial dimension can be described by

the Hamiltonian

ﬂf:/dx{ > ol [ge02+ vV@ —w) v,
=12 (2.1)
7 (g +ufuen) + Y Byl wiw}wj} ,

i,7=1,2

where V' (x) is an external potential, ;1 the chemical potential, J the tunnel coupling and
g;; are the inter and intra species coupling. We set g1 = goo = g and g15 = g2 = ag.
We also assume both component to have equal atomic mass m. The annihilation and cre-
ation operators ¢; 5 and ¢172 of the respective condensates fulfil bosonic commutation

relations

[0; (2,1) 9] (27,1)] = 66 (z — '), (2.2)

all others vanish.

A set of two coupled equations of motion for the condensates can be derived by using

the Heisenberg equation

i0,0; = [v;, H]. (2.3)

Adopting the Madelung representation, that is expressing the bosonic field operators in

terms of their real-valued density n () and phase 6 (z) fields, gives us
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Vi = \/ny (z)e?9i(®) (2.4)

where n; and 0 are required to obey the commutation relation [n; (z,t),0; (z’,t)] =

10,50 (. — ).

This leads to a set of four coupled equations of motion for n;,n,,0; and 65,

1 .
on,; = —E(‘)z [n;0,0;] +2J, /n;n; sin (91- — Hj), (2.5a)
1 02 m;, 1 2
0,0; = %W " om (0,0;)" — [V (z) — p 2.5)

Ty cos (6, — 0
+ ", COS(i— j)—gni—agnj,

with 4, j € {1,2} and @ # j.

As we are in the quasi-condensate regime, Bogoliubov theory is the way to go. We
therefor assume a smooth background for our fields and introduce small fluctuations on

them,

n; (x,t) = ng (z) + on,; (z,t), (2.6a)

K3

0, (x,t) = 0, (z) + 60, (z,1) . (2.6b)

We assume the backgrounds to be equal for both condensates, that is (ng), = (ng)

a’nd (90)1 = (90)2
With 6, (x) we also introduced the background flow of our system, which is defined as

2

v(z) = W. (2.7)

The background velocity is also equal for both components of our Bose gas.

Linearizing equations (2.5) we find in lowest order

1 1
[—%ag\/n*ﬁ S V(@) = (T + )+ (1 +a)n| yig =0, (28)
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which is the usual Gross-Pitaevskii equation with an additional kinetic energy term

%va due to the background velocity and a shifted chemical potential due to the tunnel

coupling J. We also find

9, [ngv] =0, (2.9)

which is the continuity equation.

For further calculations it is convenient to work in the decoupled symmetric (+) and

anti-symmetric (—) degrees of freedom,

66, + 86,

2 9
5n. = @ 56 = 56, — 66, (2.10b)

dn, = ong + dng, 50, (2.10a)

One should notice, that the linearised equations in the symmetric and anti-symmetric
degrees of freedom only decouple, because we chose a symmetric configuration with

my = my, (ng), = (ng),, etc. Without these assumptions the equations of the two

1
regimes would stay coupled.

In the symmetric degrees of freedom we find in first order

2
8,6n, = —0, |6n v+ :fax(m] , (2.11a)
9,60, = —v9,00. + -0 |nga, ()] =914 a)s (2.11D)
tOV = —V0 00, 277’L47’LO z | 0% ng 9 Q)on,, :

and for the anti-symmetric degrees of freedom we find

d,0n_ = —8. [on_v+ ;%awaa,} 4 2Jngd0_, (2.12a)

11 on_ on_
0,00 = —v0,60_ + %%813 [noax (”0)] — 2JK —29g(1—a)on_. (2.12b)
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We will now consider a region in which the condensate is homogeneous (with constant

ngy and v, and V () = 0). Then the solutions can be expanded in terms of plane waves

on, = Aetlbe—w.t) 60, = Bellkz—w.t) (2.13a)
on_ = Cetlkz—w.t) 80_ = Detlkz—w ) (2.13b)

where A, B,C and D are constant amplitudes. Substituting these into equations (2.11)
and (2.12) we find

 (w, — vk 4[5 k? A
) L ’L2<W+ v ) . [Qm ] — 07 (214)
i legm=k? + 290 (1 +a)] —i(w, —vk)) \ B
for the symmetric degrees of freedom and
i(w_ —v, k) [ka +2J] c\ _ 0 (2.15)
[5=k? +2J +2gny (1 — )] —i (w_ — v, k) D

for the anti-symmetric degrees of freedom. In order for these equations to have nontrivial
solutions the determinants of the matrices must vanish. This leads us to the dispersion

relations

(w, —vk)? = %kQ [Qink? + 2gng (1 + a)] : (2.16a)
(w_ —vk)® = [ank? + 2J] [;nk? +2gng (1 — ) + 2J} : (2.16Db)

The right sides of the dispersion relations (2.16) are just the standard Bogoliubov dis-
persion relation and the gaped dispersion relation respectively as we know it from a two
component Bose gas, while the left sides show an energy shift due to the background flow
of velocity v. They show the usual phononic behaviour in the low k limit and become
quadratic for large k. A non-zero tunnel coupling J # 0 can open a gap in (2.16b) and

modify the linear behaviour of small k.
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In general the dispersion relation can be written as [37]

0% = wg + ?k? + a,k* + ... (2.17)

where () is the frequency in the co-moving reference frame, wg is proportional to an
effective mass, c is the velocity of sound and a, are higher order corrections which go
beyond the hydrodynamic approximation.

With our dispersion relations (2.16) this gives us two different velocities of sound for the

symmetric and the anti-symmetric degrees of freedom, respectively

2 =20 17/ (2.18a)

(2.18b)

Following [38] we are now introducing the new variables 57;,1 = dn,/\/ng and 55(1 =
00,,/ny with a € {+, —}, to simplify the notation. Now the equations of motion (2.11)
and (2.12) take the compact form

~

[0, +V]on, = A, [I;T — Xa — 9o + gomo} 56 (2.19a)

a’

~

1 +~ ~
[0, + V)00, = —— [H + —x, + gno + Cagan,] on, (2.19b)

a

with A\, =4, x, = p+J — %va, ¢, = 3 for the symmetric degrees of freedom,
A =1Lx_=p—J— %va, (_ = —1 for the anti-symmetric degrees of freedom,
H= —5-02 4V (z) 4+ 2gng and V = a;” + vd,,. For a configuration with a constant
background velocity V simplifies to vd,.. One should also notice, that the above equa-

tions (2.19) also describe a normal one-component Bose gas with a background velocity
vior \y =2, x; =p— %va and (; = a = 0. By additionally setting v = 0 we would

get the usual equations for a single Bose gas at rest.

In order to diagonalize the second order Hamiltonian within the quasi-particle basis,

HE = wa 1o kb (2.20)
k
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we use the Bogoliubov expansion of the hydrodynamic variables [38, 39]

ong, (z,t) = = et wanty, 4+ (fF etwarpl | (2.21a)
; Ve S [ e ety (£, eiarh]]
k
00, (x,t) = 2\/12T S [fa e orthy, — (fa ) e orb]] . (2.21b)
a k

The operators ?)}; and ?)k correspond to the creation and annihilation operators for

bosonic quasi-particle excitations and fulfil bosonic commutation relations

I:’Z;k,/l;lz/:l - 5kk/7 (222)
all others vanish.

The modefunctions f= , relate to the normal Bogoliubov mode functions Ug , and v, g

by fcjf’ k= Ug,k £ Vg k- The normal mode functions Ug ke and Vg f are normalised by

dx ||u 2 o, P = +1, therefore the f* , normalise as
a,k a,k a,k

5 [ (500" e + Fas) (F0)] = %0 (2.23)

Putting the Bogoliubov expansion (2.21) into equations (2.19) gives us the equations for

the eigenfunctions f7 , and their corresponding eigenvalues €2, 4, of the excitations

+k +k
Qa k o = ”Ca - ’ (224)
" \Jak fa i

with Q, p =w, p +7V and

. _ 0 H —x, —gng + gang 9 95
= . ()
H— Xa +gn0 + Cagano 0

For an homogeneous condensate (with constant n, and v, and V (z) = 0) the solutions
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for the Bogoliubov modes are well known [38, 39]. In the symmetric regime we have

k2
[l =eRoFf =ethe — (2.26a)
\/|R€ QmQJr k)’
frp=ereF, = s, , (2.26b)

\/|Re Qk;Qi k:)

and in the anti-symmetric

Jr =R RT = etk 2m 2 , (2.27a)
VIRe (£ +27) 20 )|
fop=eRrF, =et ok (2.27b)

\/]Re 2o )|

with Qi,k :wi’k — vk.

We chose the normalisation factors ‘Re (2in k) ‘71/2 and ‘Re ((% + 2J) Q*,k)‘

such that the normalisation condition (2.23) also holds for complex k. It is easy to check

—~1/2

that real valued k will yield the usual expression as in [38, 39]

Now looking at the norm (2.23) we see that, as expected, states with a positive norm
correspond to the branch of the dispersion relation with a positive co-moving frequency,
while the negative norm states correspond to the branch with a negative co-moving fre-
quency. Furthermore for any positive norm branch with frequency w and corresponding
wavevector k, there is a negative norm branch with frequency —w and corresponding
wavevector —k. Thus by using both positive and negative norm states, we can replace
the sum over all wavevektors & in (2.21) by an integral over w, restricted to w > 0.

The transformation from k to w gives us an extra factor of | dk | in (2.21), which is just

10
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the inverse group velocity v, = Z—‘,‘;. Therefore our rescaled modefunctions are

L7
f1e(w)=e*mFf () = et 2 : (2.282)
s <ke>|\Re(Qaﬂie)\
fio(w) =eRPF, (w) = ethe® (2.28Db)

\/|u /M‘Re 2o )]

for the symmetric degrees of freedom and

f:g (w) = ezkﬂF‘L’ = etk kff 2 , (2.29a)
\/]v ()| | Re ( (QL 27) )

f= o (W) = ek P (w) = efhem . , (2.29b)
\/|v ()| [ Re (2’“7 27) )|

for the anti-symmetric ones. Where ¢ labels one of the four possible k-roots for a fixed
w. The rescaled operators are b, = Bkz (w)/ ’vg (kg)|-

The modefunctions now normalise to

L[ @) (e @)+ (fa @) (e )]

== :l:ék’k/(s (UJ — w’) .

(2.30)

2.2 The acoustic metric

After applying Bogoliubov theory on a mostly general configuration of a two-component
Bose gas with a background flow, we will now do a little excursion to analogue gravity.
In the single Bose gases usually used as an analogue space-time the equations describing
the propagation of long wavelength sound waves in the moving gas can be rewritten
in terms of a massless scalar field propagation in curved space-time with an acoustic
metric [40]. However, the two component condensate we are working with also holds

the possibility of investigating the analogue model of massive particles interacting with

11
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a scalar field in curved space-time since the gap in the dispersion relation in the anti-
symmetric degrees of freedom causes an effective mass. In this section we will derive the

two acoustic metrics occurring in our system.

In order to derive these we need to work in 3 spacial dimensions since the metric can not
be defined in only one spacial dimension. We also only consider our system on length
scales much larger then the healing length {, = ﬁ% such that the hydrodynamic ap-
proximation holds. In the hydrodynamic limit we only keep terms up to second order in

k. For our equations this means that we only keep first and second derivatives.

In the symmetric degrees of freedom the application of the hydrodynamic approximation
is pretty straight forward. Here it means that we can just neglect the quantum pressure
term [41], which is the second term on the right side of equation (2.11b). Thus equation

(2.11b) can be rewritten as

2
g(1+a)

2n
mc% WV 60, +0,80.].

on, =— WV 80, + 0,00, ]

(2.31)

Now inserting the above expression for én, into equation (2.11a) yields the wave equation

for the phase perturbations 66,

— (D, + Vpv) —

0 g _
= (8, +vV,) 00, +V, ( o vx59+) = 0. (2.32)

Following [41, 42] this can also be written in matrix form

8, (f+9,80,) =0, (2.33)

with

n —1 —vd

=22 I (2.34)
ct \—v* cf6% —v*?

Now the curved space-time d’Alembertian operator for a massless scalar field in a stan-

dard pseudo-Riemannian geometry is

0= \/1_—95% (V=99"7D,), (2.35)

12
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where g,,,, is the metric, g"” its inverse and g = det (guy).

By identifying

fHY = \/—g9"", (2.36)

we can rewrite equation (2.33) in the form of a curved space wave equation

0o, = 0. (2.37)
The definition (2.36) implies that
v al _né
det (f*)=y/—g —-=g=—5. (2.38)
g ¥
Thus the inverse acoustic metric is
1 (=1 7
g = o) (2.39)
nocy \ —v* 1% —v*v?

The acoustic metric itself (in the symmetric degrees of freedom) is now determined by

inverting gh"”

Gy = 0 (_ (¢ — %) _P.j) . (2.40)

c. —d §id

The acoustic line element can be expressed as

ng i . . .

ds? = . [—c2dt? + (do® —v'dt) 6, ; (da? —vidt)] . (2.41)
Now, for the anti-symmetric degrees of freedom the derivation of the acoustic metric is
a bit more tricky. To apply the hydrodynamic approximation we cannot just neglect the
quantum pressure term because by doing so we would also neglect some terms that are

second order in k. Therefore the first part of the calculations are a bit more lengthy here.

Rewriting equation (2.12b) such that dn_ is isolated on one side of the equation like we

did with equation (2.11b), is not possible here. Though we can rewrite it as

ng 11 on_
=_ . = (242
dn_ Yo —a) ) 0,60_ + vV ,66_ 2m g Va [novx ( e )” (2.42)

13
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Next we take the time derivative of equation (2.12b) and insert equation (2.12a). Now
using equation (2.42) on the resulting equation and thereby only keeping derivatives up

to second order gives us

— (B, + V0) =0 (9, + vV ,) 50_ + V, (@vmaa_)
mce m
ng (2.43)

As we did before in the symmetric degrees of freedom, this can also be written in matrix
form [37]

d,, (f*a,60,) —V =0, (2.44)

with V = —4-05 J (gng (1 —a) +J) and

pv — 20
/ c? (vi c26 vivj> . (2.45)

Now following the procedure above we can rewrite equation (2.44) as

(O—-V)é6_ =0, (2.46)
with V = \/‘ng- Note that V = nolciwg with w being defined in equation (2.17), is

2
. . 2 o {,AJO
effectively a mass with mZg = 2.

With equation (2.38) we can write down the inverse acoustic metric

po L1 —v’ (2.47)
9 _noc_ —vt 284 — iyl | .

and the metric itself

C

G = 0 (‘ (c2 - v?) —UJ) ‘ (2.48)

The acoustic line element in the anti-symmetric degrees of freedom can be expressed as

In summary we expressed the equation of motion for the phase fluctuations in our two-

14



2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate

component condensate in terms of a Klein-Gordon equation for a massless (in the sym-
metric regime and in the anti-symmetric regime with J = 0) or massive (in the anti-
symmetric regime with J # 0) scalar field propagating in a space-time described by the
metric g,,,,. This is the basic principle of analogue gravity!

However it is important to notice, that this analogue model is actually restricted to the

hydrodynamic approximation, that is to long wavelength sound modes.

2.3 Quantum fluctuations around a black hole horizon in a

two-component Bose Einstein condensate

2.3.1 Step-like background configuration

If the flow of a fluid contains a transition from an subsonic (v < ¢) upstream region (u) to
a supersonic (v > ¢) downstream region (d), the point where the flow becomes supersonic
behaves as an event horizon for sound waves [40]. We chose a setting where such a horizon
only appears in the anti-symmetric degrees of freedom, while in the symmetric degrees of
freedom the flow remains subsonic everywhere. By setting o (z) = «,,© (—z) + 40 (z)
and J (z) = J,0 (—z) + J 40 (x), where O is the Heavy-side step function, we achieve a
step-like structure with a possible horizon at x = 0. This gives us a configuration with
a uniform density n,, 4 = ng and velocity v,, 4, = v throughout the whole system which
satisfies the continuity equation (2.9). If we now choose for example «,, 4 and J,, 4 such
that

c_g<v<c_, <cp, <cyg (2.50)

we obtain a horizon in the anti-symmetric regime and an everywhere subsonic flow in the
symmetric regime. Of course it is also possible to find a configuration, where ¢, 4 <c, ,,
(a, > ag>1and J, ; # 0) or where there is also a horizon in the symmetric degrees
of freedom (just choose «,,, J,, and v such that ¢, , < c_,). Also a configuration
with an horizon only in the symmetric regime, while the anti-symmetric is completely
supersonic or subsonic (set ¢, ,, < v < ¢, 4 and choose J,, ; accordingly) is thinkable.
Though most of this configurations are only realisable for w # 0.

For now we will restrict ourselves to a configuration with a horizon in the anti-symmetric
and an everywhere subsonic flow in the symmetric-regime,

regime, c_ g < U < C_ 4,

v < C+,u7c+,d'

15



2 Theoretical background

2.3.2 Dispersion relations and the different k-roots

In the first section of this chapter we derived the dispersion relations for our condensates,
(2.16). As expected, the gapless dispersion relation is linear for small k, (k¢ < 1), and
approaches the quadratic dispersion of single particles for large k, (k€ > 1). Strictly

speaking the gravitational analogy is only valid in the linear regime.

Since equations (2.16) are both fourth order polynomials, there are four k-roots for any
w > 0. In the case of a subsonic background flow or no background flow at all and
rlin A0 Ky with 7 € {u,d}

having a positive norm and corresponding to propagating plane waves. The other two

a gapless dispersion relation there are two real roots k

roots are complex conjugates to each other and have negative norm. They correspond to
exponentially growing or decreasing evanescent waves. If the dispersion relation features
a gap, there exists a w* such that for any 0 < w < w* there are two pairs of complex

conjugate k-roots, while for w > w* there are again the two real roots k and k

rlin rlout
and the pair of complex conjugates.

In figure 2.1 we plotted the dispersion relation (2.16b) for a subsonic flow in the anti-
symmetric regime with (lower panel) and without (upper panel) a gap. The red dots,
and k Throughout the

whole thesis a mode labelled as ”"in” or “out” has a group velocity v, pointing towards

labelled as u|in and u|out, indicate the two real roots k ulout-

ulin
the horizon or away from it respectively. The darkorange dot labelled w* indicates the
minimum frequency below which only complex k-roots exist.

One should notice, that the dispersion relations (2.16a) in the symmetric regime would
look just like the one plotted in the upper panel of figure 2.1. However in the subsonic
downstream region one has to relabel the u|out-mode as d|in and the u|in-mode as d|out
respectively.

In any regime, the symmetric as well as the anti-symmetric, one should discard the
wavevectors corresponding to evanescent modes with Im (k,) > 0 in the upstream region
and the ones with Im (k,) < 0 in the downstream region, since they diverge for x — —oo
rleva With

r € {u,d} for a gapless dispersion relation and r € {ul,u2,d1,d2} for a gaped one

and x — oo respectively. The remaining complex modes will be labelled &

where ul,d1 indicate positive norm modes and u2, d2 negative norm modes.

In the case of a supersonic background flow and a gapless dispersion relation there exists a
and krllout

belonging

Q* such that for any 0 < w < Q* there are four real root. Two of them, k

rllin

belonging to the positive norm branch and the other two, k and k

r2|in r2|out
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate

subsonic flow
u|out ulin
3
0 .
3 ! ~.
1 S
1 ~
1 S
1 ~
] ‘\
1 AN
1 \
1 AY
1 AY
1 \\
. . ! . A Y
-1.0 -0.5 0.0 0.5 1.0
k&,
(a)

>
©
— O~
3 ’ —w* S <
~
1 ~
] RS
] AN
] N
] N
.
! N
! .
] .
] .
1 \
p \
-1.0 -0.5 0.0 0.5 1.0
k£~,u,
(b)

Figure 2.1: The Bogoliubov dispersion relation (2.16b) for the subsonic upstream region
of the anti-symmetric degrees of freedom without (upper panel) and with
(lower panel) gap. The positive norm branch is represented by a solid line,
the negative norm branch by a dashed line. Red dots indicate the two real

eigenmodes for a fixed w. Darkorange dots indicate the minimum frequency
w* for which real k-roots still exist.
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2 Theoretical background

supersonic flow
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Figure 2.2: The Bogoliubov dispersion relation (2.16b) for the supersonic downstream
region of the anti-symmetric degrees of freedom without (upper panel) and

with (lower panel) gap. The positive norm branches are represonted by a
solid line, the negative norm branches by a dashed line. Red dots indicate the
four real eigenmodes for a fixed w, darkorange dots the maximum (minimum)

frequency 2* below (above) which all four eigenmodes are real.
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate

to the negative norm branch. For any w > Q* there are again two real roots k
and krl\out?

relation for the anti-symmetric degrees of freedom is plotted in the upper panel of figure

rllin

and two complex ones of which one has to be discarded. The dispersion

2.2. Again, if we had a supersonic flow in the symmetric regime, the dispersion relation
would look just like the plotted one.

In the presence of a gap there are two possible cases. For a small gap, as plotted in
the lower panel of figure 2.2 the situation would be the same as in a gapless dispersion
relation. However for a large gap, it is quite different. In this case the dispersion relation
would look more like the one plotted in the lower panel of figure 2.1, which means there
exists an —Q* > 0 such that for any 0 < w < —0* all four k-roots are complex and for

any w > —* two real and to complex k-roots exist.

2.3.3 Matching conditions at the horizon

In our step-like configuration the condensates are homogeneous on both sides of the
horizon and the corresponding eigenmodes are well known to us, (2.26)-(2.29). However,
these eigenmodes are restricted to the upstream or downstream region of our system and
the true eigenmodes of the whole system are linear combinations of the channels in the
upstream and downstream regions with appropriate matching at the horizon at = = 0.
These matching conditions can be obtained by integrating the equations of motion (2.19)
about an infinitesimal interval around the horizon, [43]. This results in the following

generally valid conditions

(66, =0 (2.51a)
[v(sﬁa 10,40, 0, (2.51b)
m - x—0*
; _ 2.51
[5na]m_>0i 0, (2.51c)
Ly on il =0 (2.51d)
Ao 2m wa T e} T ‘

where the square brackets on the left side denote [] = =x[, o+ —*|; 0

Since we chose our background flow to have constant velocity v everywhere, the above
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2 Theoretical background

matching conditions simplify to

[66,] =0, (2.52a)
[0,.00,] =0, (2.52b)
[on,] =0, (2.52¢)
[0,0n,] =0 (2.52d)

By use of the quantisation (2.21) and defining

I, ()= (Jf:” (x)> , (2.53)

a,r (2)

and

_ ik, F;L, (l‘)
W 0 (z) = etk (F;j (x)) , (2.54)

the matching conditions can be rewritten for the modefunctions

, (2.55a)
(2.55b)

Here the index 7 indicates which side of the horizon is considered and is therefore
equal to either u or d. The index ¢ labels the eigenmodes of equation (2.24), that
is for instance for a gapless configuration in the anti-symmetric degrees of freedom
¢ € {ulin, ulout, uleva, d1|in, d1|out, d2|in, d2|out, d|eva}. So more precisely that means
I, , describes the excitations in the subsonic region and is a linear combination of
W, ulins Pa,ulout aNd @

a,ulevar

2.3.4 The scattering solution

Among all the possible combinations described in the above section 2.3.3, the most
remarkable ones are the scattering modes. These are modes originating from infinity

(either upstream or downstream) on a well defined ingoing mode, impinging on the
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate

horizon, and leaving again towards infinity as a superposition of the transmitted and
reflected outgoing modes.

It is intuitive to label these scattering modes according to their incoming channels u, d
in the symmetric regime and u,d1,d2 for the anti-symmetric regime. However, we al-
ready used these to label the individual ingoing and outgoing modes. Therefore, to avoid
confusion, we will use capital letters and denote the scattering modes as HE and Hf
in the symmetric regime and IIY,IIP! and 1122 in the anti-symmetric regime. Since
all these modes have different analytic expressions on each side of the horizon we will
additionally label them with u and d for upstream and downstream respectively.

In the following we will specify the expression for each of the scattering modes. Thereto
we consider the symmetric and anti-symmetric degrees of freedom separately, since, as
indicated by the decoupled equations of motion (2.19) and shown in [31, 32], an ingoing
mode in the symmetric (anti-symmetric) regime does not scatter into any outgoing mode

in the anti-symmetric (symmetric) regime.

We will first give the expressions of the scattering modes in the symmetric regime for an
overall subsonic flow. It is worth noticing that the following modes are the only possible
scattering modes as long as the flow remains subsonic.

For legibility, we did not display the z-dependence of the individual mode vectors I and

w in the following.

U mode, initiated by u|in in the symmetric regime

Uu _ + +,eva
H+,u - w+,u\in + Su,uw+,u|out + Su,u w+,u\eva’ (256&)
U _ gt +,eva
HJ“d = Sd,uw-ﬁ—,d\out + Sd,u w+7d‘eva. (256b)
. i
ulin '
:
PPN 1 PP
—V \/ \/ v, 1 \// \/ \/ —>
uleva ujout : d|out dleva

Figure 2.3: U mode, initiated by ulin in the symmetric regime.
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2 Theoretical background

D mode, initiated by d|in in the symmetric regime

D _ Q+ +,eva
H+,u - Su,dw+,u\out + Su,d w—&-,u\eva? (257&)
D _ =+ +,eva
H+,d - w—&—,d\in + dedw+,d|out + Sd,d w+,d|eva' (257b)
' .
' d|in
:
o 1 o
P AVAVAY i VAVAVASS
uleva ulout : d|out dleva

Figure 2.4: D mode, initiated by d|in in the symmetric regime.

In figures 2.3, 2.4 the two different scattering modes are displayed in a pictorial way. In
contrast to figure 2.1a where the evanescent modes cannot be represented, here they are
depicted as magenta wiggles.

The scattering coefficients, S;f?u, SZ;Z"a, S:{’u, etc. are determined by solving the two
(4 x 4) systems of linear equations (2.55). They are independent of x but depend on
w. Their square moduli ‘SZ Py ((,u)|2 give the transmission or reflection coefficient for an
(-ingoing mode at energy hw into an ¢’-outgoing mode at the same energy.

To ensure total energy conservation the S matrix

Shu Sy
St (w) = <S+’ Sf) : (2.58)
d,u d,d

)

is unitary and therefore has to fulfil the unitarity condition S* (SJr)Jr =1=(S")"s+.
The scattering coefficients corresponding to evanescent modes are not involved in energy

current conservation since the evanescent waves carry no current.

In figure 2.5 we plotted the scattering coefficients as a function of the frequency w,. As

2 2
expected, the transmission coefficients |S: d‘ and ’S:{ u‘ increase while the reflection

2
coefficients ‘Sg ’u’2 and ‘S; d‘ decrease with w,. The unitarity condition of the scat-
tering matrix imposes that the sum of these two coefficicents is always equal to unity.

The errors in our numeric calculations are smaller than 10~7.

We will now continue to give the expressions of the scattering modes in the anti-

symmetric regime with an subsonic upstream region and a supersonic downstream region.
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate
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Figure 2.5: Transmission and reflection coefficient for the symmetric degrees of freedom.
We used the parameters o, = 0.2, J,, 4 =0, v/c_,, =0.7and v/c_ ; = 3.
This gives us v/c, ,, = 0.572 and v/c, 4 = 0.448 in the symmetric regime.

2 2
‘S$7u| (‘Sz d‘ ) corresponds to the transmission of a u-ingoing (d-ingoing)

2

mode to a d-outgoing (u-outgoing) mode. |S$7u|2 <‘S§’d‘ ) corresponds to
the reflection of a u-ingoing (d-ingoing) mode into a u-outgoing (d-outgoing)
mode.

We assume a configuration with a gapless dispersion relation.
U mode, initiated by u|in in the anti-symmetric regime
U = - )
H—,u - w—,u\in + Su,uw—,u\out + Su,ivaw—,u\evaﬁ (259&)

Uu _ q— * _
Hf,d - Sdl,uw—,d1|out +©O (Q - w) Sd2,uw—,d2|out

out (2.59b)
+6 (w - Q*) d:u Wy, dlevar

ulin i dl|out d2|out
: ONNN= NNN/=
A 1
VIV V 1
uleva ujout : dleva

Figure 2.6: U mode, initiated by ulin in the anti-symmetric regime.
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2 Theoretical background

D1 mode, initiated by d1|in in the anti-symmetric regime

D1 _ — —,eva
H—,u - Su,dlw—,u\out + Su,dl W_ uleva>
nbL = + S5 +O(0—w) S,
—,d = W_ d1]in d1,d1™— d1|out W)Pa2,d1W%-, d2lout

£\ g—.eva
+@<W_Q> d,d1 %+, dleva*

d1|out d2|out

uleva ulout d1lin dleva

Figure 2.7: D1 mode, initiated by d1|in in the anti-symmetric regime.

D2 mode, initiated by d2|in in the anti-symmetric regime

D2 __ * — —eva

Hf,u =0 (Q - w) [Su,d2w7,u|out + Su,d2 W_ uleva] s
D2 __ * — _

7% =60 —w) [wf,d2|in + S31.d2%— d1jout T Sd2,d2w7,d2\out] .

d1lout d2|out

d2|in

uleva ulout

Figure 2.8: D2 mode, initiated by d2|in in the anti-symmetric regime.

(2.60a)

(2.60D)

(2.61a)
(2.61b)

As before, the three different scattering modes are displayed in a pictorial way in figures

2.6-2.8, where the evanescent modes are again depicted as magenta wiggles. Note that

for w < Q* the evanescent mode inside the black hole is replaced by the d2-outgoing

mode. Also the D2 scattering mode only exists for w < Q*. For w > Q* there are only

two scattering modes. This is taken care of in formulas (2.59)-(2.61) by the Heaviside

step functions © (2 —w) and © (w — Q).

For w > Q" the S matrix is again a 2 X 2 unitary matrix, just as in (2.58). However for

w < Q* the downstream evanescent mode has to be replaced by the d2|out mode and

the S matrix is a 3 X 3 matrix
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate

Suu Su.ar Su,d2
S™(w)=1|Sg1.u Sar,ar Sai.az |- (2.62)

Saz.w Saz,a1 Saz,d2

with a skew unitarity imposing the condition

(S s =n=8ns)", (2.63)

with a Bogoliubov metric n = diag (1,1, —1) inherited by the norm of the corresponding

plane-wave modes.

In figure 2.9 we again plotted the scattering coefficients as a function of the frequency

w_. For w_ > QF the reflection coefficients |S;7u|2 and |Sc_ll,d1‘2 and the transmis-
sion coefficients ‘551,u‘2 and ‘S;, d1‘2 recover the usual behaviour expected in wave
mechanics, they decrease and increase respectively with the frequency w_. Scattering
coefficients containing an d2-ingoing or d2-outgoing mode do not exist for w_ > * since
the negative norm d2-ingoing and d2-outgoing modes are only involved in the dynamics

for w_ < Q*. Remarkably, all the coefficients of the form ‘S;,dlf and S;’d2|2 diverge

at low w_. This is a signature of the occurrence of an event horizon for the low energy
modes. Low energy quasiparticles entering the system from the interior of the dump
hole, that is through the d1|in or d2|out channel, remain blocked at the horizon forever.
Despite the diverging scattering coefficients energy conservation is still ensured by the
skew unitarity of the scattering matrix.

Here too the errors in our numeric calculations are smaller than 10~7.

As shown in [31, 32, 26, 28] the scattering coefficients can by calculated analytically in

the low w limit.

Last we consider the scattering modes for the anti-symmetric degrees of freedom in the
presence of a horizon and a small gap in the dispersion relation. As we saw in figure 2.1b
there now exists an w* such that for any 0 < w < w* the outgoing mode in the upstream
region is replaced by a second evanescent mode. Also the U scattering mode only exist
for w > w*.

The explicit expressions of the scattering modes are given below.

25



2 Theoretical background
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Figure 2.9: Transmission and reflection coefficient for a u-ingoing mode (upper panel),
a d1-ingoing mode (middle panel) and a d2-ingoing mode (lower panel) on a
step-like dumb hole configuration for the anti-symmetric degrees of freedom.
We used the parameters o, = 0.2, J,, 4 = 0, v/c_,, = 0.7 and v/c_ 4, =
3. Coefficients involving a d2-ingoing or a d2-outgoing mode only exist for

w_ < Q.
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate
U mode, initiated by u|in in the anti-symmetric regime

w w* [wf ullin + Sul ul@— ullout + Su2 u17D ,u2|eva] ’ (264&)

= [Sdl w1@— d1jout T O (" —w) Sga 1T azjout

b (2.64D)
+®( Q)Sd ul Wi, d\eva]‘

ullin d1|out d2|out

u2|eva ul|out dleva

Figure 2.10: U mode, initiated by u|in in the anti-symmetric regime with a gaped dis-
persion relation.

D1 mode, initiated by d1|in in the anti-symmetric regime

P, =0 (w—w) S,y 1@
g , —,ulout
* wa . (2.652)
+ 0 (W' —w) Sul,d1@— ulleva + Sud, d1 % u2levar
2% = @ g1jin + Sa1,a1%,d1jout +© (2 —w) Sio a1@_ a2/ous (2.65b)
L0/ (=) ST, eva:

ul|out d1|out d2|out

u2|eva ulleva d1lin dleva

Figure 2.11: D1 mode, initiated by dl|in in the anti-symmetric regime with a gaped
dispersion relation.

D2 mode, initiated by d2|in in the anti-symmetric regime

HP,%}, :(—)(Q*_w) [@ (w_w*> Sl_Ll,dQW*,ullOut (2 66 )
.00a
+ © (W* - w) 51:16;3737 ulleva + S;’Qe,‘c/l;wf,umeva] ’

P2 = e (" —w) [w—,dQ\in +541,d2@— d1jout T S;Q,d2w—,d2\out] : (2.66b)
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ullout 1+ dllout d2|out
EVAVAVAY, T VAVAVAC S AVAVAVACS
u2|eva ulleva E d2|in

Figure 2.12: D2 mode, initiated by d2|in in the anti-symmetric regime with a gaped
dispersion relation.

Now, for w > w*, Q* the scattering matrix is again an 2 X 2 unitary matrix as in (2.58)
satisfying the usual unitarity conditions. For w* < w < Q* the scattering matrix becomes
a 3 x 3 matrix as in (2.62) with a skew unitarity condition as in (2.63). For w < w*, Q*

the scattering matrix is again a 2 x 2 matrix

S (w) = ( d1,d1 dl,d2> (2.67)

Sa2,a1 Saz,d2

though still with a skew unitarity imposing the condition (2.63) with a different metric
n = diag (1,—1), again inherited by the norm of the corresponding plane-wave modes.

In the case of 2" < w < w* only the D1 scattering mode would still exist and therefore
the scattering matrix would be reduced to S;; ;,. That means the d1 ingoing mode
would be completely reflected into the d1 outgoing mode. We are not interested in such
a configuration where no d2 modes exist anymore since the Hawking signal outside of
the black hole, as we will see later, originates in the d2 ingoing mode. For the same

reason we are also not interested in configurations with a dispersion relation with a large

gap.

In figure 2.13 we plotted the scattering coefficients as a function of the frequency w_.

2 2 .
ww| and ‘Sc_ll’d1| and the transmis-

Again for w_ > Q* the reflection coefficients |S

sion coefficients ‘551,u’2 and ’S; d1’2 recover the usual behaviour expected in wave
mechanics, they decrease and increase respectively with the frequency w_. Contrary to
the case with J,, ; = 0, see figure 2.9, scattering coefficients containing an u-ingoing or
u-outgoing mode only exist for w_ > w*. This is because in a gaped dispersion relation
there are only evanescent modes in the upstream region for w_ < w*. Still coefficients of
the form |S;d1‘2 and |Sz‘_,d2|2 with i € {d1,d2} diverge at low w_, again being a signa-
ture of the occurrence of an event horizon for the low energy modes. Though this time
we are actually considering quasiparticles with an effective mass. So for any w_ < w*
quasiparticles entering the system from the interior of the black hole, that is through

the d1|in or d2|out channel, are completely blocked at the horizon forever. Here again
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Figure 2.13: Transmission and reflection coefficient for a u-ingoing mode (upper panel),
a dl-ingoing mode (middle panel) and a d2-ingoing mode (lower panel)
on a step-like dumb hole configuration for the anti-symmetric degrees of
freedom with a gaped dispersion relation. We used the parameters o,, = 0.2,
Jyu/nog = 0,0001, v/c_,, = 0.7, v/c_ 4 =3 and J (ngg(l—a)+J) =
const.. Coefficients involving a d2-ingoing or a d2-outgoing mode only exist
for w_ < QF while coefficients involving a wu-ingoing or a u-outgoing mode
only exist for w_ > w*.
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energy conservation is ensured by the skew unitarity of the scattering matrix.

Here too the errors in our numeric calculations are smaller than 10~ 7.

2.3.5 Quantisation

We now expand the field operators 575@ and 55(1 (a € {+,—}) associated (in the Heisen-
berg representation) to the elementary excitations over the scattering modes.

For the symmetric degrees of freedom, or any overall subsonic system, this expansion is

on, (z,t) =
= T (2.68a)
Va2 | & w,z)e wth W, T twitp ,
/OmLE{EZJ;D}[f+L< ) @) + (.1 (@) ®)
80, (z,t) =
(2.68b)

NG —(w,z) et (W) — (F~ 5 (w, 7)) et (w
\ﬁ Le{u, D1}[f_’L( /@) by (w) = (fZ 1 (w,2)) by, ( )] (2.69Db)

f, ,p2 (W, T) emiwthl, (W) — (/= p2 (w, z)) ™ (W>] )

x\

Note that the cutoffs in the second integrals in (2.69a) and (2.69b) at Q* are due to the
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2.3 Quantum fluctuations around a black hole horizon in a two-component Bose Einstein condensate

Heaviside step functions in (2.61). In case of a gaped dispersion relation the integral
starts at w*, which is due to the Heaviside step function in (2.64).

The operators ?)E (w) and by, (w) are the creation and annihilation operators of an exci-
tation of energy hw in one of three (two) scattering modes U, D1 and D2 (U and D) in

the anti-symmetric (symmetric) regime. They obey the bosonic commutation relations

[bL (w),@};/ (w/)] =0y 0 (w—uw'), (2.70a)
[gz (OJ) ’52/ (w/)] =0= [BL (w) >BL’ (w/>] . (270b)

Also note that for the D2 scattering mode the role of the creation and annihilation oper-
ators is exchanged compared to the U and D1 scattering modes. That is a consequence
of the negative Bogoliubov norm of the d2 ingoing mode, from which the D2 scattering

mode originates.
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3 Density correlations

As first remarked in [24] and adopted in later works [26, 28, 31, 32, 36], the two point
density correlation function seems to be a highly promising tool for identifying acoustic
Hawing radiation.

In a two-component Bose gas the 2-point density correlation function for the symmetric

and anti-symmetric degrees of freedom is defined as

95:2) (T1,29) = <:n:|: (T1,t)ny <x2’t):>

= (ny (z1,t) ny (x2,8)) — (ny (24,1)) 0 (1 —25),

where we defined

ny (x,t) = 1 (2,8) ¥y (2,8) £ 95 (2, 1) Py (1) (3.2)

Comparing (3.2) with the definitions (2.6) and (2.10) gives us

n, (z,t) = 2ng (x) + /ng (x)57€+, (3.3a)
n_(z,t) =2v/ng (x)0n_. (3.3b)

3.1 Density correlations in the symmetric degrees of freedom

In the symmetric degrees of freedom the density correlation function gf) (z1,24) can be

written as

9 (w1, m5) = Ang +ng (60, (21,8) 00 (25,8)) — 2000 (27 —75), (3.4

where we used (3.3a). For convenience we drop the 4n2 term, which is just a constant,
and only consider the correlations of the fluctuations.

With the decomposition (2.68a) equation (3.4) can be recast into
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3.1 Density correlations in the symmetric degrees of freedom

(2) dw
9 (w1, w5) = 2ng o It (1, @9, w) = 2000 (z1 — x3), (3.5)
0
where it is convenient to split v, (;,25,w) and therefore gf) (x1,25) into a zero-

temperature term v, ¢ (71,7,w) and a thermal one v, ¢y, (z1,5,w):

T+ (71,79, w) = Y+,0 (71,79, w) + Y+,th (71, 29,w). (3.6)

Y+.,0 (71, 7o, w) and accordingly 9(+2)0 (x4, %4,w) only involves the zero-point fluctuations

of the in-going modes and stays finite even in the T' = 0 case, where the occupation

number N, (w) = @E (w) by, (w)> = 0. The zero-temperature contribution is
Vi,0 (T1,Tg,w) = Z fiL (z1) (fiL (xQ)) . (3.7)
Le{U,D}

The thermal contribution v, ¢y, (71,75, w) and accordingly gf)th (z4,25,w) vanishes in

the T"= 0 case since it includes the initial population N ; (w). It can be written as

Vi th (1, Tp,w) = Z [fi,L (1) (fi,L (1’2))* + (fj:,L (xl))*fi,L (502)} X
Le{U,D} (3.8)

X <BTL (w) by, (w)> .

In the following we will give the explicit expressions for v, o (z1,75,w), though for sim-
plicity, we will restrict ourselves to the case where z; and x4 are far from the horizon.

This allows us to neglect the evanescent contributions to (3.7).
1. Case: z; and z, are both deep in the upstream region, z,,7, < —§, ,,

2 .
e"bk’u\in(xlfxz)

(3.9)
+ ‘ i u\out‘2 eiku‘outmlixz)a
where we used
1S5l + |52,d|2 =1, (3.10)

which comes from the unitarity of the scattering matrix (2.58).
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3 Density correlations

2. Case: z is deep in the upstream region, x, deep in the downstream region,
xl << _§+7u and -:UQ >> §+7d

V4,0 (T1,79,w) =0, (3.11)

where we used

St (S5.) +854(S54) =0. (3.12)

3. Case: z; is deep in the downstream region, x, deep in the upstream region,
xl >> §+,d and .1'2 << _§+’u

V4,0 (T1,79,w) =0, (3.13)
where we used

*

Sdu (SZ,uy + 54,4 (Si,d) =0. (3.14)

4. Case: z; and z, are both deep in the downstream region, x,,z, > £, 4

2 .
elkd\m(m1_m2)

(3.15)

2 .
+ 1k glout(T1—
+ ‘F+ ‘ etfadl (1 2)7

,d|out

where we used

|S§,u’2 + \S;df = 1. (3.16)

Note that the above expressions for v, ¢ (71,25,w) would also be valid in the anti-

symmetric subsonic regime for a configuration with a gapless dispersion relation and in
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3.2 Density correlations in the anti-symmetric degrees of freedom

absence of a horizon.

In the case of a smooth background configuration, that is no step, the u|in mode would
correspond with the d|out mode and the ulout mode with the d|in mode respectively.
In such a homogeneous configuration where o has a constant uniform value and J = 0,

the zero temperature correlator (3.5) can be written as [31, 32]

2n T4 —T
gf) (x1,75) = =2F (’ ! 2’) ) (3.17)
£, £

with

1 = sin(2t2)
F(2)= 7TZ/O dti(l—l—ﬁ)g/r (3.18)

which is the expected correlation in a quasi-1D condensate [44]. Formula (3.17) is also
true for a smooth background configuration with a subsonic flow in the anti-symmetric

degrees of freedom with £, — £_.

However, for a step-like background configuration like ours, we see that the precise shape
of the correlator is affected, due to the fact that the value of the healing length &,
in the upstream region differs from £, ; in the downstream region. In figure 3.1 we
plotted the quantity £_ ., gf) (xq,25) /2ny in a configuration with a black hole only
occuring in the anti-symmetric regime, while the background flow stays subsonic in the
= 0.7 and v/c_ 4 = 3, which is
v/ey ,, = 0.572 and v/c, 4 = 0.448. The integration in (3.5) was performed numerically
and was cut off at 80Q* which corresponds to 8.968,, and 5.816p,. The shaded area

near the axis corresponds to the zone |x|,|ry| < 10£_ ,,, where our formulas are not

’u’

symmetric regime. We set a,, = 0.2, J,, 4 =0, v/c

—,u

valid. As expected, the correlator for the symmetric degrees of freedom is similar to
the short-range antibunching of a homogeneous configuration and shows no sign of the

Hawking signal.

3.2 Density correlations in the anti-symmetric degrees of

freedom

In the anti-symmetric degrees of freedom the density correlation function ¢'?) (z,,x,)

can be written as
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3 Density correlations
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Figure 3.1: Plot for the dimensionless quantity §,’uggr2)/2n0 with a,, = 0.2, J,, 4 =
0, v/ey ,, = 0.572 and v/c, 4 = 0.448. The shaded area near the axis
corresponds to the zone |z, |zo| < 10€_ .

9% (2y,05) = dng (00 (w1, ) n_ (w5,1)) — 2000 (2, — 5), (3.19)

where we used (3.3b).
With the decomposition (2.69a) equation (3.19) can be recast into

o
ng dw

g(_2) (r1,29) = 7/ 2—’)’_ (71,79, w) — 2040 (74 —5). (3.20)
0 ™

Again we split v (x,, x4, w) and accordingly ¢! (z,,z,) into a zero-temperature term
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3.2 Density correlations in the anti-symmetric degrees of freedom

Y_,0 (71,79, w) and a thermal one y_ y, (71,79, w). The zero-temperature contribution

1S

Yoo agw) = > (@) (Ff L @) + (FF pa(w1) £ pa (22), (3.21)

Le{U,D1}

and the thermal one is

’Yf,th ($1,$2,W): Z [fi_
Le{U,D1,D2} (3.22)

+ (7 (@) g ()] x (] () by, (@)

3.2.1 Density correlations with a gapless dispersion relation

In the following we will give the explicit expressions for y_ ¢ (21, Z5,w) for a configuration
with a gapless dispersion relation. Again we will restrict ourselves to the case where x

and x4 are both far from the horizon.

1. Case: z; and z, are both deep in the upstream region, z,, 7, < —§_ ,,

2 .
e"bku\in(xlfxz)

V-0 (1, Tg,w) = |Fj

,ulin
’ 2 5 (3.23)
+ O =) [Sa,0af [P g oo
+ c.c.} ,
where we used
S )+ |Sean| =10 —0) |5 4] (3.24)

which comes from the n-unitarity (2.63) of the scattering matrix (2.62).
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3 Density correlations

2. Case: z is deep in the upstream region, x, deep in the downstream region,

33‘1 << _gf,u and .1:2 >> gfzd

Y-,0 (T1,25,w) =
* .

O —w) [ Sya2 (Szr.a2) FY ot (FZ atjout) e (FutowsrEatone2)

. . ) (3.25)
+ S;,d2 (Sg2,d2) Fj,u|out (Fj,dQ\out> 61( ulout L1~ d2\out$2)
+ c.c.] ,
where we used
Suu (Sgl,u)* + 5, a1 (551,(11)* =0 (" —w)S, 42 (Sgl,d2)* ) (3.26a)
Suu (532,u)* + 5, a1 (552,(11)* =0 (" —w)S, 42 (552,612)* . (3.26b)

3. Case: z is deep in the downstream region, x, deep in the upstream region,

vy > €& g and vy K =€,

To obtain the expression for this case, it actually suffices to exchange the roles of z; and

T4 in the above formula (3.25).

OO —w) [ Sa1,a2 (S;,dQ)* Fj,dl\out (F_ﬁu\omy et (Fatou®1—Fujou2)

: oy 32D
- - + + 3 out L1~ Fylout L
+ Sd2,d2 (SU,d2> F—,d2\out (F—,u\out> e\ ! l ?

which can be also obtained by using the complex conjugate of the relations (3.26).
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3.2 Density correlations in the anti-symmetric degrees of freedom

4. Case: z; and x, are both deep in the downstream region, z,,75 > ¢,

7-,0 (71, 75,w) =

2 .
elk’dl\m@?l*wz)

+
+ ‘Ff,dl\in

2 .
+ ’F"‘ a1 t’ eZk?duout(Cﬁ*wz)
—,d1|ou

2 .
e—lkdz\in(gﬁ_g%)

+O (0 —w) [ |F*

2 .
| e,Lk:d2\out(z1_m2)j|

F+

2 .
| elkdl\out(xlixQ)
—,d1jout

2 .
— -+ ik (x1—xs)
+ ‘SdQ,dQ |F7,d2|out| etFazlout\T1 2

* * 3
d " + + 1 kdlou zl_deOu Lo
* SdlrdQ ( d2:d2> F*,dllout (Ff,d2\out) € ( our fout )

* * 3
d " + + 1 kd20u zl_kdlou Lo
+Sd2:d2( dl,d2) FZ asjout (F—,dl\out) e (et out %2)

+ecl,
(3.28)
where we used
[Sa1o|” +[Sa1a1] =110 —w)[Say ual"- (3.29a)
|S§2,u|2+‘552,d1‘2 :—1+‘532,d2|27 (3.29b)
e (Sa20) + 52001 (Sz2.ar) = a1 a2 (Szza2) (3.29¢)

and the complex conjugate of relation (3.29c).

In contrast to the symmetric degrees of freedom, the correlation signal for the anti-
symmetric degrees of freedom is not only modified because of the different healing
lengths §_ ,, and §_ ; in the upstream and downstream region respectively but also
new long-range correlations appear, which can be interpreted as emission of correlated
phonons. These correlated phonons are generated by quantum fluctuations and prop-
agate away from the horizon in the wu|out, d1|out and d2|out channels. In the low w
limit the velocities with which the phonons propagete away from the horizon can be
approximated by v

wlout = V= C_ s Vgijout = V€ g and Vggouy = v —C_ 4. Thus at
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3 Density correlations
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Figure 3.2: Plot for the dimensionless quantity §,’ug(,2)/2n0 with a,, = 0.2, J,, 4 =0,
v/e, ,, =0.7and v/c, ;= 3. The shaded area near the axis corresponds to
the zone |z,],[z4] < 10§_ . The straight lines correspond to the correlation
lines where the largest long-range signal is expected. The lime-green line
corresponds to the d2 — d1 correlations, the seagreen one to the u — d1
correlations and the lightblue one to the u — d2 correlations.

time ¢ after their emission, these phonons are respectively located at (v — c_,u)t < 0,
(v +ec, d) t > 0 and (v —c_ d) t > 0. Therefore we expect a correlation signal along
lines of slope (v—rc_ )/ (v+c_ 4) resulting from correlations between phonons emit-
ted along the u|out and d1|out channels, (v —c_ u) / (v — c_’d) for correlated phonons
emitted along the ulout and d2|out channels and (v—c_ 4)/(v+c_ 4) for correlated

phonons emitted along the d1|out and d2|out channels. We also expect a correlation
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3.2 Density correlations in the anti-symmetric degrees of freedom

signal along lines of inverse slope, which correspond to the exchange z; <= 5.

In figure 3.2 we plotted the quantity {_7ug(_2) /2nq in a configuration where a black
hole horizon only occurs in the anti-symmetric regime. We set a,, = 0.2, J,, 4 = 0,
v/e_,, = 0.7 and v/c_ ; = 3. The numerical integration was cut off at 80Q2*, which
corresponds to 8.968u, and 5.8164,. We only plotted the correlation functions for
|z1],[wo| > 106, that is the region, where equations (3.23), (3.25), (3.27) and (3.28)
are valid. The three slopes where we expected the largest long-range correlation signal
are marked by solid lines. The actual large-distance correlation lines correspond very

well to the expected ones.

ke

,U

006.00 0.05 0.10 0.15 ©0.20 0.25 0.30 0.35
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

kE—.a

Figure 3.3: Comparison of the slopes of the correlation lines in the low w limit with
the exact ratio of the k-dependent velocities for a gapless dispersion relation.
Approximated values are represented by dashed lines, exact values by straight
lines. The lower x-axis shows k in units of inverse healing lengths of the
downstream region, the upper x-axis shows k in units of inverse healing
lengths of the upstream region.

In figure 3.3 we compared Vulout /Udl\ouw Vulout /UdQ\out and Ud2|out/vd1\out in the low
w limit with their actual k-dependent values, where v, = dw/dk, with £ € {u|out, d1|out, d2|out}.
For small k they fit remarkably well, though for k = g:}d the deviation of the actual value

from the approximated one is 19.99% for vg4sjout/Va1jouts 28-39% for vy 6ut/Va2jous and
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3 Density correlations

2.84% for Uylout/Vdijout- Close to k™ = 3.4275:71 , which is the k corresponding to 2%,
the deviation is even larger. The nevertheless good correspondence of the approximated
locations of the largest long-range correlation signals indicates that the Hawking signal
is dominated by modes with small k, that is low w modes. This is due to the fact that
the transmission and reflection coefficients for a d1 or d2 ingoing mode diverge in the

low w limit as can be seen in figure 2.9.

Now we consider a configuration with a non-zero tunnel coupling J, but with a gapless
dispersion relation. This is the case, when 2gng (1 — o, 4)+2J,, 4 = 0 in the dispersion
relation (2.16b). This gives us

Ju.a =910 (@y q—1). (3.30)

The velocities of sound can now be written as

J —1
2, g =t I (@0 1) (3.31)

m m

In order for c_ ,, and c_ ;4 to be real valued, we need «,, 4> 1.

u
In figure 3.4 we plotted the quantity 5_’ug<_2>/2n0 in such a configuration. We set o, =
1.2, v/c; ,, = 0.7, v/c, 4 = 3 and calculated J,, 4 according to equation (3.30). The
numerical integration was cut of at 300", which corresponds to 0.585u,, 4. Again, we
only plotted the correlation function for |x4[, 75| > 10§_ . The low w approximation
of Vyjouts Vaijout aNd Vgojous leads to the same results as the above J,, 5 = 0 case.
Therefore the formulas for the slopes of the expected correlation lines are identical. In
the Plot we see, that the actual large-distance correlation lines again correspond very
well to the expected one.

Due to the fact that we chose v/c, , = 0.7 and v/c, ; = 3 just as in the above case,
figure 3.3 is also valid for our present configuration. So also in this case, the Hawking
signal is dominated by low w modes. Here too, the transmission and reflection coefficients

for a d1 or d2 ingoing mode diverge in the low w limit.

3.2.2 Density correlations with a gaped dispersion relation

In this section we will consider the density correlations of a configuration with a dis-
persion relation containing a small gap. The explicit expressions can be obtained by

replacing eachh u 11 exXpressions . . an . uwl and multi g eacn o
placing each u in expressions (3.23), (3.25) and (3.27) by ul and multiplying each of
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3.2 Density correlations in the anti-symmetric degrees of freedom
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Figure 3.4: Plot for the dimensionless quantity §,7ug(,2)/2n0 with a,, = 1.2, v/c, ,, =
0.7 and v/c, 4 = 3. J, 4 are calculated according to (3.30). The shaded
area near the axis corresponds to the zone [z4|, |r5| < 10_ . The straight
lines correspond to the correlation lines where the largest long-range signal
is expected. The lime-green line corresponds to the d2 — d1 correlations, the
seagreen one to the u — d1 correlations and the lightblue one to the u — d2
correlations.

them with © (w — w*). Expression (3.28) is the same for a gaped dispersion relation as
for a gapless.

Due to the gap the quasi-particles get an effective mass proportional to w, which is de-
fined in equation (2.17). Comparing equation (2.17) with the dispersion relation (2.16b)

gives us
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3 Density correlations

w(Q),u,d = 4Ju,d [gnO (1 - au,d) + Ju d] . (332)

)
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Figure 3.5: Plot for the dimensionless quantity §_ ,, g® /2ng with o, = 0.2, J,,/gng =
1074, v/e, , = 0.7 and v/c, 4 = 3. The shaded area near the axis cor-
responds to the zone |z,|,[r5] < 10£_ . The straight lines correspond to
the correlation lines where the largest long-range signal would be expected
in case of a gapless dispersion relation. The lime-green line corresponds to
the d2 — d1 correlations, the seagreen one to the u — d1 correlations and the
lightblue one to the u — d2 correlations.

The quasi-particles should have a constant effective mass throughout the whole system,

thus we require
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3.2 Density correlations in the anti-symmetric degrees of freedom

w = 4Ty, [gno (1= ay,) + ] = 4T 4 [gno (1 — ag) + 4] - (3.33)

The correlation signal in this configuration is modified because of the different healing
lengths §_,, and {_ ; in the upstream and downstream region respectively and also
long-range correlations are expected, which can be interpreted as emission of correlated
quasi-particles propagating away from the horizon in the u|out, d1|out and d2|out chan-

nels. Though this time the u|out channel only exists for w > w*.

In figures 3.5 and 3.6 we plotted the quantity {_ ,, g'?) /2n, for a configuration with a
gaped dispersion relation with o, = 0.2, v/c, ,, = 0.7, v/c, 4 =3, J,/gng =10"* and
J,./gno = 107° respectively. In both cases the numerical integration was cut off at 30Q*,
which corresponds to 3.349u,, and 2.170u, for figure 3.5 and to 3.362u,, and 2.180u, for
figure 3.6. Again, we only plotted the correlation function for |z,|, [z5| > 10£_ . Due
to the gap the above approximation for vy, |out, Va1jout a0d Vgajou 18 nOt valid anymore.
As can be seen in the plots, the slopes of the above approximation only correspond very
roughly to the actual signal. However we still find a Hawking-like signal.

In figure 3.7 we compare the vy out/Va1jouts Vujout/Va2jout a0 Vaojout/Vaijout i the
low w limit for a gapless dispersion relation with the actual k-dependent values for the
gaped dispersion relations. As expected the correspondence is not good in any case,
although it is a little bit better for the lower plot with J_,/gng, = 107°. This is
because J_ ,, — 0 would close the gap and restore figure 3.2.
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Figure 3.6: Plot for the dimensionless quantity ¢_ g /2n, with a,, = 0.2, J, /gng =
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107%, v/e, ,, = 0.7 and v/c, 4 = 3. The shaded area near the axis cor-
responds to the zone |z,|,[r5] < 10£_ . The straight lines correspond to
the correlation lines where the largest long-range signal would be expected
in case of a gapless dispersion relation. The lime-green line corresponds to
the d2 — d1 correlations, the seagreen one to the u — d1 correlations and the
lightblue one to the u — d2 correlations.



3.2 Density correlations in the anti-symmetric degrees of freedom
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Figure 3.7: Comparison of the slopes of the correlation lines in the low w limit as ex-
pected in a gapless configuration with the exact ratio of the k-dependent
velocities for a gaped dispersion relation. The above panel corresponds to
the parameters in figure 3.5, the lower panel to the parameters in figure
3.6. Approximated values are represented by dashed lines, exact values by
straight line. The lower x-axis shows k in units of inverse healing lengths of
the downstream region, the upper x-axis shows k in units of inverse healing
lengths of the upstream region.
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4 Conclusion

In this thesis we considered a one-dimensional two-component Bose Einstein condensate
with a background flow that is transsonic in the anti-symmetric degrees of freedom but
remains subsonic throughout the whole system in the symmetric degrees of freedom.
The point of the transition from a subsonic upstream region to a supersonic downstream
region acts as the sonic analogue of en event horizon. We found that in the symmetric
degrees of freedom the two-point density correlator is modified compared to the corre-
lator for a homogeneous configuration. This modifications only affect the short-range
correlation signal and are due to the different healing lengths on the upstream and down-
stream side of the horizon. The modifications in the symmetric degrees of freedom are
not affected by the horizon in the anti-symmetric degrees of freedom.

In the anti-symmetric degrees of freedom with no tunnel coupling there is another mod-
ification corresponding to long-distance correlations, which can be interpreted as the
emission of correlated phonons. Our predictions of the location of the strongest long-
distance correlation signals which appear as a consequence of the Hawking emission are
in good agreement with our numerical calculations. The fact that these correlation sig-
nals only appear in the anti-symmetric degrees of freedom but not in the symmetric ones
is an evidence that they are indeed intrinsically connected to Hawking radiation and re-
quire the occurrence of a horizon. In this configuration all our results are in accordance
with the results in [31, 32]. For a discussion about the experimental realisation of such
a configuration also see [31].

In a configuration with non-zero tunnel coupling J but a gapless dispersion relation,
the equations for the density correlation function are equal to the equations in the
configuration with zero tunnel coupling. The long-distance correlation signal are also
present in this configuration. Here, too, we find our numerical calculations to be in good
agreement with our predictions of the location of the strongest long-distance correlation
signals. However an experimental realisation of this configuration might be tricky since,
in order to keep the dispersion relation gapless, it is exactly at a phase transition.

The last configuration we considered was one with a gaped dispersion relation. This gap

gives our quasi-particles an effective mass which strongly affects the frequency range
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for which the long-distance correlation signals occur. Nevertheless if we choose our pa-
rameters such that w* < Q" we again find the characteristic Hawking-like long-distance
correlation signals. Though due to the effective mass of our quasi-particles it is not
possible to make a good prediction of the location of these correlation signals. So in
this configuration we find a kind of massive Hawking effect, which is not only interesting
from the gravitational analogy point of view.

In all three configurations we used a step-like background which is not at all realis-
tic. Though our approach can easily be extended for more experimentally realisable

configurations as has been done for a one-component Bose gas in [28].
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