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Abstract

In this thesis, we numerically study the emergence of structure in a (quasi) one-dimensional
spin-1 Bose-Einstein condensate after a sudden change of a Hamiltonian parameter,
which we call quench. We apply the Truncated Wigner Approximation to simulate
the equations of motion in presence of a trapping potential. We want to enable direct
quantitative comparison to experiments, peformed with 87Rb atoms confined in a longi-
tudinal cigar-shaped trap. We show, that it is essential to use a quasi one-dimensional
description of the dynamics by means of the non-polynomial Schrödinger equation which
includes excitations in the transversal direction of the trap. Setting the initial quantum
noise into single-particle eigenmodes of the effective potential leads to good agreement of
the dynamical timescales between simulations and experiments. In the limit of a small
depletion of the condensate, the dynamics is theoretically described by Bogoliubov the-
ory. Due to the sudden quench, unstable momentum modes are predicted. These are
populated by spin-changing collisions. The resulting characteristic structure size of the
system, associated with its spin domain size, can be observed in the transversal spin
direction with the help of the auto-correlation function. For short times, it fits well to
the Bogoliubov prediction. For later times we see deviations, which we attribute to an
effective change of the spin interaction strength.

Zusammenfassung

In dieser Arbeit untersuchen wir die Strukturentstehung in einem (quasi) eindimensio-
nalen Spin-1 Bose-Einstein Kondensat nach einer schnellen Änderung eines Parameters
im Hamiltonian, Quench genannt. Wir verwenden die Truncated Wigner Näherung, um
die Bewegungsgleichungen im Fallenpotential zu simulieren. Wir wollen einen direkten
quantitativen Vergleich mit Experimenten ermöglichen, die mit 87Rb Atomen, die in ei-
ner longitudinalen, Zigarren-förmigen Falle gehalten werden, durchgeführt werden. Wir
zeigen, dass es notwendig ist eine quasi eindimensionale Beschreibung der Dynamik mit-
tels der Nicht-polynomialen Schrödinger Gleichung, die Anregungen in der transversa-
len Fallenrichtung berücksichtigt, zu verwenden. Setzen des Anfangsquantenrauschens in
die Einteilchen-Eigenmoden des effektiven Potentials führt zu guter Übereinstimmung
der dynamischen Zeitskalen zwischen Simulation und Experiment. Im Limit geringer
Leerung des Kondensats, wird die Dynamik theoretisch durch Bogoliubov Theorie be-
schrieben. Aufgrund der schnellen Parameterveränderung sind instabile Impulsmoden
vorhergesagt. Diese werden mit spinverändernden Kollisionen besetzt. Die resultierende
charakteristische Strukturgröße des Systems, die mit seiner Spindomänengröße assoziiert
wird, kann in transversaler Spinrichtung mit Hilfe der Auto-Korrelationsfunktion beob-
achtet werden. Für kurze Zeiten passt diese gut zur Bogoliubov Vorhersage. Für spätere
Zeiten sehen wir Abweichungen, die wir einer effektiven Änderung der Spinwechselwir-
kungsstärke zuschreiben.
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1 Introduction

Because of the high degree of experimental control over the relevant system parameters,
ultracold quantum gases can be used as model systems for studying non-equilibrium
dynamics.
Especially Bose gases with spin degrees of freedom, which are called spinor Bose gases,
offer the great possibility to investigate different non-equilibrium phenomena as they
exhibit a wealth of phase transitions, that have been studied in [1, 2, 3].
After preparing the system in the many-body ground state of a certain Hamiltonian
parameter set, it can be driven out of equilibrium by changing one or several parameters
such that we end up in another phase with a different ground state. If a parameter is
changed instantaneously, we call it a sudden quench. Analysing the properties of spinor
Bose gases after performing a quench, the formation of topological defects [4] as well as
universal scaling in the dynamics [5] have been observed.
In spin-1 Bose gases, whose components are given by the three magnetic sublevels of
the F = 1 hyperfine manifold, two different meanfield ground states can be found in
case of antiferromagnetic interactions [6]. Depending on the quadratic Zeeman energy
q, which is proportional to the external magnetic field, the system is either in the polar
or the paramagnetic phase. By quenching from the polar into the paramagnetic phase,
instabilities are introduced by spin-changing collisions [2]. Exponential growth of the
corresponding unstable momentum modes leads to structure formation in the transver-
sal spin direction [1]. Analytical predictions for the unstable momentum modes on short
timescales are given by Bogoliubov theory [6, 7] only in case of zero trapping potential, i.
e. for a homogeneous system. As Bogoliubov theory considers small fluctuations around
a meanfield state, we expect it to break down at times where the fluctuations in the
system become macroscopically large.
To make analytical predictions for such a complicated many-body system is impossible
in presence of a trapping potential. Therefore numerical methods are needed to enable
quantitative comparisons to experiments performed with spin-1 Bose gases as the atoms
are confined in traps. If the important part of the dynamics takes place in the region of
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highly occupied modes, it has been shown that the time evolution is well described by
classical fields [8, 9, 10]. In this case the semi-classical Truncated Wigner method [10, 11,
12, 13] can be used to numerically study dynamical features of the system. The method
is based on evolving samples of classical fields, whose initial configuration is composed
of a meanfield state and quantum fluctuations, in time. Physical quantities are then
obtained by averaging these samples. Comparing numerical simulations in presence of
a trapping potential to simulations in a homogeneous setup, enables to directly identify
trap effects. To make reliable predictions for times beyond the Bogoliubov regime, it
is essential to investigate if the characteristic dynamics on short timescales, which have
also been observed in experiments [14], can be captured with such numerical simula-
tions.
In this work, we numerically study the emergence of structure at short times after a
sudden quench of the magnetic field in an antiferromagnetic spin-1 Bose gas in one spa-
tial dimension. As we expect the important part of the dynamics to take place in the
region of highly occupied modes, we apply the Truncated Wigner method to simulate
the equations of motion in presence of a trapping potential. We compare our results
to experiments performed by the group of Prof. Dr. Markus K. Oberthaler. In the ex-
perimental setup, 87Rb atoms are confined in a longitudinal cigar-shaped trap. Recent
experimental results, including the data we used for comparison, can be found in [14].
In chapter 2, we discuss the underlying theoretical concepts. As we aim to quantify
whether excitations in the transversal direction of the trap play a role in the experiment,
we consider two different descriptions of the system. Assuming a strictly one-dimensional
setting, where the system is transversally in the ground state, the time evolution is given
by the Gross-Pitaevskii equation (GPE). If we allow for excitations in the transversal
direction of the trap, we obtain that the system, which we call quasi one-dimensional,
is described by the non-polynomial Schrödinger equation (NPSE). Then we explain the
meanfield phase diagram and illustrate the notion of a sudden quench of the magnetic
field from the polar into the paramagnetic phase. Applying homogeneous Bogoliubov
theory leads to analytical predictions for the dynamics on short timescales.
In chapter 3, we describe the simulation methods. As we expect the important part of
the dynamics to take place in the region of highly occupied modes, we use the semi-
classical Truncated Wigner Approximation (TWA). The method leads to approximative
equations of motion for the Wigner function, which is the phase space representation
of the density matrix. Instead of evolving the Wigner function in time, we propagate
samples of classical fields whose initial probability distributions are given by the Wigner
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function. We find that the equations of motion for the fields within the TWA are
the Gross-Pitaevskii equations for one-dimensional and the non-polynomial Schrödinger
equations for quasi one-dimensional settings. The initial configuration of the fields is
composed of the initial meanfield state of the system and quantum fluctuations which
are sampled from the Wigner function of the vacuum. Thus the TWA allows for pre-
dictions beyond the meanfield approximation. We present two different approaches for
the sampling of the quantum noise. To perform the time integration of the equations
of motion, we discuss the Fourier split-step method. We determine the initial meanfield
state, which is the ground state in the polar phase, by means of imaginary time propa-
gation (ITP).
In chapter 4 we show results of comparing the emergence of structure at short times
after the sudden quench between simulation and experiment. To enable a quantitative
comparison, we first investigate whether transversal excitations are present in the ex-
perimental setup. We find that the quasi one-dimensional description by means of the
non-polynomial Schrödinger equation (NPSE) is the appropriate model to recover the
experimental dynamics. We pursue with introducing the transversal spin as a suited ob-
servable for analysing the dynamics on short timescales as Bogoliubov excitations occur
in the transversal spin direction. We then present how to mimic the experimental mea-
surement of the transversal spin. For direct quantitative comparisons of simulations to
the experiment, we analyse the auto-correlation function and the corresponding Fourier
spectra of the transversal spin for short evolution times. We present results of simula-
tions performed with two different samplings of the initial quantum noise. We find that
sampling the noise into the single particle eigenmodes of the effective potential for the
mF = ±1 components leads to good agreement between simulation and experiment for
some of the selected evolution times. Using the Fourier mode sampling, the structure
formation in the simulation is way faster than in the experiment. In addition, we com-
pare numerical simulations to the homogeneous Bogoliubov theory. For short times we
find that the data follows the Bogoliubov prediction in the quench parameter regime
−q > nc1. At later times we expect deviations. However, we find that the structure size
is again well described by Bogoliubov theory with a smaller spin interaction strength
nc1.
We conclude with an outlook on future projects concerning the properties of spinor Bose
gases at evolution times beyond the Bogoliubov regime.
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2 Theoretical concepts

As we aim to study non-equilibrium dynamics of trapped spin-1 Bose-Einstein conden-
sates (BEC) in (quasi) one-dimensional settings, we investigate the underlying theoreti-
cal concepts in this chapter. We start with the three-dimensional action functional of a
spin-1 Bose gas in order to derive the corresponding (quasi) one-dimensional description.
Assuming a strictly one-dimensional setting, where the system is transversally in the
ground state, the time evolution is given by the Gross-Pitaevskii equation (GPE). If we
allow for excitations in the transversal direction of the trap, we obtain that the system,
which we call quasi one-dimensional, is described by the non-polynomial Schrödinger
equation (NPSE). Performing simulations with both sets of equations of motion enables
to identify if transversal excitations play a role in experiments performed by the group
of Prof. Dr. Markus K. Oberthaler, where they study quench dynamics in 87Rb in the
hyperfine manifold F = 2. Since the mF = ±2 states are energetically tuned far away
by means of magnetic fields, they are not populated during the time evolution resulting
in a system being described by an effective spin-1 Hamiltonian. Thus we adapt our bare
spin-1 model to an effective description. With this at hand, we explain the accessible
meanfield phase diagram of the system. Thereto we discuss the initially prepared state
and the concept of a sudden parameter quench. We close the chapter by applying Bo-
goliubov theory to figure out the instabilities of the system emerging on short timescales
after the quench. These instabilities play an important role for the structure formation.

2.1 (Quasi) one-dimensional equations of motion of a
spin-1 BEC

For deriving the (quasi) one-dimensional equations of motion of a spin-1 BEC, we mainly
follow the approach presented in [15] and [16]. Assuming a strictly one-dimensional
setting, where the system is transversally in the ground state, the time evolution is given
by the Gross-Pitaevskii equation (GPE). If we allow for excitations in the transversal
direction of the trap, we obtain that the system, which we call quasi one-dimensional,
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is described by the non-polynomial Schrödinger equation (NPSE). In chapter 4, we
present results of simulations performed with both sets of equations of motion with
which we are able to identify if transversal excitations play a role in the above mentioned
experiment. We find that transversal excitations are indeed relevant in the experiment,
as the experimentally observed dynamics fits well to the results of NPSE simulations.

2.1.1 3D action functional

The three-dimensional action functional of a spin-1 BEC reads (summation over repeated
indices implied)

S =

∫
dt d~r

[
Ψ̂†
m

(
i~
∂

∂t
+

~2

2M
∇2 − Vext

)
Ψ̂m − Ψ̂†

mq
(
f 2
z

)
ml

Ψ̂l

−c0
2
Ψ̂†
mΨ̂

†
l Ψ̂lΨ̂m −

c1
2
Ψ̂†
l Ψ̂

†
j (fα)jk (fα)lm Ψ̂kΨ̂m

]
, (2.1)

where Ψ̂m(~r, t) and Ψ̂†
m(~r, t) are the bosonic field operators that annihilate and, re-

spectively, create an atom in the mth internal state at spatial location ~r and time t.
m = ±1, 0 labels the three magnetic sublevels of the F = 1 hyperfine manifold. M is
the mass of an atom and Vext(~r) denotes the external trapping potential. The quadratic
Zeeman energy q, which is proportional to the magnetic field, can be calculated using the
Breit-Rabi formula [17]. A sudden change of the magnetic field, which we call quench,
enables to study the non-equilibrium dynamics of the system. The linear Zeeman shift
is absorbed by transforming into the rotating frame of reference.
The interaction strengths c0 for the density-density coupling and c1 for the spin-spin
coupling are given by

c0 =
g0 + 2g2

3
, c1 =

g2 − g0
3

, (2.2)

where gi = 4π~2ai
M

with ai the s-wave scattering length of the symmetric spin channel
with total spin i [18].
fα=x,y,z are the spin-1 matrices, which can be written as

fx =
1√
2

0 1 0

1 0 1

0 1 0

 , fy =
i√
2

0 −1 0

1 0 −1
0 1 0

 , fz =

1 0 0

0 0 0

0 0 −1

 . (2.3)
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To gain further insight into the spin-spin coupling term, we write it explicitly as

2Ψ̂†
0Ψ̂

†
0Ψ̂1Ψ̂−1 + 2Ψ̂0Ψ̂0Ψ̂

†
1Ψ̂

†
−1 + 2n̂0 (n̂1 + n̂−1) + (n̂1 − n̂–1)

2 , (2.4)

where n̂m = |Ψ̂m|2 is the density operator of the mth component. The first two terms
describe spin-changing collisions (SCC) [2], i.e. two atoms in the mF = 0 component get
annihilated and a pair of atoms in the mF = ±1 components is created or vice versa.
The detuning of this process is given by the quadratic Zeeman energy q. The third term
leads to an energy shift proportional to the population and the last one gives rise to
spin-z domain formation for c1 < 0.
In the meanfield description, which introduces the order parameter ψm =

〈
Ψ̂m

〉
, we

write the action neglecting quantum fluctuations as

S =

∫
dt d~r

[
ψ∗
m

(
i~
∂

∂t
+

~2

2M
∇2 − Vext

)
ψm − ψ∗

mq
(
f 2
z

)
ml
ψl

−c0
2
ψ∗
mψ

∗
l ψlψm −

c1
2
ψ∗
l ψ

∗
j (fα)jk (fα)lm ψkψm

]
. (2.5)

In the experiment, the atoms are confined in a longitudinal cigar-shaped trap with the
trapping potential given by

Vext(~r) =
1

2
Mω2

‖x
2 +

1

2
Mω2

⊥r
2
⊥, (2.6)

where ω‖ = ωx is the longitudinal and ω⊥ = ωy = ωz is the transversal trapping fre-
quency with ω‖ � ω⊥.

2.1.2 Quasi 1D action functional

To derive the quasi one-dimensional action functional, we factorize the wave function
into a transversal and longitudinal part as

ψm(~r, t) = ψ⊥(~r⊥, σ(x, t))ψm(x, t), (2.7)

with the variational functions σ(x, t) and ψm(x, t). The transversal wave function is
equal for all three components and satisfies

∫
d~r⊥|ψ⊥|2 = 1. We further assume that it

has a weak time and x dependence such that ∂ψ⊥/∂t ' 0 and ∇2ψ⊥ ' ∇2
⊥ψ⊥.

Inserting equation (2.7) into equation (2.5), yields the effective quasi one-dimensional
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action functional

S =

∫
dt dx

[
ψ∗
m

(
i~
∂

∂t
+

~2

2M

∂2

∂x2
− 1

2
Mω2

‖x
2 − E⊥(σ)

)
ψm

−ψ∗
mq
(
f 2
z

)
ml
ψl − χ(σ)

c0
2
ψ∗
mψ

∗
l ψlψm

−χ(σ)c1
2
ψ∗
l ψ

∗
j (fα)jk (fα)lm ψkψm

]
. (2.8)

Here, ψm ≡ ψm(x, t), E⊥(σ) =
∫

d~r⊥ψ∗
⊥

[
− ~2

2M
∇2

⊥ + 1
2
Mω2

⊥r
2
⊥

]
ψ⊥ is the transversal

mode energy and χ(σ) =
∫

d~r⊥|ψ⊥|4 is the scaling factor of the nonlinear interaction.

2.1.3 Equations of motion

Applying the least action principle to equation (2.8) and inserting the spin-1 matrices
stated in equation (2.3), we obtain the following equations of motion

i~
∂

∂t
ψ1 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + q + E⊥ + χc0n+ χc1 (n1 + n0 − n−1)

]
ψ1

+ χc1ψ
2
0ψ

∗
−1, (2.9)

i~
∂

∂t
ψ0 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + E⊥ + χc0n+ χc1 (n1 + n−1)

]
ψ0

+ 2χc1ψ1ψ−1ψ
∗
0, (2.10)

i~
∂

∂t
ψ−1 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + q + E⊥ + χc0n+ χc1 (n−1 + n0 − n1)

]
ψ−1

+ χc1ψ
2
0ψ

∗
1, (2.11)

n
∂E⊥

∂σ
+
(c0
2
n2 +

c1
2
S
) ∂χ
∂σ

= 0, (2.12)

where S = 2ψ∗
0ψ

∗
0ψ1ψ−1 + 2ψ0ψ0ψ

∗
1ψ

∗
−1 + 2n0 (n1 + n−1) + (n1 − n–1)

2 contains the spin
terms, nm = |ψm|2 is the density of the mth component, and n =

∑
m nm is the total

density.
As in our case µ − E⊥ ' ~ω⊥, we use a Gaussian function with width σ as an Ansatz
for the transversal wave function in equation (2.7)

ψ⊥(~r⊥, σ(x, t)) =
1√
πσ

exp
[
− r2⊥
2σ2

]
. (2.13)
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Gross-Pitaevskii equation

In a strictly one-dimensional setting, the system is transversally in the ground state, i.e.
the width of the Gaussian function is fixed to σ(x, t) ≡ σ = a⊥ with the transversal
oscillator length a⊥ =

√
~/Mω⊥. The corresponding transversal mode energy and the

scaling factor of the non-linear interaction (see equation (2.8)) read

E⊥ = ~ω⊥, (2.14)

χ =
1

2πa2⊥
. (2.15)

Omitting the additive constant E⊥, which does not affect the dynamics, we obtain the
one-dimensional Gross-Pitaevskii equations (GPE)

i~
∂

∂t
ψ1 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + q + c1D

0 n+ c1D
1 (n1 + n0 − n−1)

]
ψ1

+ c1D
1 ψ2

0ψ
∗
−1, (2.16)

i~
∂

∂t
ψ0 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + c1D

0 n+ c1D
1 (n1 + n−1)

]
ψ0

+ 2c1D
1 ψ1ψ−1ψ

∗
0, (2.17)

i~
∂

∂t
ψ−1 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + q + c1D

0 n+ c1D
1 (n−1 + n0 − n1)

]
ψ−1

+ c1D
1 ψ2

0ψ
∗
1. (2.18)

The one-dimensional couplings are given in terms of the three-dimensional ones by

c1D
0 =

c0
2πa2⊥

, c1D
1 =

c1
2πa2⊥

. (2.19)

Non-polynomial Schrödinger equation

Allowing for transversal excitations in the system by using a variable width σ(x, t) in
equation (2.13), leads to the quasi one-dimensional description of the dynamics. In terms
of the transversal oscillator length a⊥, the transversal mode energy and the scaling factor
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of the non-linear interaction (see equation (2.8)) read

E⊥ =
~ω⊥

2

(
a2⊥
σ2

+
σ2

a2⊥

)
, (2.20)

χ =
1

2πσ2
. (2.21)

Plugging the results into equation (2.12) and solving for the width σ leads to

σ2 = a2⊥

√
1 + 2

(
ã0n+ ã1

S

n

)
≡ a2⊥

√
κ, (2.22)

where ã0 = a0+2a2
3

and ã1 =
a2−a0

3
are the effective scattering lengths deduced from the

couplings c0 and c1.
With this, we finally arrive at the non-polynomial Schrödinger equations (NPSE)

i~
∂

∂t
ψ1 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + q + E⊥ +

c1D
0√
κ
n+

c1D
1√
κ
(n1 + n0 − n−1)

]
ψ1

+
c1D
1√
κ
ψ2
0ψ

∗
−1, (2.23)

i~
∂

∂t
ψ0 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + E⊥ +

c1D
0√
κ
n+

c1D
1√
κ
(n1 + n−1)

]
ψ0

+ 2
c1D
1√
κ
ψ1ψ−1ψ

∗
0, (2.24)

i~
∂

∂t
ψ−1 =

[
− ~2

2M

∂2

∂x2
+

1

2
Mω2

‖x
2 + q + E⊥ +

c1D
0√
κ
n+

c1D
1√
κ
(n−1 + n0 − n1)

]
ψ−1

+
c1D
1√
κ
ψ2
0ψ

∗
1, (2.25)

where the transversal mode energy is given by E⊥ = ~ω⊥
2

(
1√
κ
+
√
κ
)

.
Since the correction factor 1/

√
κ leads to a non-polynomial structure of the equations

of motion, they are referred to as non-polynomial Schrödinger equations. Taking the
expression for the correction factor from equation (2.22), we observe that it depends
locally on the total density n and the spin term S. This gives rise to local corrections
to the couplings which affect the dynamics in a trapped system, where the density is
inhomogeneous.
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2.2 Effective spin-1 description
Going over to an effective spin-1 system, which describes the experiment, the interaction
couplings c0 and c1 have to be adjusted. For the hyperfine manifold F = 2 the interaction
part of the action reads [6]

− cF=2
0

2
ψ∗
mψ

∗
l ψlψm −

cF=2
1

2
ψ∗
l ψ

∗
j

(
fF=2
α

)
jk

(
fF=2
α

)
lm
ψkψm

− cF=2
2

2

1

5

[
(−1)2−mψ∗

mψ
∗
−m
] [
(−1)2−lψlψ−l

]
, (2.26)

where fF=2
α are the spin-2 matrices, m = ±2,±1, 0 denotes the five magnetic sublevels

of the F = 2 manifold and the couplings are given by

cF=2
0 =

4g2 + 3g4
7

, cF=2
1 =

g4 − g2
7

, cF=2
2 =

7g0 − 10g2 + 3g4
7

. (2.27)

Neglecting terms containing contributions from the mF = ±2 components and rearrang-
ing the remaining ones in the form displayed in equation (2.5), we obtain the effective
spin-1 interaction part

− ceff
0

2
ψ∗
mψ

∗
l ψlψm −

ceff
1

2
ψ∗
l ψ

∗
j (fα)jk (fα)lm ψkψm, (2.28)

where m = ±1, 0 denotes again the three sublevels of the F = 1 manifold, fα are the
spin-1 matrices and the effective couplings read

ceff
0 = cF=2

0 +
cF=2
2

5
=

7g0 + 10g2 + 18g4
35

, (2.29)

ceff
1 = 3cF=2

1 − cF=2
2

5
=

12 (g4 − g2) + 7 (g2 − g0)
35

. (2.30)

As cF=2
2 is a small contribution, we find that in the effective spin-1 description the density-

density coupling just changes slightly corresponding to the F = 2 value. However, the
spin-spin coupling is about three times larger, which leads to a different timescale for
the emergence of spin structures during the time evolution.
In section 4.1 we apply equation (2.29) and (2.30) to calculate the couplings for the
experimental parameter set. After converting them into the associated one-dimensional
quantities with equation (2.19), we use the effective couplings in the equations of mo-
tion to perform simulations in a strictly one-dimensional setting (equations (2.16) -
(2.18)), where the system is transversally in the ground state, as well as in the quasi
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one-dimensional regime (equations (2.23) - (2.25)), where we allow for transversal exci-
tations in the system.

2.3 Phase diagram
To obtain the phase diagram of the effective spin-1 Bose gas, we first calculate the
meanfield ground states of the system. Starting from equation (2.5), the meanfield
energy functional is

E =

∫
d~r
[
ψ∗
m

(
− ~2

2M
∇2 + Vext

)
ψm + ψ∗

mq
(
f 2
z

)
ml
ψl

+
c0
2
ψ∗
mψ

∗
l ψlψm +

c1
2
ψ∗
l ψ

∗
j (fα)jk (fα)lm ψkψm

]
. (2.31)

We consider a uniform system with fixed number density n and write

ψm =
√
nζm, (2.32)

where we have introduced a normalized spinor ζm. In this notation the energy per
particle, neglecting the kinetic term and the external potential, can be written as [6]

ε =
∑
m

qm2|ζm|2 +
1

2
c0n+

1

2
c1n|f|2, (2.33)

with the spin expectation value per particle f = ζ∗m (f)ml ζl.
Since c1 > 0 in the effective description of the experimental system, we only discuss
this part of the phase diagram. For q > 0 the energy per particle is minimized by the
polar state ψ ∼ (0, 1, 0)T , whereas in the case q < 0, the system is in the paramagnetic
phase where the ground state is ψ ∼ (1, 0, 1)T . Both have zero mean magnetization.
The corresponding phase diagram is shown in Fig. 2.1. We study non-equilibrium
dynamics by performing a sudden quench of the magnetic field, which is proportional to
the quadratic Zeeman energy q, from the polar into the paramagnetic phase. By means
of the quench, instabilities are triggered in the system as the initially prepared polar
state is not the ground state anymore.
To get predictions for the resulting short time dynamics of the system, we consider small
fluctuations around the initial meanfield ground state in the polar phase. To calculate
the underlying excitations of the system, we apply Bogoliubov theory.
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Paramagnetic ψgs ∼

 1
0
1

 Polar ψgs ∼

 0
1
0



q

c1

Quench

Figure 2.1: Phase diagram of the meanfield ground states in the effective spin-1 system
with c1 > 0. For the quadratic Zeeman energy q > 0 (red area) the system is
in the polar phase, whereas for q < 0 (green area) it is in the paramagnetic
phase. The phase transition in between is of first order. For each phase the
single particle energy level scheme of the three magnetic sublevels is depicted.
Quenching the magnetic field, which is proportional to the quadratic Zeeman
energy, from the polar into the paramagnetic phase allows for spin-changing
collisions as the side modes are energetically lowered.

2.4 Bogoliubov theory
The dynamics on short timescales, where we only have small fluctuations around the
above discussed meanfield ground state, is expected to be described by Bogoliubov
theory. Therefore we expand the Hamiltonian of the system up to second order in the
fluctuations. Then we perform a Bogoliubov transformation in order to diagonalise the
resulting Hamiltonian. This procedure leads to the energy spectra of the excitations in
the system which allow for identifying unstable modes. In the following we only briefly
review the important steps of the calculation done in a spatially homogeneous system,
where we get analytical expressions for the energy spectra. A detailed derivation can
be found in [6] and [18]. At the end of this section we discuss the applicability of the
homogeneous Bogoliubov theory for the trapped system we are looking at in this thesis.
We consider a spatially homogeneous system by setting the external potential to zero.
We expand the field operators into plane waves as

Ψ̂m =
1√
Ω

∑
k

âk,me
ikx, (2.34)
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where Ω is the volume of the system and âk,m is the Bosonic annihilation operator in
mode k and magnetic sublevel m.
To expand the Hamiltonian up to second order in the fluctuations, we perform the
following steps:

1. Insert the plane wave expansion into the one-dimensional Hamiltonian

Ĥ =

∫
dx
[
Ψ̂†
m

(
− ~2

2M

∂2

∂x2

)
Ψ̂m + Ψ̂†

mq
(
f 2
z

)
ml

Ψ̂l +
c0
2
Ψ̂†
mΨ̂

†
l Ψ̂lΨ̂m

+
c1
2
Ψ̂†
l Ψ̂

†
j (fα)jk (fα)lm Ψ̂kΨ̂m

]
. (2.35)

2. Perform the integration over the spatial coordinate x by introducing the relation
δk,k′ =

1
Ω

∫
dx ei(k−k′)x. Use this relation, which is a momentum conservation con-

dition, to eliminate one of the Fourier sums in the Hamiltonian.

3. Replace the operator â(†)0,0 by a c-number
√
N (with total atom number N) since

the k = 0 mode in the mF = 0 component is macroscopically occupied in the
initial Bose-condensed state in the polar phase. This is only valid in the limit of
small depletion. All other operators â(†)k 6=0,m are retained up to second order in the
Hamiltonian.

4. Introduce operators which describe the fluctuations in transversal spin direction

âk,fx =
1√
2
(âk,1 + âk,−1) , âk,fy =

i√
2
(âk,1 − âk,−1) . (2.36)

We end up with [6]

Ĥ(2) =
Ωn2c0

2
+
∑
k 6=0

 (εk + nc0) â
†
k,0âk,0 +

nc0
2

(
â†k,0â

†
−k,0 + âk,0â−k,0

)

+
∑

f=fx,fy

{
(εk + q + nc1) â

†
k,f âk,f +

nc1
2

(
â†k,f â

†
−k,f + âk,f â−k,f

)} , (2.37)

where εk = ~2k2/2M and n = N/Ω denotes the particle density.
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By means of a Bogoliubov transformation with

b̂k,0 =

√
εk + nc0 + ωk,0

2ωk,0
âk,0 +

√
εk + nc0 − ωk,0

2ωk,0
â†−k,0, (2.38)

b̂k,f =

√
εk + q + nc1 + ωk,f

2ωk,f
âk,f +

√
εk + q + nc1 − ωk,f

2ωk,f
â†−k,f , (2.39)

where f = fx,y, the diagonalized Hamiltonian reads

Ĥ(2) =
∑
k 6=0

[
ωk,0b̂

†
k,0b̂k,0 + ωk,fx b̂

†
k,fx

b̂k,fx + ωk,fy b̂
†
k,fy

b̂k,fy

]
+ const. (2.40)

The eigenenergies of the modes are given by

ω2
k,0 = εk (εk + 2nc0) , (2.41)

ω2
k,f = (εk + q) (εk + q + 2nc1) . (2.42)

As the time evolution of such modes is proportional to e−iωkt/~, imaginary eigenenergies,
respectively ω2

k < 0, lead to exponential growth of the corresponding modes.
Both dispersion relations normalized to the spin interaction strength nc1 are depicted in
Fig. 2.2. The dispersion given by equation (2.41) is gapless and has no unstable modes.
It describes density excitations in the system. In contrast, the degenerate spectra of
the transversal spin excitations (equation (2.42)) exhibit unstable modes for q < 0.
Depending on the magnitude of q compared to nc1, there are three different instability
regions. Each spectrum of the transversal spin excitations in Fig. 2.2 belongs to one of
these regions. Their upper momentum bound is given by kub =

√
2Mq/~2. In case of

−q > 2nc1, the lower k modes are no longer unstable which give rise to an additional
lower bound of the instability region. The most unstable mode, which corresponds to
the minimum of ω2

f , is either

kmu = 0 for 0 < −q < nc1, (2.43)

or
kmu =

√
−2M (q + nc1) /~2 for − q > nc1. (2.44)
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−1
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ω
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ω2
0

ω2
f at q = -0.5 nc1

ω2
f at q = -1.5 nc1

ω2
f at q = -2.5 nc1

Figure 2.2: Bogoliubov dispersion relations for density excitations (ω2
0) and transver-

sal spin excitations (ω2
f ) normalized to nc1. For values below the dashed

line the corresponding momentum modes are unstable. The density ex-
citation spectrum is gapless and has no unstable modes. The degener-
ate spectra of the transversal spin excitations exhibit unstable modes for
q < 0. The coloured graphs illustrate the three different instability regions.
The most unstable mode is either kmu = 0 for 0 < −q < nc1 (blue) or
kmu =

√
−2M (q + 2nc1) /~2 for −q > nc1 (green, red). In case of −q > 2nc1

(red), the lower k-modes are no longer unstable. The dotted line at ω = nc1
is related to the maximal growth rate of unstable modes.

The associated growth rates of the most unstable modes are given by

γmu = Im
(
ωkmu,f

)
= Im

(√
q (q + 2nc1)

)
for 0 < −q < nc1, (2.45)

γmu = Im
(
ωkmu,f

)
= nc1 for − q > nc1. (2.46)

In section 4.2 we compare the predicted growth rates of unstable modes with simulations
performed without external potential as a consistency check.
We expect the homogeneous Bogoliubov theory to be applicable for studying the most
unstable momentum modes in the quench parameter regime −q > nc1 in presence of
a trapping potential because we are dealing with a many mode system due to a small
longitudinal trapping frequency ω‖. In section 4.5 we show that the most unstable mo-
mentum modes extracted from numerical simulations performed in a trapping potential
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are well described by the homogeneous Bogoliubov theory for −q > nc1. For quench
parameters in the regime 0 < −q < nc1 we expect deviations from the homogeneous
prediction as there is no mode with zero momentum in the trap. In section 4.5 we indeed
find that the emerging structure is related to the lowest momentum mode in the trap
which is given by the extent of the condensate.

In this chapter we derived the equations of motion of a trapped effective spin-1 BEC in
one spatial dimension. If the system is transversally in the ground state, the time evo-
lution is given by the Gross-Pitaevskii equation (GPE). Allowing for excitations in the
transversal trap direction leads to the quasi one-dimensional description of the system
by means of the non-polynomial Schrödinger equation (NPSE). Performing simulations
with both sets of equations of motion enable to identify if transversal excitations play a
role in the experimental setup. As we later want to compare the short time dynamics of
numerical simulations with experiments, we studied the homogeneous Bogoliubov the-
ory, which gives analytical predictions for the emergence of structure on short timescales.
We expect the homogeneous Bogoliubov theory to be applicable to our trapped system
in the quench parameter regime −q > nc1, whereas deviations in case of 0 < −q < nc1

are anticipated.
In the next chapter we set up the numerical framework for simulating the time evolution
of a spin-1 Bose gas in one spatial dimension.
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3 Simulation methods

In this chapter, we focus on the numerical tools and methods for simulating the time evo-
lution of the above introduced equations of motion of a trapped (quasi) one-dimensional
spin-1 Bose gas. We start with numerical basics involving the discretization of wave
functions on a spatial grid and the adjustment of the corresponding momentum grid to
resolve the relevant dynamical features. As we expect the important part of the dynam-
ics to take place in the region of highly occupied modes, where it has been shown that
the time evolution is well described by classical fields [8, 9, 10], we use the semi-classical
Truncated Wigner Approximation (TWA). The method leads to approximative equa-
tions of motion for the Wigner function, which is the phase space representation of the
density matrix. Instead of evolving the Wigner function in time, we propagate samples
of classical fields whose initial probability distributions are given by the Wigner function.
Physical quantities are obtained by averaging these samples. We find that the equations
of motion for the fields within the TWA are the Gross-Pitaevskii equations for one-
dimensional and the non-polynomial Schrödinger equations for quasi one-dimensional
settings. The initial configuration of the fields is composed of the initial meanfield state
of the system and quantum fluctuations which are sampled from the Wigner function
of the vacuum. Thus the TWA allows for predictions beyond the meanfield approxima-
tion. At the end of this chapter we present two different approaches for sampling the
quantum noise. To perform the time integration of the equations of motion obtained for
the classical fields, we discuss the Fourier split-step method. For the construction of the
initial field configuration we determine the initial meanfield state of the trapped system.
As we want to start with the system being in the ground state of the polar phase in the
harmonic trapping potential, we apply the concept of imaginary time propagation. This
method asymptotically approaches the state of minimal energy of the trapped system.

23



ψm,0

x0

ψm,1

x1

ψm,2

x2

ψm,3

x3 ag

ψm,ng−1

xng−1

Figure 3.1: Discretization of the wave functions for the three components of a spin-1 BEC
on a spatial grid with ng grid points for a model setup. Each wave function,
depicted by the red, blue and green dots, is associated to a vector of size ng.
The grid spacing ag is given by the distance between two neighbouring grid
points.

3.1 Basic numerical setup
Solving a set of equations of motion numerically requires a discretization of the involved
wave functions on a spatial grid with ng grid points. One model setup is schematically
shown in Fig. 3.1. We associate the wave function for each of the three components to a
vector of size ng. The grid spacing ag is given by the distance between two neighbouring
grid points. In this thesis, we use a grid with ng = 16384 = 214 grid points.
We express the equations of motion in terms of a length scale given by the grid spacing ag
and a corresponding time scale ωg = ~/Ma2g. We define the following rescaled variables

x̄ =
x

ag
, t̄ = ωgt, c̄0,1 =

c0,1
~ωgag

, ω̄‖,⊥ =
ω‖,⊥

ωg
, q̄ =

q

~ω
, ψ̄ =

√
agψ, (3.1)

where quantities with a bar are dimensionless. The numerical resolvable real space
features are thus solely determined by the choice of the length scale ag. If we identify
ag with a physical spacing, the numerical quantities can be converted to physical ones.
By means of a Fourier transform we can directly assign a momentum grid to the above
introduced spatial grid. To derive the lattice momenta we expand the fields into discrete
plane waves. We insert this expansion into the expression for the discrete Laplacian on
the spatial grid

∂2

∂x2
ψ =

ψ (xj+1)− 2ψ (xj) + ψ (xj−1)

a2g
, (3.2)
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2ksc sin
(
π
ng

)
2π
RTF

2π
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2π
ξd
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k

Figure 3.2: Adjustment of the momentum grid to resolve spin and density features as
well as trap effects. The three momentum scales are associated with the spin
healing length ξs = ~/

√
2Mnc1, the density healing length ξd = ~/

√
2Mnc0

and the Thomas-Fermi radius of the condensate RTF =
√

2µ/Mω2
‖. The

smallest non-zero mode kmin = 2ksc sin
(
π
ng

)
and the largest one kmax = 2ksc

are tuned via the momentum scale factor ksc such that they enclose all three
scales. All quantities are expressed in terms of the inverse grid length a−1

g .

which leads to the following relation for the lattice momenta

kn =
2

ag
sin
(
πn

ng

)
, (3.3)

with n ∈ [−ng/2 + 1, ng/2]. Due to our choice to take the discrete Laplacian, the lattice
momenta are not linearly spaced. The spacing is denser in the ultra-violet (UV), whereas
in the infra-red (IR) it is nearly linear. The maximal lattice momentum is kmax = 2/ag.
It is convenient to set the resolution of the simulation by adjusting the UV and IR
cutoff of the momentum grid. There are three characteristic momentum scales present,
associated with the spin healing length ξs = ~/

√
2Mnc1, the density healing length

ξd = ~/
√
2Mnc0 and the Thomas-Fermi radius of the condensate RTF =

√
2µ/Mω2

‖. For
a reasonable approximation of the dynamics, they have to be resolved on the momentum
grid. Therefore we adjust the momenta such that they enclose all three scales. For that
purpose we introduce a momentum scale factor ksc, which modifies equation (3.3) to

kn =
2ksc

ag
sin
(
πn

ng

)
. (3.4)

We point out that, if ksc 6= 1, the inverse scaling has to be enforced on the spatial grid
leading to a change in the length scale factor ag. The adjustment of the momentum grid
is illustrated in Fig. 3.2, where all quantities are expressed in terms of the inverse grid
length a−1

g for simplicity.
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3.2 Truncated Wigner Approximation
As we expect the important part of the dynamics to take place in the region of highly
occupied modes, we use the semi-classical Truncated Wigner method, which allows for
predictions beyond the meanfield approximation as quantum noise is explicitly included
in the initial state. We outline the method following [10, 11, 12, 13].
The first step is to construct a formulation of many-body quantum mechanics based
on a phase space description. Therefore we start by introducing the Weyl symbol,
which maps between quantum operators and ordinary functions in the phase space. In
the coherent state representation of the phase space, the Weyl symbol for an arbitrary
operator Â

(
ψ̂ψψ, ψ̂ψψ†

)
is defined as

AW (ψψψ,ψψψ∗) =

∫∫
dγγγ∗ dγγγ
2D

〈
ψψψ − γγγ

2

∣∣∣ Â(ψ̂ψψ, ψ̂ψψ†
) ∣∣∣ψψψ +

γγγ

2

〉
e−|ψψψ|2− 1

4
|γγγ|2e

1
2
(γγγ∗ψψψ−γγγψψψ∗), (3.5)

where ψψψ = {ψm} is the vector of the complex amplitudes of the magnetic sublevel states
and D the size of the associated Hilbert space. The Weyl symbol of symmetrically
ordered operators directly results from the substitution ψ̂̂ψ̂ψ(†) → ψψψ(∗).
The Weyl symbol of the density matrix ρ̂ is the Wigner function

W (ψψψ,ψψψ∗) =

∫∫
dγγγ∗ dγγγ
2D

〈
ψψψ − γγγ

2

∣∣∣ ρ̂(ψ̂ψψ, ψ̂ψψ†
) ∣∣∣ψψψ +

γγγ

2

〉
e−|ψψψ|2− 1

4
|γγγ|2e

1
2
(γγγ∗ψψψ−γγγψψψ∗). (3.6)

Using this mapping, the expectation value of any operator reads〈
Â
(
ψ̂ψψ, ψ̂ψψ†

)〉
=

∫∫
dψψψ dψψψ∗W (ψψψ,ψψψ∗)AW (ψψψ,ψψψ∗) . (3.7)

The Wigner function can be associated with a quasi-probability distribution, where
the supplement quasi implies that it can become negative. However, in case of large
occupation numbers, it can be treated as a classical probability distribution function.
The deduction of equations of motion requires the evaluation of operator products and
commutators. Thus we will investigate the Weyl symbols of these objects.
As shown in [19], Weyl operators satisfy the so-called Moyal product relation given by

(A1A2)W = A1,W exp
[
Λ

2

]
A2,W, (3.8)
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with the symplectic operator

Λ =
∑
j

←−
∂

∂ψj

−→
∂

∂ψ∗
j

−
←−
∂

∂ψ∗
j

−→
∂

∂ψj
. (3.9)

By direct application of the Moyal product relation to the commutator Â =
[
Â1, Â2

]
,

one finds that its Weyl symbol is

AW = 2A1,W sinh
[
Λ

2

]
A2,W = {A1,W, A2,W}MB . (3.10)

{. . . }MB denotes the Moyal bracket, which is defined as

{. . . }MB = 2 sinh
[
1

2
{. . . }P

]
, (3.11)

with the classical Poisson bracket of two functions B and B′ being

{B,B′}P = BΛB′ =
∑
j

∂B

∂ψj

∂B′

∂ψ∗
j

− ∂B

∂ψ∗
j

∂B′

∂ψj
. (3.12)

With these relations at hand, we are able to derive the quantum equations of motion
within the Truncated Wigner Approximation. We start with the von-Neumann equation
for the many-body density matrix

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
. (3.13)

Performing the Weyl transformation on both sides of the equation and making use of
equation (3.10) yields

i~
∂W

∂t
= {HW,W}MB = 2HW sinh

[
Λ

2

]
W, (3.14)

where HW is the Weyl ordered Hamiltonian of the system.
Expanding the equation up to third order in Λ leads to

i~
∂W

∂t
= {HW,W}P +

1

8

∑
j,k,l

∂3HW

∂ψj∂ψ∗
k∂ψ

∗
l

∂3W

∂ψ∗
j∂ψk∂ψl

− ∂3HW

∂ψ∗
j∂ψk∂ψl

∂3W

∂ψj∂ψ∗
k∂ψ

∗
l

. (3.15)
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The spin-1 Hamiltonian, introduced in equation (2.35), contains at most quartic terms
in the fields ψ̂(†). Thus equation (3.15) is exact for our physical system. Because of the
third-order derivatives, we have no method at hand to simulate the equation.
The simplest approximation is to truncate the expansion up to leading order in Λ,
which goes under the name of the Truncated Wigner Approximation (TWA). Applying
the TWA, we recover the classical Liouville equation for the density matrix

i~
∂W

∂t
= {HW,W}P . (3.16)

This partial differential equation can be solved by means of the method of characteristics
[20].
We first briefly explain the general procedure of the method. For a more general trans-
port equation given by

P (ψ, t)
∂W

∂t
+Q(ψ, t)

∂W

∂ψ
= 0, (3.17)

a new variable τ is introduced, such that

∂W

∂τ
= 0. (3.18)

The equations for the so-called characteristics then read

∂t

∂τ
= P (ψ(τ), t(τ)) ,

∂ψ

∂τ
= Q (ψ(τ), t(τ)) . (3.19)

Comparing equations (3.17) and (3.16), it can be read off that P (ψ, t) = i~ and Q(ψ, t) =
∂HW/∂ψ∗. Inserting these relations into equation (3.19) yields

i~
∂ψm
∂t

=
∂HW

∂ψ∗
m

, (3.20)

where m denotes the three magnetic sublevels in the spin-1 description.
By using the Moyal product relation (equation (3.8)), one can straightforwardly show
that Weyl ordering of the spin-1 Hamiltonian solely leads to additional terms propor-
tional to the densities of the three sublevels |ψm|2. The corresponding terms in the
equations of motion (3.20) can be removed by a global gauge transformation such that
the GPE (2.16 - 2.18) in the one-dimensional and the NPSE (2.23 - 2.25) in the quasi
one-dimensional case are obtained.
Instead of evolving the Wigner function in time, we propagate samples of the classical
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fields ψm whose initial probability distributions are given by the Wigner function. The
initial configuration of the fields is composed of the initial meanfield state of the system
and quantum fluctuations which are sampled from the Wigner function of the vacuum.
Therefore effects of quantum noise are explicitly included via the initial state, although
the equations are completely deterministic.
Equation (3.20) describes the trajectories of a single realisation of the classical fields
ψm. If the Wigner function is positive definite, they might be associated with a sin-
gle experimental run. Because of the stochastic nature of the quantum noise, physical
quantities are obtained by averaging over many realisations. Different samplings of the
initial quantum noise will be investigated in section 3.5.

3.3 Fourier split-step
To perform the time integration of the equations of motion for the classical fields, we
utilise the particle number as well as total energy conserving split-step method [21].
In general, this method can be used to discretize the time variable for the numerical
solution of non-linear Schrödinger-type equations.
To apply the scheme to our set of equations, we first write the equations of motion in
matrix notation as

i~
∂

∂t
ψm = Hmlψl, (3.21)

where m and l label the three components.
H can be decomposed into a diagonal kinetic part and a part containing all other terms,
including the nonlinear ones, which leads to

Hml = Tml +Nml = −
~2

2M

∂2

∂x2
δml +Nml. (3.22)

Advancing the solution to equation (3.21) at time t by a small time step ∆t gives

ψm(x, t+∆t) =
(
e−

i
~∆tH

)
ml
ψl(x, t) =

(
e−

i
~∆t(T +N )

)
ml
ψl(x, t). (3.23)

A simple time-splitting scheme, which makes use of the Baker-Campbell Hausdorff for-
mula and is accurate to first order, is

ψm(x, t+∆t) =
(
e−

i
~∆tT

)
ml

(
e−

i
~∆tN

)
lk
ψk(x, t) +O

(
∆t2
)
. (3.24)
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The accuracy can be increased up to second order in time by splitting into three fractional
steps as proposed in [22] and [23]. The final time integration scheme, which we utilise
for our numerical simulations, is therefore

ψm(x, t+∆t) =
(
e−

i
~

∆t
2
T
)
ml

(
e−

i
~∆tN

)
lk

(
e−

i
~

∆t
2
T
)
kj
ψj(x, t) +O

(
∆t3
)
. (3.25)

The two matrix exponentials involving the kinetic part T can be easily calculated in
Fourier space, where Tml = ~2k2

2M
δml is diagonal. Due to the performed Fourier transfor-

mations, the method is called Fourier or spectral split-step.
We are left over with the computation of the matrix exponential exp

{
− i

~∆tN
}
lk

, which
we carry out in real space. We use the Putzer algorithm [24] to explicitly calculate the
matrix elements. The method and the obtained results for our spin-1 system are dis-
cussed in [25, 26].

3.4 Ground state via imaginary time propagation
Before performing the time evolution of the fields with the above introduced Fourier
split-step method, we need to determine the initial configuration of the fields which are
composed of the initial meanfield state of the system and quantum fluctuations which
are sampled from the Wigner function of the vacuum. We first investigate the initial
meanfield state of the system. As we want to perform a sudden parameter quench from
the polar into the paramagnetic phase, we start with the system being in the ground
state of the polar phase in the harmonic trapping potential.
One iterative method, which asymptotically approaches the state of minimal energy
of the trapped system, is the imaginary time propagation (ITP). Expressing the wave
function in terms of energy eigenstates as ψm(x, t) =

∑
λ am,λ(t)φm,λ(x) and going over

to imaginary time τ = it by applying a Wick rotation to the time coordinate [27],
equation (3.23) is modified to

ψm(x, τ +∆τ) =
∑
λ

e−
∆τ
~ Em,λam,λ(τ)φm,λ(x), (3.26)

where we do not sum over the component label m. The amplitudes of the eigenstates
decay exponentially with a rate given by the corresponding eigenenergy. Therefore the
state of minimal energy has the smallest damping, i.e.we end up with the system being
in the ground state.
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Due to the diffusive nature of the imaginary-time equations of motion, it is essential to
rescale the wave function to the initial particle number after each time step. Otherwise
the system does not converge to the correct ground state.
As we asymptotically reach the ground state, we need to formulate a convergence crite-
rion to terminate the ITP. For our purpose, we stop the ITP if the difference between
two wave function rescale factors, separated by 25 time steps, is smaller than 5 · 10−10.

3.5 Noise sampling
After determining the initial meanfield state of the system, we need to additionally
sample the quantum fluctuations from the Wigner function of the vacuum to construct
the initial configurations of the fields.
We subsequently present two different approaches of noise sampling. In the first one the
noise is set into Fourier modes up to a momentum cutoff, whereas in the second one
the noise is sampled in the single particle eigenmodes of the effective potential for the
mF = ±1 components.

3.5.1 Fourier modes

In a homogeneous setup, i.e. without an external trapping potential, we expand the
initial state into Fourier modes u as

ψm(x) =
∑
j

uj,m(x)αj,m, (3.27)

where αj are the mode coefficients. Some of these Fourier modes are occupied by the
initial meanfield state of the system. We set quantum fluctuations into all unoccupied
modes in all three components by means of complex Gaussian white noise with an
average occupation number of half a particle per mode

〈αj,m〉 = 〈αj,mαl,n〉 = 0,
〈
α∗
j,mαl,n

〉
=

1

2
δj,lδm,n. (3.28)

Since the fraction of particles which are introduced via the noise should be small com-
pared to the deterministic particles, we solely set noise into modes up to a momentum
cutoff. We choose the cutoff such that all predicted unstable momentum modes (see
section 2.4), which cause the structure formation on short timescales, are occupied with
quantum noise. Thus we set quantum noise into modes up to twice the spin healing
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momentum kξs = 2π
√
2Mnc1/~.

We expect that the Fourier modes are no longer suitable for the noise sampling, if we
want to quantitatively compare simulations with experiments in presence of a trapping
potential. As too many modes, that do not exist in the trapped system, are populated
with quantum noise, the timescales of structure formation should change which we in-
deed find when comparing numerical simulations with experimental results in section
4.5.

3.5.2 Single particle eigenmodes of the effective potential

In this part, we focus on noise sampling in the mF = ±1 components in presence of a
trapping potential. The main goal is to find suitable eigenmodes of the trapped system
with respect to the initial meanfield state of the system.
We present the derivation for the quasi one-dimensional case as this noise sampling is
solely used in combination with NPSE simulations.
We start with the quasi one-dimensional spin-1 Hamiltonian

H =

∫
dx
[
ψ∗
m

(
− ~2

2M

∂2

∂x2
+ Vtrap(x) + E⊥

)
ψm

+ψ∗
mq
(
f 2
z

)
ml
ψl +

c0
2
√
κ
ψ∗
mψ

∗
l ψlψm

+
c1

2
√
κ
ψ∗
l ψ

∗
j (fα)jk (fα)lm ψkψm

]
, (3.29)

whereE⊥ = ~ω⊥
2

(
1√
κ
+
√
κ
)

is the transversal mode energy and
√
κ =

√
1 + 2

(
ã0n+ ã1

S
n

)
the correction factor with the total density given by n = ψ∗

mψm.
The subsequent derivation mainly follows [28]. For the initial state in the polar phase
all atoms are in the mF = 0 component. We make a Bogoliubov Ansatz by writing

ψ(x, t) =


 0√

n0(x)

0

+

 δψ1

δψ0

δψ−1


 e−iµt, (3.30)

where µ denotes the chemical potential and the fields δψm fluctuations of each compo-
nent, which we consider to be small in the following.
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Figure 3.3: Effective potential Veff for atoms in the mF = ±1 components given by
equation (3.33). Due to the repulsive interaction with atoms in the mF = 0
component, the original harmonic trapping potential is modified.

Expanding the Hamiltonian up to second order in δψ±1 leads to

H =

∫
dx

[
δψ∗

1

(
− ~2

2M

∂2

∂x2
+ Vtrap(x) +

(c0 + c1)n0(x)√
1 + 2ã0n0(x)

+ Ẽ⊥ − µ+ q

)
δψ1

+δψ∗
−1

(
− ~2

2M

∂2

∂x2
+ Vtrap(x) +

(c0 + c1)n0(x)√
1 + 2ã0n0(x)

+ Ẽ⊥ − µ+ q

)
δψ−1

+
c1n0(x)√

1 + 2ã0n0(x)

(
δψ∗

1δψ
∗
−1 + δψ1δψ−1

) ]
, (3.31)

where Ẽ⊥ = ~ω⊥
2

(
1/
√

1 + 2ã0n0(x) +
√

1 + 2ã0n0(x)
)

.
The single particle Hamiltonian for the mF = ±1 components is given by

Heff = − ~2

2M

∂2

∂x2
+ Vtrap(x) +

(c0 + c1)n0(x)√
1 + 2ã0n0(x)

+ Ẽ⊥ − µ, (3.32)

such that the atoms feel the effective potential

Veff(x) = Vtrap(x) +
(c0 + c1)n0(x)√
1 + 2ã0n0(x)

+ Ẽ⊥ − µ, (3.33)

which is depicted in Fig. 3.3.
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Figure 3.4: A variety of numerically calculated eigenmodes of the single particle Hamil-
tonian Heff. We find that the energetically lowest modes are mainly located
at the edges of the trap, whereas the energetically higher modes spread over
the entire trap. As the modes are two-fold degenerate, we only set noise
into every other of the eigenmodes starting with the energetically lowest
one. To minimize the influence of noise particles, we choose the momentum
cutoff to be slightly above the expected instability region. This corresponds
to setting between five and ten noise particles on average into each of the
mF = ±1 components for quench parameters −30 Hz ≤ q ≤ −2 Hz. All
depicted eigenmodes are normalized to one.

The initial state in the polar phase is prepared at a large positive value of the quadratic
Zeeman energy q. Thus the mF = ±1 states are empty and energetically tuned far away
such that only the single particle Hamiltonian is relevant. To get an impression of how
the single particle eigenmodes of the effective potential look like, a variety of numerically
calculated eigenmodes of Heff is shown in Fig. 3.4.
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We expand the initial fields in themF = ±1 components in the single particle eigenmodes
u±1 resulting in

ψ±1(x) =
∑
j

uj,±1(x)αj,±1, (3.34)

where αj are again the mode coefficients.
The quantum fluctuations are set according to equation (3.28). With regard to the
eigenmodes displayed in Fig. 3.4, we find that the energetically lowest modes are mainly
located at the edges of the trap. whereas the energetically higher modes spread over the
entire trap. As the modes are two-fold degenerate, we only set noise into every other
of the eigenmodes starting with the energetically lowest one. To minimize the influence
of noise particles, we choose the momentum cutoff to be slightly above the expected
instability region (see section 2.4). This corresponds to setting between five and ten
noise particles on average into each of the mF = ±1 components for quench parameters
−30 Hz ≤ q ≤ −2 Hz. In [29] it has been shown that this procedure leads to an adequate
description of experimental results.
So far we have only set quantum noise in the mF = ±1 components. The additional
sampling for the mF = 0 component will be part of future work. It is referred to solving
the Bogoliubov de-Gennes equations of a one component BEC and setting the initial
noise into the calculated Bogoliubov modes [30]. Thus the initial field in the mF = 0

component is solely given by the initial meanfield configuration.

In this chapter we introduced the semi-classical Truncated Wigner method, which allows
for predictions beyond the meanfield approximation as quantum noise is explicitly in-
cluded in the initial state. Instead of evolving the Wigner function in time, we propagate
samples of classical fields whose initial probability distributions are given by the Wigner
function. We found that the equations of motion for the classical fields within the Trun-
cated Wigner approximation are the Gross-Pitaevskii equations for one-dimensional and
the non-polynomial Schrödinger equations for quasi one-dimensional settings. The ini-
tial configuration of the fields is composed of the initial meanfield state of the system
and quantum fluctuations which are sampled from the Wigner function of the vacuum.
Thus we numerically determine the initial meanfield state in the harmonic trap, which is
the ground state in the polar phase, by means of imaginary time propagation and sam-
ple the quantum noise into unoccupied modes up to a momentum cutoff. We calculated
the single particle eigenmodes of the effective potential for the mF = ±1 components
to get a suitable noise sampling in presence of a trapping potential. Using the Fourier
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split-step method we can perform the time integration of the equations of motion for
the classical fields, which enables to study the dynamics of our system after performing
a sudden parameter quench from the polar into the paramagnetic phase.
In the next chapter we investigate the emergence of structure in the system at short
times after the sudden quench. We compare simulations performed with the two differ-
ent noise samplings with experimental results. We find that it is indeed essential to set
the initial quantum noise into the single particle eigenmodes of the effective potential
for the mF = ±1 components to recover the experimental dynamics.
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4 Comparison of numerical simulations
with experiments

In this chapter, we compare numerical simulations with experimental results. We focus
on the emergence of structure at short times after a sudden parameter quench. We
start with a brief description of the experimental setup. Then we discuss the relevant
physical parameters, which are needed as an input for the simulation. To enable a quan-
titative comparison between numerical simulations and experiments, we first investigate
whether transversal excitations are present in the experimental setup. If excitations
in the transversal direction of the trap play a role in the experiment, the dynamics
should be well described by the quasi one-dimensional equations of motion given by
the non-polynomial Schrödinger equations (2.23) - (2.25). If the experimental system
is transversally in the ground state, the one-dimensional equations of motion which are
the Gross-Pitaevskii equations (2.16) - (2.18) should give results which fit to the exper-
imentally observed dynamics. We find that the quasi one-dimensional description by
means of the NPSE is the appropriate model to recover the experimental dynamics. As
Bogoliubov excitations occur in the transversal spin direction, the transversal spin is a
suited observable for analysing the dynamics on short time scales. Due to instabilities,
which are triggered by the sudden quench, we observe spin domain formation in the
transversal spin direction. The associated characteristic structure size of the system can
be extracted from the minimum of the auto-correlation function of the transversal spin.
We mimic the experimental measurement of the transversal spin by performing a π/2

rotation of the grid around a random axis in the x-y-plane of the spin-1 sphere. We then
bin our data points such that they fit to the experimental imaging window and resolu-
tion. Finally, we add Gaussian white noise to model the experimental detection noise.
With this at hand we are able to make a quantitative comparison between numerical
simulations and experiments. Therefore we analyse the auto-correlation function and
the corresponding Fourier spectra of the transversal spin for short evolution times. We
present results of simulations performed with the two different noise samplings intro-
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duced in section 3.5. We find that sampling the noise into the single particle eigenmodes
of the effective potential for the mF = ±1 components leads to good agreement of
the structure size between simulation and experiment for some of the selected evolution
times. Using the Fourier mode sampling the structure formation in the simulation is way
faster than in the experiment. At the end of this chapter we compare NPSE simulations
with the initial noise set into the single particle eigenmodes of the effective potential
for the mF = ±1 components to the homogeneous Bogoliubov theory. For short times
we find that the structure size of the system follows the Bogoliubov prediction in the
quench parameter regime −q > nc1. For later times we expect deviations. However, we
find that the structure size is again well described by Bogoliubov theory with a smaller
spin interaction strength nc1.

4.1 Experimental parameters
A major part of this chapter is concerned with comparing numerical simulations with
experiments performed in the group of Prof. Dr. Markus K. Oberthaler. Therefore
we briefly state the experimental parameters, which are needed as an input for the
simulation. A detailed description of the experimental setup can be found in [14].
In the experiment, 87Rb atoms are confined in a cigar-shaped trap with longitudinal
trapping frequency ω‖ = 2π ·2.6 Hz and transversal trapping frequency ω⊥ = 2π ·260 Hz.
The atom number inside the analysis window (120µm around the centre of the trap) is
between 24000 and 30000.
To calculate the coupling constants defined in equations (2.29) and (2.30), we need the
scattering lengths of the different channels in the F = 2 manifold. According to [31],
they are a0 = 87.4± 1.0 aB, a2 = 92.4± 1.0 aB and a4 = 100.5± 1.0 aB, with the Bohr
radius aB = 5.29 · 10−11 m. In addition, we use the results of the direct measurements of
the scattering lengths differences a2−a0 = 3.51± 0.31 aB and a4−a2 = 6.95± 0.35 aB by
Widera et al. [32]. Plugging these values into equations (2.29) and (2.30) and converting
into the one-dimensional couplings with the help of equation (2.19), we end up with
c0 = 2π · 2.635 Hzµm and c1 = 2π · 0.0849 Hzµm.
The experimentally extracted value of the spin interaction strength is nc1 = 2π ·17.7 Hz.
This determines the magnitude of the quench parameter q which has to be chosen in order
to address the different regimes of the Bogoliubov dispersion relation of the transversal
spin excitations discussed in section 2.4.
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Figure 4.1: Comparison of the initial density profiles resulting from imaginary time prop-
agation of the GPE (blue) and NPSE (green) with the experimental mea-
sured one (red). The trap is placed in the centre of the grid with a total
grid size corresponding to ∼ 750µm. The experimental data, averaged over
several realisations, only covers a region of around 120µm in the central part
of the trap because of the limited imaging window. The NPSE result fits
well to the experimental profile. The GPE cannot cover the experimental
result since the shape of the profile is too broad. The narrowing of the NPSE
profile is caused by transversal excitations. The total number of atoms in
each simulation is adjusted such that 27000 atoms are in the inner 120µm of
the trap which coincides with the experimental mean atom number in this
region.

4.2 GPE vs. NPSE
To enable a quantitative comparison between numerical simulations and experiments, we
first investigate whether transversal excitations are present in the experimental setup.
If excitations in the transversal direction of the trap play a role in the experiment, the
dynamics should be well described by the quasi one-dimensional equations of motion
given by the non-polynomial Schrödinger equations (2.23) - (2.25). If the experimental
system is transversally in the ground state, the one-dimensional equations of motion
which are the Gross-Pitaevskii equations (2.16) - (2.18) should give results which fit to
the experimentally observed dynamics.
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We start by comparing the initial density profiles emerging from imaginary time propa-
gation of the GPE and NPSE with the experimental measured one. We expect different
results for simulations of the GPE and NPSE as the state of minimal energy of the
system depends on the conditions in transversal direction.
The density profiles for the different cases are depicted in Fig. 4.1. The total number of
atoms in each simulation is adjusted such that 27000 atoms are in the inner 120µm of
the trap which coincides with the experimental mean atom number in this region. The
trap is placed in the centre of the grid with a total grid size corresponding to ∼ 750µm.
The non-zero part of the density profiles spreads over 40% of the grid. The experimental
data, averaged over several realisations, only covers a region of around 120µm in the
central part of the trap because of the limited imaging window. The profile resulting
from imaginary time propagation of the NPSE fits well to the experimental profile. The
GPE cannot cover the experimental results since the shape of the profile is too broad.
The narrowing of the NPSE profile is caused by transversal excitations.
We can further study the presence of transversal excitations in the experimental setup by
looking at dynamics on short timescales. The sudden parameter quench creates unstable
momentum modes in the mF = ±1 components, which lead to an exponential growth of
the occupation numbers. A suitable observable to make comparison between simulation
and experiment is the corresponding growth rate. The prediction for the evolution of
the occupation numbers in the mF = ±1 components made by homogeneous Bogoliubov
theory is [6]

nk,±1(t) = sinh2 [γk,±1t] , (4.1)

where γk,±1 = Im (ωk,±1) defines the growth rate of the momentum mode k as introduced
in section 2.4.
We determine the growth rates of several unstable momentum modes by fitting a linear
function to the corresponding logarithms of the occupation number spectra of the mF =

1 component for 20 ms ≤ t ≤ 60 ms. Due to the squared hyperbolic sine in equation
(4.1), the growth rate is defined by

γk,1 =
γfit
k,1

2
, (4.2)

where γfit
k,1 is the slope of the linear fit.

A comparison of the growth rates extracted from simulations and the experimental data
for three different quench parameters q is shown in Fig. 4.2. We study a regime where
kmu = 0, since −q < nc1 = 17.7 Hz. The blue solid line shows the growth rate predicted
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Figure 4.2: Comparison of the growth rates extracted from simulations and experimental
data for three different quench parameters q. We are in a regime where kmu =
0, since −q < nc1 = 17.7 Hz. The blue solid line displays the prediction
made by homogeneous Bogoliubov theory. The blue dots are results from
simulations in a homogeneous setup. They are solely used as a consistency
check. The experimental results (black dots) deviate from the homogeneous
predictions giving rise to modifications induced by the trapping potential.
The growth rates resulting from GPE simulations (green dots) are close to
the homogeneous setup for modes around kmu = 0. Thus the GPE cannot
capture the experimental dynamics appropriately. The results obtained by
NPSE simulations (red dots) fit to the experimental ones within error bars
over the whole momentum region and for all three different q values. Thus
the NPSE is more suited to recover the experimental dynamics. The error
of the growth rates extracted from the simulations is as large as the dot size.

by homogeneous Bogoliubov theory and is given by

γk,1 = Im (ωk,1) = Im
(√

(εk + q) (εk + q + nc1)
)
. (4.3)

41



To make a consistency check, we first extract the growth rate for a homogeneous setting,
i.e. we switch off the trapping potential in the simulation. The results (blue dots) fit
well to the prediction in all three cases. The experimental growth rate (black dots)
deviates from the homogeneous case, giving rise to modifications induced by the trapping
potential. For q = −10 Hz and q = −12 Hz the growth rate remains nearly constant
within error bars over the displayed momentum region. Turning to the results from GPE
simulations (green dots), we find that, for modes close to the most unstable one, the
growth rate reflects the one obtained in the homogeneous setup. For higher momenta it
drops off and approaches the experimental data.
Due to the fact that the dynamics on short timescales is dominated by modes with the
largest growth rates, the dynamics is not appropriately captured by the GPE. In contrast,
the growth rates resulting from NPSE simulations (red dots) fit to the experimental ones
within the error bars over the whole momentum region and for all three different q values.
Thus, the quasi one-dimensional description by means of the NPSE is the more suited
model to recover the experimental dynamics. We find that transversal excitations play
an important role for the dynamics observed in the experiment.
In the following, we solely compare experimental data with results obtained with NPSE
simulations.

4.3 Observables
As derived in section 2.4, the Bogoliubov excitations occur in the transversal spin direc-
tion. Thus a suited observable for analysing the short time dynamics is the transversal
spin F⊥ given by

F⊥ = Fx + iFy. (4.4)

The spin in x- and y-direction is calculated from the bosonic fields by

Fx =
1√
2

(
ψ∗
0 (ψ1 + ψ−1) +

(
ψ∗
1 + ψ∗

−1

)
ψ0

)
|ψ1|2 + |ψ0|2 + |ψ−1|2

, (4.5)

Fy =
i√
2

(
ψ∗
0 (ψ1 − ψ−1)−

(
ψ∗
1 − ψ∗

−1

)
ψ0

)
|ψ1|2 + |ψ0|2 + |ψ−1|2

. (4.6)

We expect the system to globally have no mean transversal spin. As the experimen-
tal data is extracted by imaging only the inner region of the entire trap, a non-zero
mean value of the transversal spin can occur. Thus we subtract the mean value when
comparing to experimental results.
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Figure 4.3: Time evolution of the Fx spin for a single run of the simulation. The resulting
real space data is depicted for two different quench parameters q. The figure
shows the central 210µm of the trap. After 50 ms we see the formation of
spin domains indicated by the red and blue areas. The initial domain size
depends on the quench parameter. As the density is highest in the centre of
the trap, the dynamics is faster in this region than in the outer ones. The
structure size, extracted from the auto-correlation function of the transversal
spin, can be associated with the spin domain size. During the time evolution,
we find indications for a refining of the domain size.

Information about the instability region can be extracted from the transversal spin
spectrum

GF⊥,F⊥ (k) = 〈F ∗
⊥(k)F⊥(k)〉 =

〈
|F⊥(k)|2

〉
. (4.7)

The most unstable momentum mode in transversal spin direction corresponds to the
maximum of the spectrum.
Due to the direct relation between Fourier spectra and spatial correlation functions via
the Wiener-Khinchin theorem [33], the same information can be extracted from the
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auto-correlation function of the transversal spin given by

GF⊥,F⊥ (∆x) =

〈∑
x

F ∗
⊥(x)F⊥(x+∆x)

〉
. (4.8)

We normalise the auto-correlation function to one at ∆x = 0, such that GF⊥,F⊥ (∆x) = 1

indicates maximal correlation and GF⊥,F⊥ (∆x) = −1 maximal anti-correlation of the
data.
Instead of the most unstable momentum mode, we determine the corresponding length
scale ξ = 2π/kmu, which we define as twice the minimum of the auto-correlation function,
i.e.

ξ = 2 · argmin [GF⊥,F⊥ (∆x)] . (4.9)

Especially in the regime 0 < −q < nc1, where a broad range of unstable momentum
modes grow with nearly the same rate, we can determine the structure size with a higher
accuracy then the most unstable momentum mode.
To gain an impression of the physical meaning of the structure size, we analyse the real
space data of the spin in x-direction for a single run of the simulation. Fig. 4.3 shows
the time evolution of the Fx spin up to 250 ms for two different quench parameters
q = −12 Hz and q = −30 Hz. The figure displays a window of 210µm in the centre of
the trap. After 50 ms we see the formation of spin domains indicated by the red and
blue areas. The initial domain size depends on the quench parameter. As the density
is highest in the centre of the trap, the dynamics is faster in this region than in the
outer ones. During the time evolution, we find indications for a refining of the domain
size whose interpretation remains to be found. The minimum of the auto-correlation
function can be associated with the depicted spin domain size because of anti-correlations
emerging at spin domain walls.

4.4 Data analysis
To make direct quantitative comparison to the experimental results, we first match
the numerical resolution on the grid to the experimental imaging resolution. Thus, we
restrict the data analysis to a region of 120µm around the centre of the trap. As the
experimental resolution of ∼ 1µm corresponds to 100 pixels in the analysis region, we
bin as much of the grid points as necessary to end up with 100 simulation data points.
We calculate the auto-correlation function and the Fourier spectrum of the transversal
spin by making use of these data points.
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The experiment does not allow accessing the wave functions, i.e. only densities can be
measured. In view of equations (4.5) and (4.6), it turns out that we cannot directly
image the transversal spin in the experiment. However, it is possible to extract this
quantity after performing a spin rotation by means of a radio frequency magnetic field
coupling, which rotates the spin vector around a random axis in the x-y-plane of the
spin-1 sphere.
Rotating by π/2 maps the transversal spin onto the z-axis, such that it can be extracted
via density measurements.
We mimic the experimental spin rotation by transforming the three component real
space grid with the rotation matrix

R = exp
{
−iπ

2
[fx cos (φ) + fy sin (φ)]

}
, (4.10)

where fx,y are the spin-1 matrices. The randomly chosen phase φ ∈ [0, 2π] reflects the
randomness of the experimental rotation. The components of the rotated grid read

ψrotated
m = Rmlψl. (4.11)

Thus, the transversal spin, which is mapped onto the z-axis, is given by

F⊥ = |ψrotated
1 |2 − |ψrotated

−1 |2. (4.12)

When measuring observables in the experiment, detection noise has to be taken into
account. We find that it can be modelled by Gaussian white noise. We can see the noise
level in the Fourier spectra of the transversal spin which we discuss in the following
section.

4.5 Emergence of structure at short times after a
quench

In this section we investigate the emergence of structure at short times after a sud-
den parameter quench. Bogoliubov theory predicts unstable momentum modes in the
transversal spin direction which can be analysed with the help of the Fourier spectrum
of the transversal spin. Due to these instabilities, we observe spin domain formation in
the transversal spin direction. The associated characteristic structure size of the system
can be extracted from the auto-correlation function of the transversal spin.
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To enable a quantitative comparison between numerical simulations and experiments,
we mimic the experimental measurement of the transversal spin by performing a π/2

rotation of the grid around a random axis in the x-y-plane of the spin-1 sphere. We
then bin our data points such that they fit to the experimental imaging window and
resolution. Finally, we add Gaussian white noise to model the experimental detection
noise.
We start with a direct comparison of simulation and experiment by analysing the auto-
correlation functions and Fourier spectra of the transversal spin for short evolution times.
The simulations are performed with the two different samplings of the initial quantum
noise introduced in section 3.5.
Subsequently we compare numerical simulations with the homogeneous Bogoliubov the-
ory derived in section 2.4. We expect that the structure of the system on short timescales
is well described by the Bogoliubov prediction in the quench parameter regime −q > nc1.
For later evolution times deviations from Bogoliubov theory are anticipated as we are no
longer in the regime of a small depletion of the condensate in the mF = 0 component.

Comparing simulations with experiments

For the quantitative comparison of simulations with experiments, we exemplarily show
results for the quench parameters q = −12 Hz and q = −22 Hz. The predicted cor-
responding most unstable momentum modes are kmu = 0, and respectively kmu =√
−2M (q + nc1) /~2. We select four evolution times, namely 60, 80, 100 and 120 ms.

Fig. 4.4 and 4.6 display the auto-correlation functions of the transversal spin. The three
different graphs correspond to the experimental data (EXP, red) and numerical NPSE
simulations with initial quantum noise set into Fourier modes (NFM, green) as well as
into the single particle eigenmodes of the effective potential for the mF = ±1 compo-
nents (NEP, blue). For a detailed description of the noise sampling see section 3.5. The
error bar corresponds to the standard deviation of the mean values. The numerical re-
sults are averaged over 1000 runs.
Analysing the minima of the auto-correlation function in Fig. 4.4, we find that the corre-
sponding structure size for simulations performed with the Fourier mode noise sampling
at t = 60 ms fits to the experimentally observed value at t = 120 ms. Thus the structure
formation is way faster than in the experiment when sampling the noise into Fourier
modes. As expected, we cannot simply use the noise sampling of the homogeneous
setup.
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Figure 4.4: Auto-correlation function Gf⊥,f⊥(∆x) (equation (4.8)) of the transversal spin
normalised to Gf⊥,f⊥(0) for the quench parameter q = −12 Hz and four
different evolution times t. The simulations performed with the initial noise
set into Fourier modes (NFM, green) show a structure formation which is
way faster than in the experiment. For t = 60 ms the results of simulations
with the initial noise set into the single particle eigenmodes of the effective
potential (NEP, blue) are in good agreement with the experiment (EXP,
red). For later times we see deviations arising, especially in the structure
size of the system corresponding to the minimum of the auto-correlation
function. In general, the slopes at short distances show different behaviours
when comparing experiment and simulations. The error bar corresponds
to the standard deviation of the mean values. The numerical results are
averaged over 1000 runs.
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Figure 4.5: Fourier spectrum 〈F ∗
⊥(k)F⊥(k)〉 (equation (4.7)) of the transversal spin for

the quench parameter q = −12 Hz and four different evolution times t. For
t = 60 ms the results of simulations with the initial noise set into the single
particle eigenmodes of the effective potential (NEP, blue) fit to the experi-
ment (EXP, red) within error bars. For later times we see, that the lowest
momentum modes grow faster in the experiment than in the simulation,
which lead to larger experimentally observed structure sizes (see Fig. 4.4).
In addition, the region of highly occupied momentum modes is broader in
the simulations, which causes the damping of the oscillations in the auto-
correlation function at large distances. The error bar corresponds to the
standard deviation of the mean values. The numerical results are averaged
over 1000 runs. The displayed momenta are divided by 2π.
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Figure 4.6: Auto-correlation function Gf⊥,f⊥(∆x) (equation (4.8)) of the transversal spin
normalised to Gf⊥,f⊥(0) for the quench parameter q = −22 Hz and four differ-
ent evolution times t. The simulations performed with the initial noise set
into Fourier modes (NFM, green) show a structure formation which is way
faster than in the experiment. For t = 80 ms and t = 100 ms the results of
simulations with the initial noise set into the single particle eigenmodes of
the effective potential (NEP, blue) are in good agreement with the experi-
ment (EXP, red). For t = 60 ms we see deviations in the structure size of the
system corresponding to the minimum of the auto-correlation function. In
general, the slopes at short distances show different behaviours when compar-
ing experiment and simulations. The error bar corresponds to the standard
deviation of the mean values. The numerical results are averaged over 1000
runs.
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Figure 4.7: Fourier spectrum 〈F ∗
⊥(k)F⊥(k)〉 (equation (4.7)) of the transversal spin for

the quench parameter q = −22 Hz and four different evolution times t. For
t = 80 ms and t = 100 ms the results of simulations with the initial noise set
into the single particle eigenmodes of the effective potential (NEP, blue) are
in good agreement with the experiment (EXP, red). For t = 60 ms we see,
that the region of highly occupied momentum modes is broader in the exper-
iment than in the simulation, which leads to larger experimentally observed
structure sizes and a damping of the oscillations in the auto-correlation func-
tion at large distances (see Fig. 4.6). The error bar corresponds to the stan-
dard deviation of the mean values. The numerical results are averaged over
1000 runs. The displayed momenta are divided by 2π.
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Using the single particle eigenmodes of the effective potential for the mF = ±1 compo-
nents as an initial noise configuration, the numerical results (NEP, green) are in good
agreement with the experimental ones (EXP, red) at specific times. For q = −12 Hz, the
minimum of the auto-correlation function coincides with the experimental one within
error bars at t = 60 ms, whereas we see deviations at later times. In contrast, for
q = −22 Hz, the numerical results fit to the experiment at t = 80 ms and t = 100 ms,
whereas deviations are present at t = 60 ms.
In general, there are clearly visible differences in the initial slope of the auto-correlation
functions. Additionally we find that the curve shapes of the auto-correlation functions
at large distances ∆x are different between simulations and experiment as oscillations
are varyingly strong damped.
Analysing the corresponding spectra, depicted in Fig. 4.5 and 4.7, we can identify the
origin of these deviations. In contrast to the experiment, the lowest momentum modes
do not grow that fast in the simulation, although they are populated with noise. This
leads to smaller structure sizes than in the experiment. Furthermore, the damping of the
oscillations at large distances ∆x is related to the width of the region of highly occupied
momentum modes. The broader the region the larger is the damping of the oscillations.
This effect can exemplarily be seen in the auto-correlation function and the spectrum
for both quench parameters at t = 120 ms.
It is important to note that in the presented spectra the momenta are divided by 2π

to allow for a direct comparison between the most unstable momentum mode and the
structure size as they are solely related by taking the inverse.

Comparing simulations with Bogoliubov theory

In the following we compare NPSE simulations with the initial noise set into the single
particle eigenmodes of the effective potential for the mF = ±1 components to the ho-
mogeneous Bogoliubov theory (see section 2.4).
After 80 ms the population of the mF = ±1 components contain more than 30 % of the
total atom number. Thus the Bogoliubov approximation should only be valid for the
results obtained after 60 ms and respectively break down for later times. We can get a
first impression of possible deviations from Bogoliubov theory at later times by looking
at the time evolution of the auto-correlation function respectively the Fourier spectrum
plotted into a single graph as shown in Fig. 4.8. We find that the structure size gets
smaller in time, which corresponds to shifting the highly occupied unstable momentum
modes outwards to larger values.
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Figure 4.8: Time evolution of the normalised auto-correlation function and the Fourier
spectrum of the transversal spin for the quench parameter q = −12 Hz. The
results are obtained from numerical simulations with the initial noise set
into the single particle eigenmodes of the effective potential for the mF = ±1
components. We find that the structure size, which is related to the minimum
of the auto-correlation function, gets smaller in time, which corresponds to
shifting the highly occupied unstable momentum modes outwards to larger
values. The error bar illustrates the standard deviation of the mean values.
The numerical results are averaged over 1000 runs. The displayed momenta
are divided by 2π.

We test our hypothesis by extracting the structure size from the auto-correlation function
of the transversal spin over a wide range of quench parameters between q = −2 Hz and
q = −30 Hz. This is done by determining the minimum after cubic interpolation of the
data.
Fig. 4.9 displays the results obtained for all four selected evolution times. The extracted
structure size is depicted with blue dots, where the dot size is as large as the error. The
green solid line (Bog fit) shows a fit of the homogeneous Bogoliubov theory to the data
points for −30 Hz ≤ q ≤ −20 Hz with

ξ =
2π

kmu
=

2π√
−2M (q + nc1) /~2

, (4.13)
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where the spin interaction strength nc1 is our fitting parameter. The black dashed line
marks the fitted value of nc1. The red solid line (Bog initial) is deduced from equation
(4.13) by inserting the initial mean value of nc1 = 13.5± 0.2 Hz, which can be calculated
from the NPSE density profile of the entire trap region depicted in Fig. 4.1.
For t = 60 ms, we get a fit value of nc1 = 13.7± 0.3 Hz, which coincides with the initial
mean value within error bars. Hence, the data follows the homogeneous Bogoliubov
prediction in the given regime of the quench parameter.
Although the initial NPSE density profile and the growth rates for small quench param-
eters are in good agreement with the experimental data (see Fig. 4.1 and 4.2), we find a
different spin interaction strength than the experimentally extracted nc1 = 17.7 Hz for
the shortest selected evolution time (see [14]).
This coincides with differences of the growth rates at short times in experiment and
simulation arising in the quench parameter regime −q > nc1. We find a strong damping
of the growth rates in the experiment when going to quench parameters below −30 Hz,
whereas the growth rates only decrease slightly in the simulations. We have seen first
indications of this behaviour in the auto-correlation function for q = −22 Hz at t = 60 ms
(see Fig. 4.4). A possible explanation is given by a quantum mechanical overlap argu-
ment between the condensate and the excitations. The smaller the wavelength of the
excitations the less the overlap with the condensate, which would correspond to a damp-
ing of the growth rates for large negative values of the quench parameter.
Turning to later evolution times, we expect deviations from the Bogoliubov prediction.
However, fitting the structure size for the same quench parameter regime with equation
(4.13) shows that the data is again well described by the homogeneous Bogoliubov theory
with a smaller value of nc1. For t = 80 ms, we get nc1 = 12.2± 0.3 Hz, for t = 100 ms,
we find nc1 = 10.3± 0.3 Hz and for t = 120 ms, we have nc1 = 8.6± 0.4 Hz.
As the relevant fitting regime only corresponds to a small area of the displayed structure
size, it is hard to check the quality of the fit by solely looking at Fig. 4.9. Additionally,
plotting the associated squared most unstable momentum as a function of the quench
parameter q gives access to the quality of the fit as the relevant regime is enlarged. In
Fig. 4.10, the squared most unstable momentum is depicted with blue dots. The green
solid line (Bog fit) shows the fit of the homogeneous Bogoliubov theory to the data
points for −30 Hz ≤ q ≤ −20 Hz. We find that the data is well described by Bogoliubov
theory at t = 60 ms and t = 80 ms. Deviations at later times indicate a crossover from
the Bogoliubov regime to dynamics beyond Bogoliubov.
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Figure 4.9: Comparison of the structure size (blue dots), extracted from the auto-
correlation function of the transversal spin, with the Bogoliubov prediction.
The green solid line (Bog fit) shows a fit of the homogeneous Bogoliubov
theory to the data points for −30 Hz ≤ q ≤ −20 Hz. The black dashed line
marks the fitted value of nc1. The red solid line (Bog initial) is deduced
from the initial mean value of nc1 = 13.5± 0.2 Hz. For t = 60 ms, we get a
fit value of nc1 = 13.7± 0.3 Hz, which coincides with the initial mean value
within the error. At later times, we find that the data is again well described
by Bogoliubov theory with a smaller value of nc1. For t = 80 ms, we get
nc1 = 12.2± 0.3 Hz, for t = 100 ms, we find nc1 = 10.3± 0.3 Hz and for
t = 120 ms, we have nc1 = 8.6± 0.4 Hz. We attribute the observed shift to
a smaller spin interaction strength nc1 to the depletion of the m = 0 com-
ponent due to spin-changing collisions. The structure size is limited by the
window size of ∼ 120µm because of the smallest momentum mode in the
trap being larger than zero. The error of the extracted structure size is as
large as the dot size.
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Figure 4.10: Comparison of the squared most unstable momentum (blue dots), associ-
ated with the extracted structure size, with the Bogoliubov prediction. The
green solid line (Bog fit) shows a fit of the homogeneous Bogoliubov theory
to the data points for −30 Hz ≤ q ≤ −20 Hz. Plotting the data in this form
gives the possibility to check the quality of the fit as the relevant regime
is enlarged compared to the data depicted in Fig. 4.9. We find that the
data is well described by Bogoliubov theory at t = 60 ms and t = 80 ms.
Deviations at later times indicate a crossover from the Bogoliubov regime
to dynamics beyond Bogoliubov. The error of the squared most unstable
momenta is as large as the dot size.

In the discussed Bogoliubov approximation (see section 2.4), the density n is solely
given by the density in the mF = 0 component. As this component is depleted due to
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spin-changing collisions, the spin interaction strength nc1 is shifted to smaller values in
time. Thus we find that the structure size of the system at later times can be described
by the homogeneous Bogoliubov theory with a smaller spin interaction strength.
So far, we have analysed the structure sizes in the quench parameter regime −q > nc1.
For 0 < −q < nc1, the most unstable momentum mode in the homogeneous case is
given by kmu = 0, which would correspond to a structure size which is as large as the
entire system. Due to the trapping potential, the smallest momentum mode is set by
the extent of the condensate Rc, i.e.

kmin =
1

2Rc

≈ 1

240µm
> 0, (4.14)

where we extracted Rc from the NPSE density profile depicted in Fig. 4.1. Hence, we
expect the structure size to grow with decreasing |q| and to finally saturate at the win-
dow size of ∼ 120µm. The displayed data in Fig. 4.9 demonstrate this behaviour for all
selected evolution times.
To be able to make predictions in this quench parameter regime, it is necessary to solve
the Bogoliubov de-Gennes equations for the spin-1 BEC confined in a trapping potential
which will be part of future work.

In this chapter, we showed that the quasi one-dimensional description by means of
the non-polynomial Schrödinger equation is the appropriate model to recover the exper-
imental dynamics because transversal excitations are present in the experimental setup.
As the Bogoliubov excitations occur in the transversal spin direction, the transversal
spin is a suited observable to analyse the emergence of structure at short times after a
sudden parameter quench. The characteristic structure size of the system can be ex-
tracted by means of the auto-correlation function of the transversal spin. We mimic the
experimental measurement of the transversal spin by performing a π/2 rotation of the
grid around a random axis in the x-y-plane of the spin-1 sphere. We then bin our data
points such that they fit to the experimental imaging window and resolution. Finally, we
add Gaussian white noise to model the experimental detection noise. With this at hand
we were able to make a quantitative comparison between numerical simulations and ex-
periments. Therefore we analysed the auto-correlation function and the corresponding
Fourier spectra of the transversal spin for short evolution times. We presented results of
simulations performed with the two different noise samplings introduced in section 3.5.
We found that sampling the noise into the single particle eigenmodes of the effective
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potential for the mF = ±1 components leads to good agreement of the structure size
between simulation and experiment for some of the selected evolution times. Using the
Fourier mode sampling the structure formation in the simulation is way faster than in
the experiment. Finally, we compared NPSE simulations with the initial noise set into
the single particle eigenmodes of the effective potential for the mF = ±1 components
to the homogeneous Bogoliubov theory. At t = 60 ms, the structure size of the system
follows the Bogoliubov prediction given by the initial mean value of the spin interaction
strength nc1 in the quench parameter regime −q > nc1. Although the initial NPSE
density profile and the growth rates for small quench parameters are in good agree-
ment with the experimental data, we find a different spin interaction strength than in
the experiment at t = 60 ms. For later times we expect deviations from Bogoliubov
theory. However, we find that the structure size is again well described by Bogoliubov
theory with a smaller spin interaction strength nc1. We attribute the observed shift to a
smaller spin interaction strength nc1 in time to the depletion of the mF = 0 component
due to spin-changing collisions. Slight deviations from the Bogoliubov prediction at
times t > 100 ms indicate a crossover from the Bogoliubov regime to dynamics beyond
Bogoliubov.
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5 Conclusion and Outlook

In this thesis, we have numerically studied the emergence of structure in a (quasi) one-
dimensional trapped spin-1 Bose gas at short times after a sudden quench. We compared
our results to experiments performed with 87Rb atoms in the F = 2 hyperfine manifold.
By investigating the initial density profiles after imaginary time propagation as well as
the growth rates of unstable momentum modes on short timescales, we showed that exci-
tations in the transversal direction of the trap play an important role in the experimental
setup. Thus we used the quasi one-dimensional description of the system by means of
the non-polynomial Schrödinger equations, where transversal excitations are included,
to make direct quantitative comparisons between simulations and the experiment.
To study the structure formation at short times after the quench, we analysed the auto-
correlation function and the corresponding Fourier spectrum of the transversal spin. We
extracted the characteristic structure size of the system, associated with the spin domain
size in the transversal spin direction, from the minimum of the auto-correlation function.
If we sample the initial quantum noise into Fourier modes, the structure formation in
the simulation is way faster than in the experiment. We find that sampling the ini-
tial quantum noise into the single particle eigenmodes of the effective potential for the
mF = ±1 components leads to good agreement of the structure size between simulation
and experiment for some of the selected evolution times. Nevertheless, we cannot exactly
recover the experimental results for all evolution times.
To further improve the agreement between simulation and experiment we can study
several experimental effects that are not included in our simulation so far.
When performing experiments with ultracold atoms which are confined in a trapping
potential, particle loss has to be taken into account. The loss of particles leads to a
decrease of the density which directly affects the dynamics of the system. As 66 % of
the total atoms are left in the experiment after an evolution time of 500 ms, we expect
the effects of particle loss on the dynamics at short timescales to be small.
In the experiment, the initial state in the polar phase is prepared at a finite temperature
T ∼ 10 nK. Thus thermal fluctuations are present in the initial configuration in addition
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to quantum noise. Determining the ground state of the polar phase by means of imagi-
nary time propagation does not include temperature effects. Including these effects into
the simulation could lead to an adequate description of the initial experimental state.
Consequently we would expect that the structure formation on short time scales agree
with the experiment.
We found that the characteristic structure size of the system, extracted from numerical
simulations, follows the homogeneous Bogoliubov prediction given by the initial mean
spin interaction strength of the system for an evolution time of 60 ms in the quench
parameter regime −q > nc1. At later times, we observed that the data is well described
by Bogoliubov theory with a shifted spin interaction strength nc1. We attribute this to
an effective change of the spin interaction strength due to the depletion of the mF = 0

component.
Studying the properties of the system at evolution times beyond the Bogoliubov regime
will be of future interest. For systems far from equilibrium, prethermalized states [34]
as well as non-thermal fixed points [35, 36, 37] are predicted. In the vicinity of such
non-thermal fixed points, universal properties of the system become visible [37, 38, 39,
40]. This is related to scaling behaviour of the physical observables [5].
Evaluating the scaling behaviour in space and time, we aim at identifying universal dy-
namics in the experimental setup. With our studies we hope to be able to benchmark
experiment with simulations and vice versa which furthermore allows for examining their
use as quantum simulators.
As we also have experimental access to 87Rb in the hyperfine manifold F = 1, where we
are dealing with ferromagnetic interactions as the spin-spin coupling c1 is negative, we
will investigate the properties of this system at evolution times beyond the Bogoliubov
regime. For the two-dimensional case, scaling behaviour of the spatial correlation func-
tions due to coarsening dynamics is predicted [41].
Comparing results obtained for the F = 1 system to the F = 2 system will give the
possibility to directly extract the differences emerging by virtue of a sign change in the
spin-spin coupling.
Of special theoretical interest will be the stability analysis of the Bogoliubov de-Gennes
equations for a spin-1 BEC in the presence of a trapping potential. With this we will
gain further insight into deviations from the homogeneous Bogoliubov theory arising
in trapped systems. Furthermore, it would be interesting to compare results for one-
dimensional settings with quasi one-dimensional ones as well as to observe the crossover
region in between.
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