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(Diskrete trunkierte Wigner Approximation von plétzlichen Quenches
in der Ising Kette in einem transversen Feld):

In der folgenden Masterarbeit wurde die kiirzlich eingefiihrte diskrete trunkierte
Wigner Approximation verwendet, um quantenmechanische Spinketten zu simu-
lieren. Wahrend Simulationsmethoden fiur diskrete Quantenmodelle vor allem in
héheren Dimensionen und groflen Systemen rar sind, soll die neue Methode auch
in diesen Bereichen gute Ndherungen ergeben. Rey et al. fiihrten diese Approxi-
mation basierend auf einer klassischen Naherung der Quantendynamik in [27] ein
und zeigten die Stirke in der Simulation von Spinsystemen mit langreichweitigen
Wechselwirkungen. In der folgenden Arbeit wurde die Methode auf das Ising Mo-
dell im transversalen Feld mit Nachste-Nachbar-Wechselwirkungen angewendet,
um Quenches in die Ndhe des Quanten-Phaseniiberganges zu simulieren. Hier-
bei wurde deutlich, dass die Methode fiir Quenches nah zum kritischen Punkt
und weit weg davon gute Ergebnisse liefert, bei mittleren Abstédnden jedoch
Abweichungen auftreten. Kastner et al. fithrten in [16] weiterhin verschiedene
Moglichkeiten zum Aufbau der Methode sowie Naherungen hoherer Ordnung der
Quantendynamik ein. In der folgenden Arbeit wurden weitere Moglichkeiten her-
geleitet, um die Simulationsmethode aufzubauen. Dabei wurde festgestellt, dass
die Qualitdt der verschiedenen Arten von dem simulierten Modell abhéangt. Auch
die Naherung hoherer Ordnung der Dynamik wurde in dieser Arbeit analysiert.
Hierbei wurde beobachtet, dass diese im Vergleich zur klassischen Naherung nur
fiir kurze Zeiten funktioniert, in diesem Bereich aber vielversprechende Ergebnisse
liefert.

(Discrete Truncated Wigner Approximation of Sudden Quenches in
the Transverse Field Ising Chain):

In the following thesis, a recently developed method, the discrete truncated
Wigner approximation, was used to simulate quantum spin chains. While sim-
ulation methods for discrete quantum systems are scarce, especially for large
systems and higher dimensions, this new method is expected to simulate even
such systems. Rey et al. introduced the method, which is based on a classical ap-
proximation, in [27] and proved its strength in the simulation of spin systems with
long-range interactions. In the following thesis, the approximation was applied
on a transverse field Ising chain with nearest-neighbour interactions to simulate
sudden quenches into the vicinity of a quantum phase transition. While the ap-
proximation was shown to work well for quenches close to the critical point and
far away from it, deviations were found at intermediate distances. Kastner et
al. further introduced various setups of the simulation method, as well as higher
order approximations of the quantum dynamics in [16]. In the following thesis,
more possible setups of the method were introduced and analysed. It was con-
cluded that the quality of the various setups depends on the simulated model.
Additionally, the higher order approximations of the quantum dynamics were
analysed. It was observed that this method only works for short times compared
to the classical approximation, but gives promising results within this region.
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1 Introduction

Recent experimental advances use quantum simulators to enable the observation of
spin dynamics out of equilibrium [1, 2, 10, 15, 19, 28]. Such systems can not be
analysed directly, since they are hard to realise in the laboratory or to model on a
supercomputer. Hence, for further analysations quantum simulators are necessary,
which are based on a quantum system simulating the not realisable model in a
controllable way:.

With these quantum simulators, spin lattices can be experimentally realised in a
state far from equilibrium by applying sudden changes, so called quenches, in the
Hamiltonian describing the dynamics of the system. Since the complex time evolu-
tions in such quantum mechanical systems out of equilibrium can not be calculated
analytically in most cases, many main aspects, like the build-up of correlations, are
not well understood.

An experimental realisation of systems out of equilibrium is given in [31], where
ultracold Bosons are considered in a three-dimensional lattice potential with an
additional harmonic trap. The authers produced a rubidium condensate in a cigar-
shaped magnetic trap by evaporative cooling. After an initial temperature has
been set, the magnetic trap has been decompressed adiabatically towards an almost
spherical trap and the lattice, as well as the trap have been switched off simulta-
neously. This way, the condensate has been released and the dynamics have been
analysed. It has been shown that ultracold atoms in optical lattices can be used to
experimentally study quantum critical phenomena.

In [19], also a rubidium condensate in a cigar-shaped trap has been realised.
The transversal excitations are suppressed in this configuration, so that the con-
densate only shows excitations in a longitudinal direction and hence can be consid-
ered as an effective one-dimensional system. The atoms can then be found in two
hyperfine states of the magnetic quantum number, namely |F' =2, mp = —1) and
|FF=1,mp = 1). The condensate can be effectively considered as a spin—% system
and hence is a quantum simulator. Other possible quantum simulators for spin sys-
tems can be realised using polar molecules [10], Rydberg atoms [28] or trapped ions
[15].

These quantum simulators are very important, since the efficient numerical sim-
ulation of the dynamics in spin systems out of equilibrium is still an outstanding
problem. In [31], a Quantum Monte Carlo simulation has been compared with the
quantum simulations and it has been found that both simulation methods show
equal results for small interaction strengths. For larger interaction strengths, for
which the considered system is closer to a quantum critical point, the computational
simulation has been found to get worse, while the quantum simulation still shows



good results. For a theoretical consideration it would be helpful to have a better
possibility to computationally simulate quantum spin systems out of equilibrium.

Existing computational simulation methods for quantum spin systems out of equi-
librium are, for example, the time-dependent density matrix renormalisation group
methods [33], which have been proven to give very good results. However, these
methods can only be used in one dimension and simulating dynamics is already
hard in one dimension. These methods also fail in the vicinity of quantum phase
transitions. Other possibilities are cluster expansions [10], which only show good
results for dilute samples and short-range interactions, or phase space methods [23],
which do not give good results at strong interactions and long times. Dynamics in
the vicinity of a quantum phase transition are not captured well in all these methods.

Apart from that, phase space methods, like the truncated Wigner approximation,
are very strong at short times and weak interactions. They are based on sampling a
large number of initial states from a Wigner function, which is a quasi-probability-
distribution on the phase space in the sense that it shows properties of a probability
distribution, but is not positive definite. All sampled initial states are then classically
evolved in time and the resulting expectation value is calculated using a combination
of the time evolved observables. This basic idea of the method includes quantum
fluctuations into the approximation by the combination of the several time evolved
observables. Due to this, the approximation is in good agreement with the exact
solution. Spontaneous quenches can also be approximated with this method, so
that it is very powerful in the computational simulation of spin systems out of
equilibrium. Hence, it is used very often, as for example in [19].

While the truncated Wigner approximation is limited to short times and it has
been proven to miss revivals in the dynamics of the modelled system, it has been
expanded into the discrete truncated Wigner approximation in [27, 26, 16]. This
expanded method is based on a discrete phase space and is more efficient in simu-
lating discrete quantum mechanical models, like spin systems. The initial states are
then sampled from a Wigner function on a discrete phase space, so that only a finite
number of possible initial states exists. This is in contradiction to the truncated
Wigner approximation, which is defined on a continuous phase space and is thus
more efficient for simulations of continuous quantum systems. The discrete trun-
cated Wigner approximation is expected to catch revivals in the dynamics of the
spin system due to the discrete initial states, which are classically evolved in time.
Hence, it is expected to be more powerful in the points where the truncated Wigner
approximation breaks down.

It has been shown in [27, 26, 16] that the discrete truncated Wigner approximation
gives very good results in simulations of spin—% systems. There it has been observed
that this method even works at longer time scales and with strong interactions. It
has also been found to show revivals in the dynamics of the system, which are not
captured by the truncated Wigner approximation. Hence, this expansion shows very
promising results in regions where existing simulation methods are scarce.

In this thesis, the discrete truncated Wigner approximation will be applied on the
transverse field Ising model with nearest-neighbour interactions. While in [27, 26, 16]



only non-interacting systems with long-range interactions have been considered, it
will be analysed within this work whether the method also shows good results in an
interacting system. Especially, it will be analysed how the method behaves in the
vicinity of a quantum phase transition, which is also given in the transverse field
Ising model. Also the behaviour of the simulation method within this region has not
been analysed in [27, 26, 16]. To get the system into the vicinity of the quantum
critical point, sudden quenches will be considered, which can be included into the
discrete truncated Wigner approximation.

In [18, 22], this transverse field Ising model has been diagonalised exactly and
dynamics after sudden quenches have been calculated analytically, for example, in
6, 7]. By comparison with these exact solutions, it will be analysed within this thesis
whether the quantum mechanical system can be approximated semi-classically by
the discrete truncated Wigner approximation and, especially, it will be considered
how this property depends on the distance from the quantum critical point. Finding
a simulation method which shows good results in the vicinity of a quantum phase
transition would be a great acchievement, because it has already been mentioned
that especially in this region computational simulation methods are scarce.

This thesis is organised as follows. In chapter 2, the discrete phase space, as
defined in [35, 36], will be introduced and the time evolution of the sampled initial
states will be derived. While the quantum mechanical equations of motion can not be
solved explicitly, they are truncated in the discrete truncated Wigner approximation.
In [27, 26], a truncation at first order is derived, which results in classical equations
of motion. A second order truncation based on a Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy is introduced in [16]. Both truncation schemes will be
reviewed here. This gives all ingredients to generally introduce the discrete truncated
Wigner approximation.

In chapter 3, a spin—% system will be considered and the general discrete trun-
cated Wigner approximation will be adapted to this special system. In [16], several
schemes how to sample the initial states from the phase space have been derived.
Since the quality of these sampling schemes will be found to depend on the ap-
proximated system, further new schemes will be introduced within this work. This
way, it will become possible to analyse in more detail how the qualities of the var-
ious sampling schemes depend on the simulated system. The method will then be
benchmarked for all sampling schemes and both time evolution approximations on
an Ising chain.

Sudden quenches of the transverse field Ising model will be considered in chapter
4, where first the model and the analytical solution will be explained further. After-
wards, the system will be simulated by the discrete truncated Wigner approximation
with the various introduced sampling schemes. The results will be compared to the
exact calculations. It will be found that in this model, the sampling schemes intro-
duced within this thesis will show better agreement with the exact solution, while it
will be the other way around in the Ising chain. In studying sudden quenches into
the vicinity of the quantum critical point, it will be observed that the quality of the
simulation depends on the distance from the critical point. This dependence shows



an interesting behaviour, good agreement with the exact solutions will be found in
the approximations of quenches close to the critical point and far away from it. In
the region in between, at intermediate distances from the critical point, differences
between the approximation and the exact solution will be observed. This result is
very peculiar, since one would not expect the simulation to be in good agreement
with the exact solution close to the critical point. Additionally, if the simulation
works well close to the critical point, one would not expect it to show worse results
at intermediate distances. There is no trivial explanation for these deviations. This
surprising result might be a hint for quantum effects, which can not be captured by
the semi-classical approximation, appearing for quenches to intermediate distances
from the critical point. In the same way it might be promising that the method
works in the vicinity of the quantum critical point.



2 The Discrete Truncated Wigner
Approximation

The discrete truncated Wigner approximation is a semi-classical simulation method
for dynamics of a discrete quantum mechanical system, which are often hard to
solve exactly. It is based on sampling an initial state from a Wigner function on
a discrete phase space and evolving it in time, while the full quantum mechanical
time evolution is truncated. This way many classical trajectories are calculated and
the time-evolved observables are averaged to include quantum uncertainties into the
semi-classical approximation.

In section 2.1 a continuous quantum mechanical phase space analogous to the
classical phase space will be derived according to [11, 23]. For discrete quantum
mechanical systems, a discrete phase space is needed, which will be derived in section
2.2 according to [35, 36]. On this discrete phase space a Wigner function can be
defined from which an initial state can be sampled. Two ways to truncate the full
quantum mechanical time evolution at different orders will be derived in sections
2.3 and 2.4 according to [16, 26, 27]. At this point all ingredients of the discrete
truncated Wigner approximation are introduced and the whole procedure will be
summarised in section 2.5.

2.1 The Continuous Quantum Mechanical Phase
Space

The continuous quantum mechanical phase space can be built up analogously to
the classical phase space. One two-dimensional, continuous phase space is needed
to describe the state of each particle in the system containing all possible states of
the particle. Each axis of the phase space then denotes an infinite set of parallel
horizontal or vertical lines, which in the classical case are associated with different
values for position and momentum. In the quantum mechanical phase space, each
set of parallel lines is associated with an operator, where the position and momentum
operators ¢ and p are chosen. FEach line is then associated with an eigenstate of
the corresponding operator. Since position and momentum eigenstates g and p have
continuous eigenvalues, these can be associated with an infinite number of horizontal
and vertical lines respectively.

Given the principles of the continuous quantum mechanical phase space, a trans-
formation of the quantum operators into the phase space is needed. One possibility,
and the one which will be used here, is to define Weyl symbols Qw (g, p) of the
quantum mechanical operators Q(Q,f)), where the hats indicate operators. The



Weyl symbols are denoted with a subscript W and are defined in phase space. The
mapping between an operator and its Weyl symbol can be written down in the
position and the momentum basis, respectively [11, 23],

1 A 2ipx
O (a.p) = — [la-alQ@p)lg+aexp (71 )da,  (2)

Wlap) = [p-al0@p lp+ayew (T )de. (22)

To make the mapping between operators and functions on the phase space unique,
several conditions on the transformation need to be introduced, as stated in [20].
There, the authors derived a unique mapping with the needed properties, which is
also the mapping used here.

A quantum state can be fully described in its Hilbert space by the density operator
p. The Weyl symbol corresponding to the density operator is called the Wigner
function W (g, p) and can also be written in the position and the momentum basis,
respectively [11, 23, 34, 35],

= [la-alp@pla+aien (T2 )de, (23
p)=— [t 2lp(@p)lp+a)ew (22 de. (2.4

Given the Wigner function, one can express quantum mechanical averages analo-
gously to classical ones,

Classmal //Q q p) dqdpa (25)
<Q>quam =T (Q(a.9)/ (@.9))
= //Qw (g, p) W (q,p) dgdp. (2.6)

Here P (q,p) is the classical phase space probability distribution which translates
into the Wigner function in the quantum mechanical phase space.

One property of the Wigner function is that its integral over one variable gives
the probability of the second variable, as follows directly from equations (2.3) and

/W (g,p)dg = (p|p|p), (2.7)
/W (g.p)dp = (q|plq). (2.8)

Given this, one can easily see that the integral of the Wigner function over the whole

phase space is unity,
//W q.p) dgdp = / lp) dp,

= Tr(p) = 1. (2.9)



Hence, the Wigner function is normalized and shows some properties of a prob-
ability distribution over the phase space. Because there is no condition on it to
be positive definite, it can also have negative entries and is thus called a quasi-
probability-distribution [11, 23, 34, 35]. If a projection of the Wigner function along
a direction of the phase space is considered, the probability distribution of the ob-
servable associated with this direction is found, as can be directly seen from equation
(2.7). Although the Wigner function is a quasi-probability-distribution for states, it
integrates to a probability for observables.

Considering the integral of the Wigner function over a region of the phase space
bounded by two lines ¢; = aq + bp and ¢, = aq + bp with a,b € R and ¢;, ¢y € R,
one can see that the probability of the observable ag + bp has a value between ¢;
and ¢,. Analogously to the integral over one direction of phase space in equations
(2.7) and (2.8), this is a non-negative probability [35].

For two density operators p and p' of two arbitrary states, the inner product of
the corresponding Wigner functions W (q,p) and W’ (q,p) gives the trace of the
product of the density operators as can be shown by simply plugging the definition
of the Wigner function into equation (2.3),

2rh / / W (q,p) W’ (q,p) dgdp = Tr (p7') . (2.10)

The detailed derivation of this relation is explained in appendix A.1.

As will become clear in section 2.2, a different way to describe the mapping
between the Hilbert space and the phase space will be needed to define the discrete
quantum mechanical phase space. One possibility for this is to use phase-point
operators A (q,p). These are Hermitian operators acting on the Hilbert space which
project each point in Hilbert space onto a point in phase space. Hence one operator
exists for each point in phase space. In terms of the phase-point operators, the
mapping of the density operator onto the Wigner function takes the form [35]

p= /W (g.p) A(q,p) dgdp. (2.11)

Combining this mapping with equation (2.3), one can calculate the phase-point
operator in the position basis,

o1 A 2ipx
W (q,p) = s ///(q —z|W(q,p)A(d,p) g+ x)exp (h) daedq'dp’

SN Y R A P / q +q" w' (q" —q
@<Q|A(Q7P)|q)=5<q—q Qq)exp<_p(qq)>‘ (2.12)

h

The detailed derivation is given in appendix A.2.
An analogous expression can be derived in the momentum basis [27, 35],

_ N N ~/+~// i Y/ -
(P'|A(d.p)p") =0 (p/ -P 5 b ) exp (—q(php)> : (2.13)




Given these expressions, the phase-point operator can be written explicitly in the
position and momentum basis, respectively,

Atap)=2[ [ [1d) @\ p)ipl @) (@ ~ dl a) (al @' + @) (@ dadqaq", (2.14)

Aap)=2 [ [ [10) # a) tal ') B — Bl p) (bl B + B) (] dpdp'dp". (2.15)

The properties of the Wigner function described earlier follow from properties of the
phase-point operators, as shown in [35]. The normalisation of the Wigner function
in equation (2.9) follows from the normalised trace of the phase-point operator at
each point (g, p) in phase space,

T (A(q.p) = [(a|A(a.p)|q) dq
= /5 (@ —q')exp (—W_q/)> dq’

=/5(q—Q’)d'
=1

(2.16)

Using this and equation (2.11), one can show the normalization of W (g, p) using

Tr (p) =1 [35],
Tr(//W q,p) A qp)dqdp>
://W q,p) Tr (4 (q,p)) dgdp

Z//W(q,p)dqdp
=1. (2.17)

Considering the trace of the phase-point operator product A (qy,py) A (qy, P,), One
finds [35]

Tr (A(qy, p)) A (g2, p2)) = 27hd (@, — 42) 3 (P, — P,). (2.18)

The detailed calculation is shown in appendix A.3.

This shows that the phase-point operators are orthogonal operators with the inner
product defined by the trace of the operator product. Thus, any Hermitian operator
can be written as a linear combination of the phase-point operators [27, 35]. Using
equations (2.11) and (2.18), an expression for the Wigner function W (g, p) in terms



of the phase-point operators can be given,
pA(q,p) //W a,p)A(q,p) A(q’,p')dgdp (2.19)
=T (pA(q.p)) = T ([ [W(a.p) A(a.p) A(dP) daap)
= [ [W(a.p) T (A(a.p) A(d.p)) dadp
= 2771//W (g,p)0(q—4q)d(p—p')dgdp

= 2rhW (¢, p') (2.20)

= W(q,p) = 71TTr (pA(q.p)). (2.21)

As for the Wigner function, one can examine the integral of the phase-point operators
over the phase space. It defines a projection operator P,

A

P= 27171///1((1,19) dqdp. (2.22)

If the integral is taken over a region of the phase space spanned by aq+bp = ¢; and
aq+bp = ¢, with a,b e R and ¢, ¢; ¢ RP| this operator P describes a projection onto
a subspace of the phase space spanned by the eigenstates of the operator aq + bp
with eigenvalues lying between ¢; and ¢ [35].

In summary, the continuous quantum mechanical phase space is defined based on
Weyl symbols and the Wigner quasi-probability-distribution. There are two ways
to transform operators into Weyl symbols, where the translation with phase-point
operators can be used to define an analogous translation into the discrete phase
space using discrete phase-point operators, as will be shown in the following section
2.2.

2.2 The Discrete Quantum Mechanical Phase Space

After the continuous quantum mechanical phase space has been defined in section
2.1, a discrete quantum mechanical phase space can be derived in an analogous
way. Therefore, a system of N orthogonal states is considered and the discrete
phase space is set up on a finite mathematical field of dimension N x N. Such a
mathematical field can only be created if NV is a prime number. There exist different
possibilities to define a discrete phase space for non prime N, but since no other
cases are considered in this thesis, N will be defined as a prime number in the
following [35, 36].

A finite mathematical field is defined by the numbers 0, ..., N — 1 if all additions
and multiplications are treated as calculations modulo N [35]. Analogous to the
continuous phase space, the discrete phase space is a two-dimensional vector space
over a finite field which is given by an N x N array of points. The two directions of
the array will be labelled a; and as as shown in figure 2.1.



a2

/e e e e e

0 1 2 3 4 ay

Figure 2.1: Illustration of a phase space for a system of N = 5 orthogonal states.
Each dot stands for a point in the discrete phase space [35, 36].

On such a finite mathematical field, lines are defined by the equation ma;+nay = p
where m, n and p are elements of the field, thus they are also treated modulo N.
Two lines are parallel if their equations only differ in the value of p. For example,
may + nas = q is parallel to the ma; + nas = p if p # ¢q. One can then show that
there are exactly N (N + 1) lines with N + 1 sets of parallel lines in a phase space
of a system with N orthogonal states [35].

In the two-dimensional continuous phase space there are only two sets of parallel
lines, namely the vertical lines and the horizontal lines. There, each set of parallel
lines is associated with an observable and the lines are identified with the eigenvalues
of the corresponding operators. As explained in section 2.1, the horizontal lines
are associated with the momentum operator and the vertical lines are associated
with the position operator. The continuous eigenvalues of these operators are then
assigned to the infinite number of horizontal and vertical lines. Analogously to the
continuous phase space, an observable can be identified with each set of parallel
lines in the discrete phase space and each line is identified with an eigenvalue of the
corresponding operator. There is only one condition on the observables associated
with the sets of parallel lines. They need to be mutually unbiased to form a basis.
In formulas this means that |(v; | w;)|* needs to be independent of i and j when
{]vi)} is the set of eigenstates of the operator associated with one set of parallel
lines and {|w;)} is the set of eigenstates of the operator associated with a different
set of parallel lines [35].

With the discrete phase space defined as an array of N x N points for a system of
N orthogonal states, the next step is to define the phase-point operators to project
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each point in Hilbert space onto one point in phase space. This then defines the
Weyl symbols and the Wigner function analogously to the continuous case. For each
point & = (ay,as) in phase space, there exists one phase-point operator A, which
is defined so that its properties are analogous to the continuous case. Hence, the
operators act on the state-space, which forces them to be N x N matrices. As in
the continuous case in equation (2.16), the trace of each operator should be unity,

Tr (Aa) = 1. (2.23)

The trace of the product of two operators in the continuous case is given by equation
(2.18). In the discrete case, this translates into

Tr (Aadp) = Noas. (2.24)

The continuous Dirac delta functions are replaced by discrete Kronecker deltas ¢;;
and the factor 27h is replaced by N. This replacement of the factor 2wh can be
loosely understood by considering an area .4 in the continuous phase space. This
area contains ﬁ orthogonal states. The translation from the continuous to the
discrete phase space replaces integrals by sums. Therefore, the area A is replaced
by a number of points. Considering the whole discrete phase space, it consists of N?2
points for a system with N orthogonal states. Thus, to get the number of orthogonal
states, the number of points is divided by N, which is analogously to the continuous
phase space, where the area A is divided by 27h to get the number of orthogonal
states. For this reason, the factor 27h is replaced by N in the translation from the
continuous to the discrete phase space [35].

Equation (2.22) defines a projection operator onto the continuous phase space.
An analogous projection operator onto a line A can be defined in the discrete phase

space by replacing the integral by a sum and the factor 27k by N [35],

~ 1 ~
Bi=+ 3 A (2.25)

e\

This operator describes a projection onto the line \ of the phase space and is the
average of all phase-point operators on this line.

Given these properties, there are multiple ways to define the phase-point opera-
tors. One possibility, which will later be found useful, is given by [35]

A 1

Ao =3 (D) o+ (1) "2 6, + (—1) 6. + 1] for N =2,
X 271 .
(Aa>kl = 024, k+1€XD ((N) as (k — l)) for prime N # 2, (2.26)
with £, [ being the matrix indices which take values 0,..., N — 1 and 6,, 7y, 0.

being the Pauli matrices.

While this is only one possible representation of the phase-point operators, other
representations fl’a are given by unitary transformations fl’a =U fla U f. since unitary
transformations conserve the needed properties.
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With these phase-point operators, the Wigner function W, can be defined in the
discrete phase space analogously to the continuous phase space. Since integrals in
the continuous case are translated into sums in the discrete case, equation (2.11)
can be translated into

p="> Ws,. (2.27)

The phase-point operators A,, are chosen to have properties analogous to the con-
tinuous case, so they can also be inverted to give an equation for the discrete Wigner
function,

1 .
Wa =+ Tr (pAa) . (2.28)
which can be shown to have properties analogous to the continuous Wigner function.
As in equation (2.9), the discrete Wigner function is normalized,

> We=1 (2.29)

Hence it also is a quasi-probability-distribution. Analogously to the continuous case,
the sum p, of the Wigner function along a line A of the phase space describes the
probability distribution of the observable associated with the line,

=) Wa. (2.30)
7P
Also the inner product of two Wigner functions W, and W/, corresponding to two
different density operators p and p’ is given analogously to equation (2.10), where
again 2mh is replaced by N,

NS WaW. =Tr(pp). (2.31)

This way, a discrete quantum mechanical phase space is defined analogously to
the continuous quantum mechanical phase space. While systems with continuous
states should be studied in the continuous phase space, the discrete phase space is
more useful for systems with a finite number of orthogonal states, like spin systems.

2.3 The First Order Truncated Wigner Approach

After the quantum mechanical phase space is defined, dynamics of a quantum system
can be calculated using the phase space variables. Therefore, the time evolution of a
Weyl symbol Qw (g, p) of an arbitrary quantum mechanical operator 9) (g, p) needs
to be calculated. The time evolution of the operator in the Hilbert space is given
by the von Neumann equation [11, 23],

in = [A,9), (2.32)

12



with the dot describing the time derivative, H being the Hamiltonian operator and
the square brackets describing the commutator. Both operators Q) and H depend
on the operators ¢ and p, but for convenience the arguments are left out here and
in the following.

To get the time evolution of Qy, the Weyl symbol of both sides of equation (2.32)
needs to be calculated. Then the left hand side gives ihi€w. The right hand side is
harder to calculate, since the Weyl symbol of a commutator is needed. To derive
this, one can consider the Weyl symbol of a general commutator of two arbitrary
operators (5 and O, (11, 23],

[, QQ]W = (QlQ2>W - (QZQI)W
=M w [exp (—zhA) — exp (ZZAN Qow (2.33)

2

hA
= Ql,W (—2@ sin <2>> QQ,W- (234)

93 93
Using A = £ = — 2= The derivation of this time evolution is explained in detail
in appendix A.4.

With this, the time evolution of a Weyl symbol on the quantum mechanical phase
space can be calculated [23],

in = [A,9] (2.35)
. A
2 hA

Using the definition of A, this equation can be written in terms

of the Mo
{... }ap = 3sin (g {... }) with the Poisson brackets {...} = BEaE aE

gal bracket
87

Qw (q,p) = — {Hw (¢,P), 2w (¢, P) by - (2.38)

Given the equation of motion of the Weyl symbol Qy, also the equation of motion
of the Wigner function W as the Weyl symbol of the density operator p is defined
and thus the dynamics of the spin system in phase space can be calculated. The
differential equation (2.38) is impossible to write down in a closed expression and
more of symbolic nature. To get an approximation of the solution, one can Taylor
expand the Moyal bracket in terms of h around h = 0, where the Moyal bracket
turns into the Poisson bracket. So, up to first order in A, the quantum fluctuations

13



do not effect the equations of motion [23],

. 2

Qw (q,p) = = Hw (4, P) BA +0 (hg’)] Qw (q,p)

= —{Hw (a,p), 2w (q,p)} + O (1*)

= {Qw (q,p), Hw (g,p)} + O (1?). (2.39)

Equation (2.39) is the Liouville equation which describes classical time evolutions.

The expectation value of an arbitrary operator is given by the average of its
Weyl symbol weighted with the Wigner function, as stated in equation (2.6). Thus,
the time evolution of the expectation value can be approximated in the Heisenberg
picture using the average of the classical time evolution of the Weyl symbol weighted
with a Wigner function which is fixed at the initial state. The classical time evolution
of the Weyl symbol can be calculated using the classical equations of motion for g (¢)
and p () and putting Qw (g, p) (1) = Qw (qq (t) ,Pa (£)), where g, (t) and p, (¢)
are the classical time evolutions of the initial values g, and p, [23, 27],

(@) (1) = [ [ (@ (1) pa (1) W (g, o) dagip, (2.40)

With the same approximation also the time evolution of the Wigner function can be
easily calculated and since the Wigner function is the Weyl symbol of the density
operator, this gives the dynamics of the quantum mechanical system.

Analogously to the continuous phase space, the time evolution can be calculated
for systems with discrete states on the discrete phase space. The time evolution
of a Weyl symbol is not influenced by the form of the phase space, so also in the
discrete case the time evolution of a Weyl symbol can be approximated by a classical
time evolution. Thus, the equations of motion of an arbitrary operator Q () in the
discrete phase space are given analogously to equation (2.39),

Ow (@) = {Qw (@), Hw ()} + O (). (2.41)

The time evolution of the expectation value of an operator Q) can now be calcu-
lated analogously to equation (2.40) in the continuous case. The system is again
considered in the Heisenberg picture, so that the Wigner function is fixed, while the
Weyl symbols are evolved in time. By putting, analogously to the continuous case,
Qw () to Qw (o (t)) with the classical time evolution oy (t) of the initial value
o and by translating the integrals into sums, one gets [26, 27|

() (1) = > Qw (et (1) W (o) , (2.42)

which is analogous to equation (2.40).

The dynamics of the expectation value of an operator <Q> can now be calculated
numerically using equation (2.42). Since this time evolution is truncated at first
order in h, the dynamics of the quantum mechanical system are approximated semi-

classically.
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2.4 The Second Order Truncated Wigner Approach

In section 2.3, the time evolution of the expectation value of an operator in the
quantum mechanical phase space was calculated in the Heisenberg picture, where the
Weyl symbols are evolved in time while the Wigner function is time independent. It
is also possible to consider the time evolution of the expectation value of an operator
in phase space in the Schrodinger picture, where the Weyl symbols Qw (q,, p,) are
time independent and the phase-point operators A (g (t),p(t)) are evolved in time.
In the Hilbert space this means that the density matrix p (¢) depends on time. Thus,
the Wigner function is still time independent, while the time evolution is defined in
phase-point operators [16],

A(q (1), p<t>> = exp (i) Aa p) exp (iH1) (2.43)
0= [ [W(ap)A@®).p®). (2.44)

The same time evolution of the density operator can be calculated using discrete
time evolved phase-point operators,

Aa (t) = Alec(1))
= exp (—iHt) Aqgexp (iHt) (2.45)
=YW () Au (1) (2.46)

While the time evolutions derived in the Heisenberg picture in section 2.3 were purely
classical approximations, quantum effects can be included by calculating the time
evolution of the phase-point operators using the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy and the reduced density operators [16]. This way, an
approximation of the equations of motion to higher orders is possible, while the
approximation was only to first order in A in section 2.3. Thus, the correlations
between the spins in the simulated model can be calculated to higher accuracy, as
will be analysed in chapter 4.

Since the phase-point operators fulfil the same properties as the density operators
except for the positive definiteness, the time evolution of reduced density opera-
tors using a BBGKY hierarchy can analogously be defined for reduced phase-point
operators [16]. Therefore, the equations of motion will be derived generally for re-
duced density operators and after this the analogous expressions will be given for
the phase-point operators.

Reduced density operators g, are defined as the partial trace of the N-particle
density operator py y = p1 Q@ p2 ® -+ ® pn [3, 21],

@1...5 = Trs+1...N (,51N) . (2~47)

The normalisation condition of the density operator still holds,

Try s (01.s) = 1. (2.48)
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The properties of the reduced density operators follow directly from the properties of
the full density operator, which can be directly seen from the definition in equation
(2.47). From this it can also be seen that all reduced density operators of different
orders are directly connected to each other [3],

@1...5 - Trs+1.4.s+k (@1...s+k) . (249)

Plugging the definition of the reduced density operators into the von Neumann
equation (2.32), the time evolution of the reduced density operators of general order
can be calculated for a general N-particle Hamiltonian H 1N with a term for on-site
interactions and another term for pair interactions [3, 21],

N N
H N = Zﬁz + Z ﬁz‘j, (2.50)
i=1 z'gé:;
ihpr.n = [Hi N, 1] (2.51)
= ihTre. N (ﬁlN) = {1{]1...1\/, Trs+1.‘.NﬁL..N} (2.52)
. N A~ N A
= ihoy.s = Z {Hi, @1.‘.5} + Z Tr; ([Hz’j, @1..‘5,3})
i=1 z,ij;;
s s N
= 231 {]:fu @1...5} + z:l zlel"j ([I:Iija @1...5,3‘}) : (2.53)
= =1
i

The reduced density operators of first and second order 9; and 0;; are defined as
(3, 16, 21]

pi = Try (pr.n) (2.54)
pij = Tryy (Pr..n), (2.55)

where Tr; and Tr;; denote the partial trace over the whole Hilbert space except for
the factor associated with particle 7 or particles i and j respectively.

From equation (2.53), the equations of motion for the reduced density operators
of first and second order can be written down explicitly as further derived in [3, 16],

ihb = [8] + 3 T ([ 0], (2.56)
i
ihoy; = [Hz + H; + Hy, @i;} + g: Try, ({ﬁ]m + Hy, @z‘jk]) : (2.57)
P
k#i,j
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For most physical N-particle systems, the dynamics are mostly influenced by the
lower order reduced density operators. Thus, the equations of motion can be ap-
proximated by decoupling lower orders of the hierarchy and neglecting higher orders.
In most cases the approximation already works well if only the first four orders are
considered [3, 21]. With this approximation it is possible to write down closed ex-
pressions for the differential equations resulting from (2.51). The full hierarchy then
has the same properties as the exact von Neumann equation, while the properties
of the lower order approximations depend on the decoupling and may need to be
corrected for each approximation [3].

The time evolution of the density operator can be expressed as a function of the
time evolved discrete phase-point operators using equation (2.27) [16],

pr.n () = Wadq (1)

= > WarayATNNN (1)

a1...aN

= N Wa @ @Way A, ()@@ Ay (1) (2.58)

aq...aN

Thus, also the time evolution of the phase-point operators is given by the von
Neumann equation,

A

ihAg = [H .y, Aa| . (2.59)

As already mentioned earlier, the phase-point operators have the same properties as
the density operators, except for the positive definiteness. Therefore, reduced phase-
point operators .27, can be defined analogously to the reduced density operators [16],

A

AN = Ty (AT50)). (2.60)
Given the reduced phase-point operators, their time evolution, given by the von
Neumann equation, can be approximated analogously to the time evolution of the
density operators using a BBGKY hierarchy [16].

The first and second order reduced phase-point operators . and 427;]- can be de-
fined analogously to the first and second order reduced density operators in equations
(2.54) and (2.55) [16],

o, =Ty (@711\{) ; (2.61)

oy =Try; (o w). (2.62)

For a general Hamiltonian H;_n with on-site interactions H; and pair interactions

H;;, the time evolution of the first and second order phase-point operators is then
given analogously to equations (2.56) and (2.57) for the first and second order re-
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duced density operators [16],

A N A N A
Hi . n= ZHi + Z Hij,
=1 Z%J?g:jl
ihel, = [, <) —|—ZTrk([ H, ). (2.63)
s
ihed, = \H;+ Hj + Hyj, o4;] + Z Ty, (| Hix + Hir, i) - (2.64)

k#m

To get an expression for the second and third order reduced phase- point operators
Jaf and 7, ik which occur in the time evolution, correlation operators %] and ‘Kmk
are defined. With these, a cluster expansion for the second and third order reduced
density operators can be used to separate them into product parts of first order re-

duced density operators and correlated parts expressed by the correlation operators
[16],

oy = i+ % 269
g = A+ A+ A G+ DBy + B (2.66)

Using these cluster expansions, the time evolution of the first order phase-point
operator in equation (2.63) can be written as

i = [, )+ 3 T ([Fw i) + [Bal) . (260
k=1
ki

From the time evolution of the second order phase-point operator in equation (2.64),
a time evolution for the correlation operator %;; can be derived,

ih;z%;j:[ﬁﬁ—ffj—k i }+ZTT/§<{ ik + jk,ﬂfgjkb

k#w

+ Z Try, ([ ik + Hi, ooy, + Ay, + oG, + ACij + (éjk})
k;él,j

= ihdy (F.97;) + ihd, 6, (2.68)
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where the product rule is used in equation (2.68). Considering the terms individually,
a differential equation for the correlation operator %;; can be derived,

k=1
k#i,j
3 T ([ ]+ 3 T ([t )
oy 50

The derivation of the equation of motion of the correlation operators is shown in
detail in appendix A.5.

One can now truncate the hierarchy at second order by setting ‘fijk to zero [16].
In this case, the time evolution of the phase point operator of particle ¢, as given in
equation (2.67), can be calculated by using equation (2.69) for the correlation oper-
ator CKAU This gives the second order approximation of the dynamics of the quantum
mechanical system, where quantum effects are included into the time evolution by
the correlation operators %, [16].

If the hierarchy is truncated at first order, also the second order correlation oper-
ators ‘fij are set to zero. Then the time evolution is completely classical again and
it will be easily seen in section 3.2 that it results in the same equations of motion
as the ansatz in section 2.3.

To get higher order approximations, the time evolution of the third order corre-
lation operators ‘éjk needs to be calculated, which will then depend on the fourth
order correlation operators Cfijkl and so on. This way, higher order approximations
can be acchieved. In the limit of an infinitely large order, the full hierarchy equals
the exact solution, but is practically not possible to calculate. In this thesis only
approximations up to second order will be used.

2.5 Process of the Discrete Truncated Wigner
Approximation

After the discrete quantum mechanical phase space has been defined in section 2.2
and two ways to calculate the truncated equations of motion of the system in phase
space have been derived in sections 2.3 and 2.4, all ingredients for the discrete trun-
cated Wigner approximation are given and the process can be completely derived.
The approximation is based on the idea that an initial state is sampled from the
discrete phase space using the Wigner distribution. This initial state is then evolved
in time using truncated time evolutions. Up to now the approximation is classical.
A quantum mechanical system can not be considered to be in one state, but in a
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superposition of all possible states where only a probability of the individual system
states is known. This leads to quantum uncertainties appearing in the dynamics.
To get these quantum fluctuations into the classical approximation, a large number
of time evolutions is created from different initial states sampled from the Wigner
function and the resulting observables are ultimately averaged to obtain the final
approximating trajectory.

Hence, first the Wigner function W, needs to be calculated. Since in both, the
Heisenberg and the Schrodinger picture, the Wigner function does not depend on
time, only the initial Wigner function needs to be calculated, given some initial
density operator py. The Wigner function is then calculated using equation (2.28),
where the phase-point operators A, are calculated using for example equation (2.26).

As explained in section 2.1, the Wigner function is a quasi-probability-distribution,
which means that it has properties of a probability distribution, but it might have
negative values. If the Wigner function does not have negative entries, which will
appear to be the case in the systems considered in this thesis, it yields a probability
for each variable associated with the points a in phase space, where the variables
are different in the Heisenberg and the Schrédinger picture. These associated vari-
ables can thus be sampled from the Wigner function. In the Heisenberg picture, an
operator is associated with each phase space point a whose Weyl symbol is classi-
cally evolved in time. Thus, an initial classical variable is sampled from the Wigner
function and then evolved in time. In the Schrédinger picture, the variable sampled
from the Wigner function is the initial phase-point operator A, (0), which is then
evolved in time using the BBGKY hierarchy of the reduced phase-point operators.

Using the first order truncated time evolution for the initial variable or the second
order truncated time evolution for the initial phase-point operator from the BBGKY
hierarchy, a trajectory in time can be calculated. This way, a large number R of
trajectories can be created, where the initial values are sampled individually from the
Wigner distribution for each trajectory. By averaging the R calculated trajectories,
quantum fluctuations are brought into the system, as has been discussed earlier.

In the Heisenberg picture, averaging R time evolved observables with initial val-
ues sampled from the Wigner distribution results in an approximation of the time
evolved average of an operator, as stated in equation (2.42).

In the Schrodinger picture, the averaging equals equation (2.46) and thus results
in an approximation of the time evolution of the state described by the density
operator p (t).

In summary, the discrete truncated Wigner approximation consists of the following
steps:

1. Calculate the Wigner function W, depending on the initial density operator
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po and on the initial phase-point operators fla,

W, = ;{Tr (ﬁoAa) ,
-1

Aa = 5 {(—1>a1 6+ (_1)a1+a2 &y + (_1)a2 5, +ﬂ for N = 2,

0 2m
(Ao‘)kz = 024, k+1€XP (( N ) as (k — l)) for prime N # 2.

2. Sample a variable associated with a point a in phase space from the Wigner
function W, giving a probability for all phase-space points. The sampled
variable is

a) either the Weyl symbol of an operator associated with a point « in the
Heisenberg picture,

b) or the phase-point operator A,, associated with a point in phase space in
the Schrodinger picture.

3. Calculate a trajectory in time of

a) either the sampled Weyl symbol using the classical time evolution in the
Heisenberg picture,

b) or the sampled phase-point operator using the time evolution derived
with the BBGKY hierarchy of reduced phase-point operators,

ihed = [, ) + 3" Top ([ A7) + [ %))
k=1
ki
combined with equation (2.69).

4. Calculate R trajectories and average the resulting observables to obtain

a) either the time evolution of the expectation value of the considered op-
erator,

() (1) = - Qw (aa () W (),

b) or the time evolution of the sampled state described by the density op-
erator,

p(t) =2 W () Aa (1).
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3 Spin-; Systems and Sampling Schemes

The general setup for a discrete quantum mechanical phase space has been discussed
in section 2.2. In this chapter, it will be applied to a Spin-% system according to [35,
36].The corresponding discrete quantum mechanical phase space will be introduced
in section 3.1. Therefore, the size of the finite mathematical field and the operators
associated with the different sets of parallel lines will be derived and the general
definition for the phase-point operators as stated in equation (2.26) will be used
to calculate the corresponding Wigner function. From this Wigner function an
initial state for a spin—% particle can be sampled and evolved in time using the
classical time evolution from equation (2.41) or the second order approximation in
equations (2.67) and (2.69). The corresponding equations of motion will be derived
according to [16, 26, 27] in section 3.2 for a general Hamiltonian. In section 3.3,
other possible choices for phase-point operators will be introduced which will lead to
various possible initial states which can be sampled from the Wigner function. This
variety in sampling schemes for the initial states will then give different results in the
simulation process and it will be discussed how to interpret this apparent ambiguity.
The so derived approximations will be benchmarked in section 3.4. There, the
simulations are calculated for the exactly solvable Ising chain and the results for
the different sampling schemes are compared to the exact solutions, which will be
derived in section 3.4 according to [27], to benchmark the approximation and the
sampling schemes.
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3.1 The Discrete Phase Space of a Spin—% System

In a system of Spin-% particles, the spin operators are the Pauli matrices ., ¢, and
627

: 1 1
. 01 eigenstates : |zg) = ( ) o) = ( > ’
o =\1 o) 1 -1

eigenvalues : xg =1, = —1,

. 1 1
A 0 —i eigenstates : |yo) = <1> , ) = <—i> 7
Uy - . 0 Y

eigenvalues : Yo =1, yp = —1,

A (1 0 ) eigenstates : |z) = (é) ,|z) = (?) :
g, = 0 —1)°

eigenvalues : 20 =1, z1 = —1.

These matrices have the following properties, which can be proven easily,

Gi0; = 0;5 + 1 Z €ijkO0k> (3.1)
oy
6:,65] =20 > €16, (3.2)
e
Tr (6,) = 0, (3.3)
Det (6;) =1, (3.4)

with 4,5 € {x,y,2}. €, is the antisymmetric Levi-Civita symbol with e, =
1. Here and in the following, A is set to one. The Pauli matrices have each two
eigenvalues, namely 1 and —1. Thus, the spins have two orthogonal states in each
direction. Since the discrete phase space is an N x N array of points where N
is the number of orthogonal states as explained in section 2.2, it is a 2 x 2 finite
mathematical field for a spin—% system. Therefore, all calculations are done modulo
2, see also [35, 36]. A 2 x 2 mathematical field consists of three sets of two parallel
lines each, as can be shown using the definitions of lines and parallel lines in section
2.2. An illustration of the lines in the 2 x 2 mathematical field is shown in figure
3.1, where also the eigenvalues associated with the different lines are denoted. These
associations will be derived in the following.

One vertical line is defined by the equation a; = 0, it consists of the points (0,0)
and (0,1). The other vertical line is given by a; = 1 and contains the points (1,0)
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Figure 3.1: Phase space of a spin—% system with sets of parallel lines and associated
observables. Each set of parallel lines and the associated observables are
drawn in one colour. The eigenvalues corresponding to the eigenstates
associated with each line are denoted next to the corresponding lines.

and (1,1). Since their equations only differ in the right-hand side, the two lines are
parallel. The lower horizontal line is defined by the equation a; = 0 and includes
the points (0,0) and (1,0), while the upper horizontal line is defined by ay = 1 with
the points (0,1) and (1,1). Also these two equations only differ in the right-hand
side, so the two horizontal lines are parallel. Further, there exist two diagonal lines,
one of them is defined by the equation a; +ay = 0 and contains the points (0, 0) and
(1,1), while the second one is defined by a; +as = 1 and consists of the points (0, 1)
and (1,0). Also these two equations differ only in the right-hand side, therefore this

is the third pair of parallel lines. In the end, the phase space of a spin-i system

2
consists of two horizontal, two vertical and two diagonal parallel lines with which
operators and eigenstates need to be associated as explained in section 2.2, see also

26, 27, 35, 36].

One can easily show that the spin operators constitute mutually unbiased observ-
ables, given by the Pauli basis. In section 2.2, two bases are defined to be mutually
unbiased if the quantity |(v;| w;)|?, with the sets of eigenstates {|v;)} and {|w;)} of
the two operators, is independent of ¢ and j. This can be easily verified by direct
evaluation in the eigenstate basis of the Pauli operators, see appendix B.1. Thus, the
Pauli matrices can be associated with the three sets of parallel lines in the discrete
phase space of a spin—% system. In the following the vertical lines will be associated
with 6, and the horizontal lines with &, [35].

In this configuration &, and &, are translation operators in phase space, since
each line is associated with an eigenstate of the operator associated with the corre-

25



sponding axis and &, translates one eigenstate of &, into the other and vice versa,

= (Y- (9 -
= ()~ () -
o = 4 () - (1) - o
= () - () - w0

This means that &, interchanges the two vertical lines and &, interchanges the two
horizontal lines in the phase space.

One property of the Wigner function is that it is translationally covariant on the
phase space, analogously to the continuous Wigner function, see [35, 36]. Thus,
if W is the Wigner function of a density operator p and a horizontal translation
operator H, is applied on p, W changes by a horizontal translation. A horizontal
translation by one unit on the discrete phase space is given by interchanging the two
vertical lines, since all calculations are done modulo two. As already discussed, this
interchange of the two vertical lines is mathematically given by applying the Pauli
operator &, if the eigenstates of 6, and &, are associated with the horizontal and
vertical lines. This shows that the translational covariance of the Wigner function is
given by the association of the eigenstates of the horizontal translation operator H =
0, with the horizontal lines. In an analogous way a vertical translation operator
Vi = 6, can be defined, which interchanges the two horizontal lines of the phase
space if applied on a density operator p. The translational covariance of the Wigner
function is thus given if the two vertical lines are associated with the eigenstates
of the vertical translation operator and analogously the two horizontal lines are
associated with the eigenstates of the horizontal translation operator.

The Wigner function then also needs to be translationally covariant under a one
unit translation in the diagonal direction, which corresponds to interchanging the
horizontal and the vertical lines. Thus, a diagonal translation operator is given
by the combination of the vertical and the horizontal translation operator, ViH, =
6,0, = i6,, using equation (3.1). Analogoulsy to the horizontal and the vertical
cases, the diagonal lines need to be associated with the basis of the eigenstates
of the diagonal translation operator to ensure the translational covariance of the
discrete Wigner function.

Thus, all three spin operators are associated with the three orthogonal directions
in the discrete phase space of a spin—% system [35, 36].

When the Pauli matrices are associated with the three sets of parallel lines, then
each line needs to be associated with an eigenstate of the corresponding operator.

0
1
1
1
1
-1
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Thus, there are two choices for each set of parallel lines to associate the two eigen-
states with the two lines. To find a consistent definition, the Wigner function is
considered, because it requires the sum over each line A in phase space to equal the
probability of the measurement outcome which is associated with said line, as stated
in equation (2.30). Hence, one can calculate the Wigner function with the initial
condition that the system is prepared in an eigenstate of the Pauli matrices to see
which line is associated with this eigenstate, since the sum of the Wigner function
over this line needs to be one [35, 36].

To calculate the Wigner function, first the phase-point operators A, need to be
calculated using equation (2.11) for N = 2,

~ 1 a
Ao =5 [(F1)" 0+ (1) 5, + (-1)2 6, + 1] (3.6)
- T(1+4) ; 0 1(=1—14)
A 2 A - 2
= Ao (; 1— 1) 1 ’ D7 AL (-1 +4) 1
Ao 1 T(1—1d) A 1 5(—=1+1)
CO=\la+i) o ) L0 = AL (=1 —4) 0 '

The density operator of a spin-1 system is given by the general form [26, 27, 35]

[(62) 62 +(8,) 6, + (6.) 6. +1] (3.7)

If one initially prepares the system in the 41 eigenstate of an operator ; without
any other conditions on &, for j # 4, the expectation values become (4;) = 1 and
(6j) = 0. This way, one can calculate the initial density operators p,, p, and ps,
where the system is prepared in the +1 eigenstate of the z-, y- and z-Pauli matrix
respectively,

L. f—l 11

pz_§_am+__§ 1 1 )

Sl L1 =i

im0t =5\ 1)

1 4 1(10

p:=35 0+ 1] —2<0 0). (3.8)

The Wigner function can now be calculated using equation (2.28). Given the phase-
point operators and that the three density operators for the system are prepared in
the +1 eigenstate of each Pauli operator, the corresponding Wigner functions are

27



given by plugging these into equation (2.28) [26, 27, 35, 36],

Wiay.an) = ;Tr (PA(araz)) (3.9)
5.y =1 (o) =1 o) =1
Won =3 Wan=0,  Wey=0, Wan=3  Woy=0, Wuy=0,
W0 = %> Wi =0, W0 = %, Wi =0, W0 = %, W) = %

The Wigner functions are indexed in the same order as the corresponding entries in
the phase space.

This result shows that the vertical line consisting of the points (0,0) and (0, 1) is
associated with the +1 eigenstate of 6., and the second vertical line is associated
with the —1 eigenstate of 6,. The lower horizontal line is now associated with the 41
eigenstate of 4, while the upper horizontal line is associated with the —1 eigenstate
of 6.. The diagonal line going through the points (0,0) and (1,1) is associated
with the +1 eigenstate of &, and the second diagonal line is associated with the
—1 eigenstate of 6,. This has been visualised in figure 3.1, where the associations
are represented by the corresponding eigenvalues. The value of the spin in each
direction is given by the eigenvalue of the corresponding Pauli matrix and is thus
also associated with one of the lines. In summary each point in phase space describes
a spin state with one spin value for each direction. This is how an initial spin state is
given by sampling a point in phase space from the Wigner function [26, 27, 35, 36].
An initial phase-point operator for calculations in the Schrédinger picture is given
by calculating the phase-point operators associated with the points in phase space
using equation (2.26) and sampling one of them from the Wigner function [16].

The derived association of the eigenstates with the different lines can already be
seen in the definition of the phase-point operators in equation (2.26). The prefactors
of the Pauli matrices turn out to be the associated eigenvalues. Considering for
example the phase space point (0,0), all prefactors in the phase-point operator
121(0,0) are one, which is also the case for the eigenvalues associated with the three
lines meeting in this point. The same can be seen considering the other points in
phase space. Hence, already the definition of the phase-point operators defines the
associations of the states in phase space and since the phase-point operators are
not uniquely defined, as already discussed in section 2.2, also the association of spin
states and lines in phase space is not uniquely defined [16, 35, 36]. Thus, by unique
transformations of the phase-point operators, different sampling schemes can be
realised describing the same physics. In section 3.3 five possible sampling schemes
will be introduced which will show different approximation results. The quality of
the resulting approximations will be shown to depend on the approximated system.
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3.2 Time Evolution of a Spin-. system

After sampling an initial state of a spin—% system from the Wigner function as
explained in section 3.1, where the sampling process itself will be further analysed
in section 3.3, the truncated time evolution of this state needs to be calculated to
get an approximation of the dynamics of the system. This can either be done using
the classical time evolution as derived in section 2.3 according to [26, 27] or the
second order truncated time evolution derived in section 2.4 according to [16] using
the BBGKY hierarchy of the reduced phase-point operators.

A general Hamiltonian for a spin—% system of NV spins with spin-spin interactions

Ji; and an external field h; is given by

Z Z Tubio) — thak (3.10)

k,1=0
kst —w,yz

Here J;; = (JZ"‘]”, Ji, JZZ]) is a vector containing the interaction strengths between the
spins at sites ¢ and j in z-, y- and z-direction, h; = (h¥,hY, h?) is a vector containing
the external field acting on the spin at site ¢ in each direction, and &; is the vector
of spin operators at site . The condition k # [ in the sum is chosen since the spins
do not interact with themselves. From this general Hamiltonian the systems which
are approximated in section 3.4 and chapter 4 can be derived by choosing different
interaction strengths and external fields. Thus, the time evolution for the general
spin Hamiltonian in equation (3.10) can be calculated and then adapted for different
systems [16, 26, 27].

In the Heisenberg picture one spin component s is sampled from the Wigner
function for each direction o € {z,y, 2z} of the initial state as explained in section
3.1. Instead of evolving the Weyl symbol in time using equation (2.41), it can
be replaced by the spin component which can then be classically evolved in time
according to [26, 27]. The Hamiltonian in equation (3.10) can also be translated into
a classical Hamiltonian, where the vectors of Pauli matrices are replaced by vectors
of the spin components s; [26, 27],

=~ Z Z Tasis) — Z hisy. (3.11)

k,1=0
kit e

The classical time evolution of the spin component s of direction « at site n is then
given by the Poisson bracket of the spin component s* and the classical Hamiltonian
as derived in equation (2.3),

sp = {8?7 HC}

N_1 N-1
S SRR F R T R I 3 SN )
S = =
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The Poisson bracket of two spin components can now be derived by comparison
with the commutator of the quantum spin operators. For spins at different sites ¢
and 7, the commutator is zero, since these spins do not effect each other and can be
exchanged. The commutator of two spin operators at the same site is given by the
commutator of the Pauli matrices which is stated in equation (3.2). The classical
Poisson bracket is related to the commutator by [26, 27|

S EYY
{af‘, ﬂ = 210, Z Mgl

Y
_m7y’z

= {3?‘,5?} =26, > ] (3.13)

:x7y7z

Given the Poisson bracket of two spin components, equation (3.12) can be written
down explicitly,

1
k19i Tsis) k1Oil€ " "SES;
Nz: Z (QJB(SkeO‘B vﬁ+2jﬂ5 aﬁvﬁv)

k1=0 B
kAl =Ty,
N-1
— Z Z <2h£5ike"‘msz>
e
N-1 2
=—2 Y MY (Jf;;svsf) +hls) . (3.14)
0 o

This is the classical time evolution for a general Hamiltonian of a spin—% system. The
expectation value of a spin component (s%), as defined in equation (2.42), can be
calculated by averaging R time evolved spin components given initial states sampled
from the Wigner function [26, 27],

1 R-1
() (1) = 5 2 s () (3.15)
r=0

To calculate the second order truncated time evolution of the spin system accord-
ing to [16] using the BBGKY hierarchy of reduced phase— oint operators, equations
(2.67) and (2.69) can be used. To study the spin-; system, the first order reduced
phase-point operators . and the correlation operators %] are represented in the

basis of Pauli operators using expansion coefficients a; and ¢;; [16],

~ 1
~ 1 VoAl Ay
Gij = 1 ; cii G167 (3.17)
=m:y,z
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The general Hamiltonian in equation (3.10) can be split into two parts analogously
to equation (2.50) with

Hz = hi&za
Hy= Y J5606;. (3.18)
B
=T,Y,%z

By plugging these definitions into the time evolution equation (2.67), differential
equations for the expansion coefficients a; can be derived,

ot \2
L. .
= —Q;0;
2
1 L1 =l 5.5 1 )
- [ hzaz,(IZ—l—aZaZﬂ -5 Iy | |-Jh808) Y ety
i 2 ,ﬁq 3 4_%,;
1 =x,Y,z =T,Y,z

Detailed calculation of this expression is carried out in appendix B.2 and returns
the result for the time evolution of a; [16],

N-1 N-1
o Y o0 10 v O pyd Y 0 Y YO
af = =2 > |hlaje" + > Jhele ™ + > Jhalale . (3.20)
7,0 k=0 k=0
=x,y,z k#i k#i

If the BBGKY hierarchy is truncated at first order, all correlation operators Cé-j are
set to zero, which means that also the expansion coefficients ¢;; are zero. Then, the
time evolution of the expansion coefficient a! in equation (3.20) reduces to

N-1

S Z Y 6 pyd Zvévwé
7,0 k=0
=T,Y,z k:?él

Here the index f denotes the truncation at first order. This equation of motion has
the same form as equation (3.14) and shows that truncating the BBGKY hierarchy
of the reduced phase-point operators at first order gives the classical time evolution,
as already stated in section (2.4).

In the same way as the time evolution of the expansion coefficient a!' is derived,
the time evolution of the expansion coefficients ¢;; can be calculated by plugging
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equations (3.17) and (3.18) into equation (2.69),

=g \i 3 o
—oyz
1 n i
R A
=x,y,2
= 1 —h;6; — h; 0'], Z ci 6167
2y,
~ 1 R
+=- > Jgfﬂq(l—kaz )(Ij—kajcr])—i—z E;CZV o
iy, =2y,
L 1 [ZPNTPNY
-I—;Z ZTTk Jkaak g( +a;6 1)chaak
k:;éz,j afy, L —m,y z
1 1
+;Z ZTrk Jkaokg( —i—ajU])Zc
k#zy z,yz L —lﬂg,;
173 1 /»
—1—;2 Z Try | |—J067%67 — Jko Uk,§(1k+ak6'k) Z; c;i 676
kk#l?ﬁ =z,y,z L —y,e

(iz + a’z&z) (i] + aj&j)

A~ =

1 /s . AB A
_%(Ij—kaja'j) Z TI'j —JSO'ZB f,

:z7y’z

7 S dyote;

_x7y z

1 gap 1 VAl A
- (brae) & | |-aiatol g 3 ot

_xvyz

+ le (il + aia'i) (i] =+ aja'j> . (3.22)

From this expression, one obtains the time evolution of the expansion coefficients
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¢;;. Detailed calculation is carried out in appendix B.3 and gives the result [16]

=2 |- Z (Ja - JE 7)6‘“’7

ij ij 4
:x7yﬁz
N-1 N-1 5
_ v 2% dv 75u v uo _~yov
Z h! + Z Jipag | i€ + | hi+ Z Jkak Cij €
=z,Y,% k#1i,5 k#w
b s o )
- > Z [ Jip@; C e + Jhaley e ”}
6y k=0
=x,y,z k#i,j
v | e 6 v,,6\ vov v ( 07 V) o
+ > J {ai (cij + a; aj) " +a; (cij +ajaj )€ . (3.23)
:x7y7z

Given the time evolutions of the expansion coefficients a,; and ¢;;, the expectation
values of the one- and two-point functions of the spins can be evolved in time by
averaging R runs [16],

1 R—-1

<0-5L> =5 Z af:rv (324)
R r=0
(oto?) = Ri +ala” (3.25)
7 7 R = ,]7” ,T ]7" :

Given the equations of motion of the spin system in the first order approximation
in equation (3.14) and in the second order approximation in equations (3.20) and
(3.23), the time evolution of each spin in the system can be approximated using the
initial states sampled from the Wigner function. By repetition, a large number R
of trajectories can be calculated from many sampled initial states and, eventually,
the resulting observables can be averaged to get a simulation of the quantum me-
chanical system. This allows to efficiently calculate the expectation value of a spin
component and two-point variances using equation (3.15) for the first order approx-
imation or equation (3.24) for the second order approximation. With this, also any
other observable, which can be expanded in sums of spin correlation functions, can
be approximated.

3.3 Multiple Phase-Point Operators and Sampling
Schemes

As mentioned in section 2.2, the discrete phase-point operators are not unique.
Unitary transformations conserve the needed properties of the phase-point operators,
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as do non-singular linear transformations of the phase space coordinates. Thus, there
are multiple ways to define the phase-point operators [16, 35, 36].
One definition of phase-point operators is given by equation (2.26) [35, 36,
Aa =5 [0 0t (126, + (<12 0+

N =N -

ra6 +1]. (3.26)

In the last line, & is the vector of Pauli matrices, while r,, is a vector containing the
prefactors of the Pauli matrices depending on the phase space point a,

T(ar.a2) = ((_1)a1 , (_1)a1+a2 ’ (_1)a2) ,

T0,00 = (]-7 17 1) )

T(O,l) = (17 _17 _1> )

T, = (_1a _1a 1) ’

a1 = (—]_, ]_, —]_> . (327)

Using a unitary transformation, the sign of the second component of all r, can be
changed to get a different set of possible phase-point operators [16],

Y,
= r;,(OO) - (17 17 1)7
r;;,(() 1) — (17 ]-7 _]‘) )
T;7(170) - (_1, 1, 1) 5
oy = (=1, —1,-1). (3.28)

As explained in section 3.1, the prefactors of the Pauli matrices in the phase-point
operators, which are the vectors r, here, also define the initial spin states which
are sampled from the Wigner function on the phase space. Hence, this unitary
transformation changes the set of initial spin states which are then evolved in time.
One can now see in both sets that there appear some correlations between different
components where there is no physical reason for correlations [16]. For example, if
the system is initially prepared in the +1 state in z-direction, only the states (g,
T(1,0), "';,(0,0) and r;7(170) have a nonzero probability independent of the choice of

phase-point operators A,. This can be seen in equation (3.9), where the entries
W(a, as) give the probabilities from which the states (4, q,) are sampled.

Since the Wigner function, as defined in equation (2.28), depends on the phase-
point operators, it changes if the phase-point operators change. But taking a closer
look at the Wigner function, one can show that, if the system is prepared in an initial
state in the x- or z-direction, the Wigner function is not influenced by changing the
sign of the y-component in the r,. By flipping the y-component of the initial spins,
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the associations of the +1 and —1 states in y-direction with the two diagonal lines
in phase space are changed, as can be seen in the phase-point operators, while the
associations of &, and &, with the vertical and the horizontal lines stay the same.
Thus, the Wigner functions in equation (3.9), for the system being prepared in an
x- or z-state, do not change.

If the system is prepared in the +1 state in z-direction, the two states of the non-
primed set with non-zero probability always have the same x- and y-components,
while these components are always different in the two states of the primed set with
non-zero probability. There is no physical reason for these correlations to appear,
hence sampling the initial states from one of the two sets will introduce unphysical
correlations. These can unnecessarily worsen the quality of the discrete truncated
Wigner approximation, as will be further discussed in section 3.4 and chapter 4.

There is a way of combining the two sets of initial states to remove the correlations.
The initial density operator p can be written in the following way using the definition
in equation (2.27) [16],

+

ey
I
N[>

N =N

S Wada + ; STWLAL. (3.29)

Using this relation, one can combine the primed and the non-primed set. In the
example of preparing the spins in the +1 state in z-direction, one can then sample
the initial state out of the four possibilities 7 ), 7(1,0), T;,(O,O) and T;,(l,O) with
nonzero probability. This way the correlation, which appears in the single sets, does
not appear any longer since all four combinations of the spins in z- and y-direction
are possible [16].

As discussed earlier, the Wigner function is not influenced by a sign flip of the
y-component of r, if the system is prepared in an z- or z-state. Thus, assuming
this initial condition, one can combine the two sets introduced for general a [16],

Wy =W, (3.30)
1

= ;%:Wa (Fa +1) (3.31)
with 7o = ; (ra+7a)- (3.32)

35



This combination of the primed and non-primed sets yields four states [16],

’F(O,O) = (17 07 1) )

/71(0,1) = (17 07 _1) )

If'(l,O) = (_17 07 1) )

77'(1’1) - (—1, O, —]_> . (333)

The four states in this system all have a zero y-component. Since the spins interact
with each other in the system, a zero y-component influences the time evolution
and there is no physical reason for it to be zero. But if the system is prepared in
an initial state in z-direction, also a sign flip in the z-component of the initial spins
does not effect the Wigner function for the same reasons as explained above. Hence,
in the same way as the 7, is created, a second set 7/, can be set up by combining
a set v/, . where the z-component of the states in 7 is flipped, with r,. This then

T,

results in [16]

,1,-1). (3.34)

If there is also no restriction on the z-component, which means that the Wigner
function is nonzero for all possible states, it would also not be effected by a sign
flip of the z-component. In the simulations in section 3.4 and chapter 4, the z-
component of the spins in the system is always initially 41, which is why this sign
flip will not be further discussed here. In general, there is no distinguished direction,
hence the directions in the combinations above and in the following can be exchanged
arbitrarily.

If the system is initially prepared in the +1 state in z-direction, one can combine
the two new sets # and #', and only the states 7(0,0), ¥(1,0), (o) and 7(; 5, have a
nonzero probability. Thus, the initial state can be sampled out of these four states
with the probabilities given by the Wigner function [16]. This way the z- and y-
component have the same probability to be zero, while they are nonzero in the other
cases.

In summary, three different sets Sini¢, Smix and S are derived, from which the
initial states can be sampled if the system is prepared in the +1 state in z-direction
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and for which the corresponding Wigner functions can be calculated [16],

R

Sinit Smix mix
ro0 = (1,1,1), ro0 = (1,1,1), 70,0 = (1,0,1),
T(0,1) = (1,-1,-1), T(1,0) = (—-1,-1,1), T(1,0) = (—1,0,1),
rao = (—1,-1,1), oo = (1,—1,1), 00 = (0,1,1),
ran =(-1,1,-1), Tl(l,()) =(-1,1,1), "~"; (1,0) = (0,-1,1),
W0 = 0.5, Wioo) = 0.25, Wioo) = 0.25,
W) =0, Wi,1) = 0.25, W) = 0.25,
W0 = 0.5, Wii,0) = 0.25, Wii,0) = 0.25,
Wa =0, W = 0.25, Wan =025, (3.35)

These states of the sets can be described as lying on a cube in the s,-s,-s, space
of spin components with corners at all combinations of +1 and —1 in all directions.
Then the set Si;; consists of four of these corners, the set S describes the four
corners with z = 1 and the set Sy lies on the boarders connecting the corners with
z = 1, as illustrated in figure 3.2. By combining these sets, one can generally sample
states from all corners of the cube and from the centres of all boarders.

To go further, equation (3.29) can be written in a general way,

p=ap+Bp+p, (3.36)
with a+p+~v=1for o, 5,7 €{0,...1}.

Using this general form, more points of the cube can be added to the set, from
which the initial states are sampled. If one combines the initial set r with the set
r,, created by a sign flip in y-direction and the analogous set 7/, created by a sign
flip in z-direction, one can create a set of states using relation (3.32) in a general
way,

T8 = ar + fr), + ), (3.37)
a+ B -7y a+ -7y
=Trhn = |a—B+v|=|a=B+7],
a+ B+ 1
a+ -7y a+ B -y
ranz —a+f—y|=|—a+f-7],
—a—[F -9 —1
—a— [P+ —a— [+
T%Lo): —O./<|>5—’7 = —Oé+ﬁ—’}/ )
a+ B+ 1
—a—pF+y —a—pF+y
rhy=|a-B+y |=| a=B+7 |. (3.38)
—a—fF—x -1
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Figure 3.2: The sets from which the initial states are sampled for the different sam-
pling schemes can be illustrated by a cube in the s,-s,-s,-space. The
green dots mark the states belonging to the set Siu, the red dots are
contained in the set Sy and the yellow dots show the states of the set
S‘mix. For the initial condition that the z-value of all states is +1, the
magenta lines show the boarders from which the states are sampled in
the semi-continuous sampling scheme. The continuous sampling scheme
for the same initial condition samples states from the blue face of the
cube.

The index g denotes the general form of the set.

Because of the initial condition on the spin value in z-direction, this compo-
nent can not be modified without changing the Wigner function. Therefore, the
z-component only takes the values 41 and —1, so that the general form includes
all possible states on the upper and lower face of the cube in figure 3.2, while the
Wigner function for all states with —1 in the z-component is zero. This sampling
scheme is called the continuous scheme in the following since both, the z- and the
y-components, are sampled continuously. If all three components of the spin states
are randomly sampled from the phase space, a fourth parameter § can be intro-
duced to weight the states created by flipping the z-component of the states in set
7. The states described by the generally combined set would then be points within
the entire cube in figure 3.2.

Another idea for a possible sampling scheme is to sample one spin component
continuously, while the other components can only have the values +1 and —1,
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where all components have the same probability to be continuously sampled. This
sampling scheme will be called semi-continuous in the following. Considering the
possible states on the cube in figure 3.2, the scheme describes the cube boarders.
With the initial condition on the z-component, only the z- and y-component can
be continuously sampled and the states are only sampled from the eight boarders of
the cube, which have +1 or —1 in the z-component. Such a set of states is created
by adding a condition for the parameters  and + in equation (3.36),

B=0or~=0. (3.39)

The states weighted with § and + in the combination for the set of general states
r& are created by sign flips of the z- and y-component of the states weighted with
«, therefore § and v have opposite signs in all components of the combined states,
as stated in equation (3.38). Thus, if § = 0, the states always lie on the boarders
with y = +1 or y = —1, since the y-component of each state is either a + v or
—a — 7, which is either +1 or —1 by condition (3.39). The same happens with the
x-components for v = 0, thus the condition forces all states to lie on the boarders
of the cube in figure 3.2.

If the z-component is initially +1, the possible states only lie on the four upper
boarders of the cube in figure 3.2. If all three components of the spin states are
randomly sampled from the phase space, the states can be sampled from all boarders
in an analogous way as described for the continuous sampling. For this, a fourth
parameter ¢ needs to be introduced which, in the combination for the general set,
weights the states of the set created from 7 by flipping the sign of the z-component.
In this case, the condition in equation (3.39) changes in the way that always one of
the three parameters 3, v or ¢ needs to be zero.

After continuous and semi-continuous sets of states have been introduced, their
sampling schemes can be described in detail for the case of the initial condition on
the z-component to be +1. For continuous sampling, two random numbers r; and
ro need to be drawn from a unitary distribution, where r; is drawn between 0 and 1
and r9 is drawn between 0 and 1—r;. This ensures that the condition r; +ry+1r3 =1
can be fulfilled by r3 =1 — ry — ry with 0 < r3 < 1. There are six possibilities how
to choose «, # and v using r; and 79,

a=r, B =1y, y=1—1r; — 79,
o =T, /8:1—7"1—7”2, Y =T9,
a =Ty, B =ri, y=1—=1r1—r9,
(3.40)
o =T9, /le_rl_r% =T,
a=1—ry—rg, b =r, v =1y,
a=1=r—rs B =ry V=71
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All of these possibilities are equally likely, thus one of them is drawn using a unitary
probability distribution. Given values for «, § and ~, the set of initial states can
be created using equation (3.38) and the initial spin state can then be sampled
out of this set using the Wigner function, which has not changed during the whole
procedure.

If all three components of the spin states are randomly sampled from the phase
space and the continuous sampling acts on the whole cube, a third random number
r3 between 0 and 1 — 7 — ry needs to be drawn from a unitary distribution. The set
of initial states is drawn out of 24 equally likely possibilities to choose «, £, v and
using the three random numbers. The initial state can then again be sampled using
the Wigner function.

The semi-classical sampling works in an analogous way, but there, only one ran-
dom number r; between 0 and 1 needs to be drawn from a unitary distribution,
since it is always either 5 = 0 or v = 0. Therefore, only four choices for «, § and ~
are possible using the random variable 7y,

=T, le_rb 7:07

a=1-—r, B =r, v =0,
(3.41)
& =T, 6207 7:1_7117
a=1-—r, £ =0, v =r.

Given these choices, four equally likely sets of initial states can be created. One set
is then drawn out of these four using a unitary distribution and the states of the
set are calculated using equation (3.38). Given the Wigner function, which has not
changed, an initial state can be sampled from the boarders of the cube.

Again, if all three components of the spin states are randomly sampled from the
phase space, one additional random number ry between 0 and 1 — r; needs to be
drawn from a unitary distribution. This gives 18 possible choices for «, 3, v and
given the conditions on the four parameters as explained earlier. Out of these 18
sets of states, one is drawn using a unitary distribution and the initial state can
then be sampled from the Wigner function.

In summary, five sampling schemes have been introduced in this section. Three
of them are stated in equation (3.35) and the other two are the continuous and
the semi-continuous sampling. All sampling schemes with their main properties
are summarised in appendix B.4. In section 3.4, the effects of the different sets on
the simulations will be compared and it will be analysed which sampling scheme
gives the best results in comparison to the exact solution. The same will be done
in chapter 4 for a different approximated system and it will become clear that the
quality of the sampling schemes depends on the model which is simulated. The
probabilities of the different states are given by the Wigner function, which can be
directly calculated given the r vectors, since these uniquely define a corresponding
phase-point operator. This also shows that the different sampling schemes work
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for the Schrodinger picture in the same way, even if the derivation is done in the
Heisenberg picture. The different sampling schemes also result in different phase-
point operators, which can be sampled from the Wigner function on phase space for
the time evolution in the Schrodinger picture.

3.4 Benchmarking the Discrete Truncated Wigner
Approximation in a Spin—% System

To find out whether the discrete truncated Wigner approximation is a useful simu-
lation method for Spin—% systems, it can be benchmarked using an exactly solvable
model and comparing it with the approximation results. The easiest exactly solvable
spin—% system is the N-spin Ising chain, which is given by the general Hamiltonian
in equation (3.10) with h =0 and JY = J* =0,

N-1
Hyo=— Y J;;07067. (3.42)
i,j=0
1#]
The exact time evolutions of the expectation values of the spin operators in this
system have been calculated for example in [16, 17, 26, 27, 32] and are given by

(57) (1) = (67) (0). (3.43)

0= g 5|0 (2 Y (um) (3.44)
e{-1,41) a=0

+(67) (0) sin <2t Z@ (Jmma)ﬂ : (3.45)

0= g0 3|07 0)cos (2 3 () (3.46)
i a=0

—(67) (0) sin <2t]:i%1 (Jmma)ﬂ : (3.47)

Here the sums go over all possible combinations of m, being +1 or —1.
The time evolutions of the two-point variances <6Z’-‘ o7 > with p, v € {z,y, 2z}, have

also been calculated exactly, see for example [16, 17, 26, 27, 32]. In the following,

only the variance <6f€7]z~> will be compared with the results of the discrete truncated
Wigner approximation, since the quality of the approximation is not expected to
depend on the components of the spins in the variance. All spins will initially be
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chosen to be +1 in z-direction for the simulations. This condition also needs to
be applied to the exact solution to make a comparison possible. This leads to the
requirements (67) (0) = 1 and (67) (0) = (67) (0) = 0 which will be used in the
following. With this, the time evolution of the variance <6f6§ > is given by [26, 27]

oy 1 N-1
<0’i 0‘]> (t) = N2 Z cos | 2t (Jiama)
M. — 1My 1. M 1M 1. M N a=0
e{-1,+1} aFi,j
N-1
x cos | 2t Y (Jpmy) | (3.48)
b=0
b#i,j

In the sum over all combinations of the m, being +1 and —1 the two terms with m;
and m; are not included.

Given these time evolutions, the magnetisation in z-direction and the expectation
value of the total zz-variance can be evolved in time [16, 26, 27|,

1 N-1
577) (1) = — 57Y (t
5 0= 5 2 520
1 N1 g N-1
2 Ea Pl C o)
e{-1,+1}
9 1 N-1
(@) ()= 5 > 0<&f&;>(t)
2,]=
_ 1 N-1 1 Z
N? 1,7=0 2N MG 1M 1M 1M 1. N
e{-1,+1}
N-1 N-1
x cos [ 26 Y (Jiamyg) | cos | 26 Y (Jjpmy) | - (3.50)

With this, also the exact time evolution of the connected zz-correlator <(62)2> —(67)?
is given.

The time evolutions of these variables will be approximated using the discrete
truncated Wigner approximation in the following subsections 3.4.1 and 3.4.2. In
subsection 3.4.1, the classical time evolution will be compared with the exact re-
sults while in subsection 3.4.2 the second order truncated approximation will be
benchmarked by comparison.
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3.4.1 Analysing the First Order Approximation

First, the discrete truncated Wigner approximation will be benchmarked using the
classical time evolution. The time evolutions of the spin components s¥, s¥ and s?
can be calculated according to [27] for the classical Ising Hamiltonian H,, using
equation (3.14),

= Z 1357 sT, (3.51)

1,7=0
i)

§i =0=s7 () = 57 (0),

N-1
§ =27 Jysisi = s](t)=s!(0)cos |2 Z iS5
J=0
G#i J#l

+s7(0)sin | 2 Z Jijs ,
J#l

~:—QZJUS§/3;‘:>S (t) = s7(0) cos 22 1355 (
J#z J#Z

— 57 (0) sin Z i3S : (3.52)
J#l

These equations of motion can be solved exactly, as stated on the right-hand side
of equations (3.52) [26, 27]. Given the time evolution of the spin components, the
expectation values of magnetisation and two-point variance can be evolved in time.

This gives results analogous to the exact time evolutions in equations (3.49) and
(3.50),

1
=5 2 ¢os 2 Z Jijs; (0)t ], (3.53)
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hl\x

(67, 0= 3z 2 i

1 N-1 N-1
Z cos | 2 Z Jixsi (0) | cos | 2> Jusy (0) | . (3.54)

k;éz l#7

Here, the index cl denotes the classical approximation [26, 27]. It is used that all
spins are initially +1 in z-direction by condition, thus (s*)_, (0) =1 and (s*) (0) =
(s¥) (0) = 0. This cancels all the sine terms, since they are multiplied with (s¥) , (0).

These equations can be compared with the exact equations of motion (3.49) and
(3.50). The structure of both sets of equations is the same with the only difference
that the sum over all possible combinations of the m, being +1 and —1 in the exact
solution is replaced by the sum over all s7 (0) in the classical approximation. The
classical approximation is calculated by averaging R runs, where for each run r the
initial spin value s7, (0) is sampled from the Wigner function, as derived in section
3.3. Thus, the classical equations of motion can be written as [26, 27]

1 N-1R-1 N-1
<Sz>cl (t> = R Z cos Z JUSJ r (O)t ) (355)

=0 =0 =0

JF#i
) 1 N-1R-1 N-1 N-1

<(32) >Cl (t) = VR > cos|2 Z Jiwsi, (0)t | cos |2 Jusi, (0)¢

1,j=0 r=0 =0
k#l I#5

(3.56)

For a large number R of runs, this average over the randomly sampled initial values
approximates the sum over all combinations of the initial spin values s (0) being +1
or —1 in the sampling schemes Si,;; and Sy [26, 27]. This then equals the sum over
all combinations of m, being +1 and —1 in the exact solution and thus gives the same
equations of motion for the exact calculation and the semi-classical approximation of
the magnetisation (s*). In the variance <(sz)2>, there is a small difference between
the exact calculation and the semi-classical approximation. While the two terms
with m; and m; are missing in the sum of the exact calculation, s7, and sj, appear
in the sum of the semi-classical approximation. The two time evolutions are thus
related by

(sis3) (1) =(6767) () cos® (2tJ35). (3.57)

Here it is assumed that the interaction strength between each two spins is symmetric,
Jij = Jji. The detailed derivation of this relation is carried out in appendix B.5
according to [27]. Equation (3.57) is only true for the sampling schemes Sp,;, and

44



Sinit, where the initial states in z- and y-direction are randomly sampled to be 41 or
—1. For other sampling schemes the sum over all combinations of m, being +1 and
—1 in the exact solution can not be replaced by the sum over the s7 (0) of the various
runs, since these also take different values than +1 and —1. Hence, these sampling
schemes do not result in the exact solution, but their approximation results will
still be analysed. It will also be shown in chapter 4 that the quality of the different
sampling schemes depends on the approximated system.

Given the exact time evolutions of the magnetisation (s*) and the variance <(sz)2>,
they can be compared with their semi-classical approximations to benchmark the
discrete truncated Wigner approximation. To do so, the interaction J;; between two
spins at sites ¢ and j needs to be specified. A general formulation for the interaction
strength depending on the distance between two spins is given by

gy = AT (3.58)
0 ifie=y

Here the variable o describes the range of the interaction. For a = 0, the interaction
range is infinitely long, all spins interact with each other with the same strength J,
not depending on their distance. This all-to-all interaction will be the first case to
be analysed. After this, a short-range interaction with o = 3 will be regarded, where
nearest neighbours interact with strength J, but the interaction strength decreases
with a greater distance between the spins. The larger a gets, the shorter becomes
the interaction range. An infinitely large « equals a nearest neighbour interaction.
This case will also be benchmarked and the interaction strength will then be chosen
explicitly as

I = {‘] i fi—gl=1 (3.59)
0 otherwise
Here the index NN denotes the nearest neighbour interaction.

Given an expression for the interaction strength J, the discrete truncated Wigner
approximation of the Ising model can be calculated and benchmarked. Instead of
choosing a certain value for J, the time can be defined in units of J, so that the
evolution of the calculated trajectories depends on t.J instead of only time ¢. Using
this, the simulations for &« = 0, & = 3 and the nearest neighbour interaction will be
benchmarked in the following.

Figure 3.3 shows the calculations for o = 0, which equals an all-to-all interaction.
Figure 3.3a shows the magnetisation (s*) (¢), while figure 3.3b shows the correlation
<(SZ)2> (t) — (s*) (t)*. In the figures the approximations for the sampling schemes

Sinits Smixs Smix as well as the semi-continuous and the continuous scheme, as defined
in section 3.3, are compared to the exact solutions in equations (3.49) and (3.50). For
the correlation in figure 3.3b also the modified exact solution as stated in equation
(3.57) is plotted, since this can be better compared with the approximation.
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(a) Magnetisation (s*) for N = 20 spins, R = 10000 runs and a = 0.
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Figure 3.3: Magnetisation (s*) (t) (figure 3.3a) and correlation <(sz)2> (t) — (s*)* (1)
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(figure 3.3b) of the Ising Hamiltonian with all-to-all interactions. First
order approximations using the discrete truncated Wigner approxima-
tion with different sampling schemes are compared with the exact solu-
tion. The blue line shows the approximation using sampling scheme Sj;,
the dashed orange line shows the result for scheme S, the green line
shows the approximation using Sy, the magenta line is created with
the semi-continuous sampling scheme, while the dashed yellow line shows
the result for the continuous sampling scheme. The red crosses show the
exact result and in figure 3.3b the black crosses show the modification
of the exact result as stated in equation (3.57).



In figure 3.3a one can see that the sampling schemes Si,;; and Sy, follow the exact
time evolution of the magnetisation (s*) (t) everywhere. They show all revivals of
the exact solution at the right times and the lines lie directly on each other. The
sampling scheme Sy does not follow the exact solution that closely, it only shows
the positive revivals and misses the negative ones, while even the positive ones are
broader than the exact solution. The continuous and the semi-continuous sampling
start at the right magnetisation but fall down to zero and do not show any revivals.
They only follow the exact solution for very short times.

Regarding the correlations in figure 3.3b one gets the same conclusions. None
of the approximations follows the exact result, which is expected since it has been
discussed before that there is some difference between the exact correlation and the
semi-classical approximation. But a comparison with the modified exact solution,
as stated in equation (3.57), shows again that the sampling schemes Siui; and Spix
have the same behaviour as the modified solution. As in figure 3.3a, the sampling
scheme S'mix misses some extrema of the modified solution and is broader. The
continuous and the semi-continuous sampling again only work for short times, they
rise together with the modified solution, but then fall down to zero and stay there.

In figure 3.4 the discrete truncated Wigner approximation of an Ising chain
with short-range interaction using a = 3 for the different sampling schemes is
compared to the exact solutions. Figure 3.4a shows the time evolution of the
magnetisation (s*) (t), while figure 3.4b shows the trajectories of the correlation
<(sz)2> (t) — (s*)*(t). There one can find the same conclusions as in figure 3.3 for
the all-to-all interaction.

The exact magnetisation in figure 3.4a is well matched by the sampling schemes
Sinit and Spix. Their evolutions follow the exact solution at all times. The approx-
imation with sampling scheme Suix misses some revivals of the exact solution and
the maxima are much broader. The continuous and the semi-continuous sampling
do not follow the exact solution, they fall down to zero and show small oscillations
around it. Here even the slope at short times does not match with the exact result,
thus for short-range interactions these sampling schemes do not even work for small
times.

In figure 3.4b no approximation matches with the exact result, which is caused by
the difference in the calculations of the correlation. The modification of the exact
solution in the way of equation (3.57) does not match any of the approximations
at short times either, but for times ¢t 2> 2.5¢.J it shows the same behaviour as the
approximations with the sampling schemes Sj,;; and Spic. For shorter times, these
approximations are closer to the exact result. The trajectory calculated with the
sampling scheme Sy roughly gets the behaviour of the modified and the exact solu-
tion at some times. The results for the continuous and the semi-continuous sampling
scheme saturate at relatively short times and do not approximate the behaviour of
the exact or the modified trajectory. While the semi-continuous sampling is close
to the exact solution for the first maximum, the continuous sampling already has a
different slope there.
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Figure 3.4: Comparison of first order discrete truncated Wigner approximations of

the magnetisation (s*) () (figure 3.4a) and the correlation (sz)2> (t) —
(s*)? (t) (figure 3.4b) in the Ising chain with the exact result using short-
range interactions. The approximation using sampling scheme S, is
shown by the blue line, the dashed orange line describes the result for

the sampling scheme S,,;,, while the result for scheme S i 18 given by the

green line. The magenta and the dashed yellow lines show the approxi-
mations with the semi-continuous and the continuous sampling scheme
respectively. The exact solution is given by the red crosses, while the

modification of the exact solution according to equation (3.57) is shown
by the black crosses in figure 3.4b.
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Figure 3.5: Benchmarking the first order discrete truncated Wigner approxima-
tion of magnetisation (s*) (¢) (figure 3.5a) and correlation <(sz)2> () —

(s*)? (t) (figure 3.5b) in the Ising chain with nearest neighbour inter-
action. The blue line shows results for S, while the dashed orange
and the green line denote results using Sy, and S i respectively. The
magenta line is resulting from the semi-continuous sampling scheme and
the dashed yellow line shows the result using the continuous sampling
scheme. Red and black crosses show the exact solution and its modifi-
cation according to equation (3.57) in figure 3.5b respectively.
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The result for benchmarking the discrete truncated Wigner approximation of the
[sing Hamiltonian with nearest neighbour interactions is shown in figure 3.5, where
3.5a shows the approximated magnetisation (s*) (t) in comparison to the exact solu-
tion. There one can see that again the approximations using the sampling schemes
Sinit and Sy closely follow the exact solution, while the approximation with S i
misses some revivals and shows broader maxima. As in figure 3.4a, the continuous
and the semi-continuous sampling scheme result in trajectories, which fall down to
zero after short times and then have small oscillations around it. Also here the slope
of the first decrease does not match with the one of the exact solution.

Also in figure 3.5b the approximations with Si,;; and Sy are close to the exact
solution. Here it is peculiar that the approximations match better with the exact
solution than with its modification according to equation (3.57). This does not
fulfil the theoretical predictions and suggests that the two additional terms in the
semi-classical approximation are suppressed compared to the modified exact solution
where the two terms are taken into account. The trajectory calculated with S'mix
again only roughly gets the behaviour of the exact and the modified solution. Also
the continuous and the semi-continuous sampling scheme do not follow the exact
solution, they again saturate after short times and even the slopes for short times
do not match with the exact and the modified solution.

Combining the results from figures 3.3, 3.4 and 3.5, one can conclude that the
sampling schemes Sj,;; and S are in good agreement with the exact solution of
the magnetisation (s*) (¢) in the Ising chain. It is peculiar that they even fit to
the exact solution with nearest neighbour interactions, since it is stated in [16] and
[27] that the discrete truncated Wigner approximation better works for long-range
interactions. There the authors argue that for long-range interactions the deviations
from mean-field are expected to be small and hence the discrete truncated Wigner
approximation works well in this limit. It is proven here that the approximation
also shows useful results for nearest neighbour interactions.

Considering the correlation <(sz)2> (t)—(5%) (t), Sinis and Sy give useful approx-
imations of the modified exact solution according to equation (3.57) for all-to-all
interactions. For short-range interactions, the approximations are close to the exact
solution at short times and follow the modification of the exact solution at longer
times. For nearest neighbour interactions, they follow the exact solution better than
the modification at all times. This shows that for shorter interaction ranges, the
approximations follow the exact solution for a longer time, before they match with
the modification of the exact solution.

The sampling scheme S as well as the continuous and the semi-continuous
sampling schemes do not follow the exact solution, neither for the magnetisation
nor for the correlation. The continuous and the semi-continuous sampling schemes
result in trajectories which are in good agreement with the exact solutions for very
short times until the first maximum in the case of long interaction ranges, before
they fall down to a plateau and saturate. In comparison the sampling scheme Spix
always misses revivals of the magnetisation and only roughly approximates the exact
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or the modified curves.

3.4.2 Analysing the Second Order Approximation

After the different sampling schemes have been benchmarked for the first order
approximation of an Ising chain, the same process can be repeated to benchmark
the discrete truncated Wigner approximation using the BBGKY hierarchy of the
reduced phase-point operators up to second order to approximate the equations of
motion. Using equation (3.20), the second order approximation of the time evolved
expansion coefficients a; can be given for the Ising Hamiltonian H,, according to
[16]7

N-1
Hxx = — Z Jz‘ijS? (360)
i,j=0
i#£]
= af =0, (3.61)
N—-1
al =2 Ji (¢ + aiag), (3.62)
k=0
ki
N-1
a; = =2  Ju (cl +ajay), (3.63)
i

In the same way equation (3.23) can be used to write down the approximations of
the time evolved second order expansion coefficients ¢;; according to [16],

&G =0, (3.64)
N-1
=23 T (afel + aicit) — 207 (5 + afal) + 207, (3.65)
k=0
k#i,j
N-1
cr==2Y (afey +alefy) + 207 (¢ + ajal) — 2Jal, (3.66)
k=0
ki, j
N-1
=23 Ju (afcif + aiciy) — 2005 (i + afal) + 2Ja;, (3.67)
k=0
k#i,j
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=2 Z [ (ak,c a; ]k) + Jik (akcyz + aie Zk)] (3.68)
k#m
— 2J;;a! (csz + afaj-) 2.J;af ( el + afa?) ;
g0y ik (aiei; + aicit) = T (afely + ajely)] (3.69)
k=0

ki

+2Ja (ijy + afa?) — 2Ja; ( e+ afaj?) )

-2 Z (aicyx fcf,f) 2Ji5a5 ( iy + azyaf) — 2J;;aY, (3.70)
k#w
N—
Gf =2 ’;) |:Jj (aﬁc” + azczx) — Jik (aicyy + afcjk)} (3.71)
ki

Z/x Y,z -1 Tz T 2z

-2 Z [ (aicyz i’cj,f) + Jik (aiczy + aé’cf,f)} (3.72)

k#w

P 17 z Y yx y @
+ 2J;5a; (cij + a; aj) 2J;5a; ( Cij +a; aj) :

Since in the approximation the initial values of all expansion coefficients c;; are
chosen to be zero, ¢ff will be zero at all times. Also the time evolutions of cf]y and
c;; only depend on each other and on af, hence they will also be zero at all times.
The same is true for the time evolutions of ci-’f and ¢;7. With these properties, the
equations of motion of the expansion coefficients become [16]

al =0,

~

N-1

=2 E Jixasay,
k=0
k#i

N-1

a; =—2 Z Jalay, (3.73)
oy

RS

w
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cTT
¢ =0,

L
& =0,
Lz

& =0,
YT
& =0,

N-1
Yy x 2Y T Yz Yy xr _z Y z T
Cii =2 Z (Jikakcij + ijakcij> — 2Jj5a;a;a; — 2J;5a5a7 a3,
k=0

k#i,j
N-1
Yz LT ZZ T T Y a¥q%q¥Y — afafa®
Cij =2 Z (Jzkakcij J]kakcij) + 2Ji5a; aia; — 2J5a%a7 a3,
k=0
ki,
& = (),

v

N-1
2Y T2 T T LYY YT Y 22T
Cij =2 E (J]kakcij Jzkakcij)+2J,]ajajai 2J;:acaza;
k=0

LY s A/ Rt 2/
ki
N-1
2z oz Yz T RY oz T, Y 2 Y, T
F==2) (Jlkakcij + J]kakcij) + 2Jija;aia; + 2Ji5a5aias. (3.74)
k=0
ki

The time evolutions of the magnetisation (s*) (¢) and the variance <(sz)2> (t) are
then given by averaging over N spins and R runs [16],

()5 () = g X 2L (1), (3.75)
()= 35 & X (G O+ e, (0, 0). (379

Here the index B denotes the BBGKY-approximation. To get the time evolution
of the expansion coefficients, differential equations need to be solved, which will be
done numerically in the simulations. Different methods for this will be discussed in
appendix C.2.

The time evolution of the magnetisation only depends on the time evolutions of
the first order expansion coefficients a;. The corresponding equations of motion
(3.73) are the same as the ones derived for the first order approximation in section
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3.4.1, as stated in equation (3.52). Thus, also in the second order approximation
the calculated time evolution of the magnetisation is the same as the exact solution.
In [16] the authors have shown that for the second order approximation even the
time evolution of the two-point variance is the same as in the exact solution. In
this approximation there is no difference between the approximating time evolution
and the exact time evolution of the variance, as it was the case for the first order
approximation in subsection 3.4.1.

Given the second order approximated equations of motion using the BBGKY-
hierarchy of the reduced phase-point operators, this method can be benchmarked
analogously to the first order approximation in subsection 3.4.1. Also here the results
using the different sampling schemes Si,i¢, Smix, Six as well as the continuous and
the semi-continuous scheme will be compared to the exact solution for the all-to-all
interaction a = 0, the short-range interaction @ = 3 and the nearest-neighbour

interaction.

Figure 3.6 shows the approximation results for the all-to-all interaction, where
3.6a shows the magnetisation and 3.6b shows the variance <(sz)2>.

The approximation of the magnetisation in figure 3.6a shows the same results
as in the first order approximations, which is clear since the equations of motion
are the same. The only difference is that one can see deviations in the extrema
appearing at longer times for all sampling schemes, which is caused by the fact
that the equations of motion have been solved numerically here. This is done to
benchmark the numerical method. It can be clearly seen that the quality of the
numerical solution gets worse with longer times.

In figure 3.6b none of the approximations follows the exact solution. At short
times all sampling schemes get the decay of the exact solution, but then deviations
appear very fast for all schemes and especially for Si,;; and Sy« a large divergence
can be seen for long times. Since it has been shown in [16] that the analytical solution
of the second order equations of motion gives the exact result for the correlations,
this divergence and the large deviations must be caused by the numerical solver of
the differential equations. The equations of motion of the expansion coefficients cfj”
in equation (3.74) can thus not be solved numerically in a stable way. Different
solving algorithms have been tried here, but none of them gives better results, as
further discussed in appendix C.2. Because of these large deviations appearing in
the two-point function and the smaller deviations in the magnetisation, there is no
point in regarding the correlation <(sz)2> — (s%)”.

Figure 3.7 shows the approximations of the magnetisation (figure 3.7a) and the
variance (figure 3.7b) for the short-range interaction @ = 3 and gives the same
conclusions as figure 3.6. The deviations at long times in the magnetisation are much
smaller here than in figure 3.6a and the quality ranking of the sampling schemes is
the same as in the first order approximation.

Considering figure 3.7b, one can see that the deviations in the variance are much
smaller for the short-range interactions than for the all-to-all interaction. Here no
divergence appears at longer times and the schemes S,,;, and Si,;; follow the exact
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(b) Variance <(sz)2> for N = 20 spins, R = 1000 runs and all-to-all interaction.

Figure 3.6: Magnetisation (s*) (figure 3.6a) and variance <(sz)2> (figure 3.6b) of
the Ising chain with all-to-all interactions. Second order approximations
using the sampling scheme Si,;; are shown by the blue line, while the
dashed orange and the green line show the results for S,;, and S i TE
spectively. The semi-continuous sampling scheme results in the magenta
line and the continuous sampling scheme gives the dashed yellow line.
The exact solution is shown by the red crosses.
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(b) Two-point variance <(s")2> for N = 20 spins, R = 1000 runs and a = 3.

Figure 3.7: Second order approximations of the magnetisation (s*) (figure 3.7a) and
the variance <(sz)2> (figure 3.7b) of the Ising Hamiltonian with short-
range interactions. The sampling scheme Si,;; is described by the blue
line, the dashed orange line shows the results of S, and the green
line shows the behaviour of the approximation using S'mix. The semi-
continuous and the continuous sampling scheme result in the magenta
and the dashed yellow line respectively. The exact solution is shown by
the red crosses.
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solution until the first maximum, which is slightly shifted. After this maximum, Sj,;
shows a different behaviour, while Sy, still gets the maxima of the exact solution.
Suix misses some of the maxima, which is analogous to the behaviour in the first
order approximations and also the semi-continuous and the continuous sampling
scheme show the same behaviour as in the first order approximations, they decay
and then stay at a plateau.

Figure 3.8 shows the approximations of the magnetisation in 3.8a and of the
variance in 3.8b for nearest neighbour interactions. Here one can again find the
same behaviour as in the approximations before. For the magnetisation in figure
3.8a the different sampling schemes show the same qualities as in the first order
approximation and one can see deviations appearing at longer times, which are
caused by the numerical solution of the equations of motion.

The approximation of the variance in figure 3.8b is much better than for the other
two interactions regarded above, the calculations with Si,;; only show small devia-
tions from the exact solution even for longer times. The deviations in the calculations
with Snix are larger at later times, but it still does not diverge. The behaviour of
the calculations with S'mix and with the semi-continuous and the continuous scheme
is the same as in all other approximations discussed before.

In the end one can summarise that the numerical solving scheme does not work for
very long times, but starts to show deviations, especially in the numerical calculation
of the variance. Hence, the equations of motion can not be solved numerically in a
stable way, while even here the analytical solutions result in the exact trajectories
[16]. Different numerical solving schemes have been tried here and in [16] and also
the parameters within the schemes have been changed, but so far it was not possible
to find a better result. This will be further discussed in appendix C.2. Even if
the second order approximation only works for short times, it will be regarded in
the simulations in chapter 4, since it is not yet clear why the divergences appear.
Therefore, it will be analysed at which times the divergences appear in different
models and, as already stated, how the strength of the divergences changes for the
different interaction ranges. It is expected that the strength of the divergences also
depends on the approximated model.

By comparing the different interactions, one can see that the approximation of
the correlation is qualitatively better the shorter the interaction range is. This is
a peculiar result since, as already mentioned before, the discrete truncated Wigner
approximation is expected to work better for long-range interactions in both, the
first and second order approximations [16, 26, 27].

Also for the approximations using the second order BBGKY-hierarchy of the
reduced phase-point operators one can conclude that the sampling schemes S,
and Sy give the best approximations for the Ising chain, while the calculation
with S, misses some extrema and the semi-continuous as well as the continuous
sampling scheme saturate quickly. This is again not surprising, since the exact result
of the Ising chain is given by summing over all possible combinations of the spins
being +1 and —1. This is also given by S and Smix, while the spins in Sy and
the semi-continuous and continuous sampling scheme can also take different values.
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— DTWA with Sjy —— DTWA with semi-continuous sampling
DTWA with Sphix DTWA with continuous sampling

— DTWA with S,;,  *  exact solution

(b) Two-point variance <(sz)2> for N = 20 spins, R = 1000 runs and nearest neighbour
interaction.

Figure 3.8: Benchmarking the second order approximations of the magnetisation
(s*) in figure 3.8a and the variance <(sz)2> in figure 3.8b of an Ising
chain with nearest neighbour interactions. The five different sampling
schemes are used for the approximations, where the blue line shows the
results for Sy, the dashed orange line corresponds to Sy, the green
line shows S and the magenta and the yellow dashed line show the
semi-continuous and the continuous sampling scheme respectively. For
comparison the red crosses show the exact solution.
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As will be shown in chapter 4, the quality of the sampling schemes depends on the
approximated model. Therefore, also in the following simulations all introduced
sampling schemes will be considered.
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4 Sudden Quenches in the Transverse Field
Ising Model

In chapter 3, the first and second order discrete truncated Wigner approximations
for a spin—% system have been introduced and benchmarked on an Ising chain. Going
further, the method will be applied on an Ising chain with an additional transverse
field within this chapter.

While the Ising model is a non-interacting system without many differences be-
tween classical and quantum-statistical fluctuations, as can be seen in section 3.4,
the additional transverse field turns the model into a more complex system including
a quantum phase transition. Hence, the transverse field Ising model can be used to
analyse the semi-classical discrete truncated Wigner approximation in the vicinity
of the quantum critical point. Since the model is exactly solvable, this analysation
can be done by comparison with the exact solution. This way it can be observed
whether a quantum mechanical system can be described semi-classically in the vicin-
ity of a quantum phase transition and hence the appearance of quantum effects can
be analysed.

Therefore, the model itself and the analytical calculations of the exact solution
will be further introduced in section 4.1 according to [18, 22, 6, 7]. In the following
section 4.2, the first order discrete truncated Wigner approximation will be applied
on sudden quenches from the ground state of an infinitely large transverse field to
different distances from the quantum critical point. The same procedure will be
repeated for the second order discrete truncated Wigner approximation in section
4.3.

4.1 Analytical Calculations for Sudden Quenches in
the Transverse Field Ising Model

The transverse field Ising chain is given by the Ising Hamiltonian in equation (3.42)
in combination with a transverse field hf = h, h¥ = hY = 0 which has the same
value h for all sites i,

N-1
_ AT AT ~Z
HIsing = — E Jijai O'j —h g; - (41)
4,j=0 1=0
i#j

In the following, nearest neighbour interactions having the same strength J at all
sites and periodic boundary conditions will be used, so that one can write the
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Hamiltonian in the form
N-1
Higing = — ZO (J6767 1) moa w +ho7) . (4.2)
i—
Here mod N denotes a modulo N calculation.

This quantum transverse field Ising chain is an exactly solvable model with a
quantum phase transition. In particular, it is a second order phase transition at
zero temperature, where a non-analyticity in the ground state energy is found [24].
This quantum critical point describes a crossover from a ferro- to a paramagnetic
region. The transverse field Ising model can be diagonalised completely analytical
at any finite temperature as shown in [18, 22]. See also [24, 25, 5] for a review.
For this analytical diagonalisation, the Ising Hamiltonian is first fermionised by a
Jordan-Wigner transformation. This means, that the Pauli operators are replaced
by fermionic Jordan-Wigner operators a; satisfying the canonical commutation re-
lations,

7—1

aj r=exp (iﬂ' > 6};6k) &; with 6; = 65 4167 (4.3)
k=0
j—1

= 6% =exp [ ir Y ala (a; + aj) , (4.4)

k=0

j-1
& =iexp (iw > aLak) (a} — aj) : (4.5)
k=0

A

=l — 2&}%. (4.6)

z
J
On these Jordan-Wigner operators, a discrete Fourier transformation is applied to
get the corresponding momentum degrees of freedom,

b— % f i) A7

= — a;exp (—ipj) for p € —Z. .

pm;)]p(m)p]v (4.7)
The Ising Hamiltonian can then be expressed in terms of the Fourier transformed
Jordan-Wigner operators. By applying a Bogoliubov transformation on these Fourier
transformed Jordan-Wigner operators, again fermionic operators ¢, are created. The
expression of the operators depends on the relation between J and h. Here only the
expression for J # h will be given, since only this case will be considered in the
simulations,

cp = Upbp + vpr_p (4.8)
Oif pe2r(Z+1
with uy =4 1 w(2+3) , (4.9)
1if p e 27Z
_[-iifpeor(z+4) (410)
0if p e 2nZ '
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The Ising Hamiltonian can then be expressed in terms of the Bogoliubov operators,

1
H=> w, <chp - 2) (4.11)

p
with w, = 24/J2 + h? — 2Jh cos (p). (4.12)

Here w), is the single particle energy. At the quantum critical point, the ground state
energy density shows a non-analycity in the thermodynamic limit, as discussed ear-
lier. The ground state energy density can be written down in terms of the transverse

field A > 0 in the case of J > 0,

2 4Jh
€ (h) = - (J+h)E ( (J—i-h)2) (4.13)
with E (k) = /0g 1 — k2sin? (p)dp. (4.14)

It can be shown that this function has a point of non-analycity at J = h [24, 25].

Given this analytic diagonalisation of the transverse field Ising model, it has been
shown in [18, 22] and reviewed in [24, 5] that the model has a quantum critical
point at 7" = 0 and J = h. At this point, a quantum phase transition between a
paramagnetic and a ferromagnetic phase happens, where the system is paramagnetic
for J < h and ferromagnetic for J > h. The order parameter of the quantum phase
transition is given by the expectation value of 67 with respect to the ground state of
the transverse field Ising model [24]. In the following calculations, J will be chosen
to equal one, which can also be generally considered as using the ratio % for the
strength of the transverse field.

In the approximations of the transverse field Ising chain, the initial state will be
chosen such that all spins are +1 in z-direction, as it was also the case in section
3.4. This configuration can be shown to equal the ground state of the transverse
field Ising chain for the case of an infinitely large transverse field h. In this limit
h — oo, the interaction term in the Ising Hamiltonian Higpe in equation (4.2) can
be neglected and the average energy of the two states |z9) and |z1) can be calculated
explicitly,

N-1

Higing = —h Z o7 for h — oo, (4.15)

=0

S (.10
(2167 |21) = (?) (é _01> (?) Y (4.17)

Analogously it can be shown that the average energies are equal for both possible
states in - and y-direction. Hence, the lowest average energy is reached if all spins
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are in |zp), while there is no distinguished state in z- or y-direction. This state
minimising the average energy is the ground state of the system.

In the simulations, sudden quenches will be considered, which are created by
preparing the system in the ground state of an infinitely large transverse field h;
and then changing the field infinitely fast to a different value h¢. This is equivalent
to computing the time evolution from the Hamiltonian Hig (h¢). Here the indices
of h; and h¢ denote the initial and the final transverse field respectively. In the
calculations, the time ¢ = 0 will be chosen as the moment of the sudden quench.
This way, quenches within the paramagnetic region h > .J can be calculated, as well
as quenches across the quantum critical point into the ferromagnetic region h < J.
In this thesis, only quenches within the paramagnetic region will be considered and
compared to analytical results in [5].

The leading order behaviour of the longitudinal correlation function in the limit
d — oo and in thermodynamic limit N — oo,

1 X Y
Oz:iw <t7 he, hl) N Z { zz (tv he, hl) O (i+d) mod N (tv hy, hl)}
=0
1 N N
i=0 i=0

depending on time ¢, on the distance d between the spins and on the initial and
final transverse field, has been derived and a review is given in [6, 7, 5|. The
exact expression is denoted in equation 4.55 in [5] and the author also numerically
evaluated it. These numerical results can now be compared with the results of the
discrete truncated Wigner approximation applied on the transverse field Ising model
to analyse the quality of the approximation depending on the distance of the final
transverse field from the critical point.

In [6] and [7] the correlation functions in the transverse field Ising model have
been calculated in the thermodynamic limit, which here means large system sizes
N. There it is shown that in the thermodynamic limit the correlation functions
get stationary. In this stationary state, correlation functions can be described by a
generalised Gibbs ensemble, as defined in [12, 13].

The generalised Gibbs ensemble is a generalisation of the usual canonical ensem-
ble, which describes a system in thermal equilibrium. In classical statistical physics,
the Gibbs ensemble represents the states of a system with constant particle number
in a fixed volume in a heat-bath. In thermal equilibrium, the statistical entropy
S (p) of a canonical state p is maximised. This statistical entropy can be translated
into the von Neumann entropy S (p) of a density matrix p in quantum statistical
mechanics. This way also a Gibbs ensemble describing a quantum statistical system
in thermodynamic equilibrium can be defined analogously. Hence, also the von Neu-
mann entropy needs to be maximised in thermal equilibrium under the constraint of
energy conservation. It has been shown in [6, 7] that the transverse field Ising model
after a quench does not relax into the usual state of thermal equilibrium. Further-
more it relaxes into a state which can be described by the so called generalised Gibbs
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Figure 4.1: Exact correlation function in a transverse field Ising chain with N = 100
sites at time ¢ = 7 after a sudden quench to hy = 1.1. The red region
denotes the decay with which the first correlation length is associated
and the green region shows the decay with which the second correlation
length is associated. The blue region is the cone propagating through
the correlation function with time.

ensemble, as introduced in [12, 13], where even more conserved quantities need to
be respected in the maximisation of the von Neumann entropy.

While in [6, 7] the generalised Gibbs ensemble is found to characterise the corre-
lation function of a transverse field Ising chain at stationarity after a quench in the
scaling limit, in [5] the dynamics of the correlation functions for finite chains are
evaluated numerically. There it has been observed that also for finite chains and
times the correlation functions reach the stationary behaviour characterised by the
generalised Gibbs ensemble.

Until the whole spin chain has reached the stationary state, a propagating cone has
been observed in the correlation functions in [5] depending on the relative distance
between the spins. This cone is illustrated in figure 4.1, where the exact correlation
function is shown at time t = 7 after the quench to hy = 1.1. The propagating cone
is found in the blue region, while the red and the green region denote correlation
lengths, which will be discussed later. Inside this cone, the correlation function
has been found to decay exponentially with the relative distance. These correlation
functions after a sudden quench in a finite size chain can also be simulated with the
discrete truncated Wigner approximation. Thus, by comparison the approximation
method can be benchmarked for sudden quenches from an infinitely large initial
transverse field to a final transverse field at different distances from the critical
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point in the transverse field Ising model.

The infinitely large initial field is realised in the approximation by the condition
that all initial states have a z-component of +1. In the exact calculations, a concrete
value for the initial field h; is needed. It is discussed in [5] that an initial field
h; = 1000 can be treated as infinitely large, since it shows the same behaviour.

In [5], the author showed that in the decay of the correlation function inside the
propagating cone two correlation lengths can be identified. These are illustrated
in figure 4.1, where the two correlation lengths appear in the red and green region
respectively. The correlation length in the red region is characterised by the gener-
alised Gibbs ensemble and dominates for quenches close to the critical point. For
quenches far away from the critical point the second correlation length dominates
at short times, while the correlation length described by the generalised Gibbs en-
semble is only found for short relative distances. In figure 4.1 a quench to a distance
e = 0.1 from the critical point is considered, where it can be seen that the first
correlation length is found for short relative distances, while the second correlation
length dominates at larger distances. The author in [5] has shown that the corre-
lation length described by the generalised Gibbs ensemble is already given at short
times after the sudden quench in the limit of short relative distances.

This correlation length can also be calculated in the discrete truncated Wigner
approximation and can thus also be used to benchmark the simulation method
depending on the distance of the final transverse field from the critical point, which
will be done in the following sections.

4.2 First Order Approximations of Quenches in the
Transverse Field Ising Model
Given the Hamiltonian of the transverse field Ising chain in equation (4.2), the

classical equations of motion of the spins s’ for p € {z,y, 2z} can be calculated using
equation (3.14),

Szy = 2‘]8585(07;—&-1) mod N 2hf8;€7 (420)
Szz = QJS?S:():iJrl) mod N* (421)

These can not be solved exactly anymore, as it was the case for the Ising chain
in section 3.4. Therefore, they are solved numerically in the simulations using the
Runge-Kutta-Fehlberg method. More details on the numerical solving algorithm can
be found in appendix C.2. With these equations of motion, the discrete truncated
Wigner approximation of the spin dynamics in the transverse field Ising model can
be calculated. Given the approximation of the multi-particle spin state via the
ensemble of classical statistical fields s? (¢), also the semi-classical approximation
of the correlation function Cg¥, (, hs) depending on time ¢, transverse field hy after
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the sudden quench from h; — co and relative distance d between the spins can be
calculated,

1 N—-1R-1
Cdcl (t,he) = NE& (S . (t, hf) 8(+d) mod Nr(t hf))
i=0 r=0
| N-1R-1 N-1R-1
© N2R2? ( (t, h) ) > 2 (S%i-&-d) mod Ny (L hf))- (4.22)
i=0 r=0 i=0 r=0

The resulting time evolved correlation function can be compared with the exact so-
lution. In the course of this work, the exact solution is evaluated numerically from
equation 4.55 in [5] using computational tools developed by the author of [5]. The
dynamics of the correlation function will be calculated for different values of the final
transverse field A; in the vicinity of the quantum critical point within the paramag-
netic phase. In particular, the setup is used to compare the five sampling schemes
introduced in section 3.3 with the exact solution in subsection 4.2.1. In subsection
4.2.2, the correlation length will be considered for the exact solution and the approx-
imations using the five introduced sampling schemes. This correlation length will be
calculated by extending the short decay range of the correlation function from the
spatial derivative at d = 0. Deviations between the semi-classical approximation of
the transverse field Ising model and the exact quantum mechanical calculations can
be found depending on the distance of the transverse field from the quantum critical
point after a sudden quench from an infinitely large transverse field.

4.2.1 Correlation Functions and Numerical Precision

The calculations of the correlation function will be done using periodic boundary
conditions on a chain of size N, as defined in the Hamiltonian in equation (4.2). As
already explained in [5], finite size effects appear in the correlation function when the
propagating cone reaches the end of the chain. For large N, these finite size effects
do only appear at late times. The correlation functions build up an exponential
decay within the cone of propagation, as discussed in section 4.1. Due to this, the
correlation function reaches very small values. In figure 4.2, the correlation function
is shown for a long chain with N = 100 sites. Note that due to periodic boundary
conditions the correlation function is the same for distance d and N — d, and hence
it is only plotted up to distance d = % = 50.

Figure 4.2 shows the exact results as well as the results of the approximations with
all five sampling schemes. In figure 4.2a, the initial correlation function is plotted
and figure 4.2b shows an extract thereof. One can see that the correlation function
is one for distance d = 0 and zero for all other relative distances. While in figure
4.2a also the approximations seem to be zero for distances d # 0, it can be seen
in the extract in figure 4.2b that the approximated correlation functions do not get
smaller than approximately 1073, but then oscillate around zero. This oscillation
has been observed in all approximations, smaller values have never been reached,
even if the exact solution reaches very small values due to the exponential decay.
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Figure 4.2: Exact results and first order approximations of the initial correlation
functions in a transverse field Ising chain with N = 100 sites, nearest
neighbour interactions and periodic boundary conditions after a sudden
quench from an infinitely large transverse field to hy = 1.0001. Figure
4.2b shows an extract of figure 4.2a to see the approximations fluctu-
ating around zero. The inset in figure 4.2a shows the short distance
behaviour in more detail. Approximations are calculated by averaging
R = 10000 runs and using the introduced sampling schemes. The red
dots show results for Sy, the green dots correspond to Smix and the
blue dots describe results using Si,;. The semi-continuous and the con-
tinuous sampling scheme are shown by the yellow and the magenta dots
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respectively, while the black line shows the exact solution.




The approximated correlation functions are calculated by averaging a large num-
ber R of observables created in single runs, where the correlation functions of the
individual runs have positive and negative values. For the sampling schemes Si,;
and Shiy, the spins in z-direction of the initial state are sampled to be +1 or —1 from
a unique distribution. Hence, the initial correlation function for d # 0 is either +1
or —1, where both cases are equally likely. By averaging R runs, the initial correla-
tion functions should average to zero, but as can be seen in figure 4.2b, they do not
exactly reach zero. The existing minimal reachable value is caused by the variance
of the averaging process. It is expected to get smaller if more runs are averaged. To
analyse the dependence of this numerical error on R, a Monte-Carlo-integration can
be considered according to [4]. This is an approximation method, which is defined
for the integral of a general function f (z) in a general space 2 as

1 R—1
I = / fz)de = V=" f(z;)=: Sk (4.23)
Q R =
with x1 ... 2z € Q being uniform samples (4.24)
and V = / dz being the volume of €. (4.25)
Q

By the law of large numbers, this approximation is exact for R — oo. Considering
equation (2.42), one can see that such an approximation is used for the expectation
values of operators in the discrete truncated Wigner approximation. The variance
of Sg is then given depending on the variance of f [4],

Var (Sg) = ‘};z }_ Var (f) = vzvarﬂff) = vzﬁf, (4.26)
R—1
Var () = ok = oy 2 (F ) = (), (1.27)
1 R—-1 -
(f) = R 2 f (i) (4.28)

The estimation of the error in Sg is then given by

5Sp ~ \/Var (Sp) = v\j’}i{, (4.29)

and thus scales with R~z [4].

The minimal reachable value is not only caused by the variance of the averaging
process, but also other numerical errors influence it. For example, the quality of the
random number generator, which is further discussed in appendix C.1, also effects
the minimal reachable value. Therefore, the minimal reachable value is expected to
show an even worse dependence on the number of runs and to scale like R, with
b<0.5.

To check this dependence, the initial correlation function in the transverse field
Ising model has been calculated for different values of R and an average of the
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Figure 4.3: Absolute values of the initial correlation function averaged over several
large distances as a function of the number R of runs. The calculations
are done for a transverse field Ising chain of N = 50 sites with nearest
neighbour interactions and periodic boundary conditions after a quench
from an infinitely large transverse field to Ay = 1.0001 close to the critical
point, while Siix is used for the first order approximations. The blue
dots show the simulation results while the errorbars are the standard
deviation of the averaging over the distances. A function f (R) = aR®
is fitted to the data points resulting in a = 0.015 4+ 0.010 and b =
—0.335 £+ 0.070, which is shown by the red line. The shaded region
describes the fitting error.

absolute value over five large distances, d = 20 to d = 25, is plotted in figure 4.3,
including standard deviations as errorbars. For these calculations, S has been
used, since this scheme will be found to give the closest results to the exact solution
later in this section. This way, the minimal reachable value is plotted as a function
of R and to get the dependence, a function f (R) = aR’ has been fitted to the data
points. This fit results in a = 0.015 4+ 0.010, b = —0.335 + 0.070 and is also plotted
in figure 4.3 with the fit uncertainty shown as shaded region. The resulting value of
b lies in the expected regime and one can conclude that the numerical errors result
mainly from the finite sampling size.

In figure 4.2b it can be seen that S’mix, as well as the semi-continuous and the
continuous sampling scheme, show smaller minimal reachable values than Sy,;, and
Sinit- In these sampling schemes not only the values +1 and —1 are averaged, but
also smaller values are sampled for the initial spin states. This makes the minimal
reachable value smaller. Another effect of this can be seen in figure 4.2a considering
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the correlation function at d = 0, which is one in the exact solution as well as in
Smix and Siie. In the inset in figure 4.2a, it can be clearly seen that the correlation
functions show smaller values at d = 0 for the other three sampling schemes. Even
this is caused by the fact that the spins can also take initial values other than +1
and —1.

Due to the dependence of the minimal reachable value on approximately R7%3, a
large number of runs is needed to reach remarkably smaller values in the correlation
function. Since the exact correlation function decays exponentially at later times, as
discussed in section 4.1, it reaches very small values at large relative distances, which
are not achievable in the simulations. It can be extrapolated that calculating the
number of runs needed to reach that small values would take years of computation
time given the setup used in this work. Therefore, R = 10000 will be chosen in
the following calculations for first order approximations, as it was already used in
figure 4.2. It has been checked that this number of runs results in small standard
deviations in the approximations. For large relative distances, the approximations
can then not follow the exact solution, since it reaches smaller values than the given
precision of the numerical results. Thus, there is no effort in considering larger
distances and the computation time can be decreased by simulating only short spin
chains. In the following, chains of size N = 20 will be considered, where it has been
checked that up to this distance the approximations can follow the exact solutions
and that the short distance results are not influenced by the total chain size.

Figure 4.4 shows the absolute value of the correlation function of a transverse
field Ising chain of size N = 20 with nearest neighbour interactions after a sudden
quench to hy = 1.0001 close to the critical point for different times after the quench.
The approximations are shown for the five sampling schemes introduced in section
3.3, where R = 10000 runs are averaged for each calculation. The simulations
are compared to the exact solution. In the initial state, again the plateau of the
correlation function at about 1073 is found for all sampling schemes.

At time t = 1 one can already see the cone propagating in the exact solution at
distance d ~ 4. The approximations also show this cone. Except for the calculations
with Sinit, they all follow the exact line very closely.

At time ¢t = 2 the cone is propagated further through the chain and one can
already see deviations between the exact result and the approximations for larger
distances. For smaller distances, the approximations show the same decay as the
exact solution, except for the trajectory calculated with Sj,. Also Spix shows a
different decay than the exact solution for larger distances.

At t = 2.5 the exact solution shows the exponential decay for almost all distances,
while the plateau can be seen for large distances in the approximations. The re-
sults calculated with Smix, the semi-continuous sampling scheme and the continuous
scheme show the exponential decay given by the exact solution until distances of
d ~ 6, while the other two sampling schemes still only follow the exact solution for
shorter distances. The cone has now propagated through the whole chain, since the
periodic boundary conditions give C* = C}* ;. One can see that for t = 3 first
finite size effects appear, since the exact solution starts to grow at large distances.
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Figure 4.4: Absolute values of correlation functions in a transverse field Ising chain
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with V = 20 sites, nearest neighbour interactions and periodic boundary
conditions at different times after a sudden quench from an infinite field
to hy = 1.0001 depending on the site distance d. First order approxima-
tions are calculated by averaging R = 10000 runs and using Sy, (red
dots), S i (green dots), Sinie (blue dots) as well as the semi-continuous
and the continuous sampling (yellow and magenta dots respectively) and

compared with the exact solution (black line).



For t = 4 this effect is even larger and the exponential decay of the exact solution
is not given anymore. onsidering the approximations, these finite size effects can
not be found in the region where they appear in the exact solution, the correlation
functions still show the same behaviour as for ¢t = 2.5. This is peculiar, since also
in the approximations periodic boundary conditions are used.

From figure 4.4 one can conclude that the exponential decay in the correlation
function, which is described by a generalised Gibbs ensemble as discussed in section
4.1, is most clearly given at time ¢ = 2.5, where the cone is propagated through
almost the whole chain, but finite size effects do not appear yet. The comparison
with the approximations shows that the semi-continuous and the continuous sam-
pling scheme, as well as Spix, follow the exponential decay of the exact solution very
closely until the plateau caused by numerical precision is reached. The sampling
schemes Spix and S, only follow the exponential decay of the exact solution for
very small distances and then show a different steepness.

Quenches to different distances from the critical point can now be considered at
the fixed time ¢t = 2.5, since this has been discussed to be the best time to analyse the
correlation function inside the propagating cone. The results of the corresponding
calculations are shown in figure 4.5, where the semi-classical approximations for all
discussed sampling schemes are compared to the exact solutions for quenches from
an infinitely large transverse field to values at different distances from the critical
point, where the distances are considered in logarithmic steps.

One can see that for quenches to hy = 1.001 and h¢ = 1.01 the same conclu-
sion follows from the results as for the quench to hy = 1.0001 in figure 4.4. The
approximations resulting from Si, the semi-continuous sampling scheme and the
continuous sampling scheme follow the exponential decay of the exact solution until
the plateau caused by numerical precision is reached, while the calculations with
Smix and Si,; only follow the exact solution for very small distances and then show
a steeper decay.

These observations change for quenches to final transverse fields hy > 1.1. There
the exact solution shows a steeper exponential decay than for quenches to smaller
transverse fields, while the approximations still show roughly the same decay. Only
the calculation with Sy, follows the exact solution for very short distances consid-
ering the quenches to Ay = 1.1 and hy = 1.46416 in figure 4.5. For hy = 2 also the
steepness in the exponential decay of this approximation deviates from the exact
solution and none of the approximations follows the exact result anymore.

One can see that for quenches to larger distances from the critical point also the
exact solution builds a plateau which is at about the same height as the plateau in
the approximations. In [5] the author discussed that the exact correlation functions
are characterised by two correlation lengths, which are described by two decays of
different steepness. There the author explains that for quenches close to the critical
point, the correlation function is dominated by one correlation length, which is the
one characterised by the generalised Gibbs ensemble as discussed in section 4.1. For
quenches further away from the critical point both correlation lengths can be found,
which is the reason for the plateau in the exact solution.
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Figure 4.5: Absolute values of correlation functions in a transverse field Ising chain
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with V = 20 sites, nearest neighbour interactions and periodic boundary
conditions at time t = 2.5 after a sudden quench from an infinite field
to different distances from the critical point as a function of the site
distance d. First order approximations with R = 10000 runs using the
sampling schemes Sy (red dots), S i (green dots), Sy (blue dots) as
well as the semi-continuous (yellow dots) and the continuous (magenta

dots) scheme are compared to the exact solution (black line).



For quenches to very large distances from the critical point, the first exponential
decay only appears at very small relative distances before the plateau is reached.
But for hy = 11, the steepness of the short exponential decay is also given by
the approximations again and all sampling schemes show the same behaviour. They
follow the exact solution for very small relative distances until the plateau is reached.

In summary, one can conclude that for quenches to small distances from the critical
point, the semi-continuous and the continuous sampling scheme as well as Spiy result
in good approximations of the correlation function in the transverse field Ising chain,
since they show the same exponential decay in the correlation function as the exact
result. This decay equals the one described by a generalised Gibbs ensemble [5, 6, 7]
and is thus an important property of the correlation function. For quenches to a
transverse field between hy &~ 1.1 and hy &~ 2, none of the sampling schemes results in
correlation functions with the same exponential decay as the exact solution, while
all sampling schemes approximate the exact correlation function better again for
quenches to even larger distances from the critical point.

In contrary to section 3.4, the sampling schemes Sj,;; and Sy, have been found
to give results which do not follow the exact solution that closely here. This shows
that the quality of the sampling schemes depends on the approximated model.

4.2.2 Correlation Lengths depending on the Transverse Field

As already mentioned in subsection 4.2.1, the correlation function of the transverse
field Ising model after sudden quenches gives two correlation lengths [6, 7, 5]. For
quenches close to the critical point, one correlation length dominates, while the sec-
ond one dominates for quenches further away from the critical point at short times.
In [6, 7] the authors discussed that the first correlation length, which dominates
quenches close to the critical point, is described by a generalised Gibbs ensemble,
see also [5]. This correlation length will be further analysed in the approximation
results.

In [6, 7, 5] it is shown that the correlation function is proportional to the exponen-
tial function of the inverse correlation length £ ~! multiplied by the distance d plus an
oscillating function the amplitude of which decays in time. For quenches close to the
critical point, this oscillating function can be neglected. For quenches further away
from the critical point, this oscillating function gives the second correlation length.
Hence, to get the correlation length which will be analysed in the approximation,
the short decay range is extended from the spatial derivative at d = 0.

In figure 4.6 the correlation length has been calculated for the approximations
of the correlation functions shown in figure 4.5 using the five introduced sampling
schemes and the exact solution. The correlation lengths are calculated for quenches
to different distances e = hy — 1 from the critical point depending on the time ¢ after
the quench from an infinitely large transverse field. The shaded regions show the
uncertainty in the calculation of the correlation length. In the correlation lengths
retrieved from the exact correlation function, uncertainties are negligible.

One can see in all approximations that the correlation lengths for quenches to

75



20 Sinit semi-continuous sampling
. T T T T T T T T

OO I I I I

20 continuous sampling exact result

MWW
0 1 2 3 4 5
t
— hy=1.00010 —— hf=1.01000 he = 2.00000
— hy=1.00100 — hy=1.10000 —— he=11.00000

Figure 4.6: Correlation lengths & (¢, €) depending on time and distance from the crit-
ical point after a sudden quench from an infinitely large transverse field
in the transverse field Ising model with N = 20 sites. The correlation
lengths are calculated by fitting an exponential function to the correla-
tion functions calculated using the first order discrete truncated Wigner
approximations with five different sampling schemes and R = 10000
runs. For comparison the exact result is also shown.
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h¢ = 1.0001, hy = 1.001, hy = 1.01 and hy = 1.1 show the same behaviour, which
varies between the different sampling schemes. In all cases, as well as in the exact
solution, the correlation length rises until it reaches a maximum value and then
it saturates at a plateau. There one can see the propagating cone, which causes
the rise in the correlation function as it propagates through the points used in the
calculation of the correlation length and afterwards only small oscillations appear
within the cone.

Only the approximation using Sj,;; shows large oscillations at almost all times,
which follow from the oscillations in the correlation function, as can already be seen
in figure 4.5.

For the continuous and the semi-continuous sampling scheme, the plateau rises
with longer times. The results for S,;, and S'mix seem to oscillate around a steady
plateau, but even there a slow growth can be found at longer times.

The exact result only shows short oscillations and saturates relatively fast before
the correlation length diverges at long times. This divergence is caused by finite
size effects, since it appears at about ¢t = 4, which is exactly where the growth in
the correlation function in figure 4.4 caused by finite size effects reaches the points
used for the calculation of the correlation length. For the quench to hy = 1.1, the
correlation length calculated from the exact correlation function decays with time
before it starts to diverge. This decay can not be found in any approximation, but
it does not seem to saturate before the finite size effects appear.

Therefore, in figure 4.7 the correlation length for a long chain with N = 100 sites
is calculated for long times up to ¢ = 20 using the exact solution of the correlation
function, as well as the approximation with Sy, which is chosen because it shows
the best approximation results in figures 4.4, 4.5 and 4.6. In figure 4.7 one can see
that the decay in the correlation length goes on for a much longer time before it
saturates at about t = 15 and one can see that it only appears for the quench to
hy = 1.1, while all other correlation lengths are stationary even for longer times.
The approximated correlation length does not show any decay for all quenches, but
one can see more clearly that the plateaus rise for longer times. This is peculiar
and suggests that the quality of the discrete truncated Wigner approximation goes
down for longer times. Figure 4.7 also confirms that it is not necessary to study
approximations of longer chains for longer times, since all effects in the approxima-
tions can already be seen at short times and for short chains. The approximations
get worse with longer times and are not effected by the length of the chain. Thus,
one can still save computation time by only approximating short chains and times.

For quenches to hy = 2 one can see in all approximations, as well as in the
exact solution, that the plateau is much lower than for the quenches closer to the
critical point. The simulations approximate the exact solution at first maximum
to a good degree, but then the plateau of the exact solution is even lower than all
approximations. This is in accordance with the general expectation that the discrete
truncated Wigner approximation works best at short times.

In the generalised Gibbs ensemble explained in section 4.1, the correlation length
after long times can be described by a function depending on the distance € = hy —1
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Figure 4.7: Long time calculations for sudden quenches in the transverse field Ising
chain of size N = 100 with nearest-neighbour interactions from an in-
finitely large transverse field to different distances from the critical point.
The first order approximations calculated with S and R = 10000 runs
are compared to the exact result.

of the final transverse field from the critical point in scaling limit, see [6, 7, 5],

1

Jaae (6) = m

(4.30)

In [5], the author considered the correlation length at a fixed time after quenches
to different distances from the critical point and found the dependence on the dis-
tance described by the generalised Gibbs ensemble. The same can be done with the
approximation results, as shown in figure 4.8. The fixed times, at which the depen-
dence of the correlation length on € is considered, can be chosen using figure 4.6. At
the considered time, the correlation length should have reached the plateau at which
it saturates, but the time should be at the beginning of the plateau, since it has
been discussed earlier that the plateau rises with longer times. This way, the fixed
times used in figure 4.6 have been chosen. For the exact solution, the fixed time has
been chosen as large as possible, before the finite size effects cause the divergence of
the correlation length. This is necessary since it takes a long time for the correlation
length of the quench to hy = 1.1 to saturate, as analysed in the discussion of figures
4.6 and 4.7. As mentioned earlier, in the chain of size N = 20 this correlation length
never saturates, since finite size effects appear before the saturation. Therefore, in
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Exact and approximated correlation lengths & (¢,¢€) at fixed times for
different sampling schemes with R = 10000 runs in a transverse field
Ising chain with N = 20 sites, periodic boundary conditions and nearest-
neighbour interactions depending on the distance € from the critical point
after a sudden quench from an infinitely large transverse field (red dots).
The exact solution is also shown for N = 100 at later times (black dots).
Three functions from equation (4.31) are added to the plots (green, blue,
yellow line) to describe the dependence of the correlation length on e.
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figure 4.8 also the correlation length of a chain with N = 100 sites is considered at
a fixed late time.

From the results in figure 4.8, one can conclude that the correlation length calcu-
lated from the exact correlation function shows the dependence on € given by the
generalised Gibbs ensemble, especially at long times after the quench. But already
for short times this dependence can be found, which has also been observed in [5].

Even if the exact solution already shows the dependence of the correlation length
on € given by the generalised Gibbs ensemble after short times, this is not the case
for the discrete truncated Wigner approximations, as can be clearly seen in figure
4.8. All sampling schemes result in approximations which show large deviations
from the function fogg (€) at distances between € ~ 0.1 and € =~ 10, as already
discussed earlier. To analyse the behaviour of the approximated correlation length
at fixed times, two functions have been plotted in figure 4.8 which have the general
form

- - 4.31

Farn (€:0) = e @y 1)y (4:81)
For av = 1 this gives the function fogg (€) in equation (4.30). The function is plotted
for « = 2 and o = 4 in figure 4.8 and one can see that, depending on the sampling
scheme, the correlation lengths approximately follow one of these functions. It is
hard to determine the right coefficient here, since the calculation of the correlation
lengths is not very precise. For a better comparison of the approximated results
with the functions f,pp, the inverse correlation length is shown in figure 4.9, where
a factor In (2) has been subtracted, so that the results can be compared with the
general functions

fele,a) = ;ln (e*+1). (4.32)

These functions show large deviations in the steepness of the decay for small e
depending on «, thus it is easier to determine the coefficient by comparison with
the approximation results. In figure 4.9 only the results with the sampling scheme
Spix and the semi-continuous sampling scheme are shown, since these give the best
approximations compared to the exact solution in figures 4.5 and 4.8. The errorbars
are left out for convenience. Since it can already be seen in figure 4.8 that the
approximated correlation lengths do not exactly reach In (2) but a higher value close
to the critical point, they do not follow the decay of f. (e, ) for very small e. In the
semi-continuous sampling scheme this causes a plateau, while the results get negative
for S, and are hence not plotted anymore. This again limits the determination
of the coefficient, since the data points reach the plateau in the region where the
different functions start to show large deviations depending on «. Thus, it is still
not possible to determine the coefficient v exactly, but one can see in figure 4.9 that
the sampling scheme S follows the line with o = 2, while the semi-continuous
sampling scheme better fits to the behaviour of the function with coefficient o = 4.
The data allows to conclude that the coefficient matched by the approximations is
about o ~ 3 + 1.
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Figure 4.9: Inverse correlation length calculated from first order approximations
with Spiy (magenta dots) and the semi-continuous sampling (black dots)
of a transverse field Ising chain of size N = 20 with R = 10000 runs and
nearest-neighbour interactions depending on the distance e from the crit-
ical point after a sudden quench from an infinitely large transverse field.
A factor In (2) has been subtracted from the inverse correlation length
which is plotted together with the function f. for « = 1 (red line), o = 2
(green line), a = 3 (dark blue line) and a = 4 (light blue line) in a log-
log-scale to determine a value for a.. Negative values of €7 (£,¢) —In (2)
are left out.

In summary, the discrete truncated Wigner approximation of the transverse field
Ising chain shows results close to exact calculations for sudden quenches from an
infinitely large initial transverse field to small and large distances from the critical
point. Only for quenches in between, around h¢ &~ 1.1 to hy & 11, the approximation
differs from the exact solution, which can be found for all sampling schemes. It has
also been shown that the quality of the semi-classical approximations goes down
with longer times, which need to be considered in the exact solution.

In this section, the discrete truncated Wigner approximation has been used to
simulate a non-trivial quantum mechanical system after quenches to the vicinity of
a quantum critical point. It has been observed that the method shows resulting
correlation functions in good agreement with exact solutions for quenches close to
the critical point and far away from it, while deviations have been found for quenches
to intermediate distances from the critical point.

The precision of the numerical solution has been found to be limited, so that
correlation functions for large distances can not be approximated due to the ex-
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act solution showing an exponential decay to very small values. Since the exact
correlation length has been observed to reach stationarity at later times when the
propagating cone in the correlation function has reached larger distances not cap-
turable by the approximation, this limited precision might influence the appearing
deviations.

It has also been observed that the sampling schemes, which gave results in good
agreement with the exact solution of the Ising chain in section 3.4, show worse
results here and vice versa. This shows that the quality of the sampling schemes
depends on the simulated model. In the non-interacting Ising chain, where there
is not much difference between classical and quantum-statistical fluctuations, the
sampling schemes Si,;; and Sy, show the best results. These are the two schemes
containing only the values +1 and —1 for the spin components. In the interacting
transverse field Ising chain, the sampling schemes, where also different values can be
sampled for the initial spin components, show better results. Hence, the best choice
of the sampling schemes depends on the simulated model.

4.3 Second Order Approximations of Quenches in the
Transverse Field Ising Model

The second order approximation of the equations of motion in the transverse field
Ising model is given by plugging the Hamiltonian in equation (4.2) into the equations
(3.73) and (3.74). This results in

al = 2hal, (4.33)
aj =2 [—haf + Ja(i41) mod N I (1) mod N,z} ; (4.34)
a; =2 :_Ja?i—i-l) mod N — JCZZ{H) mod N,z} ) (4.35)
& =2 [hely + he?], (4.36)
éiyy =2 :Ja}z“sj,(iﬂ) mod N T hc%y — heif + Jafjﬂ) mod NCij T S5 (j41) mod N

—Ja? (csz + afaj) 05 (i4+1) mod N} , (4.37)

Xz __ Yy Yyz xT xry Yy xx
G =2 |:_Jaj5j,(i+1) mod N + hegj — Ja(j+1) mod NCij — Jajci,(j-',-l) mod N

+Ja? (¢ + afal) 8 (i+1) moa |+ (4.38)
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YT __ z TT x 2T yy
Cij =2 [‘]ai 0j (i+1) mod N — RC" 4 Ja(i41y moa NCij T+ C3;

I 0 STii1) moa v — I (G5 + a70T) 6 i41) mod N (4.39)

Yy Yy x 2Y YT T Yz z yx
Ci; =2 [_hcz’j + JA(i41) mod NCij — PCij + JA(11) mod NCij + SO C(111) mod N
z yx _ Yy Tz Tz L.
T3¢ (j41) mod N — S (Cij +a; aj) 0j,(-+1) mod N

+Ja¥ (ciF + aiaf) 0 1) moa ) (4.40)

Yz: Tz ZZ T Yy x 2 ax
Gij =2 [_hcij + JC50i1) mod N~ JE5 A1) mod N T S Cj(i41) mod N
Yy yr Yy Ty x Y o
_Jajci,(j—i-l) mod N T J (Cij +a; aj) 0j,(i+1) mod N

—Ja (i + a7a?) 0 i11) mod v (4.41)

2T Yy yr x Y Yy xx
Gy =2 [_Jai 0j,(i+1) mod N — JCij A(i41) mod N T hei; — Jaj € (i+1) mod N

+Ja; (Cij T a aj) 0j,(i+1) mod N} ; (4.42)
Y vy T 2T 2z X Yy yx
Cij = [_Jciﬂ' @i41) mod N — M€ + €A1y moa N~ J A€l (i11) mod N
zZ 2T z Tz X Z
+‘]ajci,(j+1) mod N — JG; (Cij + a; aj) 0 (i+1) mod N

+Ja¥ (e + a¥a%) 0 (i+1) mod v (4.43)

Cij = 2 {—J%‘ Q(i+1) mod N — ch‘j A(j+1) mod N — Jaj Cj(i+1) mod N — J%Ci,(jﬂ) mod N

+Ja; (Cf]y + afa?) 0j (i+1) mod N T Jaj (cﬁ/f + &?af) 8;.(i+1) mod N} : (4.44)

These differential equations can also be solved numerically using the Runge-Kutta-
Fehlberg method, which is introduced in appendix C.2.1. This results in a second
order discrete truncated Wigner approximation of the spin dynamics s? (¢) and in-
dependently the two-point functions ¢ () in the transverse field Ising model with
nearest neighbour interactions and periodic boundary conditions. Analogously to
the first order approximation, the correlation function Cigpaxy (¢, br) at time ¢ after
a sudden quench from an infinitely large initial transverse field to a final transverse
field At can be approximated for a chain with N sites by averaging R runs using

equations (3.75) and (3.76),

T (RS xT x z
CdeBGKY :NR (Ci,(ier) mod N,r <t7 hf) + s (t7 hf) a(i+d) mod N,r (t7 hf))
=0 r=0
N-1R-1 N—-1R-1
— w2 2o 2 (ke (1h0) 3237 (afisay moa we (he)) . (4.45)
=0 r=0 =0 r=0

Thus, also the second order discrete truncated Wigner approximation of the time
evolved correlation function after a sudden quench in the transverse field Ising model
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can be compared to the exact solutions calculated with the numerical tools used in
[5]. The comparison will be done analogously to the procedure for the first order
approximation in section 4.2. In subsection 4.3.1, the approximated correlation
functions using the different sampling schemes will be analysed, while in subsection
4.3.2 the approximated correlation lengths will be considered.

4.3.1 Correlation Functions and Divergences

As in section 4.2, the second order approximation of the correlation function is
calculated using periodic boundary conditions and nearest neighbour interactions.
Also here only short chains with IV = 20 sites are calculated since it will be observed
that the approximation only works for very short times, so that the correlation
function inside the propagating cone can only be considered for very short distances,
hence there is no need in simulating longer chains.

For the second order discrete truncated Wigner approximations only £ = 1000
runs will be averaged, in contrast to the first order approximations in section 4.2,
where R = 10000 runs have been used. Solving the differential equations of motion
takes much more computation time in the second order approximation, since a lot
more function evaluations are needed. It has been checked that the variations in the
approximation results using R = 1000 runs are still small, so that there is no need in
taking more runs. Since also here a Monte-Carlo-Integration is used to calculate the
correlation function, the same numerical error as in section 4.2.1 causes a minimal
reachable value. Hence, R also influences this value, but as can already be seen in
figure 4.3, the difference between the minimal reachable values for R = 10000 and
R = 1000 is rather small.

Analogously to figure 4.4, the absolute values of the correlation functions at sev-
eral times after a sudden quench from an infinitely large transverse field to a final
transverse field Ay = 1.0001 are shown in figure 4.10 as a function of the relative
distance d between the sites. The results of the second order discrete truncated
Wigner approximation using the five sampling schemes introduced in section 3.3 are
plotted, as well as the exact result for comparison.

The times at which the correlation function is considered in figure 4.3.1 are small
compared to the times in figure 4.2.1. But one can already see at time ¢ = 1.1 that
the results using Sp,ix and Sy, start to rise at all relative distances. For later times
these two results are not plotted anymore, since they have diverged to infinitely
large values. At time ¢ = 1.4 also the result of the semi-continuous sampling scheme
has diverged. This shows that the same divergences which have been found in
subsection 3.4.2, where the second order discrete truncated Winger approximation
has been benchmarked on the Ising chain, also appear in the transverse field Ising
model. It has been checked that at time ¢t = 1.5 all sampling schemes have diverged.
The start of the divergence can be defined when the correlation function at zero
relative distance starts to grow larger than one, which is physically impossible and
hence shows where the approximation does not work anymore. Before this, the
approximation still gives valid results. This shows that the divergence appears at
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Figure 4.10: Absolute values of correlation functions in a transverse field Ising chain
with N = 20 sites, nearest neighbour interactions and periodic bound-
ary conditions at different times after a sudden quench from an infinitely
large field to hy = 1.0001 depending on the spin distance d. Second or-
der approximations are calculated by averaging R = 1000 runs and
using Spix (red dots), S i (green dots), Sinie (blue dots) as well as the
semi-continuous and the continuous sampling (yellow and magenta dots

respectively) and are compared with the exact solution (black line).
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very short times in this model and it even appears before the propagating cone has
reached the end of the chain. Thus, the approximations also diverge before finite
size effects appear in the exact solution and hence there is no need in studying longer
spin chains and times.

For very short times one can see in figure 4.3.1 that the approximations follow
the exact solution closely, except for the plateau caused by a limited numerical
precision, as already discussed in section 4.2. But even the propagating cone can
be seen clearly in the approximations before they start to diverge. Especially the
results of S, and the semi-continuous sampling scheme follow the exact solution
very closely for short times.

Figure 4.11 shows the absolute value of the correlation functions depending on
the relative distance d at a fixed time t = 1 after a sudden quench from an infinitely
large transverse field to final transverse fields at different distances from the critical
point. Again the five introduced sampling schemes are compared to the exact so-
lution, analogously to figure 4.5 for the first order approximations. There one can
conclude that especially the results using Smix, the semi-continuous and the contin-
uous sampling schemes follow the exact solution closely for very short times, while
the other two sampling schemes Sy,ix and Si,; show small differences, but all in all
also match with the exact solution before the divergences appear.

A peculiar fact can be seen for quenches to hy = 1.1 and hy = 2, where the
divergence seems to appear much earlier for the sampling schemes Sp,;x and Si,.
This shows that the time, at which the second order approximation diverges, is
influenced by the distance from the critical point after the sudden quench and it
appears earlier exactly in the region where the first order approximation in section
4.2 has shown large differences from the exact solution. In this region also the
results of the three sampling schemes, which have not yet diverged at t = 1, do not
follow the exact solution that closely anymore, even for very small relative distances.
Thus, even in the second order approximation the results get worse for quenches to
intermediate distances from the critical point. But at this time the cone is not
propagated far, as discussed in section 4.2 even the exact correlation function takes
a longer time to saturate. These longer times can not be reached with the second
order approximation and it can therefore not be seen whether the approximation
gets better at later times.

For quenches to transverse fields further away from the critical point, like h¢ = 11,
one can see in figure 4.11 that the second order discrete truncated Wigner approxi-
mation shows better results again. The divergence appears at later times again and
also the short distance decay of the exact solution is matched by the results of most
sampling schemes, especially by Spi and the semi-continuous sampling scheme.
Thus, as the first order approximation in section 4.2, the second order approxima-
tion follows the exact solution closely for quenches close to the critical point and far
away from the critical point. In between the approximations show some deviations,
but since only very short times can be simulated, no final conclusion is possible.

As in the first order approximation of the transverse field Ising model, also the
second order approximations of the equations of motion have been solved numerically
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Figure 4.11: Absolute values of correlation functions in a transverse field Ising chain
with N = 20 sites, nearest neighbour interactions and periodic bound-
ary conditions at time ¢ = 1 after a sudden quench from an infinite field
to different distances from the critical point as a function of the site
distance d. Second order approximations with R = 1000 runs using the
sampling schemes Sy, (red dots), S i (green dots), Siyi¢ (blue dots) as
well as the semi-continuous (yellow dots) and the continuous (magenta

dots) scheme are compared to the exact solution (black line).
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using the Runge-Kutta-Fehlberg method which is further introduced in appendix
C.2.1. Also different numerical time-integration schemes have been tested, like the
predictor-corrector Adams-Bahsforth-Moulton method, which is further introduced
in appendix C.2.2. This way it has been checked whether the divergences can be
captured with standard numerical methods. This was not found to be the case.
It was not even possible to shift the divergences to later times, which would have
been useful in the case of the transverse field Ising model, since most effects on
the dynamics are already given at short times in the exact solution [5]. Stronger
numerical methods might be useful at this point.

The divergence in the solutions might also be caused by an error in the trunca-
tion of the quantum mechanical equations of motion in section 2.4. In [8] it has
been shown that the transverse field Ising model after a sudden quench has further
conserved quantities next to the energy. The conservation of these quantities is not
necessarily given in the truncated equations of motion, which might cause the di-
vergences. At this point, a further analysation of the conserved quantities and an
idea how to include a conservation into the truncation scheme would be helpful, but
goes beyond the scope of this thesis.

4.3.2 Short Time Correlation Lengths

Analogously to subsection 4.2.2, the second order approximation of the correlation
length can be analysed. But as it has already been discussed in subsection 4.3.1, a
divergence in the approximated observables appears at short times after the sudden
quench. When these divergences appear, the cone in the correlation function has
not propagated to far distances, thus it is hard to get a correlation length here, since
it is calculated by extracting the short decay range from the spatial derivative at
d = 0, as in subsection 4.2.2.

Figure 4.12 shows the short time correlation lengths of the five introduced sam-
pling schemes in comparison with the exact solution. Since the propagating cone in
the correlation function needs to pass the short distance at which the exponential
function is fitted, as discussed in section 4.1, one can see in figure 4.12 that the
correlation length does not saturate before the divergences appear. Even the exact
solution has not saturated yet at these short times. For most sampling schemes one
can see large divergences and oscillations. At very short times, all sampling schemes
follow the rise of the exact solution, before they suddenly break and diverge. Only
the semi-continuous sampling scheme shows a stable solution until time ¢ = 1. There
one can see that the correlation length at this time still keeps on decaying, thus the
approximation might get better at longer times. This suggests that the results of
the second order approximation are promising. Hence, it is vital to understand the
origin of the divergence. As discussed in subsection 4.3.1, either the truncation error
needs to be analysed further, or a purely numerical solution to this problem needs
to be found. Either way would allow to obtain a qualitatively much better approx-
imation. Finding a solution to this problem is beyond the scope of this thesis and
hence attributed to future studies.
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Figure 4.12: Correlation lengths £ (t,¢) depending on time and distance from the
critical point after a sudden quench from an infinitely large transverse
field in the transverse field Ising model with N = 20 sites. The cor-
relation lengths are calculated by fitting an exponential function to
the short distance correlation functions which are calculated using the
second order discrete truncated Wigner approximations with five dif-
ferent sampling schemes and R = 1000 runs. For comparison the exact
solution is shown.
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Figure 4.13: Exact and approximated correlation lengths & (¢, ¢€) at fixed times for
semi-continuous sampling with R = 1000 averaged runs of a transverse
field Ising chain with N = 20 sites, periodic boundary conditions and
nearest neighbour interactions depending on the distance ¢ from the
critical point after a sudden quench from an infinitely large transverse
field (red dots). The exact solution is also shown for N = 100 at later
times (black dots). Three functions from equation (4.31) are added to
the plots (green, blue and yellow line) to describe the dependence of
the correlation length on e.

Since all approximated correlation lengths in figure 4.12 diverge before they sat-
urate, it is not possible to study the correlation lengths at a fixed time as function
of the distance € from the critical point, as it has been done in subsection 4.2.2 for
the first order approximations. Only the semi-continuous sampling scheme gives a
stable result for the correlation length up to time ¢t = 1. Therefore, figure 4.13 only
shows the correlation length resulting from the semi-continuous sampling scheme
at fixed time ¢ = 1 as a function of the distance e from the critical point after the
sudden quench.

One can observe in figure 4.13 that for short distances from the critical point the
correlation length is larger than the exact solution. It can be seen in figure 4.12
that at time ¢ = 1 the approximated correlation lengths for short distances from the
critical point have not yet saturated and are still found in the decay after the first
maximum. This explains why the short distance values in figure 4.13 are higher than
the exact solution. Since it has been shown in figure 4.11 that for these distances the
divergences appear at later times, it has been checked that the correlation length

90



still decays for longer times in this region and then also matches with the exact
solution.

At intermediate distances from the critical point, even larger deviations from the
exact solution are found than in the first order approximation. This is influenced
by the divergence appearing earlier at this region, as has already been discussed.
Another factor causing this large differences is the short time at which the correlation
length is calculated. For comparison also the exact solution of the correlation length
at time t = 1 is shown in figure 4.13, where one can see that also the exact solution
is not yet described by a generalised Gibbs ensemble at this time. It seems to better
follow the function f,,, (€, ) in equation (4.31) with a factor a between one and
two.

For large distances from the critical point, the approximation follows the exact
solution very closely, since in this region the correlation lengths saturate at earlier
times and the divergences appear at later times.

One can summarise that for very short times, before the divergences appear,
the second order approximation gives promising results close to the exact solution.
But since the divergences appear after short times, before the stationarity of the
correlation function is reached, it is hard to draw final conclusions. It has been
checked that the divergences can not be captured by standard numerical methods
and can also not be shifted to later times by these. Hence, either stronger numerical
methods are necessary to solve the equations of motion, or the truncation scheme
should be further analysed to avoid truncation errors, as discussed in subsection
4.3.1.

For quenches close to the critical point and far away from it, the second order ap-
proximation shows results in good agreement with the exact solution for short times
and distances, as does the first order approximation in this region. For quenches to
intermediate distances from the critical point, also the second order approximation
shows deviations from the exact solution. It has already been discussed in section
4.2 that in this region even the exact solution needs a longer time to reach station-
arity, thus especially there it is hard to compare the second order approximation
with the exact solution.

As a conclusion of this chapter it can be said that the quantum mechanical trans-
verse field Ising model can be described in good agreement by a semi-classical ap-
proximation for quenches close to the critical point and far away from it. Especially
the good agreement close to the critical point is a result which would have not been
predicted, since quantum effects not capturable by a semi-classical approximation
have been expected in this region. Also the deviations between the semi-classical
approximation and the quantum mechanical solution at quenches to intermediate
distances from the critical point have not been expected. These differences might be
a hint for quantum effects appearing in this regime. All in all, the discrete truncated
Wigner approximation has been found to give semi-classical simulations of quantum
mechanical systems in a better quality than expected, even for non-trivial systems
including quantum phase transitions.
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5 Conclusion and QOutlook

In this thesis, the recently developed discrete truncated Wigner approximation has
been applied on the transverse field Ising model after a sudden quench into the
vicinity of a quantum phase transition. By comparison with the exact solution, it
has been analysed how the quantum dynamics can be captured by a semi-classical
approximation at different distances from the quantum critical point.

A derivation of the first and second order discrete truncated Wigner approxima-
tion, as introduced in [27] and [16] respectively, has been given. For this, a discrete
quantum mechanical phase space, as defined in [35], has been introduced ,with a
Wigner function defined on it as a quasi-probability-distribution. From this Wigner
function, initial states of a discrete quantum mechanical system are sampled in
the discrete truncated Wigner approximation and then evolved in time. Since the
quantum mechanical time evolution can not be calculated exactly, a truncation at
first and second order is used to approximate the quantum dynamics. By sampling
a huge number of initial states, evolving them in time and averaging the result-
ing observables, the dynamics in the quantum mechanical system are approximated
semi-classically.

This generally derived discrete truncated Wigner approximation has then been
applied on a spin—% system as an example of a discrete quantum mechanical model.
The derivation of both, the first and second order truncations of the corresponding
equations of motion, has been reviewed as given in [27, 16]. To sample the initial
states from the discrete Wigner function, three possible sets of initial spin states
associated with the discrete phase space have been introduced in [16]. In this thesis,
two more possible sampling schemes have been introduced. The properties of the
five introduced sampling schemes S, Smix, S’mix, as well as the semi-continuous
and the continuous sampling scheme, are summarised in appendix B.4.

These schemes have then been benchmarked on the exactly solvable Ising chain
using different interaction ranges. In the benchmarking process, the magnetisation,
as well as the two-point correlation resulting from the approximations, have been
compared to the exact solution. There it has been observed that Sy, and Spnix
show the best agreements with the exact solution in both orders of truncation. The
authors in [27] and [16] have predicted that the discrete truncated Wigner approxi-
mation only works for systems with long-range interactions, because the deviations
from mean-field are expected to be small in this limit. Against these predictions,
the method has been found to also show good agreement with the exact solution for
models with short-range interactions. This shows that the deviations from mean-
field do not influence the quality of the discrete truncated Wigner approximation.

In the first order approximation, an additional term has been found to appear in
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the approximation of the two-point correlation compared to the exact solution. This
additional term has been observed to be more important for systems with longer
interaction ranges. Considering the second order approximations, huge divergences
have been observed at late times, especially for systems with long-range interactions.
Before these divergences appear, the second order approximation has shown the
same behaviour as the first order approximation, and one can conclude that both
simulations are in good agreement with the exact solution, if Sy, and Sy, are used.
For the other three sampling schemes, deviations from the exact solution have been
observed.

After the discrete truncated Wigner approximation has been benchmarked on
the non-interacting Ising chain, which shows no large differences between classical
and quantum-statistical fluctuations, it has been applied on an Ising chain with an
additional transverse field. As an interacting system, this model is more complex
and shows a quantum phase transition. The model can be diagonalised analytically,
where a review of the diagonalisation is given in [5]. The results derived therein have
been compared with the discrete truncated Wigner approximation in the context of
sudden quenches to the vicinity of the quantum critical point. This way, it has been
analysed where the dynamics of the correlation function, as a function of the relative
distance between the spins, can be captured by a semi-classical approximation. Also
the simulated dynamics of a correlation length resulting from the correlation function
have been analysed for a better comparison.

The first order discrete truncated Wigner approximation has been found to show
results in good agreement with the exact solutions for quenches to transverse fields
close to the critical point and far away from it. Differences between the approxima-
tion and the exact solution have been found for quenches to intermediate distances
in the region hy = 1.1 to hy = 11. Here, the sampling scheme gmix, as well as the
semi-continuous and the continuous scheme, have been observed to give the best
agreements with the exact solution. This is peculiar, since these are exactly the
schemes which showed worse results in the approximation of the Ising chain. This
shows that the quality of the sampling schemes depends on the approximated model.
As mentioned earlier, in the Ising chain no large differences between classical and
quantum-statistical fluctuations exist. In this case, the sampling schemes, in which
the initial spin states can only take the values +1 and —1, show better results.
This is not the case in the transverse field Ising chain, where the classical and the
quantum-statistical fluctuations show more differences. In this case, the sampling
schemes, in which also values other than +1 and —1 can be chosen for the initial
spin states, show better results.

For large relative distances, the exact correlation function reaches very small val-
ues due to an exponential decay in the limit of long times and large relative distances.
It has been observed that these small values can not be reached in the approxima-
tion due to a limited precision in the numerical averaging process. A dependence
of these limitations on the number of averaged runs has been analysed. It has been
concluded that calculating the number of runs needed to reach significantly smaller
values in the correlation function, is not achievable on the setup used for the calcu-
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lations within this work due to exceeding computation times. But it has also been
observed that in the regime, in which the first order approximation does not fit to
the exact solution, a longer time is needed for the exact correlation function to reach
stationarity. At these longer times, the exponential decay in the correlation func-
tion is given for large distances, so that the correlation function has reached smaller
values than the minimal reachable value in the approximations. This behaviour at
large distances might influence the short distance correlation functions. This would
explain, why these can not be captured in the approximations, since the large dis-
tance behaviour is not given there. Hence, the deviations might be caused by the
limited numerical precision. Here one could think of alternative ways to calculate
the numerical results, so that the limitation can be avoided, or at least shifted to
even smaller values. This goes beyond the scope of this work.

In the context of benchmarking the discrete truncated Wigner approximation
on the Ising chain, it has been observed that an additional term appears in the
approximation of the two-point correlation. An analogous term might be appearing
in the approximation of the correlation function in the transverse field Ising model,
causing the deviations at intermediate distances. Since it is not as trivial as in the
case of the Ising chain to compare the exact expression with the approximation,
this point has not been further analysed within this work. On the other hand, such
an additional term would be expected to appear at all distances from the critical
point, instead of only at intermediate distances. It has also been observed that
the additional term in the correlation function of the Ising chain is more important
for longer interaction ranges. Since nearest neighbour interactions are used in the
simulations of the transverse field Ising model, one would not expect an analogous
term to cause the deviations.

The second order approximations have been observed to show large divergences
after short times. Before the divergences appear, the results have been found in good
agreement with the exact solution for quenches close to the critical point and far
away from it. Also in these approximations, deviations from the exact solution have
been found in the region of intermediate distances from the critical point, exactly in
the regime where the first order approximations do not follow the exact solutions.
But since only very short times can be simulated, it can not be excluded that the
approximations get better at later times. At these distances, also the divergences
have been observed to appear at earlier times, while they appear at approximately
the same times close to the critical point and far away from it. It has been checked
that the divergences can not be captured with standard numerical methods and
that they can even not be shifted to later times. Hence, stronger numerical methods
would be necessary for a better analysation of the second order approximations,
which seem promising in the short times before the divergences. With such stronger
numerical methods, it could also be checked whether the deviations at intermediate
distances in the first order approximation are caused by the numerical solution of
the equations of motion.

Since the divergences have been observed to appear at earlier times in the region
where the first order approximation shows deviations from the exact solution, it
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has also been conjectured that both effects are caused by a truncation error. No
condition on conserved quantities is included in the truncation scheme at both, first
and second order. While the energy has been checked to be conserved in both cases,
it has been discussed in [8] that even more conserved quantities exist for sudden
quenches in the transverse field Ising model. These quantities are not necessarily
conserved in the truncation process of the quantum mechanical time evolutions.
Both effects, the earlier divergences and the differences from the exact solution,
appearing at approximately the same distances from the critical point, suggests
that they both result from an error in the truncation scheme. Since it is not trivial
to find the conserved quantities and to include the conservations into the truncation
scheme, this goes beyond the scope of this work, but is expected to be a promising
approach.

All in all, these deviations and earlier divergences happening at intermediate
distances suggest quantum effects, which can not be captured by the semi-classical
approximation, appearing at this region. This is peculiar, since one would rather
expect them to appear close to the critical point instead of at intermediate distances
from it.

In summary, except for deviations at intermediate distances from the critical point,
the discrete truncated Wigner approximation has been found to give results in good
agreement with the exact solutions of sudden quenches in the transverse field Ising
model. Hence, the method shows promising results for systems in the vicinity of the
critical point, for which existing methods are scarce, as discussed in the beginning.
The deviations found at intermediate distances suggest quantum effects appearing
in this region, which can not be captured by a semi-classical approximation. Un-
derstanding these deviations in more detail might help to better understand some
effects appearing in quantum mechanical systems out of equilibrium.
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A Appendix for Chapter 2

A.1 Deriving the Inner Product of the Wigner
Function in Equation (2.10)

In section 2.1, the inner product of two Wigner functions W (g, p) and W’ (q, p) is
given as the trace of the product of the corresponding density operators p and p’ in
equation (2.10). This relation is derived according to [35] in the following using the
definition of the Wigner function in the position basis as stated in equation (2.3),

2h / / W(q,p)W'(q, p)dqdp
== ][ [a-alslarayia-a1dla+ra) (A

: ’
X exp (W) dxdx’dqdp

:///<q—m|mq+w><q—w’\ﬁ’|q+w’>

X 6 (x+ ') dedx'dq

— [ [ta==lpla+=)ig+ali|a—a)dedg

= [ [(alp1@) (@l a) ddg
= [ (@l pi'a)da

= Te (). (A.2)
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A.2 Deriving an Expression for Phase-Point
Operators in Equation (2.12)

In section 2.1, an expression for the phase-point operators A (g,p) is given in equa-
tion (2.12). This relation can be calculated according to [35] by plugging the defini-
tion of the density operator p in terms of the Wigner function and the phase-point
operators in equation (2.11) into the definition of the Wigner function in the posi-
tion basis in equation (2.3). Then the following calculation leads to an expression
for the phase-point operator in the position basis,
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Where ¢ (z) is the Dirac delta. Thus, an expression for the phase-point operator is
given in the position basis,

1 ) ,_(1’+€1” ex <2ipm>ex _2ip’:1: dx
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7 i

An analogous expression can be derived in the momentum basis by using the defi-
nition of the Wigner function in the momentum basis, as stated in equation (2.4).
This then results in the expression

Y

W] A(d.p) ) = 6 (p' P ;ﬁ'/) exp (—‘M) N
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A.3 Calculation of the Trace of a Phase-Point
Operator Product Given in Equation (2.18)

In section 2.1, the trace of a product of two phase-point operators A (gy,p;) and

A

A(qy, p,y) is calculated and the result is given in equation (2.18). This result can
be easily calculated according to [35] by plugging the expression of the phase-point
operators given in equation (2.11) into the definition of the trace,
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In the last line it is used that the factor ¢ (p, — p;) is only non-zero if p, = p, and
in this case the exponential factor is one.
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A.4 Derivation of the Weyl Symbol of a Commutator
in Equation (2.33)

In section 2.3, the time evolution in the quantum mechanical phase space is cal-
culated using the Weyl transformation of the von Neumann equation. Therefore,
the Weyl symbol of a commutator of two arbitrary operators Oy and Qs is given in
equation (2.33). This Weyl symbol of the commutator will be calculated according
to [23] in the following by using the definition of the Weyl symbol in the position
basis as stated in equation (2.1),

[917 Q2]W = (9192)\;\7 - <Q2QI)W

- /exp (Tf) <q—§ 0 (g + §>d£
—/exp (ZI;£> <q - g Qz@l q-+ §> dE
= //exp (Zp;f) <q — g Q1 q’><q’ QQ + §> d¢dq
—//eXp (”Zf) <q —g Q q’><q’ Qg+ §>d£dq (A.9)

Here a one is introduced in the last line. To solve this, the general expression
(@' €2|q") needs to be calculated. By expanding the Weyl symbol Qy, corresponding
to Q in a Fourier integral of a function w (o, 7), one gets [11]

Qw (g,p) = //w(a,*r) exp (i (oq + 7p)) dodT. (A.10)

Using this, the expectation value (q| |q> can be considered to find an expression for
), which can then be plugged into (g'| 2 |g"). Using the definition of the expectation
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value in terms of the Wigner function W (g, p) one can write [11]

(al 2q) = Tr (p2)
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Here, the definitions of the Weyl symbol and the Wigner function are introduced
and a Dirac delta is inserted. Now a new variable ¢’ := q — 7 can be defined and
substituted [11],

plg — 2> (o, T)exp (zaﬁq) dgdodr. (A.13)
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In the last step the relation exp (A+ f?) = exp (121) exp (é) exp (—%) is used,

which is true if the commutator D of two arbitrary operators fl, B commutes with
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the operators A and B. This means for the special case regarded here,

[, 4] = ih (A.16)
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This result can now be used to get an expression for (g’| |q”) by simply plugging

it in [11],
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> dodT
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Here the relation

qexp |

') = [ 1o} wloso (2 1

iTp "
=/ @ e(TE) @)

——
() (52
_ / LI (pq' + 7P —pq") dp
2mh h
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is used.

This result can now be plugged into equation (A.9) to calculate the Weyl symbol
of the commutator. First, only one term is regarded for convenience, the result of
the second term is calculated automatically [11],

oo fon(F) (o fol)lapler s
—awn [ [ [ [exp (1;5) " (U,q/_(H §) . (w (g fao 2>>

(A.23)
i’ (¢ +q+ &
X W <a’, q-+ g - q’) exp ( ( o7 2) dédq'dodo’.

Oilq Qs

q+€>d£dq

Until now only the expression derived above is plugged in. Now two new variables
can be defined and substituted:

T—q—q—|—§ =q- q+§é‘r+7"=€ (A.24)
9.2 p(T+ 1) io (—1' + 2q)
= (01 Q) = 47°h ////exp( )wl (o, T)exp <2h
X wy (o, 7') exp (w(;;—Qq)) drd7r'dedo’

=i [ [ [ fow (MILE) o e (L7777

—en(4)

- / /
X exp (M;Tp)) wy (o, ") drdr'dodo’

= Q1w (g,p) exp ( ZZA> Qow (g, p) (A.25)
= Quw (g, p) exp (”;A> Quw (q,p). (A.26)

In an analogous way, the expression for the second term of the commutator can be
derived,

thA
(220)y = Q2w (g, p) exp ( 5 ) Mw(q,p)

= Q1w (g, p) exp (ZZA> Qow (g, p) (A.27)

Given the expressions for the Weyl symbols of the two product terms of the com-
mutator, the Weyl symbol of the commutator can be calculated by simply plugging
the expressions in. The result is then stated in equation (2.33).
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A.5 Derivation of the Time Evolution of the
Correlation Operator in Equation (2.69)

In section 2.4, the time evolution in phase space is calculated using a BBGKY

hierarchy of the reduced phase-point operators. There correlation operators %;; are

introduced to get an expression for the second order reduced phase-point operators

i = 9y + 6;;. The time evolution of the correlation operators is given in

equation (2.69) and it can be derived according to [16] using equation (2.68), where
the time evolution of .27, is already plugged in,

ih0%,; = il — iho, (7))
= |Hi + H; + Hy, ., + G| — ihd; (i) (A.28)

N
+ 3 T ([Hix + Hp, iy i + GGy + 6+ G + G ) -
k—
k#i}j
The time evolution of the product JZZ;Z{; can be calculated using the product rule

and the time evolution of the first order reduced phase-point operators as given in
equation (2.67),

ity (A7) = [ 7] )+ 3 T ([ ) + [ ]
k=1
ki
b (B, ) + S T ([Fyr ] + [P ]
k=1
k#j
= [-HzanZ} 537; + [[:IJ,Q/;} + Tr; ([ﬂw,ﬂ{;@{;}) 42{;

A

+ Tr; ([ﬁ]wﬁ]}) sz; + J%Tri ([sz‘, «ijeQZD

T, ([0 6)) + 5 o ([ i)
k=1
k#i,j

A A

b [ @]+ [ ] 4 [ 6] )
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= ihdy (i) = [Hi, )| + [By, G| + T, ([H,6,)) )
+ Ty (|Hig, 7)) ) 8, + i ([ iG] )
T ([ 6d]) 9o+ S o ([, ]
oy
+ [ﬁ]k,%%%} - [ﬁm,ﬁkﬂﬂ + [ﬁjk,%}kﬂﬂ) : (A.29)

Plugging equation (A.29) into equation (A.28) gives the equation of motion of the
correlation operator 6;; [16],

zh@t%@ = [}AIZ + [A{j + F[ijy ,Qf;,(z/;] + [ﬁl + FI]’ + f{i]" Céj

N

+ 3 Ty ([His + Hy, iy + A Gy + G + 4Gy + i)
k=1

#i,j

— G

H+ Hj, st = Tr; ([Hy, 65)) o — T ([ Hyy, ) )
=T ([ A 6] ) = T ([ A #9) )

Try, ([ﬁm + ﬁ]k,ﬂzﬂf;%} + [I:fzk,(g;kﬂf;] + [ﬁfgk,cfgkﬂﬂ)

B[ M=

o
Il
&

= {I:IUJZZJZ@ + []:Iz + I:Ij + Ffz‘j,ﬁj} + ZN: Try, ([]:Izk + ]:fgkycfoﬁzgﬂzc})
k=1

N A L N k?iw .

+ > Ty ([Hzmﬂ;(fgk}) + > Ty ([Hgk,%cgzkb

k=1 k=
ki, k#i

1
J
=Ty ([, ] ) ) = Ty ((Hyy. 6y]) ) = T ([ Ay 0] )

=T ([, 6] )
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= ih0,6y; = |H; + H;, 6| + [Hyy, iy + G + i Ty ([Hiw, 43])  (A.30)

k=1
k#i,j
+ Z Try, ([Fljk,gécék}) ([Hk + Hy, 5,6, D

k#] ;é

— %Trj ({f[”,&zf;é% + %JD — Ty ([ﬁﬂ,%}dz + céz}) .

This result is stated for the time evolution of the two-point correlation operator in
equation (2.69).
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B Appendix for Chapter 3

B.1 Proving the Pauli Matrices to be Mutually
Unbiased

In section 3.1 it is discussed that the Pauli matrices form a mutually unbiased
basis. The proof can be given easily by calculating the quantity |(v;] wj)|27 with
the eigenstates {|v;)} and {|w;)} of two operators, and showing that the results are
independent of ¢ and 7,

(il )P (il 2) (il 24) 7

T O T [P Y (5 [ PR (o
0o (2 o (Y o a9
e (O ) [P Y (5 P PR (e
e o (Y o (Y-

Each row shows all possible combinations of eigenstate products of two operators
and they all give the same result. Thus, the Pauli matrices are mutually unbiased.
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B.2 Derivin
Coeffic

In section 3.2, the

g the Time Evolution of the Expansion
ients a; in Equation (3.19)

first order reduced phase point operator , is represented in terms

of the Pauli operators using the expansion coefficients a;,

o= i+ as).

The time evolution of these expansion coefficients is calculated in equation (3.19)
and gives the result in equation (3.20) by the following calculation according to [16],

Z &2
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2 Byv,6
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N-1 B uv
+ Z Z /T R > 57| Ty (67)
2 Bpti = ? k k
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5 HV
c ~
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:‘T7y7z

Using the fact that the trace of any Pauli matrix is zero as given in equation (3.3),

this gives

;ai&iz > (=hlaje sl )+Z > (Jidierar)

IR k=0 ,V(S
fﬁy’f KA L3
Syp bt
+Z > ( i aje Uz‘)
k=0 9,
k#i —Vw,ylf

1
52 zz

By eliminating 6% on both sides, one gets an expression for a’":

1 N-1
5&5 =— > |hlale + Z Jcler Z J.adal e’
] k;éi k;ﬁz‘

:I7y7z
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B.3 Deriving the Time Evolution of the Expansion
Coefficients c;; in Equation (3.22)

The correlation operator Cfij is represented in terms of the Pauli operators in equa-
tion (3.17) in section 3.2. Given this representation, the truncated time evolution
of the expansion coefficients ¢;; can be calculated using equation (3.22), which gives
the result stated in equation (3.23). This result can be calculated according to [16]
regarding the terms of equation (3.22) individually,

¢ TR
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Y v Y v
_1 Z _hiCiJ {&v &uw} hjcij [&7 Juau}
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_ Yy _Puvsv J Y Prp s
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77V
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Considering only the term c " gives the result stated in equation (3.22).

119



B.4 Summarising the Sampling Schemes Introduced
in Section 3.3
Sampling Scheme S;,;;

e sampled from

T(U,O) = (]-7 17 1) s W(O,[)) = 05,
ro. = (1,-1,-1), W) =0,
T = (-1, -1,1), W) =05,

Ty = (_17 17 _1) ) W(l,l) =0

e direct result of the phase-point operators in equation (2.26)

e correlation between the x- and y-component in the two states with nonzero
Wigner function

Sampling Scheme S,

e sampled from
r(070) = (17 17 1) ) W(070) - 025,
ro1y = (=1,-1,1), W) = 0.25,
7“(1,0) g (1, —1, 1) y W(LO) — 0257
ray = (-L1,1),  Wa =025

e taking the two states of Sj,;; with non-zero Wigner function and creating two
more states by flipping the y-components

e no correlation between the z- and y-component, all four possible states in-
cluded
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Sampling Scheme S,

e sampled from
roo = (1,0,1),  Wyg = 0.25,
ro1 = (=1,0,1), W) = 0.25,
rao = (0,1,1), Wy = 0.25,
ray =(0,—-1,1), Wy =025

e taking the sum of the two states of Sj,;; with non-zero Wigner function and
the results by flipping the z- and y-components

e no correlation between the x- and y-component, spin components can take
initial value 0, which is not possible in quantum mechanics

Semi-Continuous Sampling Scheme

e sampled from the four boarders of the cube in figure 3.2 with s, =1

e general combination of the two states of Sy, with non-zero Wigner function
and the results of flipping the x- and y-components

e no correlation between the z- and y-component, but in each possible initial
state either the z- or y-component of the spin can take continuous values,
which is not possible in quantum mechanics

Continuous Sampling Scheme

e sampled from the side of the cube in figure 3.2 with s, =1

e general combination of the two states of Sy, with non-zero Wigner function
and the results of flipping the x- and y-components

e no correlation between the z- and y-component, but in each possible initial
state the x- and y-component of the spin can take continuous values, which is
not possible in quantum mechanics
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B.5 Deriving the Relation Between the Exact
Correlation Function and the First Order
Approximation in Equation (3.57)

The relation between the exact solution and the first order approximation of the
correlation function <&f&j> is stated in equation (3.57). This relation is derived

according to [27] in the following way,

i, (#i5;) (0 S
<5i 8j>c1 (t) = N ml;mv cos | 2tJ;;m; + 2t az:;) (Jiamq)
e{-1,+1} a#i,j
N-1
x cos | 2tJ;;m; + 2t Z (Jimp)
b=
b7éi?j
(676%) (0) N
= > leos (2t ymy) cos | 2t > Jiamg
ml..m a=0
e{—1,41} aFi,j
N-1
—sin (2tJ;;m;) sin | 2t Z JiaMa
perry
N-1
X |cos (2t;m;) cos | 2t > Jimy
b=
bii?j
N-1
—sin (ZtJﬂml) sin | 2t Z Jjbmb
b=
b?’fi(»)]'
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Writing out the sum over all possible combinations of m; and m; to be +1 or —1
gives

2N M. MG 1M1 — 1M 1. MN
e{-1,+1}
N—1
X | (cos (2t J;5) 4 cos (—2tJ;;)) cos | 2t Y Jigma
g
N-1
— (sin (2tJ;;) + sin (—=2tJ;;)) sin | 2¢ > Jiamg
o ]
N-1
X | (cos (2tJ;;) 4 cos (—2t.J3;)) cos | 2t > Jimy
b=
b#?j
N-1
— (sin (2¢J5;) + sin (—=2tJ;;)) sin | 2¢ Y Jpmy,
b=0
b#i,j

2N m1..M;—1M4i41...M5 —1Mj41...MN
e{-1,+1}
N-1
x 4 |cos (2tJ;;) cos | 2t Z Jiamg
azivg
N-1
X |cos (2tJ};) cos | 2t Z Jipmy

b=0
b#i,j

= <€f’-z6j> (t) cos (2tJ;;) cos (2t.J};)

= <6-Z6'?> (t) cos® (2t ;) -
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Where the following relations are used,

cos (x + y) =cos (x) cos (y) — sin (z) sin (y) ,
cos () + cos (—x) = 2cos (),
sin (z) + sin (—z) = 0.

In the last line, the interaction matrix J is defined to be symmetric, J;; = Jj;.
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C Computational Background

This thesis is based on a semi-classical numerical approximation of discrete quantum
mechanical systems. The theory of this approximation scheme has been introduced
in chapters 2 and 3 and the simulation results for a spin—% chain are shown in chapter
4. In the following, the numerical implementation of the approximation method will
be discussed. Therefore, in appendix C.1 a detailed description of the various steps
in the implementation will be given.

The equations of motion of a spin—% system have been derived in section 3.2 as
ordinary differential equations. It has already been discussed that these differential
equations need to be solved numerically and appendix C.2 will introduce two nu-
merical solving methods. The Runge-Kutta-Fehlberg method, which will be further
introduced in appendix C.2.1, has been used for all results in section 3.4 and chap-
ter 4. Since the solutions of the non-linear equations of motion given by the second
order approximation in section 3.2 show large divergences in sections 3.4.2 and 4.3,
a second numerical method with higher accuracy has been tested to solve these
non-linear ordinary differential equations. This way it can be analysed whether
the divergences depend on the numerical solver. This Adams-Bashforth-Moulton
method will be further introduced in appendix C.2.2.

C.1 General Implementation of the Discrete
Truncated Wigner Approximation

The discrete truncated Wigner approximation has been implemented in C++ while
the evaluations of the results are done using Python. For the discrete truncated
Wigner approximation first the Wigner function needs to be calculated, which de-
pends on the phase-point operators. To get these, two possibilities can be used. First
a general way to calculate the phase-point operators depending on the initial con-
dition has been implemented. This general calculation has also been implemented
for a pair of qubits, or consistent with the previous chapters for a pair of spin—%
particles, which results in approximations of Spin—% systems [35, 36]. But since in
the approximations considered in this thesis, the initial conditions are always the
same, computation time can be saved by calculating the phase-point operators once,
storing them and then importing them in every approximation. Given these, the
calculation of the Wigner function is implemented explicitly and called once, while
the resulting function is reused for every run.

After the Wigner function has been calculated, an initial spin state can be sam-
pled for each run. The Wigner function as a quasi-probability-distribution gives a
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probability for the spin being in each of the four possible states associated with the
points in the discrete phase space, given it is positive definite. This is not necessarily
the case, since the Wigner function may have negative values and then does not give
a probability for each state. In this case one has to think of a way how to treat the
negative values to sample from the Wigner function. Since for the initial conditions
regarded in this thesis the Wigner function is always positive, as derived in section
3.1, the initial spin states can be directly sampled given the probabilities for the
possible states. To do so, a random number is drawn from a uniform distribution,
where in the implementation the random number generator in the C++ standard
library is used. Therefore, an unsigned integer is drawn from a uniform distribution
using random_device from the C++ standard library. This random number genera-
tor uses hardware random number generators if they are available and then produces
non-deterministic numbers where replication is avoided, see [14]. The implementa-
tion is parallelised which causes that multiple random numbers are generated at the
same time. If a hardware random number generator is used, the numbers generated
at the same time are all the same. To avoid this, the resulting numbers are used
as a seed for a pseudo-random number generator, which then produces uniformly
distributed random numbers between zero and one. As a pseudo-random number
generator, the “Mersenne Twister” from the C++ standard library is used, which
produces random numbers with period 2'%937 — 1 from a given distribution. Here
the uniform_real distribution from the C++ standard library is used to draw a
uniform random number between zero and one [14].

To sample the initial state s; from the Wigner function, the following algorithm
can be used given a uniform random number g between zero and one,

if(g <W[0,0])
s =1[0,0];

else if(g < W[0,0] + W[0,1])
s = r[0,1];

else if(g < W[0,0] +W[0,1] +W[1,0])

s =1[1,0];
}
else
{

s =r1[l,1];

Wla,b] denotes the Wigner function at point (a,b) in phase space and r[a,b]
denotes the initial state associated with this point.
After an initial state has been sampled from the Wigner function in the explained
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way, it can be evolved in time using either the classical equations of motion given
in equation (3.14), or the second order time evolution stated in equations (3.20)
and (3.23). These equations of motion need to be solved numerically in most cases,
where the algorithms for the numerical solutions of differential equations are further
discussed in appendix C.2.

The equations of motion depend on the spin-spin interaction J;; between each two
spins. To calculate this interaction, a two-dimensional array is created, in which for
each site the distance to any other site is stored. Given the distances between
each two sites, the interaction strength can be calculated, since it is proportional
to the distance. For a one-dimensional spin chain with NV sites, the distance array
is an N x N array, while a three-dimensional N x N x N array is needed to store
the distances in a two-dimensional spin system. This has also been implemented,
so that two-dimensional spin systems can be considered. Since also in [26] the
authors approximated two-dimensional spin systems and benchmarked them with
exact results, the calculated two-dimensional approximations can be benchmarked
by comparison with the results in [26]. This has been done and the results have
shown that the implementation works well, so that the code can also be used to
approximate two-dimensional spin systems. In the same way, also an approximation
of three-dimensional spin systems can be implemented, which has not been done
yet.

Given the time evolution, the approximation of the spin dynamics is fully derived
and can thus be evaluated. In chapter 4 the correlation function was needed for
the comparison with the exact solution. This can be calculated straight forward by
averaging all possible correlation functions for each distance. That process requires
looping over the whole chain twice, since the correlation function of each spin with
all other spins needs to be calculated. Looping twice over the whole chain causes a
long computation time, especially for large spin chains. To increase the computation
speed, a different way to compute the correlation function was chosen here, which
is given by using a Fast Fourier transformation. A discrete correlation function can
be calculated using a Fourier transformation F' (s¥ (t)) of the spins,

Ca™ (t) = 2 87 (1) (i) moa n (t)

with ST (£) =F (s (t)) .

Thus, for each time step the Fast Fourier transformation from the C++ library FFTW
is used to calculate the Fourier transformation of each spin in the chain, then the
product of each transformed spin with its complex conjugate is calculated and trans-
formed backwards to get the correlation function for each distance d.

These are the main points of the implementation, where all calculations are done
in double precision. As it has been discussed in chapter 4, the precision of the
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approximations is limited by the error appearing in the Monte-Carlo-Integration
which is used to calculate the expectation value of an operator. Hence, it is not
necessary to use a higher precision in the calculations, since the limitation in the
calculations is higher than double precision.

C.2 Numerical Solutions of the Equations of Motion

To calculate the time evolution of the initially sampled spin states in the discrete
truncated Wigner approximation, differential equations need to be solved, which is
often very hard or even impossible to do analytically. Therefore, numerical methods
are used to calculate the time evolution.

In the first order approximation, the equations of motion (3.14) form a set of linear
ordinary differential equations, which can be solved using the Runge-Kutta method,
as will be further introduced in appendix C.2.1. In the second order approximation,
the equations of motion of the expansion coefficients ¢;; in equation (3.22) form
a set of non-linear ordinary differential equations and a divergence in the solution
of the equations of motion has been found in sections 3.4 and 4.3. Also here the
Runge-Kutta method has been used, but additionally a second method, the Adams-
Bashforth-Moulton method has been implemented, which will be further introduced
in appendix C.2.2. As a predictor-corrector method, this has a higher accuracy and
thus the effect of the numerical approximation on the divergences can be considered.

C.2.1 The Runge-Kutta Method

The Runge-Kutta method is an iterative one-step method to solve ordinary differ-
ential equations of the general form

y(t)=f(ty), (C.1)
y (to) = vo. (C.2)

The dot denotes a time derivative and ¢, is the initial time, thus equation (C.2) is
the initial condition.

Numerical solving schemes of ordinary differential equations are based on calcu-
lating approximating solutions ¥y, of y (¢,) at equidistant times t,, = to + > o h;
with step size h; which is generally different for each calculated step. In one-step
methods, the calculation of the approximation at each step depends on the approx-
imation of the previous step, and thus iteratively depends on the initial condition
Yo- In multi-step methods, each step depends on multiple previous steps, as will be
further explained in appendix C.2.2 [29, 30].

The Runge-Kutta method can be defined explicitly or implicitly. In the explicit
method, the calculation of the approximation y,, only depends on y,,_1, while in the
implicit method it also depends on v, itself. This classification of explicit and im-
plicit methods is generally defined [29, 30]. Here only explicit Runge-Kutta methods
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C2 | G271

C3 | 31 Q32

Cs Q51 Qg2 s Qs s—1

by by ... bs_1 bs

Table C.1: Butcher Tableau of a general Runge-Kutta method.

will be used, since implicit methods are harder to implement, especially for non-
linear ordinary differential equations. But implicit methods show a higher accuracy
and therefore a mixture of an explicit and an implicit method will be introduced
in appendix C.2.2 and used to solve the non-linear ordinary differential equations
which arise in the second order approximation of the equations of motion in section
3.2 [29, 30].

Generally, the Runge-Kutta method is given in the form [29, 30]

i=1
with k; = f (tn + Cihn, Yn + i (ainky + aigks + -+ + a;-1ki—1)) - (C.4)

Here s denotes the number of stages of the method, the matrix [a;;] is called the
Runge-Kutta matrix, the b; are called weights and the ¢; are called nodes. Using
different values for these variables, various possible Runge-Kutta methods can be
created, while a condition for the method to be convergent is given by >.7_; b, = 1
29, 30]. If the Runge-Kutta matrix is a lower triangular matrix, the method is
explicit, while it is implicit if at least one a;; # 0 for j > 7. Since only explicit
methods are used in this thesis, the Runge-Kutta matrix will be a lower triangular
matrix in the following. The different variables of a specific Runge-Kutta method
can be written in a Butcher Tableau, which is shown in table C.1 [30].

By choosing a value for the number of stages s and different variables in the
Butcher Tableau, the Runge-Kutta method can be created with different orders of
convergence. The convergence order p is defined by the maximum approximation
error of all K steps of approximation [29, 30],

max_ |y (t,) — yn| = O (K?) for h — 0. (C.5)

n=0,...,
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0
1 1
4 4
3 13 9
8 32 32
12 | 1932 7200 7296
13 | 2197 2197 2197
1| 439 _g 3680 845
216 513 4104
1| 8 9 3544 1859 11
2 27 2565 4104 40
25 0 1408 2197 1
216 2565 4104 5
16 0 6656 28561 9 2
135 12825 56430 50 55

Table C.2: Butcher Tableau for the Runge-Kutta-Fehlberg Method.

Here a general step size h; is used, all step sizes are considered in the limit A — 0
and hence are approximately the same. The convergence order increases with the
number of stages s of the method, but the higher the order, the more function
evaluations are needed, which takes more computation time. Therefore, the order
must not be chosen too small, but also not too high.

Also an adequate step size h needs to be chosen. If the step size is chosen too
large, changes in the resulting function might be skipped, which would result in
large deviations between the numerical and the exact solution. But if the step size
is chosen too small, the computation time rises. Thus, in this thesis the Runge-
Kutta-Fehlberg method is used, which includes an adaptive step size. This gives a
small step size when the resulting function shows fast changes and a larger step size
if not. The adaption is created by comparing results of a Runge-Kutta method with
4™ and 5" order convergence, which have the same nodes and the same Runge-Kutta
matrices, but different weights. Hence, their Butcher tableaux can be combined by
writing the different weights in two lines, as shown in table C.2 [9].

Each step of the Runge-Kutta-Fehlberg method thus gives a result v, of the 4
order Runge-Kutta method and a result ¢, of the 5" order Runge-Kutta method.
These two results can now be compared to adapt the step size. Therefore, an error
€ is defined,

€ = |Yn+1 — Jntall - (C.6)

With this error €, the step size h is adapted in the following way [9],
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if (eps < eps_min)

{
y[n + 1] = y4[n + 1];
h =2 % h;

}

else if(eps > eps_max)

{
h=h/ 2

y[n + 1] = y4[n + 1];

1)

Here ¢ is denoted as eps and the result of the 4™ order Runge-Kutta method is
denoted as y4. The result of the 4™ order Runge-Kutta method is then used as
the result of the step, since it has been proven for this scheme that a higher order
algorithm does not influence the result that much. For this algorithm a minimum
error eps_min needs to be defined, which decides whether the step size is increased.
If the calculated error is smaller than eps_min, the resulting function has no fast
fluctuations and thus the step size can be increased. A maximum error eps_max is
analogously needed to decide whether a smaller step size is required in case of fast
changes in the resulting function. If the resulting error is larger than eps_max, the
result of the Runge-Kutta method is not stored, but calculated again using a smaller
step size. If the resulting error is between eps_min and eps_max, the step size does
not need to be changed [9]. The values of eps_min and eps_max need to be chosen
depending on the approximated system.

This adaptive step size method works very well given an initial value. But since
already the first step size is adapted, this initial value can be chosen arbitrarily,
where a first guess is known in most cases. What is more important, is a limit on
the step size, so that it does not get smaller or larger than a chosen region. This
is important to prevent the calculation from getting stuck in too small step sizes
and on the other hand the step size must not get larger than the steps in which the
results will be stored.

In the first order approximation of the quantum equations of motion, this Runge-
Kutta-Fehlberg method works very well, thus it has been used for all calculations
in sections 3.4, 4.2 and 4.3. For the second order approximation of the equations of
motion a divergence in the spin dynamics has been found, as already discussed in
section 4.3. But explicit methods do not show an accuracy as high as implicit meth-
ods. Since implicit methods are very hard to implement, especially for non-linear
ordinary differential equations, a mixture of an explicit and an implicit method, the
Adams-Bashforth-Moulton method, which will be further introduced in appendix
C.2.2, has additionally been implemented to analyse whether these divergences can
be captured by this numerical solving method of the equations of motion.
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C.2.2 Adams-Bashforth-Moulton Method

The Runge-Kutta method introduced in appendix C.2.1 was defined to be an explicit
one-step method. A higher accuracy in numerically solving ordinary differential
equations can be reached by using implicit methods. These are hard to implement,
especially for non-linear differential equations, such as the second order approxima-
tion of the equations of motion in section 3.2. Hence, the Adams-Bashforth-Moulton
method, which is a multi-step predictor-corrector method, will be introduced. It uses
an explicit multi-step method, the Adams-Bashforth method, to predict a value for
Yn+1, Which is then corrected by the implicit Adams-Moulton method [29]. Both
methods need more than one previous point to calculate the next step, where the
initial points will be calculated using the one-step Runge-Kutta method. The num-
ber of points required for the multi-step methods also defines the convergence order,
which is p for a p-step method [29]. Here both methods are introduced as 4-step
methods, thus the points v,,_3, y,—2, yo—1 and y, are required to calculate vy, in
the explicit method.

Generally, the explicit Adams-Bashforth method can be derived by replacing an
integrand by an interpolating polynomial [29],

y(t)=[f(ty), .
y (to) = wo, (C.8)

=y (tnp1) =y (ta) = / "Ry () dF

tn—1

3
~ hzgi,ABf (tnflay(tnfﬁ)? (CQ)
i=0
13 541
ith 3, :/ Tl s, i=0,1,. ..
with 3; A og—z—i-ls ') n
I£i
3
= Yni1 = Yn + 1Y BiaBSoi- (C.10)
i=0

The index AB denotes the definition of ; in the Adams-Bashforth method.

By calculating the values for 55 o, 82,48, B1.a8 and [y ap, the 4t order Adams-
Bashforth method is given by

h
Yn+1 =Yn + ﬂ [55f (tO + nh7 yn) - 59f (tO + (7’L - 1) ha yn—l)

+37f (to+ (0 —2) hyyn—2) = 9f (to + (n — 3) h, yn-3)] - (C.11)

The implicit Adams-Moulton method can be derived in the same way, where only
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the definition of ; changes and is denoted by the index AM [29],

Y(te) =y () = [ F(ty ()t

tn—1

3
R hZﬂ'L,AMf (tnflyy (tnfl)) ) (Cl2)
i=0
03 s+1
ith 5; :/ ds, 1=0,1,...,
with 5; am —1g—i+l5 i n
I#i
3
= Ynt1 = Yn + B Y BianSoi- (C.13)
i=0

The 4" order Adams-Moulton method can then be derived explicitly by calculating
53,AM, BQ,AM, 51,AM and 50,AM7

Yn+1 =Yn + 2}1 [9f (t() + (n + 1) h> yn—i—l) + 19f (tU + nh’a yn)
_5f (tO + (n - 1) hv yn—l) + f (tO + (n - 2) hv yn—Q)] (C14)

Given the definition of the Adams-Bashforth and the Adams-Moulton method,
they can be combined to give the predictor-corrector Adams-Bashforth-Moulton
method. Therefore, a first prediction for y,, ;1 is calculated using the explicit Adams-
Bashforth method. A correction to this prediction is then calculated using the
implicit Adams-Moulton method, where the prediction for v, is plugged into the
right hand side of equation (C.14). The results before and after the correction can
then be compared and the correction step can be repeated until the corrections
converge [29].

Since in this numerical method an implicit multi-step method is used, it shows
a higher accuracy and has thus also been tested to solve the second order approx-
imations of the equations of motion derived in section 3.2. It has been found that
this numerical solution method shows the same divergences as the Runge-Kutta
method at approximately the same times after the sudden quench. This leads to
the conclusion that the divergences in sections 3.4 and 4.3 can not be captured with
standard numerical methods and more complex methods might be needed to get rid
of the divergences. On the other hand, the divergences might also be caused by the
truncation of the quantum mechanical equations of motion, where the conservation
of several quantities is not given anymore, as already discussed in section 4.3.
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