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Zusammenfassung

In der vorliegenden Arbeit wird die Dynamik eines eindimensionalen Exziton-
Polariton-Kondensats untersucht, bei dem die Phasenfluktuationen durch die
Kardar-Parisi-Zhang-Gleichung bestimmt sind. Wir analysieren die Defekte, die
in der zeitlichen Entwicklung des Kondensats auftreten und vergleichen ihre
Dichteprofile mit denen eines Solitons. Durch die Beobachtung von Phasenspriin-
gen an den Defektpositionen sind wir in der Lage, diese als dunkle Solitonen zu
klassifizieren. Wenn wir unseren Fokus auf die Defektwechselwirkungen verlagern,
kénnen wir an den Schnittpunkten der Solitonen die Entstehung von wirbelar-
tigen Strukturen in der Zeit-Raum-Ebene beobachten. Eine Untersuchung der
Impulsbesetzungszahlen zu verschiedenen Zeitpunkten zeigt ein bemerkenswertes
Skalierungsverhalten von einer anfinglich kastenférmigen Verteilung hin zu einem
Potenzgesetzabfall. Der Exponent k dieses Abfalls ist ungewdhnlich hoch. Sein
Wert reicht von etwa 4 bis 7 und héngt stark mit der Lebensdauer der Solitonen
im Kondensat zusammen. Um die Selbstdhnlichkeit des Skalierungsverhaltens
zu bestéatigen, fithren wir eine Reskalierung der Besetzungsspektren beziiglich
einer Referenzzeit durch. Aus diesem Reskalierungsprozess konnen Skalierung-
sexponenten nahe % fiir o und B abgeleitet werden. Aus der Selbstdhnlichkeit
der Skalierung schliefen wir, dass sich das Polaritonkondensat in der Néhe eines
nicht-thermischen Fixpunktes befindet.

Abstract

In this thesis we study the dynamics of a one-dimensional exciton-polariton con-
densate, where the phase fluctuations are governed by the Kardar-Parisi-Zhang
equation. We analyse the defects that emerge as the condensate evolves and com-
pare their density profiles to those of a soliton. By observing phase jumps at
the defect positions, we are able to classify them as dark solitons. Shifting our
focus to defect interactions, we reveal the emergence of vortex-like structures in
the time-space plane at the soliton intersection points. An examination of the
momentum occupation number at different times reveals a remarkable scaling be-
haviour, from an initial box-like distribution to a power law decay. The power
law exponent x is found to be anomalously high, ranging from about 4 to 7, and
its value is strongly related to the lifetime of the solitons present in the system.
To validate the self-similarity of this scaling behaviour, we perform a rescaling of
the occupation spectra with respect to a reference time. Scaling exponents close
to % for both o and (8 are extracted from this rescaling process. We conclude
that the polariton condensate is close to a non-thermal fixed point based on the
self-similarity of the scaling.
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1 Introduction

Polaritons are at the forefront of modern research in solid state physics. These
quasiparticles, composed of photons and electron-hole pairs, form at the boundary
between light and matter. Due to their bosonic nature and low mass, which is only
a fraction of the mass of an electron, they are able to condense into a Bose-Einstein
state even at relatively high temperatures. After the first successful condensation a
decade ago, current research achieved progress in lower-dimensional polariton con-
densates coupled to excitonic reservoirs. Recent publications have revealed a close
connection between the dynamics of one-dimensional polariton condensates and the
Kardar-Parisi-Zhang (KPZ) equation.

Against this scientific background, this thesis examines the subject of polariton con-
densates, with a specific emphasis on the study of their dynamics. In experimental
settings where light cannot be retained indefinitely, constant replenishment of po-
laritons is upheld via laser beam pumping. Therefore, polariton condensates serve
as a prime example of driven dissipative systems that exist in an out-of-equilibrium
state. This provides a unique opportunity to examine various theoretical predictions,
in particular those regarding universal dynamics in far-from-equilibrium scenarios.
One of the powerful tools developed for the study of non-equilibrium systems is
the concept of universal non-thermal fixed points (NTFPs). The strength of this
concept lies in its ability to describe the dynamics of various systems using only
a few macroscopic parameters by classifying them into specific universality classes
[1, 2]. At its core, the idea of NTFPs arises from the empirical observation that
systems far from equilibrium, on their way to thermal equilibrium, eventually pass
through a regime characterised by significantly slowed down dynamics. This regime
is closely related to the proximity of the system to a stationary nonequilibrium state
associated with an NTFP. The critically slowed dynamics are characterised by a self-
similar spatio-temporal evolution of the order parameter correlation functions [3, 4,
5, 6], resembling critical phenomena in equilibrium where a fixed point acts as a
universal attractor in the framework of renormalisation group theory.

Crucially, this universal behaviour is independent of specific initial conditions, al-



lowing the classification of physical systems into universality classes, each defined by
a unique set of universal scaling exponents. The advantage of this approach is now
that all systems falling within a given universality class exhibit the same macroscopic
behaviour. As a result, the time evolution of a system is decoupled from its micro-
scopic details. This phenomenon offers a remarkable opportunity to understand and
predict the real-time evolution of diverse systems, ranging from quark-gluon plas-
mas in quantum chromodynamics 7] to the post-inflationary dynamics of the early
universe [8], by studying a more experimentally accessible system within the same
universality class.

The focus of this work is the numerical simulation of a one-dimensional polariton
condensate coupled to an excitonic reservoir, the system in which the connection to
the KPZ equation was first established. We study different parameter regimes, ex-
ploring the dynamics of the system and the intricate patterns that emerge during its
time evolution. In order to ascertain our proximity to a non-thermal fixed point, we
examine the correlation functions, in particular the momentum occupation number,
for evidence of self-similar scaling.

The subsequent chapters of this thesis are organized as follows: In chapter 2, we
introduce the theoretical concepts central to this thesis. We begin with an examina-
tion of the phenomenon of Bose-Einstein Condensation (BEC). As a mathematical
framework, we introduce the Gross-Pitaevskii model in section 2.2 and discuss vor-
tices as prominent solutions within this mean-field framework. In section 2.3, our
focus shifts to the primary physical system studied in this thesis: polariton conden-
sates. We explore the intricate interplay between photons and excitons that gives
rise to polaritons, as well as the experimental setups, such as microcavities, used to
study them. Section 2.4 includes a discussion of universal dynamics and non-thermal
fixed points, as well as the application of renormalisation group theory to extract
scaling exponents characterising critical behaviour. In section 2.5, we revisit the
connection between KPZ universality and the polariton model, as discussed in [9],
by using a fluctuation ansatz for the equations describing the mean-field behaviour.
Chapter 3 presents the essential numerical tools and techniques employed in our
simulations. We begin by addressing the discretisation of continuous equations of
motion in section 3.1. Additionally, this section also covers the conversion from
physical units to numerical ones. Subsequently, we present the split-step Fourier
algorithm in the following section, which serves as our method to computing the

time evolution of the discretised equations of motion. In section 3.3, the truncated



Wigner approximation is introduced as a semi-classical technique to incorporate
quantum effects. This is accomplished by adding noise to the initial state and aver-
aging over several simulation runs.

Chapter 4 presents the results of our numerical simulations, which are divided into
two distinct sections, each representing different parameter regimes. In the first sec-
tion we study the emergence of defects during the time evolution of the condensate.
Our analysis focuses on their density profiles and compares them to the character-
istics of dark solitons. In addition, we study the phase structures that arise when
these defects collide, revealing phase windings in the time-space plane similar to
vortices.

In section 4.2 we turn our attention to the dynamics of the system. We confirm
the presence of a non-thermal fixed point by studying the momentum occupation
numbers at different time points. The occupation spectrum undergoes a clear trans-
formation, changing from an initial box-like distribution to a power law decay. We
discuss the anomalously high power law exponents, which also depend on the lifetime
of the solitonic defects in the system. To validate the self-similarity of the scaling
behaviour, we perform a rescaling of the occupancy spectra relative to a reference
time and subsequently examine the extracted scaling exponents.

We conclude in chapter 5 with an outlook on promising avenues for further research.
In particular, we highlight the potential connection between the KPZ-driven exciton-

polariton condensate and other low-temperature systems.



2 Theoretical Background

2.1 Bose-Einstein Condensates

Sometimes referred to as the fifth state of matter, Bose-Einstein condensates (BEC)
form when the interatomic distances of a dilute bosonic gas become comparable
to its thermal de Broglie wavelength. At this point, the wave functions of the
individual bosons begin to overlap, causing the gas to undergo a phase transition in
which the vast majority of bosons occupy the lowest energy state. Because bosons
are indistinguishable, the condensed gas can be described by a single, macroscopic
wave function. The condensate thus exhibits a mixture of quantum mechanical and
hydrodynamic properties, giving rise to new exotic features such as superfluidity
or long-range order. Historically, the concept of Bose-Einstein condensation was
proposed by Einstein in 1925 [10], but a real BEC could not be produced until
1995, when the groups of Cornell, Wieman and Ketterle achieved condensation in
rubidium and sodium atoms, earning them the Nobel Prize in Physics [11, 12|. The
main obstacle to experimental realisation has been the low critical temperatures of
a few nanokelvins required for condensation to occur. For an ideal Bose-Einstein

condensate, the critical temperature is given by:

2h? n 3
Tp = ( ) . 2.1
T T \2612 (2.1)

In order to achieve higher critical temperatures, it is therefore necessary either to
reduce the mass of the bosons or to increase their density. Consequently, as early
as 1962 excitons, electron hole pairs held together by the Coulomb force, were pro-
posed as a possible solution [13]. These quasiparticles are bosonic by nature and
much lighter than atoms, thus forming condensates at significantly higher tempera-
tures. Unfortunately, trapping excitons and forming a condensate presents its own
experimental challenges, and no exciton condensates have yet been realised. The
breakthrough came with the demonstration of strong coupling between excitons and

photons giving rise to polaritons, which are four orders of magnitude lighter than



excitons, theoretically enabling the creation of BECs at room temperature [14]. In
addition, their dispersion can act as a trap in momentum space. The first irrefutable
evidence for a polartion condensate was reported by Kaspraz and Richard in 2006

[15], just ten years after the observation of BECs in atomic clouds.

2.2 Gross-Pitaevskii model and the vortex solution

The mathematical treatment of a generic BEC is a complex undertaking, but sim-
plifies considerably in certain limits, where mean field theory can be applied and
the condensate can be described by a nonlinear Schrédinger equation. In this so-
called Gross-Pitaevskii model, it is assumed that all bosons of the condensate are
in the ground state, so that the BEC can be described by a unique wave function.
It is also assumed that the de Broglie wavelength is much longer than the boson-
boson interaction range, in order to approximate the bosonic scattering processes
by s-wave scattering. Both assumptions are well fulfilled at ultracold temperatures,
giving a relatively good description of the behaviour of atomic BECs [16]. In its

U(N)-symmetric form, the Lagrangian of the Gross-Pitaevskii model reads:

' 1
Lop = 00000 — udily) = 5 -V - Viby — 5 (500’ (22)

where 1) is the condensate wave function, the coupling constant g is a function
of the s-wave scattering length, and summation over all N fields is implied. The
equations of motion of the N ground state wave functions can be extracted from the

Euler-Lagrange equations:

Outha = (—5 A+ g0 (2.3

This non-linear Schrodinger equation is known as the Gross-Pitaevskii equation
(GPE) and determines the behaviour of a condensate at the mean field level. There
exist a few analytical solutions, such as the soliton in one dimension. In two dimen-
sions, the Gross-Pitaevskii equation can be solved by a vortex using the following

ansatz for the wave function:

Y = \/%f(r)eiq‘pe_m (2.4)
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Figure 2.1: Density profile (normalised to the bulk density) and velocity field of a
vortex. Figure taken from [17]

where ¢ is the vortex charge and pg is the bulk density outside the vortex. Plugging
the ansatz into the GPE yields:
2f 10f ¢

3 T = g 2mwf = 2mgpof® = 0. (2.5)

Requiring the density far from the vortex to be py, enforces f — 1 for r — oo
or equivalently w = gpo. By introducing the healing length & = 1/4/2mgp, as the
length scale at which the density returns from p = 0 in the centre to the bulk density
po and is thus "healed", one can form dimensionless variables x = r /£ and rewrite

the equation as follows:

" 1 ! q2 3
f'+ == Sf+ =1 =0 (2.6)

This equation has no analytical solution but can be evaluated numerically. One
finds the characteristic density dip in the centre and a return to the bulk density
after £. The density profile and velocity field of a condensate around a vortex is
shown in Figure 2.1

=L, (2.7)

J
p mr

A%

In two dimensions, vortices are a crucial phenomenon for describing condensates and

their behaviour. They can scatter, form bound vortex-antivortex pairs or annihilate.
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The existence of these bound states plays a crucial role, for example, in the Berezin-
skii-Kosterlitz—Thouless (BKT) transition [18]. In three dimensions, vortices cannot
exist, but instead there are tube-like topological defects called vortex tubes. Like
their two-dimensional counterparts, they strongly influence the condensate dynamics
[19].

2.2.1 Vortices in one dimension

At first glance, the concept of vortices makes little sense in one dimension, since
they are topological objects and therefore require at least two dimensions to exist.
However, this is not the whole truth, as one can look at the dynamics and take
time itself as the second dimension. In this sense, vortices in one-dimensional con-
densates would be space-time vortices and should appear in a space-time diagram.
Unfortunately, there is another problem with this type of object, as it does not solve

the Gross-Pitaevski equation. Making a hydrodynamic ansatz
¥ = /ot @)t (2.8)
and plugging it into the GPE gives rise to two sets of equations:

1

00 = ——[—=0%\/p — (2,0)*) — gp. (2.10)

2m\/_p

For a vortex solution, the density should only be a function of r = /a2 + ¢2, while
the phase should only depend on ¢ = arctan(t/x). This reduces the two equations

to:
0 = sinpByp + lcos pip - (— S0P ) 1 p2e3EE, 5 (INES
T m " ro 7 r2 7 r v
(2.11)
(1-— M)@ p = —£(2 cos ¢d,0 + sin pd20) (2.12)
mr " r? ’ v '
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which can be combined into a single differential equation with the analytic solution:

a,_b»
plr)=c-(1—-)7 (2.13)
o = C0890,0 (2.14)
m
b = 2cos p0,0 + sin 4,0830 (2.15)

For p to be only r-dependent, the phase must be a constant, which is incompatible
with a vortex solution. Thus a normal 1-d Bose gas has no space-time vortices.
However, space-time vortices have been observed in several more complex systems.
For example, in spin-1 condensates after a quench, they appear to influence the
dynamics [20]. More recently, space-time vortices have been observed in polariton
condensates [21]. In the next section, the nature of polaritons is explained in more
detail.

2.3 Polariton Bose-Einstein condensates

Traditionally, our perceptions of light and matter are very different. While we
associate light with a wave or a massless photon that never stops moving, matter
around us is subject to friction and tends to stand still. This is why we can put
matter in a box and keep it there, whereas the same concept seems unnatural for
light. This supposed duality is resolved by the concept of Quantum Fluid of Lights
(QFL), which combines concepts from condensed matter physics and optics. For
photons to act as a fluid, they must acquire an effective mass and a significant
interaction strength, both of which can be achieved by confinement. Confining a
photon between two planar mirrors leads to a discritisation of its wave vector along

the direction of the cavity
k,L = N. (2.16)
Assuming only a small transverse momentum, one can perform a Taylor expansion

of the normal dispersion and derive a parabolic relation for the photon

c 2

w(k) =ck =~ ck,(N) + Wk:”.

(2.17)
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Figure 2.2: Basic Photon-Photon interaction by mediating a virtual electron-
positron pair

This dispersion is similar to that of a relativistic particle and gives the photon an

effective mass
mc* =hw(ky = 0) = hck,. (2.18)

Regarding the interaction, the Feynman diagram associated with photon-photon
scattering is shown in Fig. 2.2, and the corresponding scattering cross section is

proportional to:

J~a4< h )( i ) (2.19)

MeC/ \MgC?

Although possible, the direct interaction between two photons is strongly suppressed
not only by the electric fine structure constant, but also by the energy denominator
corresponding to the rest mass of the produced electron-positron pair. At typical
energies of visible light in the eV range, this gives a huge suppression factor of 107!,
To obtain a significant interaction, we look at the interaction between photons and
excitons. Heuristically speaking, the electron-hole pair forming an exciton behaves
similarly to an electron-positron pair, resulting in a huge enhancement of the inter-
action strength.

In this case, the Hamiltonian describing the system of excitons and photons acquires
a mixing term. Diagonalising the Hamiltonian leads to two new eigenstates describ-
ing a new quasiparticle that contains the properties of both photons and excitons
and is known as a polariton. To distinguish between the two polariton eigenstates,
they are referred to as the lower and upper branches. By detuning, polaritons can
be made more photon-like or more exciton-like.

However, confining quasiparticles for extended periods of time remains an experi-
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Figure 2.3: Left: A visual representation of a microcavity, in which the Bragg re-
flectors reflect light, creating a standing wave. Within this cavity, a
quantum well is embedded, serving as an active material capable of gen-
erating excitons, which subsequently merge with the light wave to form
polaritons. Image taken from the Sheffield LDSD group. Right: A plot
illustrating the typical population dynamics of a polariton condensate
coupled to an exciton reservoir. Plot taken from [14].

mental challenge. From laser physics originates the concept of VCSELS, which are
planar microresonators with embedded quantum wells. Unfortunately, their low re-
flectivity makes them suitable only for the weak coupling regime, where the emission
of photons by excitons is irreversible. In the strong coupling regime, Bragg reflec-
tors are used, which have a refraction index of more than 99.9% and, as an added
bonus, the hull serves as an active medium for the creation of exitons. In modern
experiments, a quantum well is embedded in the cavity, which makes the excitons
more robust and enhances the interaction by a factor of about 4. Despite this in-
credibly high reflectivity, microcavities are subject to losses. They therefore require
constant replenishment to be stable, making them a driven dissipative system. Such
systems can be described by a generalised Gross-Pitaevskii equation. In the case
of the exciton-polariton condensate, there is an additional equation coupled to the
GPE that describes the behaviour of an exciton reservoir. Initially, the polariton
condensate and the exciton reservoir are empty. To create polaritons, the reservoir is
filled by pumping with a laser. When a threshold is reached, the excitons relax into

the polariton condensate by stimulated scattering. This cycle is repeated several

14



times until an equilibrium between pump and decay rate is reached (see Fig. 2.3).

th‘l’(%t) —[% = 5 (00 +72h%) + g[¥ (2, )" + 2grng + 5 Bng | V(z,1)
+ &, 1) (2.20)
0
5nR(x,t) =P — (yg + R|Y(z,1)|*)np(x,t) (2.21)
g

The exciton reservoir with density ng(x,t) is pumped at rate P(x). Excitons either
relax into the polariton condensate by stimulated scattering at rate R or decay via
other channels at rate yr. Polaritons interact with themselves or with reservoir ex-
citons, where g and gg are the polariton-polariton and polariton-exciton interaction
strengths, respectively. vy and 7, describe the in general momentum dependent de-
cay of the polariton condensate field V. Finally, £(x,t) is a Gaussian noise induced
by drive and loss.

In addition to microcavities, there is another platform for studying this particu-
lar physics, namely propagating geometries. This system uses the formal analogy
between the generalised GPE and light propagating in a bulk medium, where the z-
coordinate than takes on the role of time. We will not go into this approach in detail,
in the following we will follow the classic microcavity approach, but the interested
reader can refer to [22]. QFLs are not only of interest for technical applications,
as their ability to form condensates near room temperature could open the door to
many new applications, but they are also prime examples of many-body physics in
the non-equilibrium regime, making them an interesting object of study in this field

of physics.

2.4 Universal scaling dynamics far from equilibrium

In this section we want to take a closer look at the universal scaling dynamics of
quantum many-body systems far from equilibrium and the closely related concept
of non-thermal fixed points. The observation of universal dynamics in equilibrium
systems is an important result from statistical mechanics. Universality in this con-
text means that a wide variety of very different systems behave similarly close to
a phase transition. This manifests itself in a critical exponent corresponding to a
universality class. The phenomenon can be understood with the help of renormal-

isation group theory. The basic idea of the renormalisation group approach is to
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study a physical system under different spatial resolutions. It turns out that in the
vicinity of a phase transition, the correlation functions of the system look the same
regardless of the chosen resolution. Shifting the resolution by a factor s then leads
to a rescaling of the correlators C(z,s) between points with spatial separation x
according to C(x,s) = s°f,(x/s). This implies that the correlator depends only on
the universal scaling function fs; and a universal exponent (. One speaks of a fixed
point of the renormalisation group flow when a change of scale s no longer affects
the correlator C'. In this case the scaling functions become a power law characterised
only by the universal exponent.

In recent years, the renormalisation group approach has been extended to systems
far from equilibrium by using time ¢ as the flow parameter instead of the spatial
resolution s. It has been proposed that a system on its way to equilibrium may
pass through a regime, where correlation functions rescale in the same way as be-
fore. The only difference is that the scaling function now depend on two separate
scaling exponents a and §: C(t, k) = (tf:)afs((t::)ﬁk), where ¢, is a reference time
within the scaling regime. The fixed point associated with this so-called dynamical
scaling hypothesis is called the non-thermal fixed point. Also, at the non-thermal
fixed point, the correlator takes its characteristic power-law form, which is directly
related to a critical slowing down (or speeding up) of the time evolution, depending
on the sign of 5. The whole concept is visualised on the left in Fig. 2.4. Note
that we have used the momentum correlator, which behaves identically to its spatial
counterpart and is commonly used in other work. This thesis is mainly concerned
with the occupation number in momentum space and we want to use the rest of this
section to discuss its form. As shown on the right in Fig. 2.4 f(¢, k) has different
scaling exponents depending on the regime under consideration. While the typically
negative value of § in the ultraviolet (UV) is associated with energy transport to a
few fast particles, in the infrared (IR) one generally observes positive 3, indicating a
slowing down of the particles. By using appropriate conservation laws one can find
relations between o and . For example, if the conservation of particle numbers is

respected, which is classically the case in the IR, then the quantity

/ dkf(t, k) (2.22)

is conserved and one finds the relation o = df. In this thesis we are mainly interested

in the IR part of the spectrum, which typically consists of a plateau and then falls
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Figure 2.4: Left: A schematic representation of a non-thermal fixed point is shown.
This fixed point is characterised by the dynamics of a system placed in
a far from equilibrium initial state. The system evolves universally upon
reaching the fixed point. Figure taken from [23]. Right: A schematic
illustration of the occupation number distribution near a non-thermal
fixed point, plotted as a function of momentum for two consecutive times,
t; and ty. The self-similar evolution is characterised by the scaling ex-
ponents « and 3, as described in Equation 2.4. Figure taken from [24].

off with a characteristic power law k". In the course of this work we want to extract
the values for «, § and « in polariton condensates and relate them to the underlying

KPZ universality class.

2.5 Transition to the Kardar-Parisi-Zhang equation

The aim of this section is to formalise the connection between the Kardar-Parisi-
Zhang universality and the polariton model. This has already been done by [21],
which we follow closely here. We start with the generalised GPE describing the

polariton condensate:

6 o A .")/2 Z 2
zgtlll(x, t) = [ o Z;A + §(RnR — %) + g|¥(x,t)|" + 2grng |V (z,t)
+ &, 1) (2.23)
0
—ng(x,t) =P — (g + R|Y(z,t)|*)ng(z,1). (2.24)

Oy
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We choose a hydrodynamic ansatz for the condensate wave function in a rotating

frame

W(x,t) = /plz,t)expi(0(z,t) — wot). (2.25)

The polariton and reservoir densities are subject to a restoring force that relaxes
them to their stationary values within a short time. It is therefore convenient to
describe the densities as fluctuations around a stationary mean field value. Provided

that these fluctuations are small and stationary, i.e.

op = p(x,t) — po op/po < 1 (2.26)
dng =ng(z,t) —ngro dng/nro < 1 (2.27)
86p = &dnp = 0 (2.28)

Eq. 2.24 can be rewritten as:

(2.29)

We first focus on the mean field by inserting the stationary phase rotation ¢ =

Jpoe “t into Eq. 2.23. Separating real and imaginary part leaves us with two

equations:
P
Yo =Rnpo = 2.30
0 RO = T (2.30)
PR
wo =2grNRo + gpo = 91270 2+ Q%Z—S(VR% -1 (2.31)

The first line describes the magnitude of the mean densities, while the second line
gives us a formula for the condensate emission frequency. To go beyond the mean-
field level, we first examine the derivatives of the wave function within our approx-

imation. We also neglect terms containing spatial derivatives of the condensate

density:
aﬂ/J :w(pflatp + z@tﬁ — ’iW0> = Qﬂ(late — iwo) (232)
b —w(%plaip - in(&cﬂ)z — (0:0)* + ip~ ' Oup - D0 + i020)

~(—(0,0) + i620). (2.33)
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Inserting these expressions for the derivatives into Eq. 2.23 we end up with:

1 _
) = — wo — 5—(0:)* — 2gmnr — gp + R{E} (2.34)
— L oo Y Rng— ) 1+ SHE
0 _Qmaxe + 2(RnR )+ S{€} (2.35)
P :RnR(% + p). (2.36)

Now we can use the two equations from our mean field considerations to simplify the

model equations. Writing everything in terms of fluctuations, we obtain the three

equations:
0l = — %(VG)Q + ?VQG — gdp — 2grdng + R{E} (2.37)
Snp :}% %v?e + 290 - 3(6) (2.38)
op=— ];—SR(STLR. (2.39)

The three equations above can be combined into one formula by a simple substitu-
tion. The resulting equation describes the effective evolution of the phase and has

the form of the Kardar-Parisi-Zhang equation [25]:

Y2 29r | P91 L 29r72 Py 2

_[22_ 29m i _ 2.4

o0 =| % Rm+mg]axe =+ 7 |@o2+n (240
A
=vV?0 + §(V9)2 +1n (2.41)
with
2
(n(x, t)n (2, 1) = S 144 (29_3 — P—g) d(x—a")o(t—1t) (2.42)
Po R Yo

=2D6(x—2')d(t—1t'). (2.43)

It is worth taking a closer look at the coefficients of the KPZ equation. For the
linear limit of the KPZ equation, i.e. the Edwards-Wilkinson equation, to be stable,
the effective diffusivity v must be positive. In our simulations we assumed that the
reservoir-induced blueshift 2ggpng dominates over the polariton-polariton interac-
tions, thus setting the interaction strength g to 0. In this case a sufficiently large

linewidth 5 is crucial for stable phase dynamics.
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3 Numerical Methods

The generalised Gross-Pitaevskii equation presented in section 2.3 serves as the
foundation for investigating the condensation of polariton-exciton systems. Unfor-
tunately, this equation is a coupled, non-linear equation which proves too compli-
cated for analytical solutions. Consequently, we must rely on the power of numerical
computation to explore this phenomenon. All numerical simulations in this thesis
were performed using a self-written Python code that takes advantage of the power-
ful GPU-accelerated numerical computing capabilities provided by CUDA. CUDA,
a parallel computing platform and API, enables the utilisation of graphical process-
ing units (GPU) for general purpose computing. To access these capabilities, we
employed the CuPy Python library, which seamlessly integrates with CUDA allow-
ing for high performance numerical computations. Much of the efficiency of the
code comes from this GPU acceleration, particularly when executing discrete fast
Fourier transforms or handling large matrix operations. Our code draws significant
inspiration from a previous C++ code developed in the research group of Prof. Dr.
Thomas Gasenzer and originally used to investigate the dynamics of BECs far-from
equilibrium [26, 27]. In particular, the idea of employing the split-step Fourier algo-
rithm to solve the generalised Gross-Pitaevskii equation, as well as the utilization of
the semi-classical truncated Wigner approximation (TWA) for calculations beyond
the mean-field configuration, originated from that code.

This chapter serves as an introduction to the relevant numerical concepts - the
simulation results obtained are discussed in the next chapter. We start with the
discretisation of wave functions on a lattice and the convergence between numerical
and physical units. We then outline the workhorse of our simulation, the split-
step Fourier algorithm, which is used to obtain the time evolution of the system.
The fundamental idea behind this algorithm is to employ a series of alternating
steps, utilizing fast Fourier transforms and direct diagonalisations, to efficiently and
accurately solve the time-dependent Gross-Pitaevskii equation. By leveraging the
diagonal nature of the momentum space part, the algorithm becomes computation-

ally more tractable and well-suited for numerical simulations.
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The final chapter is concerned with the truncated Wigner approximation, a semi-
classical technique that goes beyond mean-field theory to include quantum effects.
The TWA approximates the field through its classical c-number representation and
evolves it using the Gross-Pitaevskii equation. Fluctuations are introduced in its
initial momentum state, according to the Wigner distribution. By accumulating
and averaging many individual trajectories, this method effectively captures the

dynamics with lowest order quantum fluctuations.

3.1 Converting to numerical units

We begin by outlining the essential steps involved in discretising the wave functions
on a spatial grid. This discretisation enables the conversion of continuous equations
of motion into a discrete form that can be solved numerically. The first step is to
specify a suitable spatial grid. In this work we use a one-dimensional grid, typically
consisting of n, = 8192 grid points.

The lattice spacing, denoted by a,, establishes a length scale. This scale is used to
assign numerical values to the physical parameters of the system. In this regard, we
also set both Planck’s constant, A = 1.05 - 10_34@ = 1, and the lattice spacing,
ag = n—Lg = 1, to unity, where L is the physical length of the system. Additionally

1

we define the mass of the polaritons to be m, = 5. Once these conditions are in

place, it is possible to calculate the numerical values of all physical parameters. For
a?my,

example, all times would simply be rescaled with the factor Ticae = ~%—.

In the following chapters, the numerical values of a given simulation are stated

explicitly. To determine the momentum grid corresponding to a given spatial grid,
it is necessary to perform a Fourier transformation. The lattice momenta are derived
by expanding the fields in discretised plane waves and inserting them into the discrete

Laplacian

0 U(wj41) +2¥(x;) + W(2;-1)

U = . 3.1
3112 ag ( )
This results in the following relation for the lattice momenta:
2
k, = —sin ™ (3.2)
g g
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with n € [—n—; + 1, "79] Therefore, the maximum lattice momentum is k., = %
The main reason behind this definition is the congruence between the split-step
Fourier method and finite difference methods in the treatment of partial differential
equations. The choice of the discrete Laplacian, and hence sinusoidal rather than
linearly spaced momenta, leads to inhomogeneities in the spectrum. In particular,
the spacing in the ultraviolet (UV) is denser than the almost linear spacing in the
infrared (IR). It is therefore useful to regulate the resolution of the simulation by

adjusting the UV and IR cut-offs of the momentum grid.

3.2 Split-Step Fourier

As mentioned in the introduction to this chapter, the split-step Fourier algorithm
is our preferred method for performing the time integration of the Gross-Pitaevskii-
type equation. This algorithm offers significant advantages, as it conserves both
the total number of particle and the total energy of the system. Additionally, it
seamlessly aligns with the utilization of GPU-accelerated computation, increasing
computational efficiency.

At its core, the split-step Fourier algorithm operates by effectively splitting the
Hamiltonian into two distinct parts: one that is diagonal in momentum space,
denoted as D, and another containing all remaining terms, denoted as N. This

separation is achieved by isolating all terms that involve second-order derivatives

iO(,t) = Ho(x,t) = (.t + At) = ey () = APy (1),
(3.3)

If the simultaneous diagonalisation of D and N were possible, calculating the time-
evolution would be straightforward. However, this is generally not the case. Instead,
we employ the Baker-Campbell-Hausdorff formula to split the exponential function
into two separate operations, incurring an error of order O(At?). By using this
approach, the kinetic part D becomes easily solvable in Fourier space, while N is
still a simple multiplication in real space. Therefore, the overall expression computed
by the algorithm at each time step contains a Fourier transform and can be expressed

as follows:

U(x, t+ At) = e_iAth_l{e_iAtDF(@/)(x, N} + O(AF). (3.4)
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This expression, consisting solely of diagonal multiplications within their respective
spaces, can be efficiently vectorised and reduced to a straightforward multiplication
at each grid point. This task aligns well with the capabilities of a GPU, making
it highly suited for parallel computation. Together with the implementation of the
Fast Fourier Transform routine, this contributes significantly to the performance of
the code.

In our code a three fractional step is used to further enhance accuracy. As a result,

we achieve the final integration scheme for one time step as follows:

Oz, t+ At) = F e "3 PF[e 2N F1 e~ %D Fyp(z, ) 1]} + O(AL).
(3.5)

For the generalised GPE of a polariton-exciton condensate considered in this thesis,

the splitting of the Hamiltonian leads to the two parts:
. k2 i’YQ]CZ
S 2m 2
7
N :§<RnR — ) + g (x, )" + 2grnE. (3.7)

(3.6)

The noise can be added either in momentum or real space, in our implementation
we chose to add £ in momentum space. The coupled equation governing the exci-
ton reservoir is in many ways much easier to solve, as it does not contain spatial

derivatives. Here we use a simple Euler step to calculate its time evolution:

ng(z,t + At) =ng(x,t) + At[P — (yg + R|¥(z,t)|*)ng(z, 1)]. (3.8)

3.3 Truncated Wigner Approximation

While the classical approach to BEC has demonstrated its merit, there are instances
where a departure from the mean-field perspective is necessary. This becomes es-
pecially relevant when focusing on modes with low occupancy, diverging from the
classical solution provided by the Gross-Pitaevskii equation. Such deviations arise,
for example, in driven-dissipative Bose gases with multi-stable states or in the dy-
namic filling processes of interconnected condensates. In these complex scenarios, a
more comprehensive understanding is required, leading to the inclusion of quantum

fluctuations. As the polariton-exciton condensate is governed by a coupled equation
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with complex filling dynamics, it falls into the realm of systems where traditional
mean-field approximations prove insufficient.

In our numerical simulations we implemented the truncated Wigner approxima-
tion (TWA), to circumvent this problem. The TWA, a semi-classical technique
well-established in quantum optics, bridges the gap between classical and quantum
descriptions. The fundamental idea behind the TWA is to sample initial conditions
from the Wigner distribution and evolve these quasi-classical trajectories using clas-
sical equations of motion. Evolving over many of these individual trajectories and
averaging them at the end recovers the dynamics, including the lowest order quan-
tum fluctuations.

While this method incorporates some quantum effects, such as interference, it ne-
glects the full quantum correlations that may be present in the true quantum evo-
lution. As with all when it comes to computational simulations, there is a trade-off
between computational feasibility and capturing key quantum features. Below is a
more detailed description of the TWA following [28],[29].

We start by defining the Weyl transformation of an arbitrary operator /1(‘11, Ut) as

w (0, \Ifr // dov da %lA(\Ij’\IjT) T+ %> e 1YPP—1lal? 5 (0" U —ar)

(3.9)

Next we define the Wigner function as the Weyl transformation of the density matrix

p of a quantum state:

da*d . .
WO W) = = [ [ S = S0 W) 9+ G Ao,

(3.10)

The Wigner function acts as a quasi-probability distribution, allowing for nega-
tive values unlike classical probability functions. For large occupation numbers the
Wigner function is semi-positive definite, enabling it to function as a classical prob-
ability distribution function [30]. By inserting the density matrix in Equation 3.9,
it is possible to demonstrate that the expectation value of any operator is given by

an average over the Wigner distribution:

<A(\11,x1ﬁ)>://dwqf*wmf,qﬁ)/xw(q/,w). (3.11)
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The goal is to Weyl transform the von Neumann equation, as it characterises the
quantum dynamics of a density matrix in the Schrodinger picture:

ap -

th— = [H, p]. 3.12

o = (1) (312)
The transformation of the left-hand side is straightforward, as it can be easily sim-
plified into the time-derivative of the Wigner function. The right-hand side, on the
other hand, requires a more complicated treatment. Therefore, we first look at Weyl

transformations of operator products, where we find a Moyal product relation [31]:

A
(A1 A2)w = Ay w exp §A2,W (3.13)

where A is the symplectic coherent state operator:

2 0 0 o
A= — . .14
Z OV, 0U; OV, OV (3.14)

The arrows in the above definition indicate the direction on which the differential
operators operate. With the help of Equation 3.13 we can express the Weyl trans-

formation of a commutator as

A
([Al, Ag])W = 2A17W sinh EAQ’W (315)

and finally find that the Weyl transformation of the von Neumann equation is given
by:

zh%—);v = 2Hy sinh %W (3.16)
In order to solve the equation of motion, we expand the hyperbolic sine in A and
truncate it in leading order. This is justified in the case of high occupation numbers,
because A scales roughly with the inverse modulus squared of the wave function. At
high occupation numbers this becomes a very large number and the leading orders of
the series expansion dominate, while higher order terms become less and less signif-

icant. This truncation is called the truncated Wigner approximation, which leaves
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us with the classical Liouville equation, where {, } p denotes the Poisson bracket

ow

ot
The solution of the Liouville equation may be obtained, for example, by using the
method of characteristics [32]. We find that the classical GPEs are indeed the
solutions, even in the semi-classical case

oV  OHy

Wor = our

(3.18)

The differences to an entirely classical description stem from the fact that we used
expectation values when defining Eq. 3.11, rather than using the operators directly.
Consequently, we have to average over many realisations to extract the desired
expectation value of an observable. However, the time evolution is still governed by
the classical GPE. So rather than evolving the Wigner function itself in time, we
sample a large number of initial conditions chosen randomly according to the weight
of the Wigner function. In the case of a coherent state, the initial Wigner function
is simply given by a Gaussian, with an average occupation of half a particle in each
mode. Note that this implies that the vacuum state has a virtual occupation of half

a particle, which can only be subtracted after averaging.
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4 Simulation Results

In this chapter we present the results obtained through numerical integration of
equations 2.21, which govern the time evolution of a polariton-exciton condensate.
To achieve this, the techniques described in the previous chapter have been em-
ployed, in particular the usage of the split-step Fourier algorithm for time integra-
tion and the truncated Wigner approximation to account for quantum effects within
the simulation.

The organisation of the chapter is divided into two primary sections, each corre-
sponding to a different parameter regime that we have examined through simula-
tions. The first regime attempts to replicate the condensate studied in the work
of Fontaine et al. [21], which established the connection between one-dimensional
polariton-exciton condensates and the KPZ equation, as well as the emergence of
space-time vortices. This particular regime is of special interest because similar
vortex structures in the time-space domain have been observed in the context of
one-dimensional spin-1 Bose-Einstein condensates, a phenomenon observed by Prof.
Gasenzer’s research group [33].

The other parameter regime, which is only weakly based on an experimental real-
isation, revolves around the concept of self-similar scaling. Although this regime
exhibits structures that manifest within the space-time plane of density and phase,
they are not as pronounced as those in the first regime. Instead, this particular
regime exhibits a pattern of self-similar scaling within the momentum occupation
number. This is particularly interesting in the context of identifying non-thermal
fixed points in the dynamics of systems far from equilibrium - a class of systems into
which the polariton condensate may fall.

Both of these subsections are structured in a somewhat analogous manner. We be-
gin by specifying the parameter regime through stating the numerical values of all
physical parameters. Subsequently, we provide a visual representation illustrating
the density and phase of a singular simulation run. Finally, we present the results of
further investigation within the given regime. The subsequent section begins with an

exploration of the first parameter regime, where the presence of space-time vortices
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is a prominent feature.

4.1 Regime of space-time vortices

As mentioned in the introductory section of this chapter, the motivation for this
study originates from a recent publication in the journal Nature [21]. The central
aim of this publication was to explore the connection between the KPZ equation and
one-dimensional exciton-polariton condensates. However, it was the appearance of
space-time vortices that inspired this thesis. In particular, the striking visual simi-
larity between these vortices and a separate class of space-time vortices discovered
in simulations of a spin-1 Bose-Einstein condensate by the Gasenzer research group.
For comparison, Figure 4.1 shows simulation instances from both systems, provid-

ing a visual representation of the resulting vortices. In both systems we observe

At (ps)
86.5 B87.5
-4

50 % - — =

Figure 4.1: Space-time vortices in two different physical systems: On the left, a sim-
ulation illustrating the phase evolution of a one-dimensional polariton-
exciton condensate [21]. Colour coding represents phase values ranging
from —m to m. The inset provides a detailed view of a vortex-antivortex
pair. On the right, a simulation showing the Larmor phase of the trans-
verse spin, orientated in the F,-F, plane, in a one-dimensional spin-1
BEC, as featured in [33]. Close-up views reveal an emerging vortex, ev-
ident both as a dip in transverse spin density and as phase wrapping
around a central point in the Larmor phase.

the presence of lines with a constant phase value propagating through time. At the
location of a vortex, the phase undergoes a complete 27 wrapping around a central
point. The direction of this phase wrap determines whether it is a vortex or an
antivortex. Interestingly, in the polariton system of [21], the dynamics show the

appearance of vortex-antivortex pairs, maintaining the total winding number of the
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system, whereas in the spin-1 case, single vortices appear.

We began our investigation with the simulation of the polariton condensate de-
scribed in [21]. Despite employing the exact parameters described in [9], our results
exhibited significant disparities. The source of this discrepancy remains unclear,
with no obvious explanation. The only difference in approach lies in the different
integration methods used. While our approach focused on the use of the split-step
Fourier algorithm, the cited work relied on the semi-implicit Runge-Kutta method
for temporal integration. The numerical values characterising this particular regime

are given below for reference.

m, =—33-10"%-m, = —3.01-1073 q, =44-1077 Tyeme = 1.10- 107
v = 8.13 - 1074 v = 1.39 ~, = 3.66 - 104
gr=1.36-10"* R=221-10"° P =149-102

Table 4.1: Numerical values of physical parameters used in [9] to simulate exciton-
polariton condensates with space-time vortices

The table above does not specify the value of the polariton-polariton interaction
strength g. We have adopted the reasoning presented in [9], where it was argued
that the reservoir-induced blueshift 2gzrng significantly outweighs the interaction
strength. Consequently, we set g to zero. Examining Eq. 2.41, which describes
the mapping of the KPZ equation to the polariton system, a vanishing g introduces
certain constraints on the system. In particular, the first coefficient of the KPZ
equation, denoted v, must be positive to ensure stable KPZ dynamics. This condi-
tion holds only if the momentum dependent loss rate 7, is sufficiently large or if the
polariton mass is tuned to negative values. In line with the approach of [9], we have
chosen to assign negative values to our polaritons to avoid this problem.

The specific choice between periodic and static boundary conditions did not affect
the simulation, in the following we use periodic boundary conditions. In contrast,
we observed that modifying the pumping profile had a significant influence on the
behaviour of the condensate in our simulations. Following the recommendation in
[9], we used a spatially varying flat-top pump profile in all our simulations. This
profile is defined by the equation presented below and visually illustrated in Fig.
4.2:

a

[1+ tanh(£2))2

P [1 + tanh(Z2t2)][1 + tanh(%)]

P(z) = (4.1)
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Here Ly = 80um represents the length of the pump spot and o = 9.7um charac-

Profile of pumping beam
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Figure 4.2: Visual representation of the pumping profile defined in 4.1 used to stim-
ulate the exciton reservoir. The shape is imprinted through interaction
on the condensate.

terises the width of its decaying edges. With these original parameter values the
condensate was unstable and collapsed after short times. Remarkably, it was possi-
ble to obtain a stable condensate by only scaling both the overall system size and
the values of Ly and o by a factor of 10. As a result, the updated parameters
(Lo = 800um and o = 97um) were used in subsequent simulations. To account for
the increased system size, the simulation was run on an enlarged lattice of 4096 lat-
tice sites, keeping the lattice spacing a, constant. The results of this simulation with
the updated parameters are shown in Fig. 4.3. The profound impact of the pumping
profile on the behaviour of the condensate is immediately apparent. The condensate
closely mimics the shape of the pumping profile, resembling a roughly rectangu-
lar structure with minimal density at the edges. This correspondence between the
shape of the condensate and the profile of the pumping beam is not surprising, as
the pumping beam effectively imprints its shape on the exciton reservoir and sub-
sequently influences the form of the condensate.

Furthermore, our simulation reveals the emergence of defects in both density and
phase evolution. These defects are characterised by local density dips in the con-
densate, which appear as dark lines in the density evolution plots. They are slightly

less prominent in the phase evolution, where they indicate a phase jump and appear
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Figure 4.3: Simulation depicting the time evolution of a polariton condensate with
pump parameters Ly = 800um and o = 97um, evolving over a maximum
propagation time of 15 ns in real space. In the spatial direction, given in
units of healing length, the simulation extends over 4096 grid points: a)
[llustrates the evolving condensate density, with clearly visible dark lines
representing defects propagating within the condensate. b) Displays the
time evolution of the condensate phase, where defects manifest as visible
lines separating regions characterized by constant phase values.

as lines separating regions of constant phase values. To gain a clearer perspective
on these emerging structures within the polariton dynamics, we have zoomed in
and increased the temporal resolution. Figure 4.4 shows a simulation run with the
same parameters as before, but allows a closer examination by focusing on the time
interval from 13 ns to 14 ns. The close-up view allows us to examine the emerging
defects within the condensate in detail. In particular, we observe a direct alignment
between the dark lines in the density plot and the phase jumps in the phase dy-
namics plot. This alignment supports the hypothesis that these propagating defects
are dark solitons. Dark solitons are characterised not only by local dips in conden-
sate density but also by accompanying phase jumps. To validate this hypothesis,
we performed a more detailed analysis of the defects. In particular, we wanted to

check whether the density profile of these defects is consistent with the expected
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Figure 4.4: This Figure provides a more detailed temporal view of the simulation
shown in Figure 4.3. The evolution of the condensate is shown over
the time interval from 13 ns to 14 ns, highlighting the emergence of
structures. a) highlights the defects in the density of the condensate,
while b) shows the defects in the phase dynamics. Notably, the align-
ment between density and phase defects suggests soliton-like behaviour.
Furthermore, in the phase plot (b), intersections of these defects, where
multiple phase jumps occur, are distinguished as cores of vortex-like
structures within the condensate (see e.g. two vortex cores at 13.2 ns).

dark soliton pattern described by the formula:

1 1 . 12
pla) = o] tanh [ = )] i /1- ?‘ (4.2)

Here py is the mean density of the condensate, ¢ denotes its healing length and
vy=(1- (é)Q)_% represents the Lorentz factor associated with the speed of sound.
Figure 4.5 a) illustrates the fitting of this function to a density dip. The fit closely
matches the actual density profile of the defect, with slight discrepancies at the edges
due to the presence of multiple defects.

To further confirm that these defects are, indeed, dark solitons, we need to demon-
strate that the phase exhibit jumps at their positions. Although there is some direct
evidence for phase jumps in the phase evolution plot, we conduct a more detailed

examination by introducing a quantity called ’solitonicity’. This measure is defined
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S(t,z) = lpo — p(t, 2)]|0:0(t, z)| (4.3)

In essence, this observable only reacts when both a density dip and a phase jump
coexist at the same location. The solitonicity for our simulation run is depicted in
Figure 4.5 b). We can see that, apart from the edges, the positions of the defects
align with regions of high solitonicity. This alignment allows us to classify these
defects as dark solitons, and we will refer to them as such from this point onwards.

The solitonicity measure is most pronounced at the points where dark solitons in-

0.000 0.025 0.050 0.075 0.100
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Figure 4.5: Analysis of emerging defects in condensate dynamics: a) Demonstrates
the fitting of the typical density profile of a dark soliton, as described
in Equation 4.2, to the density dip associated with a defect. The
small discrepancies observed at the edges are attributed to the pres-
ence of multiple defects. b) Presents a plot of solitonicity S(t,z) =
lpo — p(t,x)]|0,0(t, x)|, an observable that measures the simultaneous
occurrence of a phase jump and a density dip. This plot closely matches
the defects shown in Figure 4.4, providing strong evidence to classify
these defects as dark solitons.

tersect. When we revisit the phase dynamics plot in Figure 4.4, these points become
distinct as the cores of vortex-like structures, characterised by multiple phase jumps
occurring at these intersections. We refer to these phenomena as ’space-time vor-
tices’, when the phase undergoes a complete 27 change as one encircles the central

point. An example of such a vortex can be seen in Figure 4.6, where we have
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Figure 4.6: Close-up of a space-time vortex from Fig. 4.4: This image provides
a detailed view of the intersection of two dark solitons. Notably, the
core of the space-time vortex aligns exactly with this intersection point,
where the condensate density reaches its minimum value. The space-
time vortex is characterised by a continuous traverse of the colour scale
used to represent the phase, indicating a phase change of 27.

zoomed in on one such crossing point. In this figure, the vortex is characterised
by its continuous traversal of the colour scale used to represent the phase. At the
same time, the density plot shows the intersection of two solitons. The core of the
vortex coincides exactly with the intersection point where the density reaches its
minimum value. Taken together, these observations provide compelling evidence to
classify this pattern as a space-time vortex. Consequently, we can confirm that this
particular parameter regime does indeed lead to the formation of such vortices.

Unfortunately, in this specific parameter regime, we do not observe an approach to
a so-called non-thermal fixed point. In order to investigate whether a regime of uni-
versal scaling is imminent, we analysed the occupation number in momentum space
at different points in time. The results of this investigation are shown in Figure 4.7.
In particular, we observe that, with the exception of a few early times, all occupancy
spectra coincide. This is in contrast to expectations in the vicinity of a non-thermal
fixed point, where self-similar scaling should occur, as we will show in the following

section.
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Figure 4.7: The momentum occupation spectrum is obtained by plotting the occu-
pation number in momentum space at different time points. The last
time point at 128 corresponds to 15 ns. This plot is generated by aver-
aging the results of 50 simulation runs. It is noticeable that the spectra
overlap at late times, suggesting that there is no scaling behaviour in
the system. System parameters are listed in table 4.1 at the start of the
section, most importantly g = 0.
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4.2 Regime of self-similar scaling

This section is devoted to a specific parameter regime which has been found to
exhibit both a distinct structure in the evolution of the density and a self-similar
scaling pattern in the momentum occupation. The inspiration for this regime can
be partly traced back to the parameters used in the Grenoble experiments 34, 35],
albeit with a significantly different approach. Whereas they considered a system in
which polariton-polariton interactions dominate over polariton-exciton interactions,
our focus in this investigation has been reversed. Therefore, we set ¢ = 0 and ne-
glected the polariton-polariton interaction completely. The reader is referred to [36]
for further reading on numerical simulations of the Grenoble experiments. In order
to define this focus, the numerical values of the parameters used in the simulation

of this section are listed in the following table.

my,=5.79-10% -m, =527-107%2 a, = 9.77-10° Tseue = 9.54 - 10712
Y = 0.95 Yo =6 vy = 0.34
gr = 147 - 1073 R=4.88-1073 P =73.78

Table 4.2: Numerical values of physical parameters for the simulation of exciton-
polariton condensates in the self-similar scaling regime

In contrast to the parameter regime discussed in the previous section, there is no
need to tune the polariton mass to negative values in this case. This is because the
first KPZ coefficient, v = % — 4% = 1.795, is inherently positive, resulting in stable
phase dynamics in accordance with the KPZ equation. Regarding the spatially
varying pumping, we used the same functional form as in the previous section 4.1,
with parameters Ly = 370um and o = 38.8um. All simulations in this section were
conducted with a lattice consisting of 8192 lattice sites. In this section we have used
a larger grid than in the previous section, which was made possible by increasing
the timestep size. An illustration of a single run extended to ., = 100ns is shown
in Fig. 4.8. In this plot it becomes apparent that some defects emerge in the early
stages of the simulation and subsequently propagate in both the density and phase
representations of the condensate. In order to obtain a clean real-time image of
the phase evolution, we need to eliminate the static phase rotation introduced by
the chemical potential p. This rapid phase rotation effectively obscures the phase

dynamics, making it difficult to analyse the emerging structures. To address this,
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Figure 4.8: Real space representation of polariton condensate dynamics with scat-
tering rate R = 4.88 - 1072 evolving to a maximum propagation time of
100 ns: a) Depicts the density dynamics normalised to the maximum
density. Emerging defects manifest as dark lines in the evolution plot.
b) Shows the time evolution of the phase, where the defects are also
visible as continuous lines representing constant phase values.

we perform a subtraction process by unwrapping the phase evolution at an arbitrary
lattice point. Subsequently, we fit a linear function to this phase data. The slope of
this linear function corresponds directly to the chemical potential p. According to
the formula 2.31, in numerical units the chemical potential of a polariton condensate

within the KPZ regime is expected to be:

=y = 29R%
0 R

= 0.573 (4.4)

This value is reasonably close to our simulation result, which is approximately 0.575.
The small deviation can be attributed to phase fluctuations stemming from the
initial noise introduced by the TWA method and from phase jumps induced by the
propagating defects.

Once the chemical potential has been determined, we can use the following formula

to calculate the healing length of the condensate:

- (4.5)
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Figure 4.9: Analysis of emerging defects in a condensate with scattering rate R =
4.88 - 1073 evolving to 100 ns: a) Demonstrates the fitting of the typ-
ical density profile of a dark soliton, as described in Equation 4.2, to
the density dip associated with a defect. b) Presents a plot of solitonic-
ity S(t,z) = |po — p(t,x)||00(t, x)|, an observable that measures the
simultaneous occurrence of a phase jump and a density dip. This plot
matches the defects shown in Figure 4.8, providing strong evidence to
classify these defects as dark solitons.

Consequently, we obtain a value of approximately 1.32 in units of lattice points for
the healing length in our simulation.

We once again analyse the emerging defects, focusing on the profile of the density
dip created by these defects. Interestingly, the classical soliton shape as defined
in Equation 4.2 fits the density profile of the dip remarkably well (see Figure 4.9
a)). It is interesting to note that from this fit we can extract a new healing length
corresponding to approximately 20 grid points. We therefore conclude that these
defects introduce an additional length scale into the system.

As in our previous analysis, to classify these defects as dark solitons we need to show
that the density dip coincides with a phase jump. To achieve this, we examine the
solitonicity operator defined in Equation 4.3. In Figure 4.9 we observe that regions
of high solitonicity align precisely with the positions of the defects, providing com-
pelling evidence to label these defects as dark solitons.

The propagation behaviour of these dark solitons differs significantly from the soli-

tons studied in the previous section. Here, the solitons travel along straight lines
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Figure 4.10: Detailed study of the right soliton branch in Fig. 4.8: a) In the density
plot we observe the splitting of a single soliton into two distinct entities,
marked by a density minimum at the split point (see e.g. minimum at
t = 33ns). b) In the phase plot, vortex-like structures emerge at these
splitting points. However, it is worth noting that the phase doesn’t
change continuously, but changes rapidly in the direction of the domi-
nant daughter soliton, while remaining constant elsewhere.

until they reach vertex points where the density reaches its minimum and the soli-
tons split into two distinct entities. Over time, this splitting process produces a
pattern reminiscent of a root structure.

In Figure 4.10 we provide a close-up view of the right branch, focusing on a series of
vertex points. An examination of the phase dynamics reveals that, as in the previ-
ous section, the multiple phase jumps at the splitting points give rise to vortex-like
structures. These structures undergo a 27 phase change when encircling the core.
However, unlike the previous space-time vortices, the traversal of the phase colour
scale in this case is not continuous, but is characterised by a larger constant part
and a smaller part where it changes rapidly. This observation suggests that the first
vortices were the result of symmetric two-soliton collisions, whereas these vortices
arise from an unsymmetric decay of a single soliton into two solitons.

Apart from the interesting defect dynamics, the evolution of the condensate may not
appear to differ fundamentally from the parameter regime previously studied. How-
ever, the differences arise when we look for signs of self-similar scaling behaviour,

which could potentially indicate the presence of a non-thermal fixed point. To this
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Figure 4.11: Evidence for self-similar scaling in the occupation spectrum: In plot a)
the momentum occupation number at different time points is shown.
It undergoes a shift from an initial box-shaped distribution to one that
follows a power law with an negative exponent of k = 4.08. On the
right, we rescale these spectra relative to a reference time, tt—of = 16.
It is noticeable that the spectra are closely aligned, especially in the
infrared (IR) region. Through a fitting process we derive the rescal-
ing exponents: a = 0.36 and # = 0.32. The inset shows the ratio of
the rescaled spectra compared to the reference spectra, with a random
distribution around 1, as expected for self-similar scaling. These occu-
pancy spectra represent the average results of 170 simulation runs at
a scattering rate of R = 4.88 - 1073, with the latest time point corre-
sponding to the maximum simulation time, ¢, = 800ns.

end, we examine the momentum occupation number at different points in time. The
collection of this spectrum requires several simulation runs of the same configura-
tion. In Fig. 4.11 we show the momentum occupation spectrum resulting from a
total of 170 runs. A substantial transformation can be observed in the momentum
distribution, which initially exhibits a box-like shape but gradually evolves into a
flatter profile, as clearly shown in the log-log plot of Fig. 4.11. This transformation

is a strong indication of scaling behaviour. At the specific time - = 128, the mo-

¢
mentum occupancy has fully developed its power law behaviour, C(ilaracterised by a
negative exponent of Kk = 4.08. This result is particularly noteworthy as one would
typically expect k to be approximately 2 in one spatial dimension, in line with pre-
vious propositions [37] and findings in other one-dimensional systems [3]. However,
as time progresses, the scaling behaviour stops and the power-law form disappears,
indicating that the system has moved away from the vicinity of the non-thermal

fixed point.
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To confirm the self-similar nature of this scaling behaviour, we performed a rescal-
ing of the spectra with respect to a chosen reference time, denoted as t,.s = 16ty =
12.5ns. This rescaling was performed according to the functional form given by the
Equation 2.4. Specifically, we scaled the momentum on the x-axis by (t%f)ﬁ and
the occupation number by (i)*a. The resulting graph, shown in plot b) of Figure
4.11, clearly demonstrates that the occupation spectra at different time points in
the IR region are in good agreement. This confirmation is further strengthened by
examining the relative deviation of the spectra from the reference spectra, as shown
in the inset. Here we observe only a slight divergence, mainly at higher momenta.
Taken together, these results provide compelling evidence that we have indeed un-
covered a self-similar scaling phenomenon, as discussed in section 2.4. This observa-
tion strongly suggests the existence of a non-thermal fixed point. Remarkably, the
scaling exponents o and [ are very close to %, which is in line with our expectations
given that we are operating in a regime where the phase fluctuations are governed
by the KPZ equation (see [21] for more details). For a one-dimensional system, the
equality of the scaling exponents is expected, reflecting the particle number conser-
vation in the IR. In our case these exponents are indeed almost equal within the
margin of error.

By making small adjustments to the parameters of our simulations, we can change
both the number of solitons and their lifetime. In particular, the value of the scat-
tering rate, denoted 'R’, plays a key role in shaping the simulation results. This
influence is clearly illustrated in Figure 4.12, which shows a simulation run with a
slight reduction in the scattering rate. In this scenario there is a noticeable increase
in the number of solitons compared to previous runs. Previous research, in par-
ticular studies on two-dimensional Bose-Einstein condensates near the Berezinskii-
Kosterlitz-Thouless (BKT) transition, has provided insights into the substantial
influence of vortices or defects in general on the scaling behaviour of a system. For
example, in [26], the system was found to have a reduced scaling exponent of 8 = 0.2,
which differs from the expected value of 0.5 [24] for such a system.

In the context of the polariton system, we encounter an interesting trade-off driven
by the increased condensate activity in the form of numerous solitons. The lower
the scattering rate R and therefore the higher the number of solitons, the more the
condensate loses its characteristic property of self-similar scaling. This deviation
is illustrated in Figure 4.13, which shows the momentum occupation spectrum for

a simulation run with a reduced scattering rate of R = 4.4 - 1073, The overlap of
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Figure 4.12: Real space representation of a simulation with a slightly reduced scat-
tering rate (R = 4.4 - 1073) compared to Figure 4.8. Notably, there is
a significant increase in both the number of solitons and their lifetime.
The simulation was performed with a maximum propagation time of
100 ns.

the occupancies at different times suggests the absence of scaling within the system.
Consequently, this deviation implies a shift away from the vicinity of a non-thermal
fixed point. On the contrary, reducing the number of solitons by increasing the
scattering rate leads to an enhancement of the scaling behaviour. In Figure 4.14
we show the averaged momentum spectra derived from 170 simulation runs with an
increased scattering rate of R = 5.3 x 1073. Remarkably, a distinct power-law shape
appears as early as % = 64 and persists until the last time points at 800 ns, where
the scaling phenomenon finally ceases. The negative exponent of this power law,
measured at Kk = 6.74, exceeds the previous value, emphasising its dependence on

factors such as the scattering rate and possibly other system parameters.
1
3
slight increase in error is probably due to the wider momentum range used to rescale

The scaling exponents, again close to 7, now show slightly larger error bars. This
the spectra, as shown by the grey area in Figure 4.14 b). However, the extended
fitting range should compensate for this increase in error, ensuring the reliability of
our results.

To confirm that the enhanced scaling behaviour is associated with a reduced number
of solitons, we examine the real-space representation of a simulation run used to gen-

erate the spectrum in Figure 4.14. In Figure 4.15 it becomes clear that simulations
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Figure 4.13: Occupation numbers in momentum space at different times: The occu-

pancies at different time points overlap, indicating the absence of scaling
in the system and a departure from the non-thermal fixed point. These
spectra are derived from the averaging of 50 simulation runs, similar to
the one seen in Figure 4.12, with a maximum propagation time of 100
ns and a scattering rate of R = 4.4-1073.
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Figure 4.14: Evidence for self-similar scaling in the occupation spectrum: In plot a)

the momentum occupation number at different time points is shown. It
undergoes a shift from an initial box-shaped distribution to one that fol-
lows a power law with an negative exponent of kK = 6.74. On the right,
we rescale these spectra relative to a reference time, ttr—gf = 64. Through
a fitting process we derive the rescaling exponents: o« = 0.36 and
£ = 0.34. The inset shows the ratio of the rescaled spectra compared to
the reference spectra, with a mostly random distribution around 1, as
expected for self-similar scaling. Only at high momenta discrepencies
arise most likely due to a increased fitting range as indicated by the grey
area. These occupancy spectra represent the average results of 170 sim-
ulation runs at a scattering rate of R = 5.3 - 1073, with the latest time
point corresponding to the maximum simulation time, ¢, = 800ns.
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Figure 4.15: Real space representation of a simulation carried out with a slightly
increased scattering rate (R = 5.3 x 1073), in contrast to Figure 4.8.
It can be observed that the solitons have significantly shorter lifetimes,
resulting in fewer instances of splitting and an overall reduced presence
of solitons in the system. The simulation covered a maximum propa-
gation time of 100 ns.

with a scattering rate of R = 5.3 x 1073 do indeed produce solitons that persist for
shorter periods of time. This observation suggests two critical implications: first,
that changes in the scattering rate significantly affect the lifetimes of the solitons,
which in turn affects both their splitting frequency and consequently the total num-
ber of solitons present in the system at any given time. Secondly, it implies that
the scaling behaviour, in particular the emergence of the power-law shape, tends to
manifest itself after the solitons have dissipated from the system.

These results highlight the significant influence of solitons on the dynamics of po-
lariton condensates. Furthermore, they suggest the possibility of observing similar
scaling behaviour in regimes with numerous solitons, provided that sufficient time
is provided for their eventual disappearance. Investigating such scenarios would
require considerable computational resources, but could be an interesting focus for

future studies.
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5 Conclusion

In this thesis we have investigated the one-dimensional polariton condensate cou-
pled to an exciton reservoir through the lens of numerical simulations. Our approach
was based on the application of the split-step Fourier algorithm for time integra-
tion, complemented by the truncated Wigner approximation to capture essential
quantum effects. Both methods were introduced in chapter 3 of this thesis. Amidst
the vast parameter space, we have deliberately restricted our investigation to two
distinct parameter regimes where the condensate exhibits stability and interesting
pattern dynamics.

We used the values given in [9] for our simulation of the first parameter regime.
Although we did not replicate the vortex-antivortex pairs documented in that work,
our investigations revealed the emergence of propagating defects in both density
and phase evolution. Upon closer examination, these defects exhibited density pro-
files similar to dark solitons. Structures with a phase winding of 27 around a core,
which we identified as space-time vortices, appeared at the intersections of these
dark solitons. This discovery led us to speculate that space-time vortices arise from
symmetric collisions of two solitons. Furthermore, the absence of scaling, suggesting
that there is no non-thermal fixed point to guide the time evolution of the conden-
sate, was observed by checking the occupation number in momentum space. It is
also possible that the dynamics are still dominated by early chaotic behaviour, in
which case it would be desirable to run longer simulations, a task that is numerically
very costly and therefore the subject of future work.

Subsequently, in section 4.2 we ventured into a different parameter regime char-
acterised by a scaling behaviour. We first verified that we were operating within a
regime where phase fluctuations follow the KPZ equation. To this end, we extracted
the chemical potential associated with the stationary phase rotation of the polariton
condensate and confirmed its agreement with the theoretical predictions described
in section 2.5.

Examining the real-space representation of the condensate, we again detect the

appearance of defects in the density and phase evolution of the condensate. We
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demonstrate that the density profile of these defects closely matches that of a dark
soliton, and that the dip in density of the defect coincides with a phase jump, us-
ing the same analyses as in the previous section. Having identified these defects
as solitons, we proceed to study the intersections where these solitons merge. At
these intersections we observe a singular soliton splitting into two separate entities.
During this process we again encounter vortex-like structures. However, due to the
asymmetric nature of the decay process, the phase winding around the core does
not exhibit a continuous rotation over 27, but rather occurs over a small angle be-
fore remaining constant for the remainder of the arc. The repeated splitting of the
solitons results in a branched soliton network that resembles a root structure.
During our analysis of the momentum occupation spectra, we discovered a charac-
teristic scaling phenomenon. Initially, we observed a box-like distribution, which
later evolved into a power law decay shape. Remarkably, it correlated strongly with
the lifetimes of the solitons emerging in the system. By tuning the scattering rate R,
we were able to manipulate both the number of solitons present at any time and the
scaling characteristics. At higher scattering rates, corresponding to shorter soliton
lifetimes, we observed a distinct scaling behaviour and a pronounced power-law de-
cay. The exponent of this power law depended on R and ranged from about 4 to 7.
This observation is in agreement with the results of a recent study by Vercesi et al.
[38] as well as older reports [39, 40|, where similarly high exponents were reported
in soliton-rich polariton condensates.

Conversely, at lower scattering rates we found that the scaling behaviour ceased and
the occupation number spectra converged. This striking observation raises ques-
tions about the underlying dynamics and the role of the scattering rate in shaping
the scaling behaviour. One possible explanation could be the existence of multiple
fixed points. The specific fixed point approached by a system as it evolves may be
determined not only by its universality class, but also by certain system parameters.
This explanation could be an interesting focus for further theoretical work on the
concept of non-thermal fixed points.

Furthermore, it is worth noting that the scaling persists even after the solitons have
decayed, suggesting that the infrared (IR) length scale is not solely determined by
the coarsening length scale between defects. Instead, it appears that the background
itself exhibits scaling behaviour. This phenomenon becomes even more interesting
when considering that the solitons eventually merge with the background over time,

which is best seen in the solitonicity plot 4.9. In particular, this plot shows fila-
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ments of solitonicity emanating from decaying solitons and being absorbed by the
background. It is therefore possible that there is a transition from solitonic defects
to background excitations, similar to sound waves, which may drive the observed
scaling. Future research could start here to learn more about the interplay between
scaling and defects.

To confirm the self-similarity of the scaling phenomenon, we rescaled the occupa-
tion spectra with respect to a reference time and found only small deviations. As
predicted for a system associated with KPZ dynamics [21], the scaling exponents we
extracted from the rescaling procedure were close to %

This result paves the way for exciting future research exploring the connection be-
tween the KPZ equation and the Sine-Gordon model. Ongoing, unpublished work
within Prof Gasenzer’s research group has suggested similar scaling exponents when
simulating the Sine-Gordon model. The presence of space-time vortices in both
theories further supports the idea of a link between them. While there are already
studies demonstrating a connection through a two-point correlation function be-
tween the Sine-Gordon model and the KPZ equation in the non-relativistic limit
[41], a more formal investigation is required to strengthen this connection. Such an
investigation may also reveal connections in the dynamics of the related condensate

systems.
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Left: A schematic representation of a non-thermal fixed point is
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Space-time vortices in two different physical systems: On the left,
a simulation illustrating the phase evolution of a one-dimensional
polariton-exciton condensate [21]. Colour coding represents phase
values ranging from —x to w. The inset provides a detailed view of a
vortex-antivortex pair. On the right, a simulation showing the Lar-
mor phase of the transverse spin, orientated in the F,-F, plane, in
a one-dimensional spin-1 BEC, as featured in [33]. Close-up views
reveal an emerging vortex, evident both as a dip in transverse spin
density and as phase wrapping around a central point in the Larmor
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Visual representation of the pumping profile defined in 4.1 used to
stimulate the exciton reservoir. The shape is imprinted through in-
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Simulation depicting the time evolution of a polariton condensate
with pump parameters Ly = 800um and o = 97um, evolving over
a maximum propagation time of 15 ns in real space. In the spatial
direction, given in units of healing length, the simulation extends over
4096 grid points: a) Illustrates the evolving condensate density, with
clearly visible dark lines representing defects propagating within the
condensate. b) Displays the time evolution of the condensate phase,
where defects manifest as visible lines separating regions characterized

by constant phase values. . . . . . . .. ... 0L

This Figure provides a more detailed temporal view of the simulation
shown in Figure 4.3. The evolution of the condensate is shown over
the time interval from 13 ns to 14 ns, highlighting the emergence of
structures. a) highlights the defects in the density of the conden-
sate, while b) shows the defects in the phase dynamics. Notably, the
alignment between density and phase defects suggests soliton-like be-
haviour. Furthermore, in the phase plot (b), intersections of these
defects, where multiple phase jumps occur, are distinguished as cores
of vortex-like structures within the condensate (see e.g. two vortex
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Analysis of emerging defects in condensate dynamics: a) Demon-
strates the fitting of the typical density profile of a dark soliton, as
described in Equation 4.2, to the density dip associated with a de-
fect. The small discrepancies observed at the edges are attributed
to the presence of multiple defects. b) Presents a plot of solitonicity
S(t,x) = |po — p(t, x)||0.0(t, z)|, an observable that measures the si-
multaneous occurrence of a phase jump and a density dip. This plot
closely matches the defects shown in Figure 4.4, providing strong ev-

idence to classify these defects as dark solitons. . . . . . . . ... ..

Close-up of a space-time vortex from Fig. 4.4: This image provides
a detailed view of the intersection of two dark solitons. Notably,
the core of the space-time vortex aligns exactly with this intersection
point, where the condensate density reaches its minimum value. The
space-time vortex is characterised by a continuous traverse of the
colour scale used to represent the phase, indicating a phase change of
2. e

The momentum occupation spectrum is obtained by plotting the oc-
cupation number in momentum space at different time points. The
last time point at 128 corresponds to 15 ns. This plot is generated
by averaging the results of 50 simulation runs. It is noticeable that
the spectra overlap at late times, suggesting that there is no scaling
behaviour in the system. System parameters are listed in table 4.1 at

the start of the section, most importantly g =0. . . . . . . .. .. ..

Real space representation of polariton condensate dynamics with scat-
tering rate R = 4.88-1073 evolving to a maximum propagation time of
100 ns: a) Depicts the density dynamics normalised to the maximum
density. Emerging defects manifest as dark lines in the evolution plot.
b) Shows the time evolution of the phase, where the defects are also

visible as continuous lines representing constant phase values.
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Analysis of emerging defects in a condensate with scattering rate R =
4.88 - 1073 evolving to 100 ns: a) Demonstrates the fitting of the
typical density profile of a dark soliton, as described in Equation
4.2, to the density dip associated with a defect. b) Presents a plot
of solitonicity S(t,z) = |po — p(t,z)||0.0(t, x)|, an observable that
measures the simultaneous occurrence of a phase jump and a density
dip. This plot matches the defects shown in Figure 4.8, providing

strong evidence to classify these defects as dark solitons. . . . . . ..

Detailed study of the right soliton branch in Fig. 4.8: a) In the den-
sity plot we observe the splitting of a single soliton into two distinct
entities, marked by a density minimum at the split point (see e.g.
minimum at ¢t = 33ns). b) In the phase plot, vortex-like structures
emerge at these splitting points. However, it is worth noting that
the phase doesn’t change continuously, but changes rapidly in the di-
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elsewhere. . . . . . .

Evidence for self-similar scaling in the occupation spectrum: In plot a)
the momentum occupation number at different time points is shown.
It undergoes a shift from an initial box-shaped distribution to one
that follows a power law with an negative exponent of k = 4.08.
On the right, we rescale these spectra relative to a reference time,
%—gf = 16. It is noticeable that the spectra are closely aligned, espe-
cially in the infrared (IR) region. Through a fitting process we derive
the rescaling exponents: a = 0.36 and 8 = 0.32. The inset shows the
ratio of the rescaled spectra compared to the reference spectra, with
a random distribution around 1, as expected for self-similar scaling.
These occupancy spectra represent the average results of 170 simula-
tion runs at a scattering rate of R = 4.88 - 1073, with the latest time

point corresponding to the maximum simulation time, ¢,., = 800ns. .

Real space representation of a simulation with a slightly reduced scat-
tering rate (R = 4.4-1073) compared to Figure 4.8. Notably, there is
a significant increase in both the number of solitons and their lifetime.
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ence of solitons in the system. The simulation covered a maximum

propagation time of 100 ns. . . . . . .. ...
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