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Quasi-two-dimensional magnetism and antiferromagnetic ground state in Li2FeSiO4
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Our experimental (neutron diffraction, Mössbauer spectroscopy, magnetic susceptibility, specific heat) and
numerical studies on the evolution of short- and long-range magnetic order in γII-Li2FeSiO4 suggest a quasi-
two-dimensional (2D) nature of magnetism. The experimental data obtained on single crystals imply long-range
antiferromagnetic order below TN = 17 K. A broad maximum in magnetic susceptibility χ at Tm � 28 K,
observation of magnetic entropy changes up to 100 K, and anisotropy in χ are indicative of low-dimensional
magnetism and suggest short-range magnetic correlations up to 200 K. Neutron diffraction shows that long-
range antiferromagnetic order is characterized by the propagation vector k = ( 1

2 , 0, 1
2 ). The ordered moment

μ = 2.50(2) μB/Fe, at T = 1.5 K, is along the crystallographic a axis. This is consistent with the observed static
hyperfine field of Bhyp = 14.8(3) T by Mössbauer spectroscopy which indicates significant orbital contributions.
The temperature dependence of Bhyp yields the critical exponent β = 0.116(12) which is in the regime of the
2D Ising behavior. LSDA + U studies exploiting the experimental spin structure suggest dominating magnetic
exchange coupling within the ac layers (i.e., J3 � −6 K and J6 � −2 K) while interlayer coupling is much
smaller and partly frustrated. This confirms the 2D nature of magnetism and is in full agreement with the
experimental findings.

DOI: 10.1103/PhysRevB.111.024414

I. INTRODUCTION

The occurrence of magnetic order in low-dimensional
and/or magnetically frustrated spin systems is directly linked
to the interplay of magnetic interaction, geometric arrange-
ment of the magnetic centers, and magnetic anisotropy. While
in pure two-dimensional (2D) Heisenberg systems no long-
range order is expected at finite temperature, observation
of long-range magnetic order down to the monolayer in
transition-metal-based van der Waals materials highlights the
relevance of magnetic anisotropy in the evolution of a mag-
netic ground state (see, e.g., Ref. [1] and references therein).
In particular in Jahn-Teller-active systems the orbital degree
of freedom may be relevant, too, so that for example low-
dimensional magnetism may be realized as observed in a
variety of transition metal oxides [2–4]. Spin-orbit entangle-
ment can yield magnetically and orbitally ordered ground
states as observed, e.g., paradigmatically in systems such as
KCuF3 or LaMnO3 and its doped variants [5–7]. The orthosili-
cate Li2FeSiO4 has been intensively studied in polycrystalline
form as a high-capacity cathode material for lithium-ion bat-
teries [8–10]. Its orthorhombic Pmnb-structured polymorph,
γII-Li2FeSiO4, whose crystallographic unit cell is sketched
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in Fig. 1(a), exhibits tetrahedrally coordinated Fe2+ ions
arranged in a layered structure where alternating layers of
FeO4/SiO4 and LiO4 tetrahedra are stacked along the b axis
[11–13]. The distance between adjacent Fe2+ ions is 4.115(2)
Å [black line in Fig. 1(b)], while the next-nearest neighbors
are separated by 4.683(2) Å [red line in Fig. 1(b)]. Inciden-
tally, both the nearest and next-nearest neighbors lie almost
perfectly in the ac plane, with only a small displacement along
the b axis, while Fe2+ ions are well separated along the b axis
showing a nearest-neighbor distance of 5.339(3) Å. In tetra-
hedral coordination, 3d orbitals split into lower-lying eg and
higher-lying t2g orbitals. The high-spin S = 2 configuration
e3

gt3
2g of Fe2+ ions is Jahn-Teller (JT) active and implies the

relevance of orbital degrees of freedom.
Here, we report the evolution of short- and long-range

magnetic order in γII-Li2FeSiO4 single crystals and determine
the magnetic ground state, which is characterized by the prop-
agation vector k = ( 1

2 , 0, 1
2 ). Our numerical studies, based on

the experimental spin structure, imply dominating magnetic
exchange coupling within the ac layers while interlayer cou-
pling is small and partly frustrated. The numerically suggested
quasi-two-dimensional nature of magnetism in Li2FeSiO4 is
confirmed by our observation of a broad correlation-type max-
imum at Tm � 28 K and of short-range magnetic correlations
more than 10 times above the long-range antiferromagnetic
ordering temperature TN = 17 K.
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II. EXPERIMENTAL AND NUMERICAL METHODS

Millimeter-sized single crystals of Li2FeSiO4 were grown
by the high-pressure optical floating-zone method as de-
scribed in detail in Refs. [14–16]. The thus-grown single
crystals were oriented and cut into cuboids with approximate
dimensions 1.1 × 1.1 × 1.0 mm3. Magnetization was studied
in a Quantum Design MPMS-XL5 SQUID magnetometer.
Specific-heat measurements were performed in a Quantum
Design Physical Properties Measurement System (PPMS-14)
using the relaxation method.

Polycrystalline samples of Pmnb-Li2FeSiO4 were syn-
thesized by solid-state reaction as described in Ref. [15].
Phase purity was confirmed by x-ray diffraction (XRD), mag-
netic susceptibility, and powder neutron diffraction (PND).
Li2ZnSiO4 was synthesized as a nonmagnetic analog to
Li2FeSiO4 through a conventional solid-state reaction route,
too. Stoichiometric amounts of Li2CO3, ZnO, and SiO2 were
mixed, ball-milled, calcined at 1100 ◦C, and characterized
for phase purity by XRD. Neutron diffraction measurements
on the powder sample of Pmnb-Li2FeSiO4 were obtained
at several temperatures on the high-intensity D20 pow-
der diffractometer at the Institut Laue-Langevin, Grenoble,
France [17]. The sample, with a mass of approximately 1.6 g,
was placed in a sealed vanadium can within a He cryostat. For
both magnetic structure determination and nuclear structure
refinement an incident neutron wavelength of 2.41 Å was
used. Rietveld refinements of PND data were performed using
the FullProf Suite program [18] and the magnetic symmetry
analysis was performed by means of the program BasIreps
[19], included in the FullProf Suite package. Sketches of the
crystallographic and magnetic structures were drawn with the
program VESTA [20].

57Fe-Mössbauer (MB) measurements were performed on
a powder sample from the same batch as studied by neutron
diffraction and magnetization. The sample was mounted in
a CryoVac helium flow cryostat using a commercial Wis-
sEL Mössbauer spectrometer. A 57Co in Rh source driven in
sinusoidal mode was used. Data evaluation was performed
using the Mössfit software package [21] using a transmis-
sion integral analysis to account for the sample thickness.
Measurements were carried out at temperatures ranging from
4.2 K to 296 K. All isomer shifts are reported relative to α-Fe
at room temperature.

For the numerical studies, scalar relativistic first-principles
calculations based on density functional theory (DFT) were
performed by means of the package FPLO [22,23] (full po-
tential local orbital) using the local density approximation
(LDA) with the Perdew-Wang 92 parametrization [24] for the
exchange correlation functional and periodic boundary condi-
tions. FPLO is a code to solve the Kohn-Sham equation with
a basis of atomic-like local orbitals within a full-potential
approach. The experimental crystallographic structure (see
Table I) was used for the calculations, and a �-centered k-
point grid 8 × 5 × 10 was set for the unit cell (4 Fe atoms).

To obtain the total energies associated with several mag-
netic configurations, we used the magnetic generalization
of LDA with inclusion in the Fe-3d shell of the Hubbard
term (LSDA + U) [25] with values for the Slater integrals
F 0 = 6.5 eV, F 2 = 10.1 eV, and F 4 = 6.2 eV. To simulate

TABLE I. Lattice parameters and atomic coordinates in the
conventional unit cell for γII-Li2FeSiO4 used in the calculation (de-
termined and refined by single-crystal x-ray diffraction) [15].

Li2FeSiO4, space group Pmnb

a = 6.27837 Å; b = 10.6290 Å; c = 5.03099 Å

x y z

Li (8d) 1 0.494739 0.331319 −0.707234
Fe (4c) .m. 0.750000 0.418512 −0.299501
Si (4c) .m. 0.750000 0.583922 0.193420
O (4c) .m. 0.750000 0.436406 −0.716996
O (4c) .m. 0.750000 0.590409 −0.131224
O (8d) 1 0.461921 0.343885 −0.305747

antiferromagnetic structures, several supercells containing 8
iron atoms were built. We used the supercells 1 × 1 × 2 and
2 × 1 × 1 as well as a more unusual supercell of lattice param-
eters a′ = 2a, b′ = b, and c′ = c − a. The latter was needed
to model the magnetic state obtained by neutron diffraction.
In each case, the k-point grid was reduced according to the
length multiplication.

III. EXPERIMENTAL RESULTS

A. Macroscopic properties of single crystals

Static magnetic susceptibility χ = M/B of Li2FeSiO4

exhibits anisotropic behavior up to the highest measured
temperatures (see Figs. S1–S3 in the Supplemental Mate-
rial (SM) [26]). This high-temperature anisotropy in χ is
associated with the g tensor, as shown by scaling χ with axis-
dependent g factors in Fig. 2. At high temperatures, χ reveals
Curie-Weiss-like behavior, which is confirmed by quasilinear
temperature dependence of the inverse volume susceptibil-
ity χ−1

vol = 3/(χa + χb + χc) at T � 200 K (see the inset
of Fig. 2). Analyzing the volume susceptibility in terms of
a Curie-Weiss-like model, χ = NA p2μ2

B/3kB(T + �) + χ0,
where NA is Avogadro’s number, μB is the Bohr magneton,
and kB is Boltzmann’s constant, yields a Weiss tempera-
ture of � ≈ 59(5) K and an effective magnetic moment of
p = 5.57(10) μB/f.u. The sign of � indicates predominant
antiferromagnetic interactions. From the effective magnetic

FIG. 1. (a) Crystallographic unit cell of γII-Li2FeSiO4, consist-
ing of tetrahedra of LiO4 (green), FeO4 (brown), and SiO4 (blue).
Oxygen ions are depicted in red. The black arrow points to the edge
shared by the FeO4 and LiO4 tetrahedra. (b) Cross section of the ac
plane. The black and red lines mark the shortest and second-shortest
magnetic bonds, respectively.
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FIG. 2. Static magnetic susceptibility, χi = Mi/Bi (i = a, b,
c, vol), obtained at B = 1 T, divided by axis-dependent g factors, gi,
as a function of temperature. The dashed vertical line marks TN. Inset:
Inverse of the volume susceptibility, χvol, vs temperature at B = 5 T.
The orange line represents a fit using a Curie-Weiss model (see the
text).

moment, the tetrahedrally coordinated Fe2+ ions are deduced
to be in the high-spin S = 2 state, suggesting an electronic
configuration of 3e3

gt3
2g. We conclude the volume g factor

gvol = 2.27(1) which is in the upper range of typical values
of tetrahedrally coordinated Fe2+ [27–29]. From the uniaxial
susceptibilities we read off ga = 2.36(1), gb = 2.19(1), and
gc = 2.28(1).

Upon cooling, magnetic anisotropy beyond the g-tensor
anisotropy appears below T ≈ 200 K. A sharp decrease of
χ at low temperatures implies the onset of long-range an-
tiferromagnetic order with the crystallographic a direction
being the magnetic easy axis. In addition, for B‖a there is
a broad maximum in χa at around Tm = 28 K while the on-
set of long-range antiferromagnetic order is signaled by a
sharp downturn in χa and a λ-like anomaly in the magnetic
specific heat, ∂ (χaT )/∂T (see Figs. 2 and 4). These data
imply TN = 17.0(5) K which is similar to previous studies
on polycrystalline Li2FeSiO4 [30–32]. For B⊥a, the mag-
netic susceptibility displays much smaller anomalies at TN.
A Curie-like upturn at lowest temperatures indicates the
presence of approximately 0.5% of only weakly correlated
magnetic moments that do not participate in long-range anti-
ferromagnetic spin order and may be considered “quasifree.”
The presence of quasifree moments is also confirmed by the
initial Brillouin-like right-bending observed in the M vs B
curves (see Fig. S4 in the SM [26]). A small fraction of
quasifree Fe2+ moments is expected due to defects which may
in particular be Li-Fe antisite defects which arise from similar
covalent radii of Li and Fe ions [15,33,34]. These antisite
defects typically exhibit an anisotropic nature, as reflected by
the fact that signatures of quasifree moments in M(T ) and
M(B) are much weaker for B applied along the a axis. Our
data indicate a g factor anisotropy of the quasifree moments
of gqf

b � gqf
c � 4gqf

a .

FIG. 3. Specific-heat capacity, cp, of Li2FeSiO4 (black symbols)
and Li2ZnSiO4 (blue line, scaled by a factor of 1.01) at B = 0 T vs
temperature. (a) cp vs T 3 (see also Fig. S4 in the SM [26]). Inset:
Magnetic entropy changes, 
S, obtained by integrating cm

p /T , where
cm

p = cp(Li2FeSiO4) − 1.01 × cp(Li2ZnSiO4). Dashed vertical lines
mark TN.

The comparison of the specific heat of Li2FeSiO4 and its
compositionally and structurally similar nonmagnetic coun-
terpart Li2ZnSiO4, as shown in Fig. 3, demonstrates the
predominant phononic nature of entropy changes at high
temperatures. The phononic specific heat is superimposed
by a pronounced λ-shaped anomaly which signals a con-
tinuous phase transition to a long-range-ordered ground
state at TN. The specific heat of Li2ZnSiO4 enables as-
sessing the magnetic specific heat cm

p = cp(Li2FeSiO4) −
1.01 × cp(Li2ZnSiO4). As shown in Fig. 4, the so-obtained
magnetic specific heat cm

p scales excellently with Fisher’s
specific heat ∂ (χaT )/∂T which confirms the validity of our

FIG. 4. Magnetic specific heat, cm
p (left axis), obtained by sub-

tracting the specific heat of nonmagnetic Li2ZnSiO4 from the data
for Li2FeSiO4 (see Fig. 3), and the derivative ∂ (χaT )/∂T of the static
magnetic susceptibility, i.e., Fisher’s specific heat (right axis). Inset:
Fisher’s specific heat for all crystallographic axes.
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FIG. 5. Neutron diffractograms at various temperatures between
5 and 22 K. The asterisk labels the (010) magnetic peak (and equiva-
lents) used for determining the temperature dependence of sublattice
magnetization shown in Fig. 7.

analysis. Comparison of the data implies significant magnetic
entropy changes at least up to 100 K. Integrating cm

p /T yields
magnetic entropy changes 
S(T ), as shown in Fig. 3(b).
Quantitatively, the obtained magnetic entropy changes sat-
urate at 
Stot ≈ 11.7(2) J/(mol K) which falls within the
theoretical prediction R ln(2S + 1) ≈ 13.4 J/(mol K). Nearly
half of the measured entropy changes appear above TN, while
6.7 J/(mol K) are released in the temperature regime 2 K
� T � TN.

B. Neutron diffraction

Powder neutron diffraction (PND) in the temperature range
between 1.5 and 25 K was performed to investigate the nu-
clear and magnetic structure at low temperatures. A detailed
description of the full crystal structure determination and
refinement of the investigated Pmnb-Li2FeSiO4 polymorph,
achieved via single-crystal x-ray diffraction, is provided in
Ref. [15]. The diffraction profiles in the 2θ range 10◦–50◦ are
displayed in Fig. 5 for selected temperatures [17]. The PND
patterns indicate the evolution of superstructure reflections
below 16.8 K. As the temperature decreases, the intensity
of the superstructure peaks increases, while their positions
remain unchanged in the measured temperature range. The
appearance of additional Bragg reflections (one exemplary
peak is labeled by the asterisk in Fig. 5) at angles smaller
than the angular position of the first nuclear reflection at 26.3◦
confirms the presence of long-range antiferromagnetic spin
order at low temperatures, consistent with the macroscopic
data presented above. By indexing the corresponding Bragg
reflections, a magnetic propagation vector k = ( 1

2 , 0, 1
2 ) is

found. We conclude that the magnetic structure is commensu-
rate with the nuclear lattice. The magnetic unit cell is double
the crystallographic one in both the a- and c-axis directions,
while it is the same in the b-axis direction. Consequently,
there are 16 Fe ions in the magnetic unit cell, while the

TABLE II. Basis vectors of the two irreducible representa-
tions for Li2FeSiO4 with space group Pmnb and k = ( 1

2 , 0, 1
2 )

propagation vector obtained from representational analysis. Fe-1,
Fe-2, Fe-3, and Fe-4 refer to the nonprimitive basis with coordi-
nates (0.75, 0.42, 0.7), (−0.75, 0.08, 1.2), (1.25, −0.42, −0.7), and
(−0.25, 0.92, −0.2), respectively. The magnetic R value (Rmag) for
the refinement based on �1 yields a satisfactorily low value of 4.73%,
while the magnetic ordering schema associated with the �2 repre-
sentation is ruled out, as it is incapable of simulating the observed
magnetic reflections.

IR �ν Component Fe-1 Fe-2 Fe-3 Fe-4

�1 �1 Re (100) (000) (000) (−100)
Im (000) (100) (−100) (000)

�2 Re (010) (000) (000) (010)
Im (000) (010) (010) (000)

�3 Re (001) (000) (000) (00−1)
Im (000) (00−1) (001) (000)

�4 Re (000) (−100) (100) (000)
Im (−100) (000) (000) (100)

�5 Re (000) (010) (010) (000)
Im (010) (000) (000) (010)

�6 Re (000) (00−1) (001) (000)
Im (001) (000) (000) (00−1)

�2 �1 Re (100) (000) (000) (100)
Im (000) (100) (100) (000)

�2 Re (010) (000) (000) (0−10)
Im (000) (010) (0−10) (000)

�3 Re (001) (000) (000) (001)
Im (000) (00−1) (00−1) (000)

�4 Re (000) (100) (100) (000)
Im (100) (000) (000) (100)

�5 Re (000) (0−10) (010) (000)
Im (0−10) (000) (000) (010)

�6 Re (000) (001) (001) (000)
Im (00−1) (000) (000) (00−1)

crystallographic unit cell contains 4 Fe ions. For the space
group Pmnb and for k = ( 1

2 , 0, 1
2 ), the magnetic reducible

representation �mag for the Fe2+ (4c) site decomposes as a
direct sum of two nonzero irreducible representations (IRs):

�mag = 3�2
1 ⊕ 3�2

2 . (1)

The basis vectors of these IRs are listed in Table II. Of
the two allowed antiferromagnetic spin configurations, only
�1 can reproduce the measured magnetic intensities. The re-
sulting spin configuration is visualized in Fig. 6. The magnetic
moments of Fe2+ are aligned antiferromagnetically along the
a axis with an ordered moment of 2.50(2) μB/Fe at T =
1.5 K. Its magnitude is smaller than the expected value of
∼4.5 μB for magnetic moment of Fe2+ (considering the mea-
sured g = 2.27) in the high-spin S = 2 state.

Figure 7 shows the integrated intensity (IB ∝ |Ms|2, where
Ms is the order parameter) of the strongest magnetic peak
(010) in the temperature range 2–19 K. The intensity van-
ishes around TN, which agrees with the specific-heat data.
In the conventional picture of a continuous phase transition,
the magnetic order parameter follows a power-law equation.
By fitting the integrated intensity to the power-law scaling
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FIG. 6. Sketch of the spin configuration. Lines show the crystal-
lographic unit cell.

function IB = I0|t |2β , where t = 1 − T/TN is the reduced tem-
perature, an estimate for the critical exponent β = 0.18(2)
is obtained.1 As will be discussed below, we interpret the
thus obtained power-law exponent only as an effective value
describing a convolution of temperature dependence of the
order parameter and of the magnetic volume fraction; i.e., it
does not directly reflect the critical behavior (see Sec. III C).

In the vicinity of TN the temperature dependence of the
order parameter is not very well described by a power law
which would yield a sharp kink at TN instead of the observed
smeared-out behavior (see Fig. 7). A better fit is obtained by
assuming a Lorentzian distribution of TN which may result
from strain effects or tiny variations of oxygen content in the
sample. Assuming the distribution of TN with full width at half
maximum (FWHM) around a center Néel temperature T cen

N
in the measured polycrystal, the fit to the data is obtained by
performing a convolution of the power-law scaling function

f (TN) = f0

[
γ(

TN − T cen
N

)2 + γ 2

]
. (2)

Here, f0 is a normalization prefactor, and γ is the scale pa-
rameter, which determines the FWHM = 2γ . The resultant
fit is shown by the dashed blue line in Fig. 7, with T cen

N =
(16.02 ± 0.02) K and γ = (0.43 ± 0.05) K.

C. Mössbauer spectroscopy

Representative Mössbauer spectra of Li2FeSiO4 are shown
in Fig. 8. All spectra are analyzed using a static nuclear
hyperfine Hamiltonian for powder samples. At T = 4.2 K,
two Fe sites are observed. The main site has an intensity

1For fitting the data, we used TN = 16 K, as determined from char-
acterizing the powder sample used for the neutron study.

FIG. 7. Order parameter fit analysis of the intensity of the (010)
magnetic superstructure reflection (see Fig. 5). The solid red line
represents a fit to the data by a power law and the blue dashed
line the fit by Eq. (2), i.e., by considering the variation of the Néel
temperature as shown by the black short-dashed line (see the text).
The inset shows a logarithmic plot of the sublattice magnetization as
a function of the reduced temperature. The solid blue line in the inset
represents a fit obtained with the critical exponent β = 0.185.

fraction of a1 = 95.6(6)% and is characterized by an elec-
tric field gradient (EFG) as well as a magnetic hyperfine
field of Bhyp= 14.8(3) T. The principal EFG component of
Vzz = −127.3(8) V/Å2 is orientated orthogonal to the mag-
netic hyperfine field, which is parallel to its smallest principal
axis Vyy with the three principle axes of the EFG given by
|Vzz| � |Vyy| � |Vxx|. The EFG shows an asymmetry parame-
ter η = (Vyy − Vxx )/Vzz = 0.752(8). The main site exhibits an
isomer shift δ = 1.109(10) mm/s. The second site with an
relative intensity of a2 = 4.4(6)% shows a magnetic hyperfine
field of Bhyp= 23.5(10) T with an isomer shift of 0.5(2) mm/s.

At room temperature, the spectra imply the presence of two
sites, too [see Fig. 8(d)]. For the main site [relative intensity
a = 94.7(30)%] the asymmetry parameter η obtained from
the low-temperature spectrum at 4.2 K is assumed. This site
shows a quadruple-splitting with an EFG principal component
of Vzz = −124.8(20) V/Å2, similar to the data at 4.2 K. The
isomer shift is δ = 0.96(1) mm/s. The minority site with a
relative intensity of a = 5.3(30)% is described by a broadened
singlet (i.e., EFG ≈0) with an isomer shift of δ = 0.42(10)
mm/s. This site may be associated with excess iron ions on
an interstitial position in the unit cell.

The isomer shift of δ = 0.96(1) mm/s for the main site
at room temperature in combination with the EFG value un-
ambiguously confirms the Fe2+ (S = 2) high-spin state in
Li2FeSiO4. The finite value of the EFG asymmetry parameter
η is in agreement with the distorted tetrahedral crystal field
around the Fe nucleus [15].

Between room temperature and 20 K the Mössbauer spec-
tra show no static hyperfine field which is consistent with a
paramagnetic state. Below 20 K a magnetic phase transition
is observed via the gradual appearance of a static magnetic
hyperfine field Bhyp. For all temperatures below TN the angle ϑ
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FIG. 8. Typical Mössbauer spectra of Li2FeSiO4 at 4.2, 12, 20,
and 296 K. The spectra can be described by a static hyperfine Hamil-
tonian analysis (blue) assuming two magnetic sites. The main site
(red) exhibits an electric field gradient as well as a static hyperfine
field below 20 K. Site 2 contributes with ≈5%. It exhibits a singlet
above 4.2 K and shows a static magnetic hyperfine field at 4.2 K.

between Vzz and Bhyp determined from the Mössbauer spectra
analysis is 90(2) degrees. The orientation of Vzz orthogonal to
Bhyp is in agreement with the iron magnetic moment orien-
tation parallel to the undistorted tetrahedral axis as deduced
from macroscopic magnetization and neutron powder diffrac-
tion as discussed above.

FIG. 9. Temperature dependence of the normalized magnetic hy-
perfine field Bhyp below 20 K (red squares, left ordinate) and of the
magnetic volume fraction fmag determined from the analysis of the
Mössbauer spectra (green triangles, right ordinate). The black solid
circles describe the product Bhyp × √

fmag and the black open circles
describe

√
I010 from Fig. 7 (all normalized to their low-temperature

values). The inset shows a double-logarithmic plot of Bhyp as a
function of the reduced temperature.

The temperature dependence of Bhyp, which is proportional
to the magnetic order parameter Ms, is shown in Fig. 9 (solid
red squares). For comparison, we include the scaled temper-
ature dependence of the neutron magnetic order parameter
Ms from Fig. 7 (black open circles). Below 13 K both data
sets are following the same trend. However, between 14 and
17 K the Mössbauer hyperfine field Bhyp is always above the
corresponding neutron value.

This discrepancy is not expected for three-dimensional
magnets (see, e.g., Ref. [35] and references therein). In the
local-probe Mössbauer spectroscopy the determination of the
temperature-dependent magnetic order parameter Bhyp(T ) is
independent of the magnetic volume fraction fmag(T ) de-
termined from the signal intensity. In contrast, the neutron
diffraction magnetic order parameter obtained from the inten-
sity of a magnetic Bragg peak, i.e.,

√
I010(T ), is proportional

to the static magnetic dipole moment Ms(T ) multiplied by the
square root of fmag(T ). The continuous decrease of fmag(T )
from 1 to 0 in the vicinity of the magnetic phase transition
(determined from the analysis of the Mössbauer spectra and
shown in Fig. 9, right ordinate) leads to the suppression of the
neutron magnetic order parameter in this temperature range.
For illustration in Fig. 9 we also include a plot of the product
Bhyp(T ) × √

fmag(T ) (filled black circles). These data are in
very good approximation proportional to the experimental
values of

√
I010(T ).

The inset of Fig. 9 shows a logarithmic plot of Bhyp(T ) as a
function of the reduced temperature. The solid blue line repre-
sents a fit obtained with the critical exponent β = 0.116(12)
and T MB

N = 17 K. Since Bhyp(T ) is directly proportional to
Ms(T ) this value of β may be considered as the thermody-
namic critical exponent of the magnetic phase transition in
Li2FeSiO4.
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TABLE III. Comparison of Mössbauer hyperfine parameters for
Li2FeSiO4 (this work) with those of Cu2FeGeS4 (Ref. [37]). Bhyp, Vzz,
ϑ , and η are the magnetic hyperfine field, the principal component
of the EFG, the angle between Vzz and Bhyp, and the asymmetry
parameter as discussed in the text.

Bhyp (T) Vzz (V/Å2) ϑ (deg) η

Li2FeSiO4 14.8(3) −127.3(8) 90(2) 0.752(8)
Cu2FeGeS4 16.7(2) −151.8(18) 90(1) 0.00(3)

Next we discuss the absolute value of the iron Mössbauer
magnetic hyperfine field Bhyp = 14.8(3) T at the lowest mea-
sured temperature of T = 4.2 K. This value is consistent with
the absolute value of the ordered dipole moment of 2.5 μB

as determined by our neutron diffraction experiment. In a
magnetic insulator Bhyp is given by [36]

Bhyp = Bs + BL + BD, (3)

where Bs is the Fermi contact field being typically in the range
of 20–50 T for high-spin Fe2+. BL is the orbital field which
is usually of the order of 20 T and antiparallel to Bs. BD is
the dipole field usually at the order of a few teslas for iron
[36]. The measured Bhyp hence suggests the presence of a
measurable orbital contribution to the local hyperfine field and
hence to the magnetic order parameter.

In Table III the Mössbauer hyperfine parameters of
Li2FeSiO4 are compared to those for high-spin Fe2+ in
the structurally similar compound Cu2FeGeS4 analyzed in
Ref. [37]. In both systems, magnetism is associated with tetra-
hedrally coordinated iron sites. A main difference between
both materials is that the tetrahedra in Cu2FeGeS4 are not
distorted in contrast to what is observed in Li2FeSiO4[15].
Accordingly, η is found to vanish in Cu2FeGeS4 whereas the
distorted tetrahedral environment in the bc plane of Li2FeSiO4

results in η = 0.752(8).

IV. NUMERICAL STUDIES

The magnetic coupling parameters were obtained by com-
parison of the DFT + U calculated total energies for several
magnetic configurations. This approach, sometimes called
“broken-symmetry formalism” [38,39], is quite common in
the literature [40,41]. Individual exchange couplings Jl were
defined by the spin Hamiltonian

∑
〈i, j〉 JlSiSj, where i and j

are lth neighbors, Si are the spin operators located on site i
divided by h̄ (Si is dimensionless), and Jl are the magnetic
exchange coupling between lth neighbors (Jl are energies).
Here, we have included six nearest neighbors as depicted in
Fig. 10. The corresponding distances are listed in Table IV.

We studied the ferromagnetic (FM) configuration and 21
different antiferromagnetic (AFM) configurations that we
label α ∈ [1, . . . , 21]. All DFT + U self-consistent field cal-
culations converged to structures in which the magnetic
moment per atom is 1.87 μB at all sites. For a given configu-
ration the Heisenberg Hamiltonian can therefore be rewritten
as a linear combination of Jl with dimensionless coefficients
cα

l which only depend on the spins on the bond being parallel

FIG. 10. Illustration of the magnetic interactions between Fe2+

moments which have been considered in the model (up to the 6th
nearest neighbor). Thin black lines show the crystallographic unit
cell. Four horizontal gray arrows on the left indicate the successive
Fe layers stacked along the b direction within the shown unit cell.

(cl = 1) or antiparallel (cl = −1) in the configuration:

−
∑
〈i, j〉

lth neighbor

Jl SiSj = −
6∑

l=1

JDFT
l cα

l . (4)

For the ferromagnetic configuration, all the cl are equal to +1
while for AFM structures they are either +1 or −1 depending
on the relative spin orientation on the bond.

In Fig. 11, the energy Eα
DFT − EFM

DFT is plotted against∑6
l=1(cα

l − 1)Jl M2
S for the 21 different antiferromagnetic

configurations. The calculated energy of the experimental
antiferromagnetic configuration as determined by neutron
diffraction is represented in orange. In our calculations, it is al-
most the lowest energy configuration. Using the LeastSquares
function of Mathematica [42], we determined the values of Jl

TABLE IV. Coupling constants and corresponding Fe-Fe dis-
tances dFe−Fe: JDFT are the raw solutions in meV and JL =
JDFT/S(S + 1) = JDFT/6 are the actual coupling constants. It is im-
portant to note that, because of the driving role of J3 and J6 (see
text), the values obtained for all other Jl are subject to a large relative
uncertainty.

dFe−Fe (Å) JDFT (meV) JL (K)

J1 4.114 −2.2×10−3 −0.004
J2 4.684 −2.6×10−1 −0.50
J3 5.031 || c −3.2 −6.1
J4 5.338 almost || b 2.5×10−1 0.48
J5 5.387 −3.5×10−2 −0.068
J6 6.278 || a −0.9 −1.74
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FIG. 11. Total energies computed for several antiferromagnetic
spin configurations compared with the values obtained with the
Heisenberg model Eq. (4). For clarity, magnetic configurations are
spread along the x axis so that

∑6
l=1 cα

l JDFT
l appears to be linear.

The star scatters depict the DFT-calculated total energy for a given
magnetic structure minus the calculated total energy for the fer-
romagnetic structure. The cyan line corresponds to

∑6
l=1 −(cα

l −
1)JDFT

l with the values for Jl listed in Table IV. The black lines
depict the model Hamiltonian considering only J3 and J6 as nonzero.
Abbreviations (see also Fig. 12): AFMi (&j) = AFM alignment of
neighboring moments in direction(s) i (& j) and FM alignment along
the other in-plane direction.

that minimize the quantity

∑
α

[(
Eα

DFT − EFM
DFT

) −
6∑

l=1

(
cα

l − 1
)
JDFT

]2

, (5)

where Eα
DFT is the calculated total energy for the configuration

α and EFM
DFT is the calculated total energy for the ferromagnetic

configuration. Figure 11 also shows (as a line) the function
E = ∑6

l=1(cα
l − 1)Jl M2

S which illustrates the quality of the
fitted exchange parameters Jl .

The obtained isotropic exchange couplings Jl are listed in
Table IV. The largest values are in the meV range, which is
consistent with the experimentally observed magnetic transi-
tion temperature TN.

Except for J4, all considered interactions are antiferromag-
netic (negative Jl ). The magnetic interactions in the a and
c directions are the largest ones (J3 along c and J6 along
a) which suggests that the magnetic configurations inside
the (a, c) plane drive the magnetic properties of the crystal.
This is supported by Fig. 11. Indeed, the calculated energies
(colorful scatters) are gathered into groups that correspond
to different (a, c)-plane configurations, independently of the
ordering in the b direction.

The different magnetic patterns in the (a, c) planes are de-
picted in Fig. 12. As J3 and J6 are both antiferromagnetic and
|J3| > |J6|, we expect EAFMc&a < EAFMc < EAFMa < EFM.

The energy order observed in Fig. 11 is perfectly consistent
with this in-plane energy order.

In addition, we have evaluated an alternate Heisenberg
model with all Jl except J3 and J6 (i.e., the ac-planar ex-
change couplings) set to zero (see the black lines in Fig. 11).
Notably, this purely planar model is sufficient to describe

FIG. 12. Several possible magnetic configurations in the (a, c)
plane. The red and purple lines correspond respectively to the inter-
actions J3 and J6.

the different families of magnetic configurations with an ac-
ceptable accuracy. In other words, Li2FeSiO4 exhibits almost
two-dimensional magnetism.

V. DISCUSSION AND SUMMARY

While the evolution of long-range antiferromagnetic or-
der in Li2FeSiO4 at TN = 17 K is marked by sharp λ-like
anomalies in the specific heat and ∂ (χaT )/∂T , our exper-
imental data also suggest the presence of short-range spin
order at temperatures above 10 × TN. The presence of a broad
maximum in the magnetic susceptibility well above the long-
range ordering temperature is typical for low-dimensional
antiferromagnetism and indicates the evolution of significant
short-range magnetic order [43]. Both the observation of such
a correlation maximum at 28 K and the fact that the Weiss
temperature � exceeds TN by a factor of �3.5 [TN/� �
0.27(2)] suggest the low-dimensional nature of magnetism
in Li2FeSiO4. This is supported by the observation of a re-
duced ordered moment μ = 2.50(2) μB/Fe, at T = 1.5 K,
obtained from neutron diffraction. Additionally, we find that
magnetic anisotropy beyond g-factor anisotropy extends to
temperatures up to about 200 K, i.e., more than 10 × TN,
as well as significant nonphononic entropy changes up to at
least 100 K. Since strong single-ion effects are rather unlikely
in the high-spin Fe2+ system under study, we associate the
observed anisotropy in χ with the evolution of short-range
correlations presumably of magnetic nature. However our data
do not exclude effects of orbital degrees of freedom either.
The presence of short-range order up to at least 100 K is
unambiguously evidenced by the measured nonphononic en-
tropy changes. At 100 K, the magnetic entropy is still not
fully released which agrees with the scenario of short-range
magnetic order up to 200 K. The presence of short-range mag-
netic order well above TN further corroborates the evidence of
low-dimensional magnetism in Li2FeSiO4.
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This conclusion of low-dimensional magnetism is fully
confirmed by our numerical studies, where the magnetic cou-
plings were estimated using the broken-symmetry formalism
by minimizing total energies of various spin configurations
and mapping onto the Heisenberg Hamiltonian. The exper-
imentally observed antiferromagnetic spin configuration, as
determined by our neutron diffraction experiment, is indeed
found to exhibit nearly the lowest energy, supporting the
validity of our approach. Our analysis yields as dominating
magnetic exchange couplings J3 = −6.1 K (||c axis) and
J6 = −1.7 K (||a axis) forming two-dimensional magnetic
layers. While J1 and J5 are negligibly small, J2 and J4 pro-
vide finite interplanar coupling which, in combination with
magnetic anisotropy, present derivations from the pure 2D
Heisenberg case and, hence, drive long-range magnetic order.
The antiferromagnetic interplane coupling J2 = −0.5 K be-
tween adjacent layers of Fe2+ moments is frustrated so that
the next-nearest-neighbor coupling J4 = 0.48 K is given as
leading interplane coupling. It is ferromagnetic which contra-
dicts the observed spin structure. However, the error in the
calculated value is rather large (due to the crushing driving
role of J3 and J6 in the coupling) so that even its sign is subject
to uncertainty. Hence, our numerical study does not rule out a
small negative J4 which would be consistent with the observed
superstructure vector k = ( 1

2 , 0, 1
2 ).

The high-spin nature of Fe2+ in Li2FeSiO4 is further
confirmed by our Mössbauer data which imply a main
magnetic Fe2+ site in the S = 2 state. The observed
value of the asymmetry parameter of EFG underlines the
relevance of the tetrahedral distortion for magnetism in
Li2FeSiO4. The observed static magnetic hyperfine field of
14.8(3) T indicates significant orbital contributions to the
hyperfine field. Notably, both the magnetic order parameter
critical exponents as determined by neutron scattering
and Mössbauer spectroscopy, i.e., βPND = 0.185(10) and
βMB = 0.116(12), are much smaller than expected for
three-dimensional magnetic systems where β � 0.33 (3D
Ising) and β � 0.35–0.37 (3D Heisenberg, 3D XY) are found
[44]. We emphasize, however, that βPND only indirectly
reflects the critical behavior as it is affected by the decrease of

the magnetic volume fraction fmag which, in the temperature
regime between 13 and 17 K, continuously decreases
from 0.9 to 0.2 so that IB is suppressed by a factor

√
fmag

(see Fig. 7 and the detailed discussion in Sec. III C).
The critical exponent βMB = 0.116(12) observed by
Mössbauer spectroscopy is similar to β = 0.125 of the
2D Ising model and suggests the two-dimensional nature of
magnetism in Li2FeSiO4.

Since orbital degrees of freedom are relevant in JT-
active high-spin Fe2+ in tetrahedral coordination with the
electronic configuration e3

gt3
2g, one may speculate whether a

distinct orbital arrangement and/or orbital order is associ-
ated with the observed 2D nature of magnetism. The role
of orbital magnetism is, e.g., relevant in the 2D Ising-type
antiferromagnet FePS3, where it leads to long-range anti-
ferromagnetic order down to the monolayer limit [45]. As
shown by the well-known examples KCuF3 and LaMnO3, par-
ticular orbital-ordered ground states are interconnected with
specific (low-dimensional) magnetic structures [5–7]. This
can even yield one-dimensional magnetic substructures in
structurally layered systems, as seen in honeycomb-structured
A3Cu2SbO6 (A = Li, Na), where 1D magnetic substructures
are formed due to the particular orbital arrangement [46,47].

In summary, we have solved the magnetic ground state of
Li2FeSiO4 and report experimental and theoretical evidence
of the quasi-2D nature of magnetism which is due to weak
and partly frustrated interlayer coupling of the rectangular
S = 2 Fe2+ magnetic lattice. Our works adds a system with
high-spin tetrahedrally coordinated Fe2+ ions to the family of
quasi-2D magnetic materials where in addition to spin also the
orbital degree of freedom is relevant.
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