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Dimensional crossover in a quantum gas  
of light

Kirankumar Karkihalli Umesh    1, Julian Schulz    2, Julian Schmitt    1, 
Martin Weitz    1, Georg von Freymann    2,3 & Frank Vewinger    1 

The dimensionality of a system profoundly influences its physical 
behaviour, leading to the emergence of different states of matter in 
many-body quantum systems. In lower dimensions, fluctuations increase 
and lead to the suppression of long-range order. For example, in bosonic 
gases, Bose–Einstein condensation in one dimension requires stronger 
confinement than in two dimensions. Here we observe the dimensional 
crossover from one to two dimensions in a harmonically trapped photon 
gas and study its properties. The photons are trapped in a dye microcavity 
where polymer nanostructures provide the trapping potential for the 
photon gas. By varying the aspect ratio of the harmonic trap, we tune from 
isotropic two-dimensional confinement to an anisotropic, highly elongated 
one-dimensional trapping potential. Along this transition, we determine the 
caloric properties of the photon gas and find a softening of the second-order 
Bose–Einstein condensation phase transition observed in two dimensions to 
a crossover behaviour in one dimension.

In the world of many-body physics, it is common knowledge that the 
number of accessible dimensions profoundly influences the physical 
behaviour of a system, leading to the emergence of different states of 
matter at low dimensions (that is, fewer than three dimensions). For 
bosonic gases, as an example, Bose–Einstein condensation is possi-
ble in lower dimensions only for a sufficiently strong confinement of 
a power-law trapping potential1. While in two dimensions (2D) a har-
monically trapped gas can undergo a phase transition to a Bose–Einstein 
condensate at finite temperature, this transition in one dimension (1D) is 
only observed with tighter confining power-law traps. When confining 
a 1D system within a harmonic trap, there is no sharply defined phase 
transition in the thermodynamic limit to the condensate phase2, but 
rather a smooth crossover to a quasi-condensate. In this regime, large 
thermal and quantum fluctuations in one dimension inhibit the emer-
gence of true long-range order3,4. For finite-size systems, the change 
from a phase transition in 2D to a crossover in 1D is less pronounced. 
Moreover, condensation can occur in 1D depending on the strength of 
interactions, and different regimes for quantum-degenerate Bose gases 
are expected5. It is therefore of great interest to study the crossover 
from three-dimensional (3D) or 2D systems to the 1D case. For ultracold 

atomic gases, both thermodynamic and coherence properties associated 
with the emergence of quasi-long range order along the dimensional 
crossover from three to one dimension have been studied experimen-
tally6,7. In the case of a strongly interacting Bose gas, where one expects a 
crossover from Berezinski–Kosterlitz–Thouless-type correlations in 2D 
to Tomonaga–Luttinger liquid correlations8, the interplay between inter-
actions and dimensionality has been studied9, and it has been observed 
that reducing the dimensionality can strongly influence the tempera-
ture of the system10. For dipolar gases, the transition to the supersolid 
phase has been studied along the dimensional crossover from one to two 
dimensions, showing a transition from a continuous to a discontinuous 
behaviour in the order parameter11.

Optical quantum gases have, in recent years, emerged as an alter-
native platform for quantum gas experiments12, being well-suited for 
the study of the dimensional crossover from 2D to 1D owing to the 
weak or even negligible interaction. In exciton-polariton condensates, 
correlations in 1D, 2D and 3D have been studied theoretically for an 
interacting gas13. Here, one crosses from long-range order in 3D via 
a power law in 2D to exponentially decaying first-order phase cor-
relations in the 1D case. Experimentally, for example, the formation 
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(Nanoscribe Photonic Professional GT)32. The substrate was prepared 
in the immersion configuration, which means that, during the writing 
process, the laser was focused by the objective first through an immer-
sion medium (in our case again IP-Dip) and the substrate of the cavity 
mirror and at last through the thin dielectric Bragg layers into the pho-
toresist (Fig. 1c). The writing trajectory followed parallel lines along the 
longer axis of the potentials (x direction) with a line distance of 100 nm 
(along the y direction). To manufacture the desired potential, we print 
a polymer ridge with height profile d(x, y) = h0 − cxx2 − cyy2, where h0 
denotes the maximum height of the structure and cx and cy the curva-
tures along x and y direction, respectively. At each point the polymer 
was exposed up to a height given by d(x, y). For the different potentials, 
we keep the geometry approximately fixed along the x direction and 
vary the curvature along the y direction. In the following, we label the 

different potentials by their aspect ratio Λ = ωy/ωx = √cy/cx , with 

the trap frequencies ωx and ωy. The ratio Λ quantifies the effective 
dimension of the photon gas27, where Λ = 1 corresponds to an isotropic 
2D harmonic oscillator with equal trapping frequency along x and y 
directions (Extended Data Fig. 1), and quasi-1D is reached when the first 
excited mode of the strongly confined dimension is not trapped in the 
potential anymore (which in our case also implies kBT < ℏωy), which in 
our case is achieved at Λ ≈ 22.

To thermalize the photons, they are coupled to a thermal bath 
at ambient temperature T = 300 K, realized by a dye solution filled 
between the cavity mirrors (Fig. 1a), similar to previous work19,33. By 
repeated absorption–emission cycles, photons thermalize to the 
temperature of the dye solution, provided that thermalization is suf-
ficiently faster than the photon losses, as is the case in our system33–35. 
Correspondingly, the photons populate the energy levels of the trans-
versal degrees of freedom, that is, the harmonic oscillator levels in 
x and y direction, leading to a spectrum with equidistant frequency 
spacing above the lowest energy mode (called the ‘cutoff’ energy or 
frequency)19. As the thermalization is achieved by coupling to a bath 
and not by direct photon–photon collisions, we expect a thermal dis-
tribution even for a few photons, and correspondingly, for strongly 
confining 2D potentials, Bose–Einstein condensates with less than ten 

dynamics has been studied for 1D systems14,15, and in 1D coupled lattices, 
a Kardar–Parisi–Zhang scaling for the phase has been observed16. In 
a semiconductor microcavity, the transition from 2D to 1D has been 
studied by varying the geometry of the drive, where the dissipative 
phase transition observed in 2D vanishes for a 1D drive17.

In weakly or non-interacting photon gases, thermalization and 
condensation in 1D has been observed in doped optical fibres, where 
the photons thermally populate the longitudinal degree of freedom in 
a long single-mode fibre18. To achieve condensation, the initially linear 
dispersion relation is altered to a sub-linear dispersion using chirped 
gratings, together with a spectral filter to provide a non-trivial ground 
state at finite energy. In contrast to this, one can confine photons in a 
microcavity, effectively freezing out the longitudinal degree of free-
dom19. The transverse degrees of motion can be restricted by in-plane 
trapping potentials induced by transverse variations in the optical path 
lengths, by structuring either the cavity mirror surface20,21 or the local 
refractive index22,23. By this, variable potential geometries can be real-
ized, which have, for example, allowed to study the thermodynamics 
of 2D Bose gases that contain a few photons or are trapped in box or 
double well potentials24–26. For this system, a continuous change in the 
thermodynamic properties has been predicted for the harmonically 
trapped gas when crossing from a 2D to 1D configuration27,28, where in 
contrast to the 2D case no Bose–Einstein condensation is expected1.

Here, we use a novel technique to confine photons, namely by print-
ing polymer structures on top of one of the cavity mirrors, which allows 
us to prepare structures with sizes below the wavelength of the photons. 
Using this method, we study the transition from two to one dimension 
for a harmonically trapped gas of photons by varying the aspect ratio of 
the trapping potential. In our system, thermalization occurs via radiative 
contact of the photons to a bath of dye molecules, and correspondingly 
the thermalization mechanism is decoupled from the dimensionality 
of the trapping potential, in contrast to atomic Bose gases29,30. For all 
investigated aspect ratios, a macroscopic occupation of the ground state 
is observed as the photon number is increased, which in two dimensions 
is accompanied by a sharp transition in the chemical potential, while in 
one dimension we observe a smooth crossover. For the intermediate 
cases, we observe a gradual softening of the phase transition, which 
can be associated to an effective (non-integer) dimension of the system.

We prepare our photon gas in an optical microcavity consist-
ing of two highly reflective plane mirrors (reflectivity above 99.995% 
at 580 nm) spaced by approximately 2 μm filled with a dye solution 
(Fig. 1a). The confinement in the longitudinal direction effectively 
freezes out this degree of freedom, yielding a minimum energy of 
ℏωc ≈ 2.1 eV, where ωc denotes the low-frequency cutoff, for the pho-
tons in the cavity, corresponding to a wavelength of 580 nm. To con-
fine the photons in the transversal direction, we printed a polymer 
micro-structure of height d(x, y) on one of the flat mirrors. The refrac-
tive index of the polymer ns exceeds the refractive index n of the dye 
solution, such that the optical path length locally increases, leading to 
an attractive potential energy landscape for the photons in the regions 
where the polymer is deposited with a potential V ∝ d(x, y)(n − ns)/n (ref. 
23). The geometry of the potential is determined by the geometry of the 
printed structure, d(x, y), where the surface curvature of the printed 
structure translates to the curvature of the trapping potential and the 
absolute height to its trap depth. For the used dye solvent ethylene gly-
col (n ≈ 1.44) and polymer (ns ≈ 1.55)31, we find a trap depth V ≈ 1.27kBT, 
with Boltzmann’s constant kB and the ambient temperature T = 300 K, 
for the used maximum structure height of approximately 325 nm. The 
polymer nanostructuring allows us to fabricate parabolic structures 
with sufficiently strong curvatures in the tightly confining y direction, 
along which the corresponding harmonic oscillator potential contains 
only a single bound state, rendering the photon gas system effectively 
one-dimensional (Fig. 1b).

The polymer structures were fabricated out of the negative-tone 
photoresist IP-Dip by using a direct laser writing (DLW) system 
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Fig. 1 | Dye-filled microcavity experimental setup and cavity mirror 
nanostructuring. a, The dye-filled microcavity experimental setup. The photon 
gas is created by pumping the intracavity dye solution using a laser beam spatially 
shaped using a spatial light modulator, and focused with a 10× objective into the 
microcavity. The cavity consists of two plane mirrors, with a polymer structure 
printed on one of them to provide a potential for the photons. The cavity 
emission is sampled using an imaging objective and subsequently analysed either 
spatially or spectrally. BS, beam splitter. b, The polymer structure (refractive 
index ns) surrounded by dye solution (refractive index n) results in a potential for 
the trapped photon gas. c, The direct laser writing scheme, using a focused laser 
beam to polymerize the photoresist on top of the mirror surface.
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photons have been reported24,26. To prepare the initial photon popula-
tion and to compensate for losses out of the system, we exploit the low 
reflectivity of our mirrors at 532 nm to inject dye molecular excitation 
using a laser at 532 nm, which fixes the chemical potential of the pho-
tons and thus the average total photon number N. The pump light is 
time modulated with a 500 ns pulse width at a 50 Hz repetition rate to 
prevent bleaching of the dye molecules19. A spatial light modulator is 
used to shape the pump laser profile to match the structure size on the 
mirror, thus reducing unwanted fluorescence from unconfined modes 
from outside the polymer-based structure.

To analyse the photon gas, we collect the light emitted through one 
of the cavity mirrors, and split the transmitted radiation into two paths 
after lifting the polarization degeneracy using a polarizer oriented 
along the polarization direction of the pump radiation, which coincides 
with the long axis of the 1D potential. About 70% of the light is collected 
by a spectrometer, and 30% is used for spatial imaging of the photon 
gas. Typical observed density distributions of the photon gas trapped 
in the 1D to 2D potential are shown in Fig. 2, and momentum space 
images are depicted in Extended Data Fig. 2. In the spatial distributions, 
one can see the density tightly squeezed along the y direction for 1D 
(Λ = 22), elliptic for the 1D–2D (Λ = 5) potential and radially symmetric 
for the isotropic 2D potential (Λ = 1). The profiles well follow expecta-
tions given by a Bose–Einstein distributed population within the bound 
modes of the harmonic oscillator potential. All images show data taken 
in the quantum degenerate regime, with a macroscopic population of 
the ground mode. To visualize this, the theory expectations (Methods) 
for ground mode (red) and thermal modes (grey dashed) are shown 
along with the cuts. Especially for the 1D potential, the finite size of 
the potential becomes visible in the diffraction pattern on the sides of 
the emission. Additionally, one observes a broader, smeared-out back-
ground below the sharp peak originating from trapped photons, which 
is attributed to residual fluorescence from free-space modes above the 
harmonic oscillator potential, and also to pump light scattered at the 
edges of the potential, which leads to an increase in emission at the edge 
of the potential. Those features are also present in the other cases but 
can be neglected owing to the larger photon numbers in the potential. 
As these modes can be separated spectrally, in the following we focus on 
the spectroscopy of the cavity emission to study the caloric properties 
of the gas. For this, the emission is dispersed energetically along the 
y direction using an optical grating and imaged onto a scientific com-
plementary metal–oxide–semiconductor (sCMOS) camera (called ‘raw 
spectra’ in the following), which allows us to measure both the popula-
tion in and the spatial profile of individual modes simultaneously. Our 

slitless spectrometer, which is described in more detail in the online 
methods, has a spectral resolution of ~0.08 THz for the lowest modes. 
For higher modes with quantum numbers ny ≫ 1, the modes start to 
spatially overlap, correspondingly lowering the resolution for highly 
excited modes. We extract a spectrum by integrating the obtained raw 
spectra along the non-dispersed direction, averaging over 30 realiza-
tions for a specific total photon number in 2D, over 90 in the 2D–1D 
case and over 120 for 1D data.

Exemplary measured spectra are shown in Fig. 3a for three differ-
ent aspect ratios, together with the corresponding raw spectra in Fig. 3b 
obtained by dispersing the cavity emission using a grating, which 
retains the mode profile along the x direction. For the isotropic 2D 
harmonic oscillator potential with Λ = 1 (top panel), one observes 
equidistantly spaced modes with a frequency spacing of 0.223 THz. In 
the raw spectra, individual modes (nx, ny) with nx + ny = const. spatially 
overlap, as harmonic oscillator modes with equal nx + ny have the same 
energy. Correspondingly, the TEM00 mode can be distinguished from 
the group of modes TEM01 and TEM10, but the latter two overlap. This 
can be seen more clearly in a linear colour scale (Extended Data Fig. 5), 
however there the thermal part is not visible anymore. For Λ = 5, cor-
responding to an anisotropic 2D harmonic oscillator potential with 
ωy = 5ωx (middle panel), one observes equidistantly spaced modes 
except for the few lowest modes owing to slight distortions in the poly-
mer structure. The mode degeneracy increases every fifth mode, as 
can be seen by the step-like increase in intensity at those modes. In the 
raw spectrum, this is reflected by the emergence of multiple parabolas 
corresponding to the different quantum numbers ny along the strongly 
confined y direction. One correspondingly finds the emergence of the 
second dimension (ny = 1) around the fifth mode (nx = 5) along the 
relaxed x direction. The potential with Λ = 22 displays 1D harmonic 
oscillator modes (bottom panel) in the raw spectrum, with an energy 
spacing of 0.37 THz, and the integrated spectrum correspondingly 
shows discrete peaks with a degeneracy of one (see also Extended Data 
Fig. 3). This is characteristic for the absence of the second dimension 
in the recorded energy interval and which is confined by the trap for 
the strongly asymmetric harmonic oscillator potential, demonstrating 
that a photon gas trapped in this potential can be considered as being 
effectively 1D. The photon distribution in all three cases well follows 
the Bose–Einstein distribution; the grey markers in Fig. 3a indicate the 
expected photon distribution when neglecting the width of the indi-
vidual modes. The theory estimations were calculated using a Bose–
Einstein distribution g(E )(e(E−μ)/kBT − 1)

−1
, with the degeneracy g(E). 

We use the energies of a quantum harmonic oscillator spectrum, 
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Fig. 2 | Spatial density distribution. a–c, The density distribution of photons 
in the quantum degenerate regime in a 1D (a, Λ = 22), 2D–1D (b, Λ = 5) and 
2D (c, Λ = 1) harmonic oscillator potential. Insets: microscope images of the 
corresponding polymer structures on the cavity mirror. Dashed lines indicate 
the position of the cuts through the centre of the cloud along the horizontal 
and vertical axis shown in the side and upper panel. The dashed grey line in the 
cut panels shows the contribution from thermal modes, and the solid red line 

the contribution of the ground mode, showing the macroscopic contribution 
from the ground mode in all panels. For the theoretical expectations, we assume 
a Bose–Einstein distribution of the population within the modes, with a total 
photon number of N = 54 (1D), N = 357 (2D–1D) and N = 3,958 (2D). The visible 
deviation in the 1D case is attributed to the emission of free-space modes that are 
excited at the rim of the potential.
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E = ℏ [ωxnx + ωyny +
1
2
(ωx + ωy)]. The trap frequencies ωx and ωy are 

extracted from the mean mode spacing of the measured spectra, and 
we truncate the theoretical spectra by excluding the energy levels that 
exceed the trap depth inferred from the measured spectrum, and the 
photon number at each mode is determined by calibrating the signal 
from the sCMOS camera. The experimental data well follow the theo-
retical expectations, apart from a slightly lower mode population for 
the 2D case. When including the mode profile of individual modes, the 
measured spectrum also in this case well follows expectation for a 
thermal distribution at 300 K (for details, see Extended Data Figs. 4 
and 5 and Methods).

Using the measured spectra, we extract the photon number in the 
ground mode and the excited modes, respectively, as a function of the 
total photon number, as shown in Fig. 4. Here, one clearly observes a 
smooth crossover in the ground state population for the 1D case, as 
expected as in 1D no phase transition to a Bose–Einstein condensate 
occurs. The transition becomes sharper for Λ = 5 and shows the steep 
increase that is associated with the phase transition for the isotropic 
2D potential with Λ = 1. In the latter case, we also observe the saturation 
of excited modes, as expected for a phase transition from a thermal gas 
to a Bose–Einstein condensate. For the 1D case, the number of states 
bound in the potential is smaller than in the 2D case, and correspond-
ingly the softening of the phase transition when crossing from 2D to 1D 
might also indicate a finite size effect. To investigate this, Fig. 4d shows 
the theoretical expectations for a 2D harmonic potential with the same 
number of energy levels as in the 1D case. While one observes a soften-
ing due to finite size effects, the effect is smaller than for the transition 
to 1D, and correspondingly the experimental data give evidence for the 
dimensional crossover from 1D to 2D. This is also visible in Fig. 3a, where 
no macroscopic population in the ground mode is visible.

The influence of the dimension on the phase transition can be 
explored by studying the order parameter when tuning the system 
parameters. As for our case the temperature is fixed at room tempera-
ture, the tuning parameter is the total photon number, and we use the 

absolute value of the chemical potential ∣μ∣ as an order parameter. To 
find the chemical potential μ, we first extract the internal energy from 
spectra as in Fig. 3 for different total photon numbers. For each spec-
trum, we set the ground mode energy to be the zero point energy of 
the harmonic oscillator, E0 = ℏ(ωx + ωy)/2, count the number of photons 
in each energy level, multiply by the corresponding mode energy and 
sum over the whole spectrum, yielding the internal energy as shown 
in Fig. 5b. For all shown aspect ratios, the internal energy per photon, 
U/N, decreases for increasing photon numbers, indicating an increasing 
population in the low-energy states. As we do not expect a sharp phase 
transition in 1D (and thus no well-defined critical photon number), for 
better comparison, each data set is scaled to the photon number Ñ  
where the chemical potential μ(N) equals half the chemical potential 
at low photon number, μ(Ñ) = μ(N → 0)/2, that is, halfway between 
the chemical potential for the classical gas and the quantum degenerate 
case. We extract this number from the theoretical curves based on 
Bose–Einstein distributed occupations within modes (see the online 
methods and Extended Data Fig. 6 for details), which yields Ñ = 628, 
64 and 23 photons for the 2D, the 2D–1D and the 1D harmonic oscillator 
potential, respectively. In the isotropic 2D potential (Λ = 1), the  
curve changes slope sharply around N/Ñ ≈ 1, indicating the presence 
of a phase transition, while in the 1D potential (Λ = 22), the slope 
changes monotonically, and shows the absence of a thermodynamic 
phase transition. For the anisotropic 2D potential (Λ = 5), the U/N slope 
indeed has, although less strong, a sharp change as in the 2D isotropic 
potential (Fig. 5).

This is visible more strongly in the chemical potential, by numeri-
cally taking the partial derivative of the internal energy U with respect 
to the photon number N. The numerical derivative was done by first 
binning the photon number data for U (bins of photon number in a 
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geometric series spacing with a common ratio of 1.2, 1.3 and 1.2 for the 
2D, the 2D–1D and the 1D harmonic oscillator potential, respectively) to 
suppress numerical noise (see Extended Data Figs. 7–9 for the influence 
of the binning). As expected, the absolute value of μ decreases for all 
three aspect ratios with increasing photon number. The sharp drop fol-
lowed by the saturation at the ground state energy for the isotropic 2D 
case (Λ = 1) indicates the expected phase transition in two dimensions, 
while for increasing Λ we observe a gradual softening of the transition 
to a continuous crossover for the 1D potential. Thus, the change in the 
dimension of the potential from 2D to 1D leads to a crossover between 
the different regimes of the Bose gas instead of a sharp phase transition 
to a condensate phase.

To conclude, we have experimentally studied the dimensional 
crossover from a 2D isotropic harmonically trapped photon gas to a 
photon gas confined to 1D around the transition from a thermal to the 
quantum degenerate case. This crossover is accompanied by a soften-
ing of the phase transition, which crosses from a true second-order 
phase transition to a Bose–Einstein condensate in 2D to a continuous 
behaviour in 1D, indicated by the behaviour of the chemical potential 
and the internal energy of the photon gas for different photon numbers.

For the future, it will be interesting to study different trapping 
potentials for the photons, and investigate the spatial correlations36. 
While in 1D for the harmonically trapped system no true long-range 
order is possible, in our finite-size system the correlations can extend 
over the whole system. In the cavity platform, the losses can be tuned 
from a nearly lossless system to the case of a driven-dissipative con-
densate by modifying the low-frequency cutoff37, which is expected 
to alter the correlations in the system, and additionally influence the 
polarization properties of the condensate38. Also, the structuring 
method presented here, based on polymer structures within the cavity, 
allows great flexibility in the design of potentials for photons, rang-
ing from continuous potentials such as the ones presented here to 
tunnel-coupled lattice structures with large tunnelling rates. For exam-
ple, potentials with a logarithmic level spacing have been proposed for 
factorization of large numbers39, and in tunnel-coupled potentials, the 
influence of loss and drive, for example, leads to stable vortices40,41, 
clustering42 or the emergence of a Kardar–Parisi–Zhang-like scaling 

in the correlations16, and for 1D chains the emergence of surface states 
is possible in the presence of a retarded thermooptic interaction43.
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crossover in 1D is visible in the chemical potential. a, The measured change 
(symbols) in the absolute value of the chemical potential ∣μ∣ in units of the 
thermal energy (kBT) from 1D to 2D (1D, 2D–1D and 2D) harmonic oscillator 
potentials as a function of the normalized photon number N/Ñ , where the zero 
point energy is set to zero, with theoretical expectations (solid curves) for 
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photon number N/Ñ , for the 2D, 2D–1D and 1D harmonic oscillator potentials 
(from top to bottom), with their corresponding theoretical expectations (solid 
curves). Error bars show statistical standard deviations, and data are presented as 
mean values ± s.d.
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Methods
DLW of the polymer structures
DLW is an established fabrication method in which a laser is focused 
into a photosensitive material, which usually initiates a polymerization 
reaction32. However, the energy of one photon is not sufficient to excite 
the photosensitive material. By using a femtosecond-pulsed laser and 
strong focusing, the high field strength at the focal point can lead to the 
‘simultaneous’ absorption of two photons. Owing to this two-photon 
process, the excitation only takes place in the volume around the focal 
point. This also means that, in contrast to other lithography methods, this 
fabrication method is not bound by the Abbe limit, as only above a certain 
threshold is the intensity high enough to start a polymerization reaction. 
If enough polymerization reactions are started in a given volume, the 
polymers will tangle up or crosslink and form a solid piece of polymer. 
For the photoresist we used typically, a minimum polymerized volume 
(voxel) has diameters of 100 nm (x, y) and 250 nm (z). More important for 
the structures in this manuscript, however, is the precision with which the 
laser focus can be positioned relative to the substrate, as this limits the 
surface accuracy. In our case, this is done via three capacitively controlled 
piezoelectric stages (in x, y, z), each reaching in closed-loop operation 
nanometre precision. After the writing process, the excess liquid pho-
toresist is removed with solvents (propylene glycol monomethyl ether 
acetate and isopropanol) and only the solid structures remain.

To demonstrate that we can indeed fabricate structures using 
DLW with the needed surface accuracy, Extended Data Fig. 1 shows 
exemplary atomic force microscopy measurements of one polymer 
structure for an isotropic potential. The difference between the pro-
grammed shape and the measured height profile is smaller than 100 nm 
everywhere, except on the edges of the structure. This verifies that we 
can indeed fabricate structures with the lower of the trap frequencies 
as designed. We can also fabricate the steeper trap with higher trap 
frequencies accurately (in the squeezed y direction), as can be seen 
from the fact that, in the spectra, the eigenenergies correspond to the 
predicted energies for the corresponding ratio of the trap frequencies.

Preparation of the photon gas
Cavity construction. The used experimental apparatus is similar to 
as described in earlier works (see refs. 19,33 for details). The cavity is 
built with two plan mirrors with reflectivity above 99.995%, with nano-
structured potentials on the surface of one of the mirrors, spaced by 
~1.4 μm. The mirrors are placed on mirror mounts with piezoelectric 
tilt adjustment, which in turn are mounted on a three-axis stage for 
cavity alignment. One of the mirrors is mounted on a piezo stage for 
fine adjustment of the cavity length (along the z axis) to tune the cav-
ity cutoff. The mirrors are brought close to each other, and a drop of 
dye solution containing 1 mmol concentration of Rhodamine 6G in 
ethylene glycol is added, and held in place by surface tension. Further 
reduction in cavity length is done using the piezo stage until the lon-
gitudinal mode number q, is constrained by q < 12, which assures that 
other longitudinal cavity modes are not excited by the fluorescence 
of the dye and correspondingly the photon gas effectively becomes 
two dimensional. The dye molecules are excited using a pump laser 
beam cavity at 0° incidence. The laser beam at 532 nm wavelength 
is chopped in time into 500 ns pulses with a 50 Hz repetition rate to 
prevent bleaching as well as heating of dye molecules. The pump light 
is shaped spatially with a high-power spatial light modulator to match 
the profile of the polymer structures.

In the cavity, the dispersion relation due to the short mirror spac-
ing is modified with respect to free space and acquires quadratic, that 
is, massive particle-like, character. The transverse TEM00 mode of the 
parabolic potentials becomes the lowest populated eigenmode, which 
acts as a low-frequency cutoff at energy ℏωc = hc/λc, where λc, h and c are 
the cutoff wavelength, Planck’s constant and speed of light in vacuum, 
respectively. This energy corresponds to a photon rest mass of m = ℏω/
(c/n)2, where c denotes the speed of light and n ≈ 1.43 is the refractive 

index of the solvent ethylene glycol. For such a system, it is known that 
a Bose–Einstein condensate exists at thermal equilibrium conditions 
for a 2D harmonic potential33.

Thermal equilibrium of photons in the cavity is achieved as the 
photons are absorbed and re-emitted many times by the dye molecules, 
provided the dye fulfils the Kennard–Stepanov relation, which is the 
case for Rhodamine 6G to good accuracy. The conversion of pho-
tons into dye electronic excitations and vice versa induce a thermal 
spectral distribution of the photon gas at the temperature of the dye 
rovibrational excitations, which are at room temperature. Given that 
thermal emission is negligible in the limit of ℏωc ≫ kBT, temperature 
and chemical potentials are independently tunable. This is a striking 
difference to the usual case of black-body radiation where photons 
vanish in the system walls upon lowering the temperature instead of 
exhibiting condensation. In our experiment, the chemical potential of 
the photons (and correspondingly the photon number) is determined 
by the ratio between excited and ground state molecules, which is set 
by the power of the pump laser. Assuming equal statistical weights of 
the rovibronic manifold in ground and excited molecular states, one 
can express the chemical potential of the photons via

e
μ

kBT =
M↑
M↓

e
ℏ(ωZPL−ωc)

kBT ,

where M↑ and M↓ denote the population in the molecular excited and 
ground state, respectively, ℏωc is the low-energy cutoff and ℏωZPL is 
the energy of the zero phonon line of the used dye33. We note that, 
owing to the coupling to the bath, also small ensembles of photons 
can exhibit a thermal distribution. As the temperature (and thus the 
spectral distribution) are imprinted by the dye solution, in principle a 
single photon can (on average) show thermal properties, and for the 
case of a few photons this has been demonstrated experimentally22,24,26.

The repeated absorption–emission cycles can be seen as an 
exchange of both energy and particles, thus the dye acts as a reservoir 
in the grand canonical sense. This can lead to grand canonical fluctua-
tions in the photon number. However, in our experiment, we average 
over multiple realizations, and correspondingly those fluctuations are 
averaged out. Additionally, the fact that the photons are coupled to a 
heat bath implies that thermalization is decoupled from the photon 
number or the dimension. This is in contrast to, for example, atomic 
Bose gases, where thermalization occurs via particle–particle collisions 
and thus only slow or even no thermalization occurs for low particle 
number or in 1D, where the system becomes integrable29,30.

Theoretical modelling
Bose–Einstein distribution. To calculate the spectral and spatial distri-
bution of the photon gas trapped in a dye microcavity, we calculate the 
bound energy levels ϵi and their degeneracy gi for the given potential. 
The required trapping frequencies ωx and ωy as well as the trap depth 
are inferred from the measured spectra, and compared with the design 
parameters. Using the measured energy levels, we calculate the spectral 
photon distribution using a Bose–Einstein distribution

Ni =
gi

exp ( ϵi−μ
kBT

) − 1
,

where the chemical potential μ is calculated using the measured total 
photon number N via N = ∑ gi

exp( ϵi−μ

kBT
)−1

. Correspondingly, there are no 

free parameters; the theoretical expectation is completely determined 
by measured parameters. The corresponding theoretically expected 
ground state population N0 =

g0

exp( ϵ0−μ

kBT
)−1

 and the excited state popula-

tion Nexcited = ∑i≠0
gi

exp( ϵi−μ

kBT
)−1

 for given total photon number N can then 

be determined.
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Summing over the bound energy levels weighted with the corre-
sponding occupation gives the expected internal energy U = Erest + ∑ϵiNi, 
where Erest =

mc2

n2
 is the effective rest energy of the photons.

The chemical potential is extracted from the internal energy by 
taking the partial derivative of U with respect to the total photon num-
ber N, that is, μ = ∂U

∂N
. For better comparison, we set the energy of the 

ground state to zero; that is, the chemical potential approaches zero 
for large photon number in all cases (Fig. 5a).

Spatial density distribution. For the spatial distribution, we assume 
wavefunctions of the quantum harmonic oscillator

ψi(x) =
1

√2nn!
(mωx

πℏ )
1/4

exp (−mωxx
2

2ℏ )Hn (√
mωx

ℏ x) .

We then take the outer product of the wavefunctions along x and 
y directions and square it to get the density of each mode. The total 
density distribution is calculated by summing over all modes weighted 
with the calculated mode occupancy Ni,

Ψ = ∑|ψi(x)ψ∗
i
( y)|2Ni .

For the excited modes, we use a similar approach to give

Ψexcited = ∑
i≠0

|ψi(x)ψ∗
i
( y)|2Ni ,

which gives the spatial density distribution of only the excited states. 
The effective photon mass m = 2πℏn2/(λcc) is determined by the known 
cutoff wavelength λc (which in our case is ~580 nm) and the refractive 
index n of the dye solution.

Determining the crossover point Ñ . While for 2D the critical point 
for the phase transition is well defined, in 1D, where a true phase transi-
tion is absent, a definition for a critical photon number is not possible. 
To compare the different potentials, we determine a crossover point 
at which μ(N) = μ(N → 0)/2 using the theoretical expectations for the 
corresponding potentials. In the classical regime, that is, for small 
photon number, the chemical potential approaches a constant value, 
while in the quantum degenerate regime the chemical potential 
approaches zero. Correspondingly, the midpoint between these 
extremes indicates the crossover from classical to quantum 
degenerate.

Interestingly, the crossover point Ñ  is close to the photon number 
at which the theoretical expectation for U/N changes its slope in a 
double log plot, as shown in Extended Data Fig. 6. For small photon 
number, we expect a Boltzmann-like behaviour for the classical photon 
gas, while quantum statistics is expected as soon as the coherence 
length is on the order of the size of the potential. Correspondingly, the 
inner energy changes its slope. To determine the crossover point, we 
fit a straight line to the linear part of the curve to either side of the 
change of curvature, and the intersection point of these two straight 
lines is found to be 611, 63 and 19 photons for the 2D, 2D–1D and 1D 
potentials, respectively. We want to emphasize that other definitions 
for the crossover point are also valid. As both theory and experiment 
are scaled by the same factor, this only leads to a horizontal shift of all 
curves in the logarithmic plots.

Spectroscopy of the photon gas
Cavity fluorescence. The cavity fluorescence is captured by an objec-
tive; after filtering out the pump light, the light passes through a polar-
izer aligned to the polarization of the ground mode. As our system is 
driven-dissipative, the ground mode (with the fastest emission time 
scale) is slightly polarized, with a preferred direction along the pump 
light polarization, while thermal modes are unpolarized38. The light is 

then split into two arms: 70% of the light is guided to the spectrometer, 
while the remaining 30% is imaged onto a sCMOS camera to measure 
density profiles. In the spectrometer arm, the light is expanded in the 
Fourier plane onto the grating, and the dispersed light is then imaged 
onto the sCMOS camera using a spherical lens.

To calibrate the photon number we, replace the cavity mirror 
pointing away from the spectrometer by the output of an optical fibre 
connected to a tunable dye laser. From the known power at the fibre 
output and the measured signal on the spectrometer camera, we can 
determine the transmission function of our setup. We do this for differ-
ent wavelengths within the spectrum of our photon gas, and extrapo-
late between those points using the known mirror transmission. By 
this, we can calculate the photon number for each measured spectrum.

Momentum space distribution. Additionally to the spatial distribu-
tions, we can also image the momentum space distribution of our 
photon gas. Exemplary distributions are shown in Extended Data Fig. 2 
for the 2D and 2D–1D case, both in the classical and in the quantum 
degenerate regime. Similar to the real space distributions in Fig. 2, 
the distributions well follow the theoretical expectations. Outside 
the potential, one also observes residual fluorescence from free-space 
modes not confined by the potential. As expected for harmonic trap-
ping, the momentum space images are rotated by 90° with respect to 
the real space images for the 1D–2D case; that is, the spatially confined 
direction has a broader momentum space distribution, both for the 
thermal part and for the ground mode.

Spectrum analysis. The spectrometer first expands the light in the 
Fourier plane onto the grating, and the dispersed light is then imaged 
onto the sCMOS camera using a spherical lens. One exemplary spec-
trum of the cavity fluoresce for the 1D potential is shown in Extended 
Data Fig. 3. The dispersion is along the horizontal axis, and owing to 
the slitless nature of the spectrometer, the mode profiles are preserved 
along both vertical and horizontal axes (Extended Data Fig. 3a). By 
integrating the raw spectrum image along the vertical axis and apply-
ing the transmission correction explained above, we obtain processed 
spectra as shown in Extended Data Fig. 3b. This spectrum is a convolu-
tion of the spectral information and the (horizontal) spatial profile 
of the different modes. While the low energy modes can be resolved 
individually, for the higher energy modes this convolution leads to a 
‘smearing out’. Thus, to extract the temperature, one needs to compare 
the convoluted spectra with the measured data, which in our case 
well agrees to a Bose–Einstein distribution at a temperature of 300 K 
(Extended Data Fig. 4).

This convolution between spectral and spatial information can 
be solved by either using a diffusor or an Ulbricht sphere in front of 
the spectrometer to destroy the spatial information, or by tomog-
raphy using a moving slit in front of the spectrometer. However, 
owing to the weak signal for the 1D potential, this is not feasible in 
our current setup.

Extended Data Fig. 5 shows an exemplary spectrum for the 2D 
case with a linear colour scale. While the thermal tail is barely visible 
in the linear scale, one can clearly observe that the lowest modes are 
well separated and do not overlap. The Gaussian profile of the ground 
mode is visible, while the higher modes are degenerate nx + ny = const.; 
that is, mutliple modes overlap spatially, and their shape is correspond-
ingly not observable.

Extraction of thermodynamic quantities. The internal energy U is 
measured by multiplying the integrated spectrum with the correspond-
ing energy and then summing over the product. In Extended Data 
Figs. 7–9, the grey data points correspond to the measured energies 
U/N, and it is apparent that the data points have high frequency noise 
that would lead to high numeric noise (when taking the numerical 
derivative) for the evaluation of the chemical potential μ. To mitigate 
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this, we binned the data points (U) into bins spaced in a geometric 
series; to demonstrate the binning effects, data binned with three dif-
ferent common ratios are shown in blue, green and red in Extended Data 
Figs. 7–9. In the second row, the corresponding chemical potential ∣μ∣ 
extracted from the binned data is plotted along with theoretical expec-
tations (solid black curve). The binning indeed influences the amount of 
noise in the chemical potential ∣μ∣ but does not substantially change the 
phase transition or crossover features. The smaller bin sizes (smaller 
common ratio) enhance the numerical noise (blue data points) for all 
potentials, whereas larger bin sizes (larger common ratio) reduce the 
numerical noise but result in only a few data points (red data points). 
Hence, we choose bin sizes with a common ratio between these two 
extremes for our analysis.

Data availability
The data presented in this manuscript are available via Zenodo at 
https://doi.org/10.5281/zenodo.10571407 (ref. 44). Source data are 
provided with this paper.
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Extended Data Fig. 1 | Nanostructure surface profile. a, AFM measurement  
of the surface of a printed isotropic paraboloid. b Sections through the AFM 
data as marked in (a) along the x axis (green) and the y axis (red) compared to a 

parabola with the curvature programmed for the 3D print (blue). c Difference  
of the programmed height profile and the measured height profile of the printed 
structures.
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Extended Data Fig. 2 | Momentum space distributions. Exemplary momentum 
space distributions of the cavity fluorescence for the 2D (panel a) and the 2D-1D 
case (panel b) in the thermal (that is classical) and quantum degenerate regime. 
The red dashed circle denotes wavevectors with k2x + k2y = 2mV/ℏ2, and the black 
circle the numerical aperture of the imaging system. The side panels show 

distributions integrated along the kx direction, together with the corresponding 
expectation as a red dotted line. The broad distribution extending to regions with 
wavevectors which cannot be trapped by the potential (indicated by the grey 
shaded areas) is attributed to the emission from free-space modes not confined 
in the potential.
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Extended Data Fig. 3 | Spectum Analysis. Exemplary spectrum of the cavity 
fluorescence for the 1D case. a, raw image of the spectrum on the spectrometer 
camera, the vertical axis is the spatial axis and the horizontal axis is both the 
(compressed) spatial and dispersive axis. The integration is along the vertical 

axis as marked by the arrow. b, the integrated, transmission-corrected spectrum, 
in a linear scale. Panel c shows the position of the observed modes from b as a 
function of the mode number. As expected for a harmonic oscillator potential,  
we observe a linear increase in mode energy with the mode number.
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Extended Data Fig. 4 | Thermal tail temperature. Comparison of the thermal 
tail of the measured spectrum in the 2D case, together with the theoretical 
expectation, convoluted with the mode profiles for a temperature of 300K (panel 
a), 380 K (panel b) and 220 K (panel c), respectively. The data is the same as shown 

in Fig. 3a, note that only the thermal modes with energies at least h × 1THz above 
the ground mode are shown. The good agreement shows that our photon gas 
within uncertainties can be described by a room temperature distribution.
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Extended Data Fig. 5 | Raw spectrogram for the 2D potential. Exemplary spectrum of the cavity fluorescence. In contrast to the main text, the raw spectrum for the 
2D potential is here shown using a linear scale color map.
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Extended Data Fig. 6 | Alternative definition of Ñ . Double log plot of the 
theoretically expected inner energy U/N as a function of photon number N (black 
points) for 1D (a), 2D-1D (b) and 2D (c). The green and red lines are fits in the linear 

regions before and after the curve starts changing slope. The photon number 
where both lines intersect is indicated by the black dashed line. This number is 
determined to be Ñ = 19 (a), Ñ = 63 (b), and Ñ = 611 (c).
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Extended Data Fig. 7 | Binning effects on caloric properties for the 2D 
potential. Binning effects on U/N and ∣μ∣ for the 2D potential. a–c, The mean 
value of the unbinned internal energy per particle U/N is plotted in grey in the 
upper row with corresponding theoretical expectations in the black solid curve. 
Binned data as mean values +/- SD with a geometric series spacing with common 

ratios 1.145, 1.271 and 1.381 are plotted in blue, green and red in three separate 
columns. d–f, Corresponding data for the chemical potential ∣μ∣ (symbols) is 
plotted in the lower row with corresponding theoretical expectations in the  
black solid curve.
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Extended Data Fig. 8 | Binning effects on caloric properties for the 2D-1D 
potential. Binning effects on U/N and ∣μ∣ for the 2D-1D potential. a–c, The mean 
value of the unbinned internal energy per particle U/N is plotted in grey in the 
upper row with corresponding theoretical expectations in the black solid curve. 
Binned data {as mean values +/- SD} with a geometric series spacing with common 

ratios 1.189, 1.278 and 1.523 are plotted in blue, green and red in three separate 
columns. d–f, Corresponding data for the chemical potential ∣μ∣ (symbols) is 
plotted in the lower row with corresponding theoretical expectations in the black 
solid curve.
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Extended Data Fig. 9 | Binning effects on caloric properties for the 1D 
potential. Binning effects on U/N and ∣μ∣ for the 1D potential. a–c, The mean 
value of the unbinned internal energy per particle U/N is plotted in grey in the 
upper row with corresponding theoretical expectations in the black solid curve. 
Binned data {as mean values +/- SD} with a geometric series spacing with common 

ratios 1.144, 1.198 and 1.318 are plotted in blue, green and red in three separate 
columns. d–f, Corresponding data for the chemical potential ∣μ∣ (symbols) is 
plotted in the lower row with corresponding theoretical expectations in the black 
solid curve.
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