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The dimensionality of a system profoundly influences its physical
behaviour, leading to the emergence of different states of matter in
many-body quantum systems. In lower dimensions, fluctuations increase
and lead to the suppression of long-range order. For example, in bosonic
gases, Bose-Einstein condensation in one dimension requires stronger
confinement thanin two dimensions. Here we observe the dimensional
crossover from one to two dimensions in a harmonically trapped photon
gas and study its properties. The photons are trapped in a dye microcavity
where polymer nanostructures provide the trapping potential for the
photongas. By varying the aspect ratio of the harmonic trap, we tune from
isotropic two-dimensional confinement to an anisotropic, highly elongated
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one-dimensional trapping potential. Along this transition, we determine the
caloric properties of the photon gas and find a softening of the second-order
Bose-Einstein condensation phase transition observed in two dimensions to
acrossover behaviour in one dimension.

In the world of many-body physics, it is common knowledge that the
number of accessible dimensions profoundly influences the physical
behaviour of a system, leading to the emergence of different states of
matter at low dimensions (that is, fewer than three dimensions). For
bosonic gases, as an example, Bose-Einstein condensation is possi-
ble in lower dimensions only for a sufficiently strong confinement of
apower-law trapping potential'. While in two dimensions (2D) a har-
monically trapped gas can undergo a phase transitionto a Bose-Einstein
condensate at finite temperature, this transition in one dimension (ID) is
only observed with tighter confining power-law traps. When confining
a1D system within a harmonic trap, there is no sharply defined phase
transition in the thermodynamic limit to the condensate phase?, but
rather a smooth crossover to a quasi-condensate. In this regime, large
thermal and quantum fluctuations in one dimension inhibit the emer-
gence of true long-range order™*. For finite-size systems, the change
from a phase transition in 2D to a crossover in 1D is less pronounced.
Moreover, condensation can occur in 1D depending on the strength of
interactions, and different regimes for quantum-degenerate Bose gases
are expected’. It is therefore of great interest to study the crossover
from three-dimensional (3D) or 2D systems to the 1D case. For ultracold

atomicgases, boththermodynamic and coherence properties associated
with the emergence of quasi-long range order along the dimensional
crossover from three to one dimension have been studied experimen-
tally®”.Inthe case of astrongly interacting Bose gas, where one expectsa
crossover from Berezinski-Kosterlitz-Thouless-type correlations in2D
to Tomonaga-Luttinger liquid correlations®, theinterplay between inter-
actions and dimensionality has beenstudied’, and it has been observed
that reducing the dimensionality can strongly influence the tempera-
ture of the system'. For dipolar gases, the transition to the supersolid
phase hasbeen studied along the dimensional crossover from one to two
dimensions, showingatransitionfromacontinuous toadiscontinuous
behaviour in the order parameter”.

Optical quantumgases have, inrecentyears, emerged asanalter-
native platform for quantum gas experiments'?, being well-suited for
the study of the dimensional crossover from 2D to 1D owing to the
weak or even negligible interaction. In exciton-polariton condensates,
correlations in 1D, 2D and 3D have been studied theoretically for an
interacting gas". Here, one crosses from long-range order in 3D via
a power law in 2D to exponentially decaying first-order phase cor-
relations in the 1D case. Experimentally, for example, the formation
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dynamics hasbeenstudied for 1D systems'", and in1D coupled lattices,
aKardar-Parisi-Zhang scaling for the phase has been observed™. In
a semiconductor microcavity, the transition from 2D to 1D has been
studied by varying the geometry of the drive, where the dissipative
phase transition observed in 2D vanishes for a1D drive".

In weakly or non-interacting photon gases, thermalization and
condensation in 1D has been observed in doped optical fibres, where
the photons thermally populate the longitudinal degree of freedomin
alongsingle-mode fibre'®. To achieve condensation, theinitially linear
dispersionrelation s altered to a sub-linear dispersion using chirped
gratings, together with a spectralfilter to provide a non-trivial ground
state at finite energy. In contrast to this, one can confine photonsina
microcavity, effectively freezing out the longitudinal degree of free-
dom”. The transverse degrees of motion canbe restricted by in-plane
trapping potentialsinduced by transverse variationsin the optical path
lengths, by structuring either the cavity mirror surface**” or the local
refractive index?>>. By this, variable potential geometries can be real-
ized, which have, for example, allowed to study the thermodynamics
of 2D Bose gases that contain a few photons or are trapped in box or
double well potentials® 2. For this system, a continuous change in the
thermodynamic properties has been predicted for the harmonically
trapped gas when crossing from a 2D to 1D configuration®”?*, where in
contrast to the 2D case no Bose-Einstein condensation is expected'.

Here, we use anovel technique to confine photons, namely by print-
ing polymer structures on top of one of the cavity mirrors, which allows
usto preparestructures with sizes below the wavelength of the photons.
Using this method, we study the transition from two to one dimension
foraharmonically trapped gas of photons by varying the aspect ratio of
the trapping potential. In our system, thermalization occurs viaradiative
contactofthe photonsto abath of dye molecules, and correspondingly
the thermalization mechanism is decoupled from the dimensionality
of the trapping potential, in contrast to atomic Bose gases**°. For all
investigated aspectratios,amacroscopic occupation of the ground state
isobserved as the photon numberisincreased, whichin two dimensions
isaccompanied by a sharp transition in the chemical potential, while in
one dimension we observe a smooth crossover. For the intermediate
cases, we observe a gradual softening of the phase transition, which
canbeassociated to aneffective (non-integer) dimension of the system.

We prepare our photon gas in an optical microcavity consist-
ing of two highly reflective plane mirrors (reflectivity above 99.995%
at 580 nm) spaced by approximately 2 pm filled with a dye solution
(Fig. 1a). The confinement in the longitudinal direction effectively
freezes out this degree of freedom, yielding a minimum energy of
hw.=2.1eV, where w. denotes the low-frequency cutoff, for the pho-
tons in the cavity, corresponding to a wavelength of 580 nm. To con-
fine the photons in the transversal direction, we printed a polymer
micro-structure of height d(x, y) on one of the flat mirrors. The refrac-
tive index of the polymer n, exceeds the refractive index n of the dye
solution, such that the optical pathlengthlocally increases, leading to
anattractive potential energy landscape for the photonsintheregions
where the polymer is deposited with a potential Ve d(x, y)(n — n,)/n (ref.
23). Thegeometry of the potential is determined by the geometry of the
printed structure, d(x, y), where the surface curvature of the printed
structure translates to the curvature of the trapping potential and the
absolute height toitstrap depth. For the used dye solvent ethylene gly-
col (n=1.44) and polymer (n,=1.55)*, we find atrap depth V= 1.27k,T,
with Boltzmann’s constant k; and the ambient temperature 7=300K,
for the used maximum structure height of approximately 325 nm. The
polymer nanostructuring allows us to fabricate parabolic structures
with sufficiently strong curvatures in the tightly confining y direction,
alongwhich the corresponding harmonic oscillator potential contains
only asingleboundstate, rendering the photon gas system effectively
one-dimensional (Fig. 1b).

The polymer structures were fabricated out of the negative-tone
photoresist IP-Dip by using a direct laser writing (DLW) system
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Fig.1|Dye-filled microcavity experimental setup and cavity mirror
nanostructuring. a, The dye-filled microcavity experimental setup. The photon
gasis created by pumping the intracavity dye solution using a laser beam spatially
shaped using a spatial light modulator, and focused with a10x objective into the
microcavity. The cavity consists of two plane mirrors, with a polymer structure
printed on one of them to provide a potential for the photons. The cavity
emission is sampled using animaging objective and subsequently analysed either
spatially or spectrally. BS, beam splitter. b, The polymer structure (refractive
index n) surrounded by dye solution (refractive index n) results in a potential for
the trapped photon gas. ¢, The direct laser writing scheme, using a focused laser
beam to polymerize the photoresist on top of the mirror surface.

(Nanoscribe Photonic Professional GT)*. The substrate was prepared
in the immersion configuration, which means that, during the writing
process, the laser was focused by the objective first through animmer-
sion medium (in our case again IP-Dip) and the substrate of the cavity
mirror and atlast through the thin dielectric Bragglayers into the pho-
toresist (Fig.1c). The writing trajectory followed parallel lines along the
longer axis of the potentials (xdirection) with aline distance of 100 nm
(along the ydirection). To manufacture the desired potential, we print
a polymer ridge with height profile d(x, y) = h, - ¢x* - ¢,)*, where h,
denotes the maximum height of the structure and c, and ¢, the curva-
tures along x and y direction, respectively. At each point the polymer
was exposed up toa height given by d(x, y). For the different potentials,
we keep the geometry approximately fixed along the x direction and
vary the curvature along the y direction. In the following, we label the

different potentials by their aspect ratio A = w,/w, = ,/c,/c,, with

the trap frequencies w, and w,. The ratio A quantifies the effective
dimension of the photon gas”, where A =1 corresponds to an isotropic
2D harmonic oscillator with equal trapping frequency along x and y
directions (Extended DataFig.1), and quasi-1D is reached when the first
excited mode of the strongly confined dimensionis not trappedin the
potential anymore (which in our case also implies k; T < iw), which in
our caseisachieved at A =22.

To thermalize the photons, they are coupled to a thermal bath
at ambient temperature 7=300 K, realized by a dye solution filled
between the cavity mirrors (Fig. 1a), similar to previous work'*, By
repeated absorption-emission cycles, photons thermalize to the
temperature of the dye solution, provided that thermalization is suf-
ficiently faster than the photon losses, asis the case in our system™ ™,
Correspondingly, the photons populate the energy levels of the trans-
versal degrees of freedom, that is, the harmonic oscillator levels in
x and y direction, leading to a spectrum with equidistant frequency
spacing above the lowest energy mode (called the ‘cutoff’ energy or
frequency)”. As the thermalization is achieved by coupling to a bath
and not by direct photon-photon collisions, we expect a thermal dis-
tribution even for a few photons, and correspondingly, for strongly
confining 2D potentials, Bose-Einstein condensates withlessthanten
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Fig. 2| Spatial density distribution. a-c, The density distribution of photons
inthe quantum degenerate regimeinalD (a, A = 22),2D-1D (b, A =5) and

2D (¢, A =1) harmonic oscillator potential. Insets: microscope images of the
corresponding polymer structures on the cavity mirror. Dashed lines indicate
the position of the cuts through the centre of the cloud along the horizontal
and vertical axis shownin the side and upper panel. The dashed grey line in the
cut panels shows the contribution from thermal modes, and the solid red line

the contribution of the ground mode, showing the macroscopic contribution
from the ground mode in all panels. For the theoretical expectations, we assume
aBose-Einstein distribution of the population within the modes, with a total
photon number of N=54 (1D), N=357 (2D-1D) and N = 3,958 (2D). The visible
deviationin the 1D caseis attributed to the emission of free-space modes that are
excited at the rim of the potential.

photons have been reported®*. To prepare the initial photon popula-
tionand to compensate for losses out of the system, we exploit the low
reflectivity of our mirrors at 532 nmto inject dye molecular excitation
using alaser at 532 nm, which fixes the chemical potential of the pho-
tons and thus the average total photon number N. The pump light is
time modulated witha500 ns pulse width at a50 Hzrepetitionrate to
prevent bleaching of the dye molecules®. A spatial light modulator is
used to shape the pump laser profile to match the structure size on the
mirror, thus reducing unwanted fluorescence from unconfined modes
from outside the polymer-based structure.

Toanalyse the photon gas, we collect the light emitted through one
ofthe cavity mirrors, and split the transmitted radiation into two paths
after lifting the polarization degeneracy using a polarizer oriented
alongthepolarization direction of the pump radiation, which coincides
with the longaxis of the 1D potential. About 70% of the light is collected
by a spectrometer, and 30% is used for spatial imaging of the photon
gas. Typical observed density distributions of the photon gas trapped
in the 1D to 2D potential are shown in Fig. 2, and momentum space
images are depicted in Extended Data Fig. 2. In the spatial distributions,
one can see the density tightly squeezed along the y direction for 1D
(A=22),ellipticfor the1D-2D (A = 5) potential and radially symmetric
for theisotropic 2D potential (A =1). The profiles well follow expecta-
tions given by aBose-Einstein distributed population within the bound
modes of the harmonic oscillator potential. Allimages show data taken
inthe quantum degenerate regime, with a macroscopic population of
the ground mode. To visualize this, the theory expectations (Methods)
for ground mode (red) and thermal modes (grey dashed) are shown
along with the cuts. Especially for the 1D potential, the finite size of
the potential becomesvisible in the diffraction pattern on the sides of
the emission. Additionally, one observes a broader, smeared-out back-
ground below the sharp peak originating from trapped photons, which
isattributed to residual fluorescence from free-space modes above the
harmonic oscillator potential, and also to pump light scattered at the
edges of the potential, whichleads to anincreasein emission at the edge
ofthe potential. Those features are also present in the other cases but
canbeneglected owingto thelarger photon numbersin the potential.
Asthese modes canbe separated spectrally, in the following we focus on
the spectroscopy of the cavity emission to study the caloric properties
of the gas. For this, the emission is dispersed energetically along the
ydirection using an optical grating and imaged onto a scientific com-
plementary metal-oxide-semiconductor (SCMOS) camera (called ‘raw
spectra’inthe following), which allows us to measure both the popula-
tioninand the spatial profile of individual modes simultaneously. Our

slitless spectrometer, which is described in more detail in the online
methods, has aspectral resolution of ~-0.08 THz for the lowest modes.
For higher modes with quantum numbers n, > 1, the modes start to
spatially overlap, correspondingly lowering the resolution for highly
excited modes. We extract aspectrum by integrating the obtained raw
spectraalong the non-dispersed direction, averaging over 30 realiza-
tions for a specific total photon number in 2D, over 90 in the 2D-1D
case and over 120 for 1D data.

Exemplary measured spectraare shownin Fig. 3afor three differ-
entaspectratios, together with the corresponding raw spectrainFig.3b
obtained by dispersing the cavity emission using a grating, which
retains the mode profile along the x direction. For the isotropic 2D
harmonic oscillator potential with A =1 (top panel), one observes
equidistantly spaced modes with afrequency spacing of 0.223 THz.In
theraw spectra, individual modes (n,, n)) with n, + n, = const. spatially
overlap, as harmonic oscillator modes with equal n, + n,have the same
energy. Correspondingly, the TEM,, mode can be distinguished from
the group of modes TEM,, and TEM,, but the latter two overlap. This
canbeseenmoreclearlyinalinear colour scale (Extended DataFig.5),
however there the thermal part is not visible anymore. For A =5, cor-
responding to an anisotropic 2D harmonic oscillator potential with
w, = 5w, (middle panel), one observes equidistantly spaced modes
except for the few lowest modes owing to slight distortionsin the poly-
mer structure. The mode degeneracy increases every fifth mode, as
canbeseenby the step-likeincrease inintensity at those modes. Inthe
raw spectrum, thisisreflected by the emergence of multiple parabolas
corresponding to the different quantum numbers n, along the strongly
confined ydirection. One correspondingly finds the emergence of the
second dimension (n,=1) around the fifth mode (n,=5) along the
relaxed x direction. The potential with A =22 displays 1D harmonic
oscillator modes (bottom panel) in the raw spectrum, with an energy
spacing of 0.37 THz, and the integrated spectrum correspondingly
shows discrete peaks withadegeneracy of one (see also Extended Data
Fig.3). Thisis characteristic for the absence of the second dimension
inthe recorded energy interval and which is confined by the trap for
the strongly asymmetric harmonic oscillator potential, demonstrating
thata photongas trapped in this potential can be considered as being
effectively 1D. The photon distribution in all three cases well follows
the Bose-Einstein distribution; the grey markersin Fig. 3aindicate the
expected photon distribution when neglecting the width of the indi-
vidual modes. The theory estimations were calculated using a Bose—
Einstein distribution g(E)(e®=®/ks™ —1) , with the degeneracy g(£).
We use the energies of a quantum harmonic oscillator spectrum,
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Fig.3|Photon gas spectroscopy. a, The integrated spectrum of the cavity
fluorescence for the 2D (A =1), 2D-1D (A = 5) and 1D (A = 22) harmonic oscillator
potential (blue diamonds indicate measured data points, interpolated witha
blue curve). The grey diamonds indicate the expected Bose-Einstein distribution
of photons at T=300 K, evaluated at the measured position of the harmonic
oscillator modes. The grey line interpolates between these points for better
visibility. b, Imaging the cavity emission dispersed by a grating onto acamera
(raw spectra) allows one to image the shape of the first few modes. For the 2D-1D
case, the energy states associated with the first excited mode of the tightly
confined dimension appear at around the fifth mode. The photon number N
ineach caseis chosenin the quantum degenerate regime, such that allmodes
arevisible; that is, the population N, in the ground mode does not substantially
exceed that of the excited modes, that is, N,/N = 0.3,0.18 and 0.3 for 2D, 2D-1D
and 1D, respectively. An additional spectrum deep in the quantum degenerate
regime for 1D is shown in the online methods.

E=h [wxnx + wyn, + %(wx + wy)]. The trap frequencies w, and w, are
extracted from the mean mode spacing of the measured spectra, and
we truncate the theoretical spectraby excluding the energy levels that
exceed the trap depthinferred from the measured spectrum, and the
photon number at each mode is determined by calibrating the signal
from the sCMOS camera. The experimental data well follow the theo-
retical expectations, apart from a slightly lower mode population for
the 2D case. Whenincluding the mode profile of individual modes, the
measured spectrum also in this case well follows expectation for a
thermal distribution at 300 K (for details, see Extended Data Figs. 4
and 5and Methods).

Using the measured spectra, we extract the photon numberinthe
ground mode and the excited modes, respectively, as afunction of the
total photon number, as shown in Fig. 4. Here, one clearly observes a
smooth crossover in the ground state population for the 1D case, as
expected as in 1D no phase transition to a Bose-Einstein condensate
occurs. The transition becomes sharper for A = 5and shows the steep
increase that is associated with the phase transition for the isotropic
2D potential withA = 1. Inthe latter case, we also observe the saturation
of excited modes, as expected for a phase transition fromathermal gas
to a Bose-Einstein condensate. For the 1D case, the number of states
boundin the potential is smaller thanin the 2D case, and correspond-
ingly the softening of the phase transition when crossing from 2D to 1D
mightalsoindicate afinite size effect. Toinvestigate this, Fig. 4d shows
thetheoretical expectations for a2D harmonic potential with the same
number of energy levels asin the 1D case. While one observes a soften-
ing due tofinite size effects, the effect is smaller than for the transition
to1D, and correspondingly the experimental datagive evidence for the
dimensional crossover from1Dto 2D. Thisis also visible in Fig. 3a, where
no macroscopic populationin the ground mode s visible.

The influence of the dimension on the phase transition can be
explored by studying the order parameter when tuning the system
parameters. As for our case the temperatureis fixed at room tempera-
ture, the tuning parameter is the total photon number, and we use the

a b
Z =3
C C
S S
2 =
° <
3 3
Q Q
[e} [e)
(=% a
T T T
0] 1 2 3
N/N
c d
= S 1
C c
S 9
= =
] S
3 >3
Q Q
o] [e]
o o
o1
[0} 1 2 3
N/N N/N

Fig. 4| Ground versus excited mode populations. a-c, The populationinthe
ground mode (blue dots) and excited modes (green diamonds) for the 1D case
(a,1=22),the1D-2D case (b, A = 5) and the isotropic 2D potential (c) for avarying
total number of photons. The solid lines give the theoretical expectations
assuming a Bose-Einstein distribution within the modes. d, A comparison of the
theoretical expectations for the populationin the ground mode fora1D (red) and
a2D (blue) potential with an equal number of energy levels, with trap depth of
1.2k T (solid lines) for a finite size system and a quasi-infinite system (dash-dotted
lines) with adepth of 10k;T. One clearly observes that the effects from the finite
size of the system are weaker than the effects of the dimensional crossover. For
better comparison, the horizontal axis for each data set is scaled to the photon
number N, with N = 628, 64 and 23 photons for the 2D, the 2D-1D and the 1D
harmonic oscillator potentials (see text). Error bars showing the statistical
standard deviations are on the order of the marker size. Data are presented as
mean values *s.d.

absolute value of the chemical potential || as an order parameter. To
find the chemical potential i, we first extract the internal energy from
spectraasin Fig. 3 for different total photon numbers. For each spec-
trum, we set the ground mode energy to be the zero point energy of
the harmonicoscillator, £, = fi(w, + @,)/2, count the number of photons
ineach energy level, multiply by the corresponding mode energy and
sum over the whole spectrum, yielding the internal energy as shown
inFig. 5b. For all shown aspect ratios, the internal energy per photon,
U/N, decreasesforincreasing photon numbers, indicatinganincreasing
populationinthe low-energy states. As we do not expect asharp phase
transitionin1D (and thus no well-defined critical photon number), for
better comparison, each data set is scaled to the photon number N
where the chemical potential u(N) equals half the chemical potential
at low photon number, u(N) = u(N — 0)/2, that is, halfway between
the chemical potential for the classical gas and the quantum degenerate
case. We extract this number from the theoretical curves based on
Bose-Einstein distributed occupations within modes (see the online
methods and Extended Data Fig. 6 for details), which yields N = 628,
64 and 23 photons for the 2D, the 2D-1D and the 1D harmonic oscillator
potential, respectively. In the isotropic 2D potential (A =1), the
curve changes slope sharply around N/N = 1, indicating the presence
of a phase transition, while in the 1D potential (A =22), the slope
changes monotonically, and shows the absence of a thermodynamic
phase transition. For the anisotropic 2D potential (A = 5), the U/Nslope
indeed has, although less strong, asharp change asin the 2D isotropic
potential (Fig. 5).

Thisis visible more strongly in the chemical potential, by numeri-
cally taking the partial derivative of the internal energy Uwith respect
to the photon number N. The numerical derivative was done by first
binning the photon number data for U (bins of photon number in a
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Fig. 5| Caloric properties. The change from a phase transitionin2D toa
crossover in1Dis visible in the chemical potential. a, The measured change
(symbols) in the absolute value of the chemical potential |u| in units of the
thermal energy (k;T) from 1D to 2D (1D, 2D-1D and 2D) harmonic oscillator
potentials as a function of the normalized photon number N/N, where the zero
point energy is set to zero, with theoretical expectations (solid curves) for
corresponding harmonic oscillator potentials. b, The measured internal energy
per particle (photon), in units of k; 7, (symbols) as a function of the normalized
photon number N/N, for the 2D, 2D-1D and 1D harmonic oscillator potentials
(from top to bottom), with their corresponding theoretical expectations (solid
curves). Error bars show statistical standard deviations, and data are presented as
mean values +s.d.

geometric series spacing withacommonratio of1.2,1.3and 1.2 for the
2D, the 2D-1D and the 1D harmonic oscillator potential, respectively) to
suppress numerical noise (see Extended Data Figs. 7-9 for the influence
of the binning). As expected, the absolute value of u decreases for all
three aspectratios withincreasing photon number. The sharp drop fol-
lowed by the saturation at the ground state energy for the isotropic 2D
case (A =1) indicates the expected phase transitionin two dimensions,
while forincreasing A we observe agradual softening of the transition
toacontinuous crossover for the 1D potential. Thus, the changeinthe
dimension of the potential from 2D to 1D leads to acrossover between
the different regimes of the Bose gasinstead of asharp phase transition
toacondensate phase.

To conclude, we have experimentally studied the dimensional
crossover from a 2D isotropic harmonically trapped photon gas to a
photongas confined to 1D around the transition froma thermal to the
quantumdegenerate case. This crossover is accompanied by a soften-
ing of the phase transition, which crosses from a true second-order
phase transition to a Bose-Einstein condensate in 2D to a continuous
behaviourin1D, indicated by the behaviour of the chemical potential
andtheinternal energy of the photon gas for different photon numbers.

For the future, it will be interesting to study different trapping
potentials for the photons, and investigate the spatial correlations’®.
While in 1D for the harmonically trapped system no true long-range
orderis possible, inour finite-size system the correlations can extend
over the whole system. In the cavity platform, the losses can be tuned
from a nearly lossless system to the case of a driven-dissipative con-
densate by modifying the low-frequency cutoff*, which is expected
to alter the correlations in the system, and additionally influence the
polarization properties of the condensate®. Also, the structuring
method presented here, based on polymer structures within the cavity,
allows great flexibility in the design of potentials for photons, rang-
ing from continuous potentials such as the ones presented here to
tunnel-coupled lattice structures with large tunnelling rates. For exam-
ple, potentials with alogarithmic level spacing have been proposed for
factorization of large numbers®, and in tunnel-coupled potentials, the
influence of loss and drive, for example, leads to stable vortices*’*,
clustering® or the emergence of a Kardar-Parisi-Zhang-like scaling

in the correlations'®, and for 1D chains the emergence of surface states
is possible in the presence of aretarded thermooptic interaction®.
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Methods

DLW of the polymer structures

DLW is an established fabrication method in which a laser is focused
into a photosensitive material, which usually initiates a polymerization
reaction®’. However, the energy of one photon is not sufficient to excite
the photosensitive material. By using a femtosecond-pulsed laser and
strong focusing, the high field strength at the focal point canlead to the
‘simultaneous’ absorption of two photons. Owing to this two-photon
process, the excitation only takes place in the volume around the focal
point. Thisalsomeans that, in contrast to other lithography methods, this
fabrication method is notbound by the Abbe limit, asonly above a certain
thresholdis the intensity high enoughtostarta polymerizationreaction.
If enough polymerization reactions are started in a given volume, the
polymers will tangle up or crosslink and form a solid piece of polymer.
For the photoresist we used typically, aminimum polymerized volume
(voxel) hasdiameters of 100 nm (x, y) and 250 nm (z). Moreimportant for
thestructuresinthis manuscript, however, is the precision with which the
laser focus can be positioned relative to the substrate, as this limits the
surfaceaccuracy.Inour case, thisis done viathree capacitively controlled
piezoelectric stages (inx, y, z), each reaching in closed-loop operation
nanometre precision. After the writing process, the excess liquid pho-
toresist is removed with solvents (propylene glycol monomethyl ether
acetate and isopropanol) and only the solid structures remain.

To demonstrate that we can indeed fabricate structures using
DLW with the needed surface accuracy, Extended Data Fig. 1 shows
exemplary atomic force microscopy measurements of one polymer
structure for an isotropic potential. The difference between the pro-
grammed shape and the measured height profile is smaller than100 nm
everywhere, exceptonthe edges of the structure. This verifies that we
canindeed fabricate structures with the lower of the trap frequencies
as designed. We can also fabricate the steeper trap with higher trap
frequencies accurately (in the squeezed y direction), as can be seen
fromthefactthat,inthespectra, the eigenenergies correspond to the
predicted energies for the corresponding ratio of the trap frequencies.

Preparation of the photon gas

Cavity construction. The used experimental apparatus is similar to
as described in earlier works (see refs. 19,33 for details). The cavity is
built with two plan mirrors with reflectivity above 99.995%, with nano-
structured potentials on the surface of one of the mirrors, spaced by
~1.4 um. The mirrors are placed on mirror mounts with piezoelectric
tilt adjustment, which in turn are mounted on a three-axis stage for
cavity alignment. One of the mirrors is mounted on a piezo stage for
fine adjustment of the cavity length (along the z axis) to tune the cav-
ity cutoff. The mirrors are brought close to each other, and a drop of
dye solution containing 1 mmol concentration of Rhodamine 6G in
ethyleneglycolisadded, and held in place by surface tension. Further
reduction in cavity length is done using the piezo stage until the lon-
gitudinal mode number g, is constrained by g <12, which assures that
other longitudinal cavity modes are not excited by the fluorescence
of the dye and correspondingly the photon gas effectively becomes
two dimensional. The dye molecules are excited using a pump laser
beam cavity at O° incidence. The laser beam at 532 nm wavelength
is chopped in time into 500 ns pulses with a 50 Hz repetition rate to
prevent bleaching as well as heating of dye molecules. The pump light
is shaped spatially with a high-power spatial light modulator to match
the profile of the polymer structures.

Inthe cavity, the dispersionrelation due to the short mirror spac-
ingis modified with respect to free space and acquires quadratic, that
is, massive particle-like, character. The transverse TEM,, mode of the
parabolic potentialsbecomesthe lowest populated eigenmode, which
actsasalow-frequency cutoffat energy fiw,. = hc/A., where A, hand care
the cutoff wavelength, Planck’s constant and speed of lightin vacuum,
respectively. This energy corresponds to a photon rest mass of m = fiw/
(c/n)?, where c denotes the speed of light and n = 1.43 is the refractive

index of the solvent ethylene glycol. For such asystem, itis known that
aBose-Einstein condensate exists at thermal equilibrium conditions
fora 2D harmonic potential®,

Thermal equilibrium of photons in the cavity is achieved as the
photons are absorbed and re-emitted many times by the dye molecules,
provided the dye fulfils the Kennard-Stepanov relation, which is the
case for Rhodamine 6G to good accuracy. The conversion of pho-
tons into dye electronic excitations and vice versa induce a thermal
spectral distribution of the photon gas at the temperature of the dye
rovibrational excitations, which are at room temperature. Given that
thermal emission is negligible in the limit of fiw. > ki T, temperature
and chemical potentials are independently tunable. This is a striking
difference to the usual case of black-body radiation where photons
vanish in the system walls upon lowering the temperature instead of
exhibiting condensation. In our experiment, the chemical potential of
the photons (and correspondingly the photon number) is determined
by the ratio between excited and ground state molecules, whichis set
by the power of the pump laser. Assuming equal statistical weights of
the rovibronic manifold in ground and excited molecular states, one
can express the chemical potential of the photons via

. MT h(wzpL—oc)
e’ = —'@ kel
M,

where M, and M, denote the population in the molecular excited and
ground state, respectively, fiw, is the low-energy cutoff and fiw,p, is
the energy of the zero phonon line of the used dye®. We note that,
owing to the coupling to the bath, also small ensembles of photons
can exhibit a thermal distribution. As the temperature (and thus the
spectral distribution) areimprinted by the dye solution, in principle a
single photon can (on average) show thermal properties, and for the
case of afew photons this has been demonstrated experimentally*>***,

The repeated absorption-emission cycles can be seen as an
exchange of both energy and particles, thus the dye acts as areservoir
inthe grand canonical sense. This canlead to grand canonical fluctua-
tions in the photon number. However, in our experiment, we average
over multiplerealizations, and correspondingly those fluctuations are
averaged out. Additionally, the fact that the photons are coupled to a
heat bath implies that thermalization is decoupled from the photon
number or the dimension. This is in contrast to, for example, atomic
Bose gases, where thermalization occurs via particle-particle collisions
and thus only slow or even no thermalization occurs for low particle
number or in1D, where the system becomes integrable?**°.

Theoretical modelling

Bose-Einstein distribution. To calculate the spectral and spatial distri-
bution of the photongas trappedinadye microcavity, we calculate the
bound energy levels ¢;and their degeneracy g;for the given potential.
The required trapping frequencies w, and w, as well as the trap depth
areinferred from the measured spectra, and compared with the design
parameters. Using the measured energy levels, we calculate the spectral
photondistribution using a Bose-Einstein distribution

g.

Ni = e—:u

exp (7)1

where the chemical potential i is calculated using the measured total

photon number NviaN =3 ﬁ Correspondingly, there are no

exp ﬁ -1

free parameters; the theoretical expectationis completely determined

by measured parameters. The corresponding theoretically expected

ground state population Ny = ﬁ and the excited state popula-

exp o7 -1

tion Nexcited = Dizo ﬁ for given total photon number N can then

exp| - )-1

kgT

be determined.
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Summing over the bound energy levels weighted with the corre-
sponding occupation givesthe expected internal energy U= E, . + €N,
where E,e = '"n—jz isthe effective rest energy of the photons.

The chemical potential is extracted from the internal energy by
taking the partial derivative of Uwith respect to the total photon num-
ber N, thatis, u = ‘;—z For better comparison, we set the energy of the
ground state to zero; that is, the chemical potential approaches zero
for large photon number in all cases (Fig. 5a).

Spatial density distribution. For the spatial distribution, we assume
wavefunctions of the quantum harmonic oscillator

1 me\ mw,x> mo,
‘p"(x)_m( ) o= )y T

We then take the outer product of the wavefunctions along x and
ydirections and square it to get the density of each mode. The total
density distributionis calculated by summing over allmodes weighted
with the calculated mode occupancy N,

v = [Yi0; (PN,

For the excited modes, we use a similar approach to give

Wexcited = Z |¢1(X)‘p,*(y)|2N1 >
i#0

which gives the spatial density distribution of only the excited states.
The effective photon mass m = 2nfin%/(Ac) is determined by the known
cutoff wavelength A, (whichin our case is ~580 nm) and the refractive
index n of the dye solution.

Determining the crossover point N. While for 2D the critical point
for the phase transitionis well defined, in 1D, where a true phase transi-
tionis absent, adefinition for a critical photon number is not possible.
To compare the different potentials, we determine a crossover point
at which u(N) = u(N > 0)/2 using the theoretical expectations for the
corresponding potentials. In the classical regime, that is, for small
photon number, the chemical potential approaches a constant value,
while in the quantum degenerate regime the chemical potential
approaches zero. Correspondingly, the midpoint between these
extremes indicates the crossover from classical to quantum
degenerate.

Interestingly, the crossover point N is close to the photon number
at which the theoretical expectation for U/N changes its slope in a
double log plot, as shown in Extended Data Fig. 6. For small photon
number, we expect a Boltzmann-like behaviour for the classical photon
gas, while quantum statistics is expected as soon as the coherence
lengthisonthe order of the size of the potential. Correspondingly, the
inner energy changes its slope. To determine the crossover point, we
fit a straight line to the linear part of the curve to either side of the
change of curvature, and the intersection point of these two straight
lines is found to be 611, 63 and 19 photons for the 2D, 2D-1D and 1D
potentials, respectively. We want to emphasize that other definitions
for the crossover point are also valid. As both theory and experiment
are scaled by the same factor, this only leads to a horizontal shift of all
curvesinthe logarithmic plots.

Spectroscopy of the photon gas

Cavity fluorescence. The cavity fluorescence is captured by an objec-
tive; after filtering out the pump light, the light passes through a polar-
izer aligned to the polarization of the ground mode. As our system is
driven-dissipative, the ground mode (with the fastest emission time
scale) is slightly polarized, with a preferred direction along the pump
light polarization, while thermal modes are unpolarized*®. The light is

thensplitinto two arms: 70% of the light is guided to the spectrometer,
while the remaining 30% is imaged onto a sCMOS camera to measure
density profiles. Inthe spectrometer arm, the light isexpanded in the
Fourier plane onto the grating, and the dispersed light is thenimaged
onto the sCMOS camera using a spherical lens.

To calibrate the photon number we, replace the cavity mirror
pointing away from the spectrometer by the output of an optical fibre
connected to a tunable dye laser. From the known power at the fibre
output and the measured signal on the spectrometer camera, we can
determine the transmission function of our setup. We do this for differ-
ent wavelengths within the spectrum of our photon gas, and extrapo-
late between those points using the known mirror transmission. By
this, we can calculate the photon number for each measured spectrum.

Momentum space distribution. Additionally to the spatial distribu-
tions, we can also image the momentum space distribution of our
photongas. Exemplary distributions are shown in Extended Data Fig. 2
for the 2D and 2D-1D case, both in the classical and in the quantum
degenerate regime. Similar to the real space distributions in Fig. 2,
the distributions well follow the theoretical expectations. Outside
the potential, one also observesresidual fluorescence from free-space
modes not confined by the potential. As expected for harmonic trap-
ping, the momentum space images are rotated by 90° with respect to
thereal spaceimages for the 1D-2D case; that s, the spatially confined
direction has a broader momentum space distribution, both for the
thermal part and for the ground mode.

Spectrum analysis. The spectrometer first expands the light in the
Fourier plane onto the grating, and the dispersed light is thenimaged
onto the sCMOS camera using a spherical lens. One exemplary spec-
trum of the cavity fluoresce for the 1D potential is shown in Extended
Data Fig. 3. The dispersion is along the horizontal axis, and owing to
theslitless nature of the spectrometer, the mode profiles are preserved
along both vertical and horizontal axes (Extended Data Fig. 3a). By
integrating the raw spectrum image along the vertical axis and apply-
ingthe transmission correction explained above, we obtain processed
spectraasshownin Extended DataFig.3b. This spectrumis aconvolu-
tion of the spectral information and the (horizontal) spatial profile
of the different modes. While the low energy modes can be resolved
individually, for the higher energy modes this convolution leads to a
‘smearing out’. Thus, to extract the temperature, one needs to compare
the convoluted spectra with the measured data, which in our case
well agrees to a Bose-Einstein distribution at a temperature of 300 K
(Extended DataFig. 4).

This convolution between spectral and spatial information can
be solved by either using a diffusor or an Ulbricht sphere in front of
the spectrometer to destroy the spatial information, or by tomog-
raphy using a moving slit in front of the spectrometer. However,
owing to the weak signal for the 1D potential, this is not feasible in
our current setup.

Extended Data Fig. 5 shows an exemplary spectrum for the 2D
case with alinear colour scale. While the thermal tail is barely visible
in the linear scale, one can clearly observe that the lowest modes are
well separated and do not overlap. The Gaussian profile of the ground
modeis visible, while the higher modes are degenerate n, + n, = const.;
thatis, mutliple modes overlap spatially, and their shapeis correspond-
ingly not observable.

Extraction of thermodynamic quantities. The internal energy U is
measured by multiplying the integrated spectrum with the correspond-
ing energy and then summing over the product. In Extended Data
Figs. 7-9, the grey data points correspond to the measured energies
U/N, and itis apparent that the data points have high frequency noise
that would lead to high numeric noise (when taking the numerical
derivative) for the evaluation of the chemical potential u. To mitigate
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this, we binned the data points (U) into bins spaced in a geometric
series; to demonstrate the binning effects, databinned with three dif-
ferentcommonratiosare showninblue, greenandredin Extended Data
Figs.7-9.Inthe second row, the corresponding chemical potential ||
extracted fromthebinned datais plotted along with theoretical expec-
tations (solid black curve). The binning indeed influences the amount of
noiseinthe chemical potential |u| but does not substantially change the
phase transition or crossover features. The smaller bin sizes (smaller
common ratio) enhance the numerical noise (blue data points) for all
potentials, whereas larger bin sizes (larger common ratio) reduce the
numerical noise but result in only a few data points (red data points).
Hence, we choose bin sizes with a common ratio between these two
extremes for our analysis.

Data availability

The data presented in this manuscript are available via Zenodo at
https://doi.org/10.5281/zenodo0.10571407 (ref. 44). Source data are
provided with this paper.
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Extended Data Fig. 2| Momentum space distributions. Exemplary momentum distributions integrated along the k. direction, together with the corresponding

space distributions of the cavity fluorescence for the 2D (panel a) and the 2D-1D expectation as ared dotted line. The broad distribution extending to regions with
case (panel b) in the thermal (that is classical) and quantum degenerate regime. wavevectors which cannot be trapped by the potential (indicated by the grey

The red dashed circle denotes wavevectors with k)z( + kj = 2mV/h?, and the black shaded areas) is attributed to the emission from free-space modes not confined
circle the numerical aperture of the imaging system. The side panels show inthe potential.

Nature Physics


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-024-02641-7

photon number = 38.96+/-0.59
Wavelength [nm]

572 573 574 575 576 577 578 579 580
0
- 1.0
]
c o 20
S ° 0.5
© = .
5 o
[}
£ 40
0.0
0 50 100 150 200 250
Pixels
_ 100
5 075 -
g
8 050
©
=4
S 0.25 o
(2]
0.00
T T T T T T T T T
572 573 574 575 576 577 578 579 580
Wavelength [nm]
'
S 200
g
c
£ 100
173
o
o
0 -
T T T T T
0 5 10 15 20
Mode number
Extended Data Fig. 3 | Spectum Analysis. Exemplary spectrum of the cavity axis as marked by the arrow. b, the integrated, transmission-corrected spectrum,
fluorescence for the 1D case. a, raw image of the spectrum on the spectrometer inalinear scale. Panel c shows the position of the observed modes fromb asa
camera, the vertical axis is the spatial axis and the horizontal axis is both the function of the mode number. As expected for a harmonic oscillator potential,
(compressed) spatial and dispersive axis. The integration is along the vertical we observe alinear increase in mode energy with the mode number.
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Extended Data Fig. 4 | Thermal tail temperature. Comparison of the thermal
tail of the measured spectrumin the 2D case, together with the theoretical
expectation, convoluted with the mode profiles for atemperature of 300K (panel

a),380K (panelb) and 220 K (panel ¢), respectively. The datais the same as shown

inFig. 3a, note that only the thermal modes with energies atleast h x 1ITHz above
the ground mode are shown. The good agreement shows that our photon gas
within uncertainties can be described by aroom temperature distribution.
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theoretically expected inner energy U/N as a function of photon number N (black
points) for 1D (a), 2D-1D (b) and 2D (c). The green and red lines are fits in the linear

regions before and after the curve starts changing slope. The photon number
where both lines intersect is indicated by the black dashed line. This number is
determinedtobe N =19(a), N = 63 (b),and N = 611(c).
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Extended Data Fig. 7 | Binning effects on caloric properties for the 2D
potential. Binning effects on U/N and |u| for the 2D potential. a-c, The mean
value of the unbinned internal energy per particle U/Nis plotted ingrey in the
upper row with corresponding theoretical expectations in the black solid curve.

ratios 1.145,1.271and 1.381 are plotted in blue, green and red in three separate
columns. d-f, Corresponding data for the chemical potential |u| (symbols) is
plotted in the lower row with corresponding theoretical expectations in the

black solid curve.

Binned dataas mean values +/- SD with a geometric series spacing with common
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Extended Data Fig. 8 | Binning effects on caloric properties for the 2D-1D
potential. Binning effects on U/Nand |u| for the 2D-1D potential. a-c, The mean
value of the unbinned internal energy per particle U/Nis plotted ingrey in the
upper row with corresponding theoretical expectations in the black solid curve.
Binned data {as mean values +/- SD} with a geometric series spacing with common

ratios 1.189,1.278 and 1.523 are plotted in blue, green and red in three separate
columns. d-f, Corresponding data for the chemical potential |u| (symbols) is
plotted in the lower row with corresponding theoretical expectations in the black
solid curve.
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Extended Data Fig. 9 | Binning effects on caloric properties for the 1D
potential. Binning effects on U/N and |u| for the 1D potential. a-c, The mean
value of the unbinned internal energy per particle U/Nis plotted ingrey in the
upper row with corresponding theoretical expectations in the black solid curve.
Binned data {as mean values +/- SD} with a geometric series spacing with common

NN N/N

ratios 1.144,1.198 and 1.318 are plotted in blue, green and red in three separate
columns. d-f, Corresponding data for the chemical potential |u| (symbols) is
plotted in the lower row with corresponding theoretical expectations in the black
solid curve.
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