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Compressibility and the equation of state
of an optical quantum gas in a box
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The compressibility of a medium, quantifying its response to mechanical perturbations, is a fundamental
property determined by the equation of state. For gases of material particles, studies of the mechanical
response are well established, in fields from classical thermodynamics to cold atomic quantum gases. We
demonstrate a measurement of the compressibility of a two-dimensional quantum gas of light in a box
potential and obtain the equation of state for the optical medium. The experiment was carried out in a
nanostructured dye-filled optical microcavity. We observed signatures of Bose-Einstein condensation at high
phase-space densities in the finite-size system. Upon entering the quantum degenerate regime, the
measured density response to an external force sharply increases, hinting at the peculiar prediction of
an infinite compressibility of the deeply degenerate Bose gas.

Q
uantumgasesof atoms, exciton-polaritons,
and photons provide a test bed for many-
body physics under both in- and out-of-
equilibrium settings (1–3). Experimental
control over dimensionality, potential

energy landscapes, or the coupling to reser-
voirs offers wide possibilities to explore dif-
ferent phases of matter. For cold atomic gases,
thermodynamic susceptibilities and transport
properties have been extracted from density
measurements (4–9) and have proven to be
direct manifestations of the equation of state
(EOS). In general, the EOS of a material—for
example, its pressure-volume relation—describes
both the thermodynamic state of a system un-
der a given set of physical conditions as well
as its response to perturbations as mechanical
compression. Experimental investigations of
the EOS in quantum gases constitute a tool for
the characterization of phases and the identi-
fication of phase transitions, enabling impor-
tant tests of physical models in a wide range of
systems, from the ideal gas to superfluids and
the interior of stars.
Quantum gases of light have so far been ex-

perimentally realized in low-dimensional set-

tings,mostly two-dimensional (2D) systems (3).
Thermalized photon gases with nonvanishing
chemical potential m as well as Bose-Einstein
condensation (BEC) have been demonstrated
in dye-filled optical microcavities at harmonic
confinement (10–12), includingmeasurements
of density-insensitive thermodynamic quan-
tities (13). By contrast, the isothermal com-
pressibility kT = n–2(@n/@m)T at temperature
T depends on the (local) particle densityn in the
gas; for a systematic study, it thus is desirable to
avoid spatially inhomogeneous density distri-
butions inherent to harmonically trapped gases
and instead prepare uniform samples, in which
applying a spatially uniform force directly
allows one to compress the gas and probe kT.
BEC does not occur in the infinite 2D homo-

geneous Bose gas given that thermal fluctua-
tions at finite temperatures destroy long-range
order (14). Although interactions nevertheless
stabilize a superfluid through the Berezinskii-
Kosterlitz-Thouless (BKT) mechanism, the infi-
nite 2D ideal gas is doomed to remain quantum
degenerate without forming a condensate. For
a finite-sized homogeneous gas in a box, how-
ever, condensation is expected to be possible if
the correlation length exceeds the system size
at large phase-space densities (15). In ultracold
atoms, the crossover between saturation-driven
BEC and interaction-driven BKT superfluid-

ity has been investigated in 2D harmonically
trapped Bose gases by tuning the interactions
using a Feshbach resonance (16), whereas
studies of homogeneous gases in box poten-
tials have focused on the interacting regime
(17–19). In uniform gases of exciton-polaritons
(20), on the other hand, the observation of BEC
is hampered by reservoir-induced interactions
and nonequilibrium effects. Up to now, the
compressibility and the EOS have not been
determined for optical quantum gases.
We examined a 2D quantum gas of photons

in a box potential. In the finite-size homoge-
neous system, we observed BEC, as evidenced
from the measured position and momentum
distributions. In subsequent experiments, a
mechanical force was exerted onto the photon
gas prepared in a regime around the phase
transition. By studying the density response to
minute forces, we measured both the bulk iso-
thermal compressibility and the EOS of the
optical quantum gas.
Our homogeneous 2D photon gases were

prepared in a nanostructured optical micro-
cavity filled with a liquid dye solution (Fig. 1A)
(21). The photons in the short cavity with
mirror spacing on the order of the optical
wavelength form a 2D gas of particles with
an effective mass m, which are described

by their transverse momentum k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
.

To spatially confine the unbound plane-
wave states of a 2D homogeneous system, we
implemented a box potential of size L as a
container for the photons. The box potential
was realized by using a nanostructuring tech-
nique (21, 22), which imprints a position-
dependent static surface elevation onto one of
the cavity mirrors. The locally reduced cavity
length results in a repulsive potential. Thermal-
ization of the photon gas to room temperature
was achieved with absorption and reemission
processes on the dye molecules (10). An exem-
plary density distribution of a trapped gas is
shown in Fig. 1B, recorded by imaging the cav-
ity emission, and optical frequency spectra over
the trapped range V0=ℏ ∼ 2p� 9 THz above
the cavity low-frequency cutoff nc=mc2/(2pℏ)
are given in Fig. 1C, where ℏ is the reduced
Planck’s constant and c is the speed of light,
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Fig. 1. Trapping a homogeneous 2D
photon gas. (A) A spatially structured
microcavity filled with dye molecules
confines and thermalizes the uniform
photon gas. The locally elevated surface
of one of the cavity mirrors realizes a
repulsive box potential. (B) Example
surface density of a uniform photon gas
in a square box with L = 80 mm.
(C) Spectral distributions of the cavity
emission exhibit an exponential decay
that is consistent with T ≈ 300 K, indicating a thermal equilibrium photon gas. The population in the low-frequency modes is enhanced as Nc/N approaches unity.
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for different total particle numbers N. All
spectra show an exponential decay of the
population in the high-frequency states that
is consistent with kB/(2pℏ) × 300 K, with
Boltzmann’s constant kB, which we attribute
as evidence for the gas to be thermalized.
Moreover, the population in the lowest-lying
states was enhanced as we increased N be-
yond a critical value Nc, which signals the
emergence of a low-entropy phase.
We explored the quantum degenerate be-

havior in the finite-size homogeneous system.
Surface densities in the box for differentN are
shown in Fig. 2A. Below the critical photon
numberNc, the bulk density is uniform as for a
normal gas, whereas above Nc, we observed a

macroscopic occupation of the ground state
y1;1 x; yð Þ�� ��2 ¼ 4L�2cos2 px=Lð Þcos2 py=Lð Þ,with
xj j; yj j≤L=2; the qualitative change is evident
from the line profiles. The corresponding mo-
mentum distributions below Nc in Fig. 2A
resemble a Maxwell-Boltzmann distribution
f(k)º exp(–k2/sk

2), withsk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
=ℏ; for

our data, sk = 2.4(1) mm−1 gives T = 295(33) K
(where numbers in parentheses indicate errors
calculated from the uncertainties of the fit
parameters). Upon increasing the photon num-
ber, the population at small k is enhanced and
ultimately dominated by a strongly occupied
ground state at k = 0, the condensate. For large
k, we observed signatures of both microscope
aperture and finite trap depth (21). A closer

inspection in x and k space (Fig. 2A, inset)
confirms that the ground state is Heisenberg-
limited with an uncertainty product DxDk =
0.7(1), which is in agreement with theory
DxDk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2=12� 1=2
p

∼ 0:6.
To quantify the transition point, we studied

the normalized spatial central density n0L
2/N

as a function of the particle number. The tran-
sition at Nc = 3.5(4) × 103 is shown in Fig. 2B;
the limiting cases n0L

2/N = 1 for small N and
n0L

2/N = 4 for large N are well understood to
arise from the uniform normal gas and inho-
mogeneous condensate density withN/L2 and
4N/L2, respectively, at the center. The crit-
ical particle number scales with the predicted
Ncº (L/l)2log(L/l) (Fig. 2C), wherel ¼ 2

ffiffiffi
p

p
=

sk ∼ 1:47 mmdenotes the thermal wavelength.
The logarithmic scaling of the critical phase-
space density Dc shown in Fig. 2C, inset, is un-
derstood from the dependence of the coherence
length reaching the system size (15, 21). At the
largest investigated box sizes, we have Dc ¼
Nc l=Lð Þ2 ¼ 6:3 8ð Þ . For interacting 2D gases
characterized by an interaction strength ~g and
realized in ultracold atoms (6, 7, 15–17, 19), the
BKT phase transition to a superfluid usually
occurs before BEC; for example, for homoge-
neous gases, Dc;BKT ¼ log 380=~gð Þ ∼ 6:5 for
~g ¼ 0:6 (19). Quite distinctly, for photon gases
in dye microcavities, self-interactions with ~g ≤
10�6 (23) imply a much larger Dc;BKT ≥ 20,
and accordingly, both phases are expected to
be well separated.
We identified the BEC-like nature of the

phase transition by extracting the ground and
excited state populations N0 and Nexc, respec-
tively, from the momentum space distribu-
tions as a function of the total particle number
N. The visible saturation of the normal part
is shown in Fig. 3A, which indicates that in-
teraction effects are very small (24); in par-
ticular, the saturation gives evidence that in
our homogeneous finite-size system, BEC is
prevalent instead of BKT. This interpretation
is supported by the deduced caloric proper-
ties of the gas (Fig. 3B), which closely follow
the ideal Bose gas prediction. For the internal
energyU ¼ Eh iNc=N2kBT, where Eh idenotes
the average transverse energy, we observed a
crossover from a quadratic to a linear scaling
in the condensed and normal phase, respec-
tively, as a function of Nc/N. Correspondingly,
its derivative @U/@(Nc/N) is a smooth func-
tion, highlighting that the heat capacities in
the normal and condensed phases are linked
without anydiscontinuities (8, 13). In thenormal-
gas phase, each particle can accommodate only
≈0.5kBT of thermal energy, as well understood
from the finite trap depth (21).
To determine the isothermal compressibil-

ity kT = n–2(@n/@m)T of the optical quantum
gas, we exerted a force onto the photons by
tilting one of the cavity mirrors, which super-
imposes a linear potential U(x) = U0x/L to
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Fig. 3. Saturation and
caloric properties.
(A) Population in the
ground (red) and excited
states (blue), N0 and
Nexc, respectively,
extracted from k space
distributions (as in
Fig. 2A, bottom) versus
photon number N. At
large N, the visible satu-
ration of the normal part Nexc indicates that the phase transition is BEC-like. (B) Normalized internal energy
(red), showing a crossover from quadratic (condensed gas, Nc/N < 1) to linear (normal, Nc=N ≫ 1) scaling,
and the derivative (blue), which reflects the specific heat per particle, versus Nc/N. In the normal phase, the
latter reaches a value near 0.5, which is understood from the finite trap depth V0, and is below the value
of 1 expected for V0 → ∞. Solid lines are finite-size theory.
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Fig. 2. Bose-Einstein
condensation of pho-
tons in a box. (A) (Top)
Density distributions,
(middle) line profiles, and
(bottom) momentum-
space distributions (k0
denotes the trap limit,
kNA denotes the imaging
limit) as N is increased
beyond Nc = 3.5(4) × 103.
Below Nc, the flat-top
density and Gaussian k
space distribution resem-
ble a thermal gas in
the normal phase. Above
Nc, the ground state
becomes massively
populated and deforms
the cloud, which is more
directly observed in
momentum space.
(B) Normalized central
spatial density versus N,
starting from n0L

2/N = 1
in the normal phase
and approaching the
expected value of 4 when the ground state dominates [symbols are as in (A)]. (C) Nc and (inset)

Dc ¼ Nc l=Lð Þ2, extracted from data as in (B), exhibit the predicted scaling (line) with the box size.
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the box, and measured the density response.
The displaced center of mass xh i (Fig. 4A,
y axis) is shown in Fig. 4A as a function of the
tilt U0. In local density approximation (LDA),
with chemical potential m(x) = m0 – U(x), the
center of mass to first order relates to the
compressibility, following xh i=L ¼ �kTnU0=12
(5, 21, 25). For small U0, the data in Fig. 4A
confirms the linear behavior and shows an
enhancement of the density response when
going from the normal to the condensed
phase. The visible saturation for large U0

is caused by the finite box size, which limits
the displacement.
The compressibility is shown in Fig. 4B,

extracted from a linear fit of the region near
U0 = 0 (Fig. 4A), along with theory for the
infinite and finite system. Below the critical
density for condensation Nc/L

2 ∼ 2.6 mm–2,
the photon distribution is spatially homoge-
neous, as visible in Fig. 2, A and B. For these
densities, LDA can be applied (25) to extract
kT by using data with small tilts (U0 ≲ m), even
in the case of very small interactions (21). In
the condensed phase, however, the LDA ceases
to be valid, and the corresponding region in
Fig. 4B is shaded in gray. Within the region of
validity, the compressibility compareswellwith

theory. At densities n ≳ 1 mm–2, we observed a
sharp increase of the compressibility; the
onset is in good agreementwith the prediction
for an infinite noninteracting system (Fig. 4B,
dashed line) (21). The corresponding function
kT = [exp(nl2) – 1]/(kBTn

2l2) exhibits a min-
imum at n ≃ 1.59/l2 ∼ 0.74 mm–2, which is close
to themeasured value of 0.79(5) mm–2. It is well
understood that as the thermal wave packets
spatially overlap, the classically expected de-
crease in compressibility with density (it is
harder to compress a dense gas than a dilute
one) is replaced with a compressibility increase
that stems from the quantum-statistical occu-
pation of low-lying energy levels, reducing the
energy cost for compression as compared with
that of the classical gas case. In the extreme
high-density limit of an infinite-size deeply
degenerate gas, bosons can be added to the
system at essentially vanishing energy cost,
meaning that (@m/@n)T gradually approaches
zero as m→ 0, so that the compressibility takes
arbitrarily large values.
Last, we studied the EOS n = f (m,T) of the

photon gas. The variation of the density n as a
function of the chemical potential m is shown
in Fig. 4C, as determined from combining
recorded density profiles of the gas in a tilted

box at different N; an exemplary density de-
viation from the unperturbed case and the
corresponding line profile n(x) are given in
Fig. 4C, insets. As above, the conversion from
position to chemical potential relies on the
potential gradientU0/L ≈ kB0.6 K mm–1, which
acts as a calibrated differential energy scale
dm = U0/L dx. Our data exhibit a larger slope
than the EOS of the infinite 2D Bose gas, n(m) =
–l–2log[1 – exp(m/kBT)] (Fig. 4C, dashed line)
owing to the finite trap depth, as we confirmed
with numerical calculations (21). Except for
the condensed regime, in which LDA is invalid,
our method reliably extracts the EOS of a quan-
tum gas of light.
We have demonstrated a measurement of

the compressibility of an optical quantum gas
and determined its EOS. The experiment was
carried out by using a 2D photon gas inside
a box potential, both below and above the
phase transition to a BEC. Compression of op-
tical gases may have direct consequences for
thermodynamic machines with light as a work
medium (26). An additional perspective is the
exploration of sound (17–20). The required dy-
namic manipulation of optical quantum gases
is feasible through, for example, electro-optic
trap modulation or spatiotemporally resolved
pumping of the dye reservoir (27). Beyond ideal
gas theory, a nonvanishing healing length can
be achieved by either adding Kerr media or
exploiting the weakly dissipative nature of
photon condensates (28). The demonstrated
homogeneous quantum gas of light in a box
opens new possibilities for studies of univer-
sal phenomena in two dimensions, including
critical behavior (29) and the nonequilibrium
Kardar-Parisi-Zhang phase (30).
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Fig. 4. Compressibility
and EOS. (A) A linear
potential realizes a force
F0 = U0/L that (inset)
compresses the photon
gas. Depending on its
normal (blue) or quantum
degenerate (green)
state, the gas shows a
different center-of-mass
response, fitted in the
linear response region
(lines). (B) The compres-
sibility kT decreases with
density n = N/L2, until
above n ∼ 0.8 mm–2

quantum degeneracy
sets in and the Bose gas
becomes highly com-
pressible as a conse-
quence of the gradually
vanishing energy cost
to increase the density.
At n ≳ 2:6 mm−2 (shaded
region), the kT extraction
ceases to be valid; this
range of validity has been
confirmed numerically
(21). For comparison, we
show finite-size theory (red line; shading indicates uncertainty in V0, which causes the vertical shift),
where the kink at large densities is due to the finite box size, and the prediction for the infinite 2D Bose gas
(dashed line). (C) From the density profiles, we extracted the EOS by combining data for different local
chemical potentials (21). (Insets) Exemplary density deviation Dn from the case with U0 = 0 and line profile.
Lines show theory for finite-depth box (solid line) and infinite-system (dashed line).
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Putting light under pressure
The equation of state of a material system describes the various phases of the material under a set of physical
conditions (pressure, volume, temperature, etc.). The same is true for quantum materials, in which exotic quantum
phases can emerge. Busley et al. examined the mechanical properties of a quantum gas of light (see the Perspective
by Fletcher and Zwierlein). Using light confined to a two-dimensional cavity with a box potential, the authors measured
the compressibility of a photon gas in a regime around the phase transition to quantum degeneracy and determined its
equation of state. The results hint at the formation of a highly compressible Bose-Einstein condensate, and this work
provides a platform with which to study exotic quantum phases at room temperature. —ISO
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