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Abstract
The Tutorial reports recent experimental advances in studies of the dynamics as well as the
number and phase correlations of a Bose–Einstein condensed photon gas confined in a high-
finesse dye-filled microcavity. Repeated absorption–emission-processes of photons on dye
molecules here establish a thermal coupling of the photonic quantum gas to both a heat bath and
a particle reservoir comprised of dye molecules. In this way, for the first time Bose–Einstein
condensation under grand-canonical statistical ensemble conditions becomes experimentally
accessible. The work presented in this Tutorial was one of the four shortlisted finalists of the
2017 DPG SAMOP dissertation prize.

Keywords: Bose–Einstein condensation, quantum optics, correlations, statistical physics, laser
physics

(Some figures may appear in colour only in the online journal)

1. Grand-canonical Bose–Einstein condensation

Large statistical number fluctuations are a fundamental
property known from the thermal behaviour of bosons, as has
been strikingly revealed in experiments with light and mat-
erial particles [1–6]. For low temperatures or high densities,
however, when a Bose gas undergoes Bose–Einstein con-
densation (BEC), the persistence of large particle number
fluctuations can conflict with the conservation of the total
particle number. Accordingly, fluctuations are damped out
and second-order coherence emerges [7–9]. This notion
grounds on the microcanonical or canonical statistical
description of the system, which applies for systems well-
isolated from their environment suppressing both energy and
particle exchange with the environment as e.g. realised in
ultra-cold atomic gases [9, 10]. Following the first observa-
tion of BEC in dilute atomic vapour [11, 12], evidence for the
the emergence of first-order coherence [13–16] and the sup-
pression of density fluctuations [3, 17–20] have provided

hallmarks for the phase transition. More recently, BECs have
also been observed in two-dimensional (2D) gases of exciton–
polaritons [21–24], magnons [25] and photons [26–28].
Quintessentially, these systems are open due to their coupling
to the environment for e.g. particle injection or thermalisation,
which reinforces the relevance of reservoirs for their
description, as for example provided by grand-canonical
statistics.

In the grand-canonical ensemble, the system is subject to
particle (and energy) exchange with a reservoir [29]. For
bosons, the population n in each quantum state suffers large
number fluctuations d  ¯n n, while the fixed chemical poten-
tial (and temperature) accounts for a complete thermodynamic
description of the gas. In the thermodynamic limit, all three
statistical ensembles are generally expected to become
equivalent due to vanishing relative fluctuations of the total
particle number, i.e. d ¯N N 0. Applied e.g. to the macro-
scopically occupied ground state in the Bose–Einstein con-
densed phase ( ¯ ¯n N ), however, in the grand-canonical
ensemble large fluctuations of the total particle number,
d  ¯N N occur. Surprisingly, the statistical fluctuations here
become enhanced as the system temperature approaches
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absolute zero instead of being frozen out. This so-called
grand-canonical fluctuation catastrophe has been a long-
standing issue in theoretical physics [9, 10, 30–37] and its
observation has long remained elusive. Most notably, Ziff,
Uhlenbeck and Kac altogether questioned the physical sig-
nificance of the grand-canonical ensemble in the condensed
phase [32]; their arguments, however, apply only for diffusive
contact between a spatially separated BEC and particle
reservoir.

In contrast, for a BEC of photons in a dye-filled optical
microcavity genuine grand-canonical statistical conditions in
the condensed phase can become relevant. Here, the coupling
of the condensed particles to an effective reservoir is realised
by interparticle conversion between photons, ground and
excited state dye molecules [38, 39]. In this system, we have
for the first time observed grand-canonical number statistics
in a BEC by demonstrating its coupling to both a heat bath
and a particle reservoir [40–42]. These results provided a first
experimental hint at the fluctuation catastrophe. Moreover,
our work revealed phase fluctuations of the condensate wave
function in the wake of grand-canonical statistical number
fluctuations [40, 41, 43].

The present Tutorial contains a theoretical and exper-
imental study of the thermalisation dynamics and first and
second-order temporal correlations of a Bose–Einstein con-
densed photon gas under canonical and grand-canonical
ensemble conditions. The Tutorial is organised as follows:
section 2 introduces the concept of photon BEC, sections 3–5
give a theoretical description of the photon thermalisation
process, along with the BEC number and phase correlations,
while sections 6–8 describe our corresponding experiments.
Finally, section 9 concludes and gives an outlook.

2. Bose–Einstein condensation of photons

Photons depict a prime example among the Bose gases known
today and yet, it has taken almost a century to find ways to
condense them—why? Thermal photons usually do not
become quantum degenerate: in blackbody radiation, for
example, the coupling of temperature and total photon num-
ber prohibits BEC at low temperatures as photons at T 0
vanish instead of forming a condensate2. In optical gases with
a conserved particle number as e.g. in nonlinear micro-
cavities, photon–photon interactions are usually too small to
achieve efficient thermalisation of the light [44, 45].

Quantum fluids of light have nevertheless emerged in
recent years by synthesising dressed light–matter-states [46],
such as exciton–polaritons in microcavities [24] or suface-
plasmon-polaritons [47]. These platforms have provided long
sought-after evidence for condensation, coherence [21–23,
48–50] and thermalisation [51–54] in optical quantum gases.

More recently, BEC of pure photons has also become
tractable by implementing a photon thermalisation mech-
anism with an incoherent molecular medium that realises a
non-zero chemical potential for the light [55]; see [56, 57] for

similar concepts. The first observation of photon BEC in 2010
by Klaers et al [26, 27, 58] has been confirmed in more recent
work by Marelic et al [28] and Greveling et al [59]. In the
meantime, a number of experiments have elaborated on the
thermalisation [41, 60, 61], the calorimetry [62], the first-
order spatial coherence [63, 64], the first- and second-order
temporal correlations [40, 43], the polarisation properties
[65], non-local interactions [66] and the generation of lattices
and micropotentials for photon condensates [67, 68]. Key
aspects that are related to the topics discussed in this Tutorial
have been studied in a (non-exhaustive) series of theoretical
work on photon condensation and its dynamics [69–72], on
grand-canonical particle number correlations [39, 58, 73], on
phase diffusion [74] and on the relation of photon con-
densation and lasing [75, 76].

In this section, we introduce the scheme for BEC of
photons in a dye-filled optical microcavity with a focus on
thermal and chemical equilibrium, the microcavity dispersion
and the statistical physics of the photons.

2.1. Photons in a dye-filled microcavity

Figure 1 shows our microcavity experiment, which consists of
two curved mirrors spaced by mD 1.4 m0 (or m1.6 m) and
filled with a liquid dye solution. At a mirror separation

l= ˜D q n20 0 the resonator encloses q=7 (or 8) half waves,
which corresponds to a free spectral range of adjacent long-
itudinal cavity modes l lD = ñ D2 80 nm2

0 0 ( nD 
75 THz) comparable to the spectral width of the dye fluor-
escent emission (figure 1(b)). Here, λ denotes the optical
wavelength in vacuum and ñ0 is the refractive index of the
dye solution. Accordingly, photons associated with a fixed
longitudinal wave number q are absorbed and emitted into the
resonator differing only in their transverse quantum numbers
m and n. Effectively, this reduced dimensionality introduces a
low-energy ground state (‘cutoff’) for the photon gas wc,

Figure 1. Scheme of the experiment. (a) The dye-filled optical cavity
consists of two highly-reflecting mirrors separated by q=7 half-
wavelengths. The spherical mirror curvature introduces a harmonic
potential ( )V x y, for the transverse motion of the photons. A pump
laser excites the dye molecules and subsequent emission–absorption-
cycles lead to a thermalisation of the photon gas at =T 300 K. The
cavity emission is monitored in a spatially, spectrally and time-
resolving way. (b) Cavity mode spectrum of the photons (top), and
spectral profiles of dye fluorescence n( )f and absorption a n( )
(bottom). The height of the bars indicates the degeneracy of the
cavity eigenmodes. Fluorescence photons are emitted into transverse
modes with fixed q=7 (black bars), making the photon gas
effectively 2D. Reproduced from [64]. CC BY 4.0.

2 In other words: chemical potential μ=0.
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which is given by the TEMq00 cavity mode. In other words,
the photons can be ascribed an effective mass =mph

w ( ˜ )c nc 0
2 and the photon kinetics is reduced to the trans-

verse plane of the resonator. Additionally, the curvature of the
cavity mirrors imposes an in-plane confinement (figure 1(a),
left). The photon gas behaves formally equivalent to a 2D,
harmonically trapped ideal Bose gas, for which in thermal
equilibrium BEC is expected below a finite critical temper-
ature Tc or above a critical particle number Nc [77, 78].

The solved dye molecules are optically pumped by a
laser beam and the electronically excited molecules decay
via emission of fluorescence photons in the cavity modes, as
sketched in figure 1((b), top). Inside the high-finesse cavity,
frequent absorption–emission-cycles of photons by dye
molecules establish a thermal contact between both sub-
systems in the sense of the grand-canonical ensemble: the
photon gas acquires a temperature T (room temperature) and
chemical potential μ, as determined by the much larger
molecular reservoir. Firstly, for the (energy) thermalisation
the spectral distributions of fluorescence f (ω) and absorp-
tion α(ω), see figure 1(b), are required to scale with a
Boltzmann-factor w a w w wµ -( ) ( ) ( )f k Texp3

B
3. The

fluorescence-induced energy exchange between the photons
and the (thermal) molecular bath then translates to the spec-
trum of the photon gas. Secondly, the chemical (particle
number) equilibration rests on the fact that the interaction
between photons and molecules can be considered as a pho-
tochemical reaction, see figure 1((a), bottom). The required
energy to electronically excite a dye molecule w  2.3 eV
exceeds thermal energy k T 0.025 eVB by far, which sup-
presses fluctuation-driven dye excitations by a factor of order

w- » -( )k Texp 10B
37. Similarly, the thermally excited

emission of photons into the cavity modes (w  2 eV) is
very unlikely. An optical photon (of energy w) is emitted
only, if another optical photon (w¢) has been previously
absorbed. If this condition is maintained throughout the
experiments, the photon number does not decrease as the gas
is cooled down, i.e. m ¹ 0, in contrast to blackbody radiation.

The thermalisation process equilibrates photons over the
set of TEMmn modes, leading to an average internal energy of
the photon gas ~k TB above wc. ‘Cold’ photons propagate
near the optical axis, while ‘hot’ photons exhibit large angles
with respect to the optical axis. By heating up the dye solu-
tion, an enhanced population of highly excited transverse
states is observed [27, 64]. The equilibrium Bose–Einstein
distribution has been experimentally confirmed in the dye-
microcavity experiment [26–28, 40, 41, 43, 55, 60, 62]: for
small total particle numbers, N Nc, the photon energies are
Boltzmann-distributed, while for >N Nc adding more pho-
tons results in the accumulation of a BEC in the transverse
ground state accompanied by a saturation of excited trans-
verse modes.

The light–matter-interaction between photons and mole-
cules at room temperature is incoherent, due to many
dephasing collisions between dye and solvent molecules

during the dye excited state lifetime [83, 84]. Consequently,
the dynamics of photons and molecules can be modelled by
rate equations, which also determine the mean population of
photons n̄ and excited dye molecules M̄ (see figure 2(a)). As
for typical experimental parameters  ¯ ¯M n, the ensemble of
excited dye molecules can be viewed as an effective particle
reservoir for the photon gas. The heat energy and particle
exchange with the dye reservoir paves the way for studies of
the transition from canonical to grand-canonical ensemble
conditions, as illustrated in figure 2(b).

In the grand-canonical ensemble, where each eigenstate
suffers strong number fluctuations d ¯n n 1i i , the second-order
coherence of a BEC is expected to be substantially reduced, i.e.

d + =( ) ( ¯ )( )g n n0 1 22
0 0

2 . Experimentally, we find evi-
dence for large statistical intensity fluctuations in BECs, which
persist up condensate fractions of ¯ ¯n N 70%0 as long as the
particle reservoir complies with grand-canonical conditions
[38, 40, 43]. This is in contrast to experiments with ultra-cold
atoms, where a reduction of density fluctuations in the Bose–
Einstein condensed phase has been observed [3, 5, 6, 17]. In this
case, the emergence of second-order coherence is related to the
isolation of the atomic ensemble from its environment, which
necessitates a statistical description in the microcanonical
ensemble with fixed particle number and Poissonian fluctuations

d =


¯ ¯ ⟶
¯

n n n1 0
n

0 0 0
10

, i.e. g(2)(0)=1. Interestingly, also
the photon statistics in a laser follows a Poissonian distribution
[85–87]. The fluctuation properties of photon BECs under
grand-canonical conditions differ strikingly from those of
both lasers and BECs in the microcanonical or canonical
ensemble.

2.2. Thermal equilibrium

We outline the fluorescence-induced thermalisation process of
the microcavity photon gas, which is based on radiative

Figure 2. Statistical ensemble and particle number fluctuations.
(a)The photon gas couples to the reservoir of electronically excited
molecules by reabsorption after a photon lifetime tph. The molecular
excitations decay within t, establishing chemical equilibrium
between the photon gas and the particle reservoir. Simultaneously,
multiple collisions of dye and solvent molecules lead to a
thermalisation of the rovibronic dye states at room temperature. The
light–matter-interaction imprints the thermal equilibrium state onto
the photon gas and the molecules can be regarded as a heat bath.
(b) Temporal fluctuations of the photon number under grand-
canonical ensemble conditions (large reservoir =M 109, top), and
damped fluctuations in the canonical ensemble (small reservoir

=M 105, bottom).

3 For many dye solutions at room temperature the scaling is based on the
Kennard–Stepanov relation [79–82].
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energy exchange between photons and dye molecules by
absorption–emission-processes. The latter establish a thermal
contact between the system (photon gas) and a heat bath at
room temperature (dye solution) by dissipating excess energy
of ‘hot’ photons and providing energy for ‘colder’ photons.
For this, the spectral absorption and emission profiles of the
dye molecules are required to fulfil the so-called Kennard–
Stepanov relation, as will be discussed in the following. A
more refined derivation of the thermalisation process can be
found in [27, 55, 58].

The relevant, underlying molecular processes are sket-
ched in the simplified energy diagram of a dye molecule in
figure 3(a). The electronic ground and excited singlet states
S0,1 exhibit a (quasi-)continuous subset of rotational and
vibrational modes (shaded areas), and the energy difference
between the ground states in S0 and S1 is on the order of
w  2 eVzpl (zero-phonon line). After a photon absorption
(wa), frequent collisions between dye and solvent molecules
( -10 s15 time scale at room temperature) rapidly alter the
rovibrational molecular state, resulting in a thermal distribu-
tion in the electronically excited manifold. During the
relaxation, any excess energy is dissipated by the solvent bath
on a -10 s12 timescale. To this end, the subsequent fluores-
cence emission ( t w= -10 s,9

f) occurs from a thermally
equilibrated state S1 to the ground state S0, which is subject to
the same relaxation mechanism.

This insight allows us to derive a Boltzmann-type law
relating the spectral absorption and emission profiles of the
dye molecules, known as the Kennard–Stepanov relation
[79–82, 88, 89]. We obtain the ratio of fluorescence f (ω) and
absorption α(ω) by integrating over the rovibrational energy
levels

   

   

ò
ò

w
a w

w

w
µ

¢ ¢ ¢ ¢



( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )f D p A d

D p B d

,

,
, 1

where   ¢, denote energies and   ¢ ( ) ( )D D, the rovibrational
density of states in ground ( ) and excited ( ) state. Due to
the collisional relaxation,  = -¢ ¢( ) ( )( ) ( )p k Texp B in both
states. Considering energy conservation    w w+ = + ¢zpl ,
the Einstein coefficients  w¢( )A , and B(ò, ω) are related by

     w w¢ ¢ ¢ = w
p ( ) ( ) ( ) ( )D A d D B d, ,

c

2 3

2 [88]. Assuming

identical rovibrational substructures,  = ¢ ( ) ( )D D ,(1) yields

the Kennard–Stepanov relation

 w
a w

w
p

w w
µ -

-⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )
( )f

c k T

2
exp . 2

3

2

zpl

B

Experimentally, the scaling has been verified in e.g. liquid dye
solutions [58, 90–93], dye-doped polymers [60], semiconductors
[94] or ultra-dense gases [95].

The Kennard–Stepanov relation is the key ingredient for
the photon thermalisation mechanism to work. In our high-
finesse ‘photon box’, see figure 3(b), the fluorescence photons
undergo many absorption–emission-cycles, corresponding to
a random walk of the light field configuration [58]. The ratio
of the transition rates between two configurations ñ  ñ∣ ∣1 2 ,
which differ from each other by the absorption of one photon
with frequency ωi and the emission of one photon with fre-
quency ωj, is


a w w w

a w w w
= = "w w- -

( ) ( )
( ) ( )

( )( )R

R

f

f
e i j, . 3

i j j

j i i

k T12

21

3

3
j i B

From the theory of Markov processes it is known that exactly
such a Boltzmann-scaling of the transition rates evokes a
thermal state of the master equation (detailed balance)
[58, 96, 97]. The Kennard–Stepanov relation ensures that the
photon gas for sufficiently long times acquires a thermal
equilibrium state.

2.3. Chemical equilibrium

Besides energy exchange with the heat bath (temperature T),
the effective particle exchange between the photon gas and
the dye reservoir assigns the photons a chemical potential μγ.
In the following, we will see that it is determined by the
excitation level of the dye medium.

Due tow  k Tzpl B , purely thermal excitation of molecules
from their ground ( ) to excited electronic ( ) states is
strongly suppressed, and optical photons (γ) are required to drive
the transition. Vice versa, the decay of a molecule results (with an
efficiency of ;95%) in the emission of a photon. Altogether,
such a behaviour resembles a photochemical reaction:

g +   ( ). 4

In chemical equilibrium (i.e. zero net particle flux between dif-
ferent species) the particular chemical potentials balance,
m m m+ =g  . Thus, the fugacity of the photons reads

= =
mg m m 

( )5z e e e .k T k T k TB B B

The partition function of a dye molecule  = w exp
m m w+ -  ( ) [( ) ]k T w k TexpB zpl B , with the statistical

weights   
ò= -   ( ) [ ]w D k T dexp, 0 , B , allows one to

associate the molecular chemical potential with the probability of
finding a molecule in the ground or excited electronic state,
respectively:

 



= =





m m w -

( )6w
e M

M
w

e M

M
, .

k T k TB

zpl

B

This probability is determined by the ratio of the number of
excited and relaxed dye molecules  M , and the total number of

Figure 3. (a) Electronic and rovibrational energy levels in a dye
molecule. (b) In the ‘photon box’ absorption–emission-cycles by dye
molecules frequently change the configuration of the light field
( ñ  ñ ∣ ∣1 2 ...) to thermalise the photon gas.
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molecules M. By renormalising the chemical potential with
respect to the cavity ground state energy, m m w= -g c,(5)
yields


= 







-m D ( )e
w

w

M

M
e . 7k T k TB B

In equilibrium, the chemical potential μ is thus determined by the
dye molecular excitation level  M M and the detuning between
the condensate frequency and dye resonance w wD = -c zpl.

2.4. Microcavity dispersion relation

The microcavity photons can be formally described as a 2D
harmonically trapped Bose gas. In the resonator filled with a
dye medium with index of refraction ñ, the energy–momen-

tum-relation of a photon in free space = +˜E c n k kr z
2 2

with c the speed of light, kr the radial and kz=π q/D(r) the
longitudinal wave vector (q is an integer longitudinal wave
number) component gets modified by the cavity boundary
conditions. These are determined by the mirror spacing
D(r);D0−r2/R at a radial distance r from the optical axis,
where D0 denotes the mirror separation on the optical axis.
These parameters are illustrated in figure 4(a). Using the
paraxial approximation (kz?kr), the dispersion relation of
the microcavity photons becomes

  p p
p

+ +
˜ ˜ ˜

( )E
cq

nD

cq

nRD
r

cD

qn
k

2
. 8r

0 0
2

2 0 2

In addition, we extend(8) by accounting for a nonlinear
response of the refractive index subject to changes of the 2D
photon density, i.e. the intensity of the light field. The total
index of refraction = + D = +˜ ˜ ˜ ˜ ˜ ( )n n n n n I rr0 0 2 can be
written as a sum of the linear refractive index in the absence
of photons ñ0 and a nonlinear contribution ñ2. The nonlinear
term results from physical effects that lead to intensity-
dependent energy shifts, as e.g. the optical Kerr effect [98], or
temporally slow thermal lensing [67]. Assuming D˜ ˜n nr0 ,

we obtain


= + + W -

˜ ˜
˜ ( ) ( )E m

c

n

k

m
m r

m c

n
n I r

2

1

2
. 9r

ph

2

0
2

2 2

ph
ph

2 2 ph
2

0
3 2

Here, the effective photon mass p= ˜ ( )m qn D cph 0 0 and

trapping frequency W = ˜c n D R 20 0 have been introduced,
revealing the formal equivalence of(9) with the dispersion
of a massive, harmonically trapped particle moving non-
relativistically in a 2D plane, see figure 4((a), right). The first
term in(9) determines the effective rest energy of the pho-
tons, a global energy shift determined by the cavity boundary
conditions. It corresponds to the energy of the qth longitudinal
mode without any transverse excitations = =( ˜ )m c n Eqph 0

2
00

wc with the cutoff frequency wc. The eigenenergies in the
cavity are given by 2D (isotropic) harmonic oscillator
states = + W + +( )E m c n n n 1n n x y, ph

2
0
2

x y
with quantum

numbers nx and ny. The eigenfunctions y y=( ) ( ) ·x y x,n n n,x y x

y ( )yny
are given by the 1D solutions y p= -( ) ( ! )x n b2n

n 1

-( ) [ ( )]H x b x bexp 2n
2 2 , where = Wb mph denotes the

oscillator length and Hn(x) the Hermite polynomials.

2.5. Statistical physics of microcavity photons

In the following, we will describe the temperature behaviour
of the (ideal) 2D photon gas in a harmonic trap [77, 99–102].
We derive the critical particle number and temperature,
respectively, as well as the spectral and spatial distributions
for the experimentally studied photon gas. We can specify the
transversal excitation energies in the harmonic trap

 = - - W = W +
˜

( ) ( )u E m
c

n
n n 10n n n n x y, , ph

2

0
2x y x y

with a degeneracy of the eigenstates = W +( ) ( ( ) )g u u2 1 ,
where the factor 2 accounts for the two-fold polarisation
degeneracy of the photons. At temperature T, the average
occupation of an excited state with energy un n,x y

is given by

Figure 4. (a) Microcavity geometry showing mirrors (radius of curvature R) separated by D(r) at a transverse position r. In the paraxial
approximation ( k kz r), one finds a modification of the photon dispersion relation from linear scaling = ˜E kc n0 in 3D free space (top) to
a quadratic scaling with small transverse momenta kr in the microcavity (bottom), similar to the dispersion relation of a 2D massive particle.
(b) Spectral occupation versus wavelength. The rest energy of the photons is determined by the cutoff wavelength l = ˜ ( )hn m cc 0 ph . Below
the critical photon number »N 90 000c , the spectra show a Boltzmann scaling. For >N̄ Nc, the ground state becomes macroscopically
occupied. (c) The chemical potential grows in the classical region with increasing particle number until it saturates at m = 0 around Nc.
(d) The condensate fraction exhibits an quadratic scaling as a function of the reduced temperature. Experimentally, we adjust the reduced
temperature by varying µT Nc to match room temperature =T 300 K when operating at the phase transition.
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the Bose–Einstein distribution

m
=

- -
m¯ ( ) ( )

[( ) ]
( )n u

g u

u k Texp 1
. 11T ,

B

Here, we have implicitly assumed that the system is
grand-canonical with a chemical potential μ adjusting the
average total particle number N̄ under the constraint =N̄

 å m= W W ¼¯ ( )n uu T0, ,2 , , . At high temperatures or low total
photon numbers, the chemical potential obeys m k T 0B ,
and(11) equals the classical Boltzmann distribution. In the
opposite limit ( T 0 or  ¥N ), the chemical potential
converges asymptotically to the ground state energy m  -0
(figure 4 (c)) and the ground state becomes macroscopically
occupied. The phase transition to a BEC occurs at the critical
photon number or temperature, respectively,



p
p

=
W

=
W⎜ ⎟⎛

⎝
⎞
⎠ ¯ ( )N

k T
T

k
N

3
,

3
, 12c

2
B

2

c
B

and as a function of the cavity parameters µ ( ¯ )T N Rc
1 2.

Notably, an equilibrium phase transition requires its critical
temperature to remain finite in the thermodynamic limit
(  ¥N̄ V, ). It can be achieved by increasing the particle
number N̄ and volume V∝R2 in a way that conserves N̄ R,
i.e. by gradually switching off the trapping potential  ¥R .

The expected spectral photon distributions for increasing
chemical potentials are shown in figure 4(b). The condensa-
tion fraction scales quadratically with the reduced temper-
ature, = -¯ ¯ ( )n N T T10 c

2, see figure 4(d), as expected for a
2D harmonically trapped ideal Bose gas [99, 102]. In this
confinement, BEC occurs not only in momentum space but
also in position space. The spatial intensity distribution of the
condensed photon gas is the sum over all oscillator eigen-
functions weighted with the Bose–Einstein factor:

å
t

y

-
m mW + -

 ( )( )
˜

∣ ( )∣
( )

( )
I x y

m c

n

x y
,

2 ,

exp 1
. 13T

n n

n n

n n

k T

,
ph

2

0
2

rt ,

,
2

x y

x y

x y

B

The power per photon is accounted for by t( ˜ )m c nph 0
2

rt,
where t = ˜D n c2rt 0 0 denotes the photon round trip time
of in the resonator. This approximation is valid due to
 W ~ 0.1 meV being much smaller than the rest
energy ~( ˜ )m c n 1 eVph 0

2 .
The spectral and spatial distributions of the photon gas

have been experimentally verified for the first time for both
the classical and Bose–Einstein condensed phase in pioneer-
ing work by Klaers et al [26, 27, 55, 58]. Subsequent studies
have provided further insight into the phase transition, and
revealed e.g. thermodynamic properties such as condensate
fraction or specific heat [28, 40, 41, 43, 60, 62–64, 66]; see
figure 5 for an overview of some experimental signatures of
photon BEC.

The purpose of the present Tutorial is to elucidate the
coherence properties of BECs of light. For this study, typi-
cally realised experimental parameters for the microcavity
setup are q=8 at a cavity cutoff wavelength of l =c

580 nm, which is associated with a mirror separation of =D0

m1.62 m. The refractive index of the dye medium (Rhodamine
6G solved in ethylene glycol) amounts to =ñ 1.430 at room

temperature =T 300 K. Most of the experiments are con-
ducted using mirrors with a radius of curvature of =R 1 m.
Therefore, the effective photon mass is = ´ -m 7.8 10 kgph

36

and the frequency of the harmonic trap is pW =2 37 GHz.
With this one expects a critical particle number =N 93 000c .
Due to the short resonator round trip time t = 15 fsrt , the
average circulating optical power in the resonator at threshold
becomes »P 2.1 Wc . The highly-reflecting mirrors transmit a
fraction ´ -T̃ 2.5 10 5 of the optical power. At criticality, the
continuous power of the cavity emission is approximately
5 nW. Table 1 summarises parameter sets, which are used in
the course of the discussed experimental sequences.

3. Multimode photon dynamics

Bose–Einstein condensation is a phase transition of the Bose
gas in thermal equilibrium. The thermalisation of a none-
quilibrium system can occur via different mechanisms and
with characteristic dynamics. Atomic gases e.g. relax into
equilibrium by contact interactions, while microcavity pho-
tons inherit their temperature solely from the thermal contact
to a molecular heat bath. The atomic equilibration requires
several interatomic collisions [103, 104], whereas the photons
can be thermalised after only a single absorption–emission-
cycle. In this section, we will theoretically investigate the
photon dynamics.

Figure 5. Evidence for BEC of light. (a) Photon spectra for
increasing total photon numbers N̄ . For N̄ Nc, the excited mode
population saturates and the ground state becomes macroscopically
occupied. Reprinted figure with permission from [43]. Copyright
(2016) by the American Physical Society. (b) The condensate
fraction and (c) the specific heat of the photon gas is derived from
the spectral distributions (not shown) at various particle numbers
above and below Nc. The discontinuity close to = ( ¯ )T T Nc reveals
the phase transition. (b) Reproduced from [62]. CC BY 4.0.
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3.1. Rate equation model

We start our discussion by analysing the rate equations for
absorption and emission of photons in the microcavity modes.
As the dye solution is embedded into the cavity volume,
fluorescence emission occurs directly into the reabsorbing
medium. After an absorption process, the high collision rate
between solvent and dye molecules at room temperature leads
to decoherence of the molecular dipoles [83]. The photon-
dye-system here correspondingly is in the weak coupling
regime [84, 105]. In first-order perturbation theory, the pho-
ton dynamics can thus be adequately modelled by semi-
classical rate equations, which are determined by the time
evolution of the diagonal elements of the density matrix.

To begin with, we consider a configuration of the light
field {n1, n2, K, ni, K} with ni photons in the ith cavity
mode. The transition rates (per volume)

w r

w r

=

= +




( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

R B u n

R B u n

r r

r r 1 , 14

i
i

i
i

i
i

i
i

12 12

21 21

give the probability (per time) to absorb or emit a photon in
mode i at position r with the frequency-dependent Einstein
coefficients for absorption and emission B12,21(ωi), the spec-
tral energy density per photon ( )u ri , and the densities of
ground and excited state molecules r , . Due to the densities
on the right-hand side in(14) one obtains rates per volume,
which yield absolute rates after integrating out the resonator
volume. For the transverse ground state (i=q00) with
ωi=Eq00/ÿ and ni=n, this gives



r
= ⎛

⎝⎜
⎞
⎠⎟ ( )

∣ ( )∣
( )R B

E
u

n

f
0

0
. 15n

q q
q

12
12

00 00
00 2

Here, we have expressed the energy density =( )u rq00

( )∣ ( )∣ ∣ ( )∣u f fr0 0q q q00 00 2 00 2 by the normalised mode func-

tion ( )f rq00 . Using the effective mode volume =Ṽ q
eff

00

ò =∣ ( )∣ {∣ ( )∣ } ∣ ( )∣f f dV fr rmax 1 0q q q00 2 00 2 00 2 [106, 107],

the modified Einstein coefficients =ˆ (B B Eq12,21 12,21 00

 ) ( )u 0q00 and the number of ground and excited state
molecules r=   

˜M V q
, , eff

00, one obtains the rate equations for
the ground mode populated with n photons

= = - +

= + = - +




ˆ ˆ ( )
ˆ ( ) ˆ ( )( ) ( )

R B M n B M X n n

R B M n B X n n1 1 . 16

n

n

12
12 12

21
21 21

According to the photochemical reaction in(4), we have
expressed the rates as a function of the sum of all molecular and

photonic excitations = +X M n and the total molecule number
in the ground mode volume = + = + -  M M M M X n,
which we assume to be constant reservoir parameters.

The rate equations readily provide the temporal evolution
of the photon number

g
¶
¶

= + - + ˆ ( ) ( ˆ ) ( )
t
n B M n B M n1 17i i i i21 12 ph,

with a photon loss rate g iph, due to mirror transmission. To
conserve the excitation number X, any loss must be compen-
sated for by a net gain P in the molecule rate equations, which
is experimentally realised by pumping with a laser beam:

å g-
¶
¶

=
¶
¶

= -
¶
¶

-   ( )
t
M

t
M P

t
n M . 18

i
i M

Additionally, P must balance the molecular loss rate gM, which
results from non-radiative decay and fluorescence into uncon-
fined leakage modes.

3.2. Steady-state photon number

The rate equation model enables a quantitative description
of the photon thermalisation dynamics in the microcavity.
For this, we consider a simplified model for the multimode
photon gas in the uncondensed phase without spatial
photon transport, losses or pumping ( g g= = =P 0iM ph, ).
Here, the molecule number (108) exceeds the average
photon number per mode (101), such that the rate
equations of the dye medium in(18) can be considered as
quasi-stationary with a fixed molecular excitation level

 M M . A more refined model including dissipative spatial
dynamics has been theoretically reported by Kirton and
Keeling [69, 70]. Our own detailed numerical simulations
of the spatial photon dynamics are discussed in
section 6.5 [41].

For a single cavity mode (angular frequency ωi),
the Kennard–Stepanov relation reads =  ˆ ˆB B w w

i i
21 12

 w w- -[ ( ) ]k Texp i zpl B . Together with(7), we obtain the
average photon number in thermal and chemical equilibrium
from(17):



= - = -



-

-w w m- -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟¯

ˆ

ˆ
( ) ( )

( )
n

B

B

M

M
e1 1 . 19i

i

i
12

21

1

1i
k T

c
B

By summing(17) over all degenerate cavity modes with the
energy òi=ÿω, we obtain the rate equation for the photon

Table 1. Photon gas parameters for some different microcavity geometries. (Refractive index =ñ 1.430 for ethylene glycol,
temperature =T 300 K.)

q 7 7 8 7

R 1 6 1 1 m
lc 580 580 580 560 nm
D0 1.42 1.42 1.62 1.37 mm
mph 7.79 7.79 7.80 8.07 -10 kg36

pW 2 39.6 16.2 37.1 40.3 GHz
Nc 81700 490200 93200 78800

7

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 173001 PhD Tutorial



number  wº = å w=( ) ( )n n t n t, ii
in the multimode cavity:

 
å¶

¶
= + -

= + -

w=
 

  

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ˆ ˆ

ˆ ˆ ˆ ( )

n

t
B n M B nM

B nM A M B nM

1

. 20

21 12

21 21 12

i

The term  å w= 1
i

gives the energy-dependent mode density
w w w= - W +( ) [( ) ]g 2 1c . In the second step, we have

identified the Einstein coefficient for spontaneous emission
w=ˆ ( ) ˆA g B21 21. The steady-state photon number is w =¯ ( )n
w w w m- - - -( ){ [ ( ) ] }g k Texp 1c B

1 .

3.3. Spectral photon number evolution

To determine the thermalisation time, we rephrase the single
mode(17) as a b+ + =ṅ n 0i i , with the coefficients

a = - ˆ ˆB M B M
i i

12 21 and b = - B Mi
21 . For the initial condi-

tion ni(0)=0, this differential equation is solved by

b
a

= - - = -a t- -( ) [ ] ¯ [ ] ( )n t e n e1 1 , 21i
t

i
t i

with the time constant t = + = ( ¯ ) ( ˆ ) ¯ ( ˆ )n B M n B M1i i
i

i
i

12 21 .
We expand(21):

= - -  
⎡
⎣⎢

⎤
⎦⎥( ) ˆ ( ˆ ˆ ) ( )n t B M t

t
B M B M1

2
. 22i 21 12 21

For early times, we can neglect the second-order term ∝t2, so
that the spectrum in this limit will be determined by the
emission profile wˆ ( )B21 . If we approximate(22) for the
uncondensed regime with   ˆ ˆM M B B12 21, we obtain
the characteristic time after which the initial spectral redis-
tribution of the photon gas occurs

t


 ˆ ( )
B M

1
. 23th

12

This equals the mean reabsorption time of a photon in the
dye medium. The relative occupation of ni and ni+1 of two
neighbouring resonator modes (with frequencies ωi,
ωi+Ω) demonstrates, that the spectral slope is nearly
thermal after tth. Without loss of generality, we assume
that the fluorescence strength into the modes is equal,

=
+ˆ ˆB B

i i
21 21

1
, as is indeed fulfilled for the used dyes

(section 6). Using the Kennard–Stepanov relation, the

absorption coefficients  w w= -ˆ ˆ [ ( ) ]B B k Texp
i i

i12 21 zpl B

and = W
+ˆ ˆ [ ]B B k Texp

i i
12

1
12 B yield the photon dynamics

-+ 
+


+

⎡
⎣⎢

⎤
⎦⎥( ) ˆ ˆ ( )n t M B t

t
M B1

2
. 24i i

i i i i
, 1 21

, 1
12

, 1

An expansion in  W k TB determines the spectral popu-
lation difference at the thermalisation time

 
t

-
W

= - = -+ 



( )
ˆ

ˆ
¯ ( )n n

k T

M B

M B k T
n

1

2

1

2
25i i

i

i i
1

th
B

21

12 B

in the limit of a Boltzmann distribution with = n̄ Mi


-ˆ ( ˆ )B M B

i i
21 12

1. For the equilibrium distribution in(19), the
similar scaling - W = -+( ¯ ¯ ) ( ) ¯n n k T ni i i1 B demonstrates

that the photon spectrum agrees except for a factor 1/2 with the
spectral shape of a Boltzmann distribution after the reabsorption
time tth. Accordingly, the microcavity photons have relaxed to a
thermal-like equilibrium after completing approximately one
emission–absorption-cycle.

In general, the relaxation rates of individual modes
depend on their frequencies. It is therefore helpful to
express the Einstein coefficient for absorption wˆ ( )B12 as a
function of the experimentally accessible cross section
σ(ω). By comparing the coefficients in Beer’s law

s w¶ ¶ = - 
-˜ ( )n t M V c neff

1 and the rate equation for
absorption w¶ ¶ = -  ˆ ( )n t M B n12 , we find the useful rela-
tion

w
s w

=ˆ ( ) ( )
˜ ( )B

c

V
. 2612

eff

Figure 6(a) shows the calculated temporal evolution of the
spectra in(21) for Rhodamine 6G dye (section 6). Owing
to the wavelength-dependence of the absorption cross
section (maximum near 530 nm), the time tth after which
the spectral distribution has relaxed to a thermal equili-
brium distribution l¯ ( )n varies for different spectral
regions. While the photon gas relaxation takes several
nanoseconds in the red spectral region (figure 6(b), left),
for the yellow–green spectral region a thermalisation time
of a few picoseconds is predicted (right). For example,
Rhodamine 6G absorbs photons at 580 nm wavelength
with cross section s p l -( )c2 10 m22 2. With the mirror
separation mD 1.6 m0 and the diameter of the TEM00

mode md 12 m0 we can estimate the effective ground
mode volume p= ´ -˜ ( )V d D2 1.8 10 meff,00 0

2
0

16 3

and the rate coefficient w -ˆ ( )B 166 s12
1. For typical dye

concentrations near -1 mmol l 1, around »M 108 dye
molecules reside in the mode volume. Therefore, the
expected thermalisation time is t » 50 psth .

Figure 6. (a) Spectral thermalisation dynamics for
l = { }600; 580; 560 nmc . All shown equilibrium spectra l¯ ( )n (solid
lines) are close to the condensation threshold. The wavelength-
dependent dye reabsorption, s l lµ -( ) ( )exp , leads to a slower
photon number evolution (dashed) in the red ( -10 s9 ) than in the green
spectral region ( -10 s11 ). (b) The low-wavelength spectral slope
(dashed) quantifies the degree of thermalisation, which approaches the
equilibrium value (solid) with advancing times. After tth the relative
difference between both curves is less than 1%. (Dye concentra-
tion m = -- k T0.1 mmol l , 0.0071

B .)
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3.4. Chemical equilibration time

The spectral thermalisation time of the photon gas tth in the
uncondensed phase is approximately given by the photon
reabsorption time in the dye solution, B̂ M1 21 , see (23). In
general, this value differs from the chemical equilibration
time tch, which is the time after which the system has
acquired its steady-state-population w¯ ( )n . To see this, we
extend the single mode description in(21) to the multimode
system:

w w= - t w-( ) ¯ ( )[ ] ( )( )n t n e, 1 , 27t

with t w w w w= ( ) ¯ ( ) [ ( ) ˆ ( ) ]n g B M21 . For a Boltzmann dis-
tribution w w w w=  ¯ ( ) ( ) ˆ ( ) [ ˆ ( ) ]n g B M B M21 12 , the chemical
equilibration time is the weighted average over all frequency-
dependent relaxation times

 ò

ò
t

t w w w

w w
t

= w

w

¥

¥
W - D

( ) ¯ ( )

¯ ( )
( )

n d

n d
e

4
, 28

k T
ch

th
k T

c

c

B
B

where we have assumed wˆ ( )B21 to be independent of ω, as is
roughly fulfilled for Rhodamine 6G dye within the relevant
wavelength range (540–600 nm). In our experiments, the dye-
cavity detuning w wD = -c zpl takes values between

D = - k T2.4560nm B and D = - k T8.7605nm B , implying
the chemical equilibration time to exceed the spectral
relaxation time by t t » 3ch th (560 nm) up to 1500 (605 nm).
This prediction is experimentally verified (section 6). Below
the critical photon number, our simplified analytical model
provides an adequate description of the photon number
thermalisation dynamics. It should be noted, that this model is
insufficient to predict the dynamics in the Bose–Einstein
condensed phase where the optical feedback onto the dye
requires using the molecular rate equations. In this regime, the
large photon number speeds up the dynamics by stimulated
emission events and the chemical equilibration can become
much faster than the spectral thermalisation, as will be dis-
cussed section 6.5 on the basis of numerical simulations.

4. Grand-canonical photon statistics

For BEC in the grand-canonical statistical ensemble regime,
i.e. in the presence of a large particle reservoir, large statistical
number fluctuations on the order of the total particle number
N have been predicted [9, 10, 30–37]. In contrast to this, the
(micro-)canonical statistical ensemble features Poissonian
number fluctuations, i.e. a scaling with N ; a situation rea-
lised in most atomic BECs [3, 5, 6, 17, 20]. In the dye-cavity
system, Bose–Einstein condensed photons couple to electro-
nic transitions of a specific number of dye molecules, which
realises the repeated exchange of photon- and molecule-like
excitations. The latter can be interpreted as an effective par-
ticle reservoir for the photons, with a size that depends on the
molecule number and the dye-cavity detuning. We find that
the photon number statistics of the ground state resembles a
(nearly) Bose–Einstein distributed thermal light source, in
contrast to both atomic BECs and the laser [17, 108, 109].

Under these conditions, the phase transition can be regarded
as a BEC in the grand-canonical ensemble regime.

4.1. Photon number distribution

We start by considering the master equation for the prob-
ability º ( )p p tn n to find n photons in the ground state at
time4 t. The flow of probability between photons in the
condensate and the reservoir is

= - + +- - + +˙ ( ) ( )p R p R R p R p , 29n n n n n n n n1
21

1
12 21

1
12

1

with the rates given by(16) [38, 110]. According to the
experiment, we assume = + M M M and = +X M n to be
constant. For  ¥t the probability flow pn(t) is expected to
become stationary, ¥ =˙ ( )p 0n , and the photon number dis-
tribution converges to its equilibrium value  ¥≔ ( )pn n . In
this limit,(29) is solved by the recursive ansatz
 =  =

-
+R Rn k

n
k k0 0

1 21
1

12 , and one obtains the photon number
statistics




=

-
- + -

⎛
⎝⎜

⎞
⎠⎟

( )! !
( )!( )!

ˆ
ˆ ( )M X X

M X n X n

B

B
, 30n

n

0

21

12

which is used to calculate the average condensate number and
its fluctuations. Similarly, the statistics can been derived by a
entropy maximisation principle [39].

In general,(30) has to be evaluated numerically. At
constant temperature T, we induce the phase transition by
increasing the particle number N̄ , which effectively lowers
the reduced temperature ( ¯ )T T Nc . For each N̄ , the following
numerical method then computes the excitation number X that
recovers the given particle number N̄ : for a starting value X,
the average photon number in the condensate



å=¯ ( )n n 31
n

n
0

and the molecular excitation level of the medium in the
ground mode volume

=
-

- +




¯
¯

( )
M

M

X n

M X n
32

are computed. As the density of excited molecules (and
thus the excitation level) is required to be spatially
homogeneous in chemical equilibrium, the ratio  M M
controls the chemical potential for the photon gas, see(7).
Accordingly, the number of photons in excited states is

m= å - ->¯ ( ) ( [( ) ( )] )n g u u k Texp 1uexc 0 B . If there are
residual deviations between +¯ ¯n nexc and the target photon
number N̄ , the numerical method is iterated with an
adjusted excitation number X until a certain level of pre-
cision is reached.

Figure 7(a) shows the calculated condensate fraction
¯ ¯n N and the photonic fraction of the excitation number n̄ X
for five different-sized molecular reservoirs as a function of
the reduced temperature. The constant dye-cavity detuning
D = - k T4.67 B controls the Kennard–Stepanov relation
ˆ ˆB B21 12 and hence the photon statistics in(30). For all

4 We will denote n (and n̄) as the (average) photon number in the BEC in
sections 4 and 5.
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studied reservoirs, the condensate fraction follows the ana-
lytic solution = -¯ ¯ ( )n N T T1 c

2 and the curves for n̄ X
reveal that a large number of excitations are present as
molecular excitations down to very low temperatures. Fur-
thermore, figure 7(b) shows the zero-delay autocorrelation
function









å

å
t = =

á - ñ
=

-

( )
( ) ( )

¯

( )
( )( )g

n n

n

n n

n
0

1 1
33n n

n n

2
2

0

0

2

for the same reservoir parameters as a function of the con-
densate fraction and the reduced temperature. For T Tc, the
ground state occupation exhibits the usual, strong intensity
fluctuations in a single mode of the thermal Bose gas,
g(2)(0)=2, and the photon number statistics is Bose–Ein-
stein-distributed. In the presence of large reservoirs, the
intensity correlations maintain when the temperature is low-
ered deep into the condensed phase, as attributed to the grand-
canonical particle exchange with the dye reservoir. For

T T 1c , the statistical number fluctuations are damped out
and our calculations demonstrate the emergence of second-
order coherence, g(2)(0)=1, with Poissonian statistics. We
do not find indications that the transition between both sta-
tistical regimes is accompanied by a discontinuity in the
thermodynamic quantities, excluding a further phase trans-
ition scenario within the Bose–Einstein condensed phase. The
crossover of the photon statistics in the condensed phase
remains valid also in the thermodynamic limit, as will be
discussed later.

4.2. Asymptotic photon number distributions

We show that the photon number statistics interpolates
between a Bose–Einstein- and Poissonian distribution. To

analytically derive the limiting cases, we rewrite(30) in a
recursion form:




=

-
- + +

+ ˆ
ˆ ( )X n

M X n

B

B1
. 34n

n

1 21

12

For Bose–Einstein statistics to apply, n must follow a
geometric series with a ratio  +n n1 being independent of n.
This is fulfilled if and only if the reservoir dimensions M and
X are very large, so that the photon number on the right-hand
side of(34) can be safely neglected, i.e X?n and
M−X?n (‘grand-canonical limit’). With X M and

- M X M ,








=  =+ 







⎛
⎝⎜

⎞
⎠⎟

ˆ
ˆ

ˆ
ˆ ( )

M

M

B

B

M

M

B

B
. 35n

n

n
n

1 g.c. 21

12 0
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Here, n decays exponentially from its maximum at n=0.
Normalisation of(35) gives

 = - =
+









+⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )ˆ
ˆ

ˆ
ˆ ¯

( )
¯

¯M

M

B

B

M

M

B

B n
1

1
. 36n

n n

n

n

21

12

21

12

1

In the last step, we have identified the average condensate
number from(19). This result remains valid also for increased
M, as long as the excitation level -   ( )M M X M X (and
thus m ¯ ¯n N, , ) are kept constant. Equation (36) is the well-
known Bose–Einstein statistics, see figure 8, which also
applies for example for chaotic, thermal light or blackbody
radiation.

In the case of Poisson statistics, the most probable photon
number is finite, >n 0max . Under the assumption  =+n 1max

nmax
,(34) yields = - + +( ) ( ˆ ˆ )n X M B B1 1max 21 12 .

Figure 7. (a) Condensate fraction ¯ ¯n N and photonic fraction of the
excitation number n̄ X versus reduced temperature ( ¯ )T T Nc for
reservoir sizes =- { }① ⑤M 10 ; ...;108 12 and dye-cavity detuning
D = - k T4.67 B (adapted figure with permission from [38],
copyright (2012) by the American Physical Society). (b) The
autocorrelation function ( )( )g 02 of the condensate (reservoirs as in
(a)) predicts large photon number fluctuations even deep in the
condensed phase. Adapted figure with permission from [38].
Copyright (2012) by the American Physical Society.

Figure 8. Crossover from Bose–Einstein to Poissonian statistics for
increasing ¯ ¯n N at fixed reservoir size. The probability n is plotted
versus the photon number normalised with the mean condensate
population n̄. Up to =¯ ¯n N 28.3% the maximum of the distribution
occurs at =n 0max . For increasing quantum degeneracy, the
distribution shifts to >n 0max and the variance is reduced,
demonstrating a damping of particle number fluctuations and the
emergence of second-order coherence. Inset: photon number
statistics at the crossover =T T0.847x c ( ¯ ¯n N 28.3%). The
probability distribution corresponds to a Gaussian with »n̄ 27 000
photons. ( = D = -M k T10 , 2.410

B , polarisation degeneracy
neglected; the curves normalised in the ¯n n-representation for
clarity.)
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Expanding for D = -n n nmax,



 l l
= -

D
+

+
D

-+ ⎜ ⎟⎛
⎝

⎞
⎠ˆ ˆ ( )n

B B

n
1

1

1
... 37n

n

1

21 12

2

with l = + +ˆ ˆ ( ˆ ˆ )B B M B B1 121 12 21 12
2. In the low temp-

erature limit, the ratio of the Einstein coefficients scales with
the dye-cavity detuning Δ. For a negative detuning, as in our
experiments, it diverges:

w
w

=
D >

¥ D <




- D 
⎧⎨⎩

ˆ ( )
ˆ ( )

( )B

B

w

w
e

0, 0
, 0.

38
T21

12

0
k TB

Hence,(37) simplifies to   l l + D+  ( )nn n1 (or 
l l- D( )n ) for Δ>0 (or Δ<0). This recursion formula
implies the relative probability near Δn around the maximum
nmax:





l
l

l

l
l

l

-
- + D

D >

- D
D <

+D

D

-D


⎧
⎨
⎪⎪

⎩
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( )!
( )!

!
( )!

( )n

n

1

1
, 0

, 0.
39n n

n

n

n
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max

Upon transforming D  -Dn n, both distributions are the
same and their relative scaling is analogous to a Poisson dis-
tribution






l l
l

l=  =
+ D

l- +D D

!
!

( )!
( )e

n n
40n

n
n n

n

np
p

p
max

max

which contains only one parameter λ for mean and variance.
The solutions in(39) however are only Poissonian with respect
to the relative photon number Δn, as the an additional para-
meter nmax tunes the most probable photon number. For
example, in the limit T 0 (D ¹ 0) the statistics peaks at

= =¯ ¯n n Nmax with λ=0, where all photons of the systems
have condensed into the ground state and the photon number is
precisely known.

4.3. Statistics crossover

Figure 8 shows numerically calculated photon number dis-
tributions to find n photons in the BEC for a fixed reservoir size
( w w= D = - = -M k T10 , 2.410

c zpl B ). By decreasing
the reduced temperature from =T T 1.0c to 0.4, or vice versa
increasing the condensate fraction from ¯ ¯n N 1% to 80%,
one observes a continuous crossover from Bose–Einstein to
Poissonian statistics.

As the crossover point between both statistical regimes,
we define the reduced temperature ( ¯ )T T Nx c when the most
probable photon number ceases to be =n 0max , or in other
words when the condition  =0 1 is fulfilled (figure 8,
inset). Inserting into(34) yields:

+
= +

ˆ
ˆ ( )M

X

B

B

1
1 . 4121

12

Due to the large number of molecules, we assume
M+1;M. With regard to the experimental conditions, we
derive Tx for fixed total numbers of molecules M and photons
N̄ . With = + ¯X n M the average condensate population

follows

=
-

+ +







( )( )¯ ( )

ˆ
ˆ

ˆ
ˆ

n M
1

1 1
. 42

B

B

M

M

B

B

M

M

12

21

12

21

In the grand-canonical limit (    ¯M M n, ), see(36), the nomi-
nator corresponds to the inverse of the average photon number

= å = -=
¥

 
-¯ [( ˆ ˆ )( ) ]n n B B M M 1n n0 12 21

1. Although grand-
canonical conditions do not strictly apply in the crossover region,
we use this to estimate Tx. We find

 
=

+ +
w mg



D 



-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

¯ ( )n
M

e e1 1
, 43

w

w

w

w
k T k TB

zpl

B

where both the Kennard–Stepanov relation and chemical equi-
librium have been applied. Moreover, it is safe to assume

= w w for the statistical weights of ground and excited mole-
cular states [83]. In the condensed phase, the chemical potential
of the photons  w m w+ W < <g( )c c, and consequently we
can use  m w w= D +g  ( )c zpl to simplify the second
bracket term in the denominator.

Equation (43) resembles a boundary for the average
number of condensed photons, up to which the particle
number statistics can be considered Bose–Einstein-like. With
= -¯ ¯ [ ( ) ]n N T T1 x c

2 , this implicitly determines the temper-
ature Tx for the crossover. To investigate the scaling of the
reduced crossover temperature =t T Tx c with the system
parameters, we rewrite(43):


- = +

D
-⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥¯ ( )t

M

N k T t
1

2
1 cosh

1
. 442

B c

1 2

The temperature depends only on relative size of the sub-
systems ¯M N and the reduced detuning D k TB c, which
plays an important role for the thermodynamic limit:

 ¥N̄ R M, , with =¯R N const. and =¯M N const. The
first condition conserves the critical temperature Tc and
therefore fixes D k TB c, see(12). The second requirement
conserves Tx (below Tc), which rules out that the temperature
difference arises from finite-size effects. Notably, both
regimes, Bose–Einstein- and Poissonian statistics, exist within
the condensed phase. While the former relates to the grand-
canonical ensemble (  ¯M n2), the latter refers to a canonical
ensemble scenario (  ¯M n2). The crossover between both
regimes is induced by changing ¯ ¯n N or Δ, respectively. To
highlight this, table 2 summarises numerically calculated

Table 2. Numerically calculated reduced temperatures and
condensate fractions, at which the crossover between Bose–Einstein
and Poissonian statistics occurs for different-sized molecular particle
reservoirs -① ⑤M . Here, the autocorrelation gives p( )( )g 0 22 ,
see(45). (D = - =¯k T N2.4 , 10B c

5.)

-① ⑤M 108 109 1010 1011 1012

T Tx c 0.979 0.946 0.847 0.602 0.359
¯ ¯n N 3.0% 9.2% 28.3% 63.1% 86.7%

( )( )g 02 1.5706 1.5707 1.5708 1.5708 1.5708

11

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 173001 PhD Tutorial



values for T Tx c for different reservoirs =- –① ⑤M 10 108 12 at
fixed photon gas sizes =N̄ 105 and dye-cavity-detuning
D = - k T2.4 B c (l = 560 nmc and l = 545 nmzpl ). For
sufficiently large reservoirs, the Bose–Einstein-like grand-
canonical statistics extends deep into the condensed phase.

The inset of figure 8 shows the Gaussian photon
number distribution at =T T 0.847x c , given by  =n

p p-( ¯) [ ( ¯) ]n n n2 exp 2 . Accordingly, the zero-delay sec-
ond-order correlation function reads









å

å
p p

=
-

= - 


⎡⎣ ⎤⎦
( )

( )

¯
( )( ) ¯

g
n n

n n
0

1

2

1

2
, 45n n

n n

n
2 0

0

2

1

which analytically reproduces the numerical results in table 2.
It corresponds to relative condensate number fluctuations
of d = - ¯ ( )( )n n g 0 1 75%2 .

4.4. Second-order time correlations

We extend our discussion of the photon statistics to the
temporal dynamics of the statistical fluctuations [111].
The condensate photons are absorbed by M molecules in the
electronic ground state, and M excited molecules decay by
emission of photons into the condensate mode. Neglecting
losses, the rate(17) becomes

¶
¶

= - + - - +ˆ ( )( ) ˆ ( ) ( )
t
n B X n n B n M X n1 4621 12

with = + = +  X M n M M M, and the steady-state solu-
tion = - ¯ ( ˆ ¯ ˆ ¯ )n B M B M1 112 21 . To quantify the time evol-
ution of deviations from n̄, we define d = -( ) ( ) ¯n t n t n and
obtain

d d gd
¶
¶

= - + -( ) ( ˆ ˆ ) ( ) ( ) ( )
t

n t B B n t n t , 4712 21
2

g = + +

+
+ +

ˆ
¯

( ˆ ˆ ) ¯

ˆ ˆ
ˆ ˆ ¯

( ˆ ˆ ) ¯ ( )

B X

n
B B n

B B

B B

M

n
B B n. 48

21
12 21

12 21

12 21
12 21

For typical experimental parameters, d+ -( ˆ ˆ )B B n 10 s12 21
6 1

and g - 10 s9 1, the coefficients in(47) comply with +(B̂12

g- ˆ ) ¯ ( )( )B n g 0 121
2 , where d = -¯ ( )( )n n g 0 12 . The

equation of motion can thus be linearised, d gd¶ -( ) ( )n t n tt .
The second-order autocorrelations at times t and t¢ = +t t
reads

t
t d t d

=
á + ñ

= +
á ñ( ) ( ) ( )

¯
( ) ( )

¯
( )( )g

n t n t

n

n n

n
1

0
, 492

2 2

where d t dá + ñ = á ñ =( ) ( )n t n t 0 has been used. Using the
quantum regression theorem [111–113] allows us to trace back
the dynamics d t dá ñ( ) ( )n n 0 to the evolution of δn(t):

d t d g d t d¶ á ñ - á ñ( ) ( ) ( ) ( )n n n n0 0t . We find

t
t
t

- - -
⎛
⎝⎜

⎞
⎠⎟( ) [ ( ) ] ( )( ) ( )

( )g g1 0 1 exp , 502 2

c
2

where t g= -( )
c
2 1 denotes the second-order correlation time.

With the Kennard–Stepanov relation, the inverse correlation time

can be recast as a function of experimental parameters:





t
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+
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B

Around the crossover temperature Tx from grand-canonical to
canonical ensemble conditions, the second-order correlation rate
exhibits a piecewise scaling

t
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where we have introduced the effective reservoir size


= +

D
-⎡
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⎛
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⎞
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⎤
⎦⎥ ( )M
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Figure 9(a) illustrates the variation of the effective reser-
voir size as a function of the dye-cavity-detuning, and
figure 9(b) gives a plot of γ versus n̄ for various reservoir
sizes. For a specific Meff the inverse correlation time
decays in the grand-canonical regime ( ( )( )g 0 22 ) with
increasing condensate number, until it reaches a minimum
at =n̄ Mmin eff . In the canonical regime ( ( )( )g 0 12 ), the
fluctuation rate exhibits the opposite behaviour growing
linearly with increasing photon numbers. This analytic
prediction is confirmed by numerical Monte Carlo simu-
lations, see figure 12(b) in section 5. To exemplify the
order of magnitude of γ, we give an estimate based on the
typical experimental parameters discussed near the statis-
tics crossover. For a condensate wavelength l = 580 nmc ,
corresponding to a dye-cavity-detuning D = - k T5.3 B

(Rhodamine 6G) and Einstein coefficients -B̂ 170 s12
1

and ´ -B̂ 3.4 10 s21
4 1, one obtains in the presence of

=M 1010 molecules an average condensate number of
= n̄ M 7000min eff photons. From(52) a time scale for

the intensity fluctuations t »( ) 2 nsc
2 is expected, which is

close to the experimental observation.

Figure 9. (a) Effective reservoir size as a function of the dye-cavity-
detuning. (b) Inverse second-order correlation time versus con-
densate number n̄ for five effective reservoir sizes Meff . The curves
exhibits minima at =¯ ( )n Mmin eff

1 2, which highlight the crossover
point from grand-canonical ( <¯ ¯n nmin) to canonical statistics
( >¯ ¯n nmin). ( = =-B̂ M10 s , 1021

4 1 9.)
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5. Phase coherence

The phasor model allows a description of the temporal
amplitude and phase evolution, ( )n t and f(t), of an optical
single-mode field containing n photons. As shown in
figure 10, it can be a valuable tool to consider qualitative
differences between light sources:

(i) In a thermal light source, the superposition of spon-
taneously emitted photons with arbitrary phases leads to a
random walk of the total phase and destructive interference
prohibits the emergence of a macroscopically occupied state
with a stationary phase [87]. Bose–Einstein photon statistics
here gives rise to a most probable photon number =n 0max .

(ii) Stimulated emission in a laser results in a macro-
scopic occupation of a single optical mode with a nearly
stable phase. The mode selection is induced by engineering
losses in all undesired modes; making laser emission in
general an out-of-equilibrium phenomenon. Residual spon-
taneous emission into the laser mode causes an amplitude and
phase uncertainty [114]. Poissonian photon number statistics
with >n 0max lead to a vanishing probability to find zero
photons  = 00 .

(iii) Finally, the phasor diagram is also helpful to illus-
trate the phase dynamics of a BEC of photons, where a
reservoir induces large statistical, thermal-like (Bose–Einstein
statistics) fluctuations of the condensate amplitude ( )n t . In
this setting, the photon number eventually drops to n=0 and
the subsequent spontaneous emission of a photon starts a
cascade of stimulated processes forming a new macro-
scopically occupied ground mode. Due to the randomness of
spontaneous emission we expect to observe the total phase of
the wave function to change discretely in the course of time.

5.1. Phase dynamics of the wave function

Based on the rate(16) we perform Monte Carlo simulations
of the photon number and phase evolution of the BEC based
on the phasor model [97]. While stimulated absorption and
emission do not alter the phase of the wave function, spon-
taneously emitted photons cause a Heisenberg-type phase
diffusion [74, 115, 116].

The phasor of the condensate with n photons and phase f
is described by the complex number fn ei . Following a
spontaneous emission event with random phase θ and

amplitude 1 the phasor is modified to

+ D = + + -f f f q+D ( ) ( )( )n n e n e n n e1 , 54i i i

which corresponds to a length change qD = +n n1 2 cos
and phase rotation f qD = nsin . The spontaneous phase
becomes relevant for small photon numbers. Notably, the
phase rotation describes only relative changes of the phase
and does not apply to the case n=0, when the randomly
selected phase θ breaks the symmetry to determine the overall
phase of a re-emerging BEC.

Figure 11(a) shows a Monte Carlo simulation of the time
evolution of the (normalised) occupation number and
corresponding phase for a fluctuating BEC coupled to a
reservoir that is compatible with grand-canonical statistics,
< =n̄ M 500eff . The data reveal discrete phase jumps at

points when no photons are present in the ground mode. For
the same reservoir, figure 11(b) gives the number and phase
dynamics of a BEC in the canonical ensemble, with

>n̄ M3500 eff . Due to its finite size the reservoir starts
to saturate and the number fluctuations get damped. Notably,
the zero-photon-probability 0 vanishes, such that discrete
phase jumps are suppressed. To quantify the temporal phase
stability of the condensate, we introduce the phase jump
rate G = #phase jumps time intervalPJ .

Moreover, our simulations of the photon number evol-
ution yield the second-order correlation function t( )( )g 2 and
its associated timescale t( )

c
2 . The phasor amplitude modula-

tion that results from the fluctuating condensate population
(time constant t( )

c
2 ) is expected to affect the degree of first-

order coherence t( )( )g 1 via phase diffusion. Figure 11(a)
(bottom), however, suggests that this effect is negligible in
comparison to the large phase jumps. Experimentally, con-
tinuous phase drifts cannot be resolved with the applied
interferometric method described in section 8.

Figure 12 shows GPJ and t( )1 c
2 as a function of the

average condensate number for two reservoirs, realised by
varying Δ. The data points are obtained from simulations
similar to figure 11. In the grand-canonical regime
( <n̄ Meff ), the phase jump and correlation rate decrease

Figure 10. (a) Phasor model for different light sources. While
spontaneous emission on average does not develop a global phase,
stimulated processes in a laser result in a macroscopic phase-stable
light field. For the photon BEC, similarly a global phase f emerges.
In the presence of large reservoirs, however, the condensate vanishes
due to strong dye-mediated reabsorption and subsequently emerges
with a broken symmetry f f+ D .

Figure 11. Simulation of condensate number ( ) ¯n t n (green) and
phase evolution f ( )t (purple) in the presence of a particle reservoir

= ´M 2.5 10eff
5. (a) Under grand-canonical conditions, large

number fluctuations occur accompanied by discrete phase jumps at
points, when the photon number drops to zero (top circles). (b) For
larger condensate sizes (canonical), the fluctuations are damped out.
No phase jumps occur as attributed to the vanishing probability to
find zero photons for Poissonian statistics. (D = k T0 B

and =M 106.)
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simultaneously with increasing system size. At the crossover
to canonical statistics ( n̄ Meff ), in figure 12 discernible by
the autocorrelation value p»( )( )g 0 22 as well as the mini-
mum of t( )1 c

2 (dashed line), both time scales separate.
Beyond the minimum, we find the phase jumps to be more
strongly suppressed, while an increase in the rate of second-
order correlations is revealed in good agreement with the
analytical prediction(48). This separation of coherence times
is evident for both reservoirs in their respective crossover
regions; the larger the reservoir, the further we find the phase
jumps to persist in the condensed region. Strikingly, in this
regime the photon condensate is expected to exhibit phase
coherence despite large statistical number fluctuations char-
acterised by >( )( )g 0 12 .

5.2. Phase jump rate

Our numerical findings suggest that the phase jump rate of a
fluctuating condensate GPJ correlates with the probability 0

to find zero photons in the ground state. To quantify this, we
assume that discrete phase changes occur only in the absence
of photons from the cavity ground state at a rate  tG =PJ

0
0 0.

Here, t0 labels a characteristic system time scale, i.e. the
average time that a zero-photon-state exists in the cavity.
Following a statistical fluctuation to a zero-photon-state, a
certain time passes by until the condensate builds up with a
new macroscopic phase, which is given by the inverse rate for
spontaneous emission of a photon at the cutoff frequency. For

n=0, the rate(16) depends only on the Einstein coefficient
B̂21 and the number of excited dye molecules M , and thus
t = B̂ M1 0 21 . For the steady-state with n̄ 1, see(19), one

further obtains  ˆ ˆB M B M21 12 . With the typically fulfilled
 M M , we have

G = ( )B M . 55PJ
0

12 0

As 0 is determined by the photon number statistics, we
consider the limiting cases: for a large reservoir (grand-
canonical statistics), see(36), Bose–Einstein photon statistics
gives  = + ( ¯ ) ¯n n1 1 10 . For small reservoirs (canoni-
cal statistics), the crossover to Poissonian statistics leads to a
strong suppression of the zero-photon probability:

aG = =
¥a

⎧⎨⎩
ˆ

¯
( )B M

n
,

1, BE & Gaussian
, Poisson

56PJ
0 12

To quantify the scaling of GPJ
0 with n̄, we have introduced the

exponent α, which interpolates between 1 and ¥ when
connecting grand-canonical and canonical ensemble condi-
tions. In the Poissonian limit (a  ¥), the condensate thus
exhibits the usual phase coherence. Using the above ansatz,
the simulated phase jump rates can be reproduced as shown in
figure 12 (solid line). The values for 0 were numerically
calculated (section 4).

5.3. Thermodynamic limit: correlation times

Figure 12 illustrates the separation of time scales for phase
and intensity fluctuations, which suggests that the coher-
ence properties of a photon BEC differ fundamentally
from those of a thermal light source, i.e. violating

t t= +( ) ∣ ( )∣( ) ( )g g12 1 2 [87]. Therefore, the question arises
whether the separation remains relevant in the thermo-
dynamic limit. Combining(48) and(56) yields the ratio of
the correlation times
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12 21

21

2

1
1 2

2

where we have used = -¯ ¯ [ ( ) ]n N T T1 c
2 and included the

temperature dependence in the constants ( )K T1,2 . In the ther-
modynamic limit,  ¥ =N̄ T, const.c and =N̄ M const.,
one expects the relative correlation times to scale with the
parameter α, which (like N̄ M ) determines the photon
number distribution n and ( )( )g 02 . On the one hand, for a
condensate in the grand-canonical regime (a = 1) at a temp-
erature  <T T Tx c, the dependence on the total particle
number N̄ in(57) vanishes and the correlation times coincide
also in the thermodynamic limit. On the other hand, Poisson-
like (a > 1) and genuine Poisson statistics (a  ¥) are
expected to cause a divergence of the first-order coherence time
with respect to the second-order correlation time. Despite the
here relatively large condensate fluctuations with ( )( )g 02

1.57 ( a< < ¥1 ), a separation of time scales for first- and
second-order is predicted for the thermodynamic limit.

Figure 12. Simulated autocorrelation ( )( )g 02 (top), phase jump rates
(bottom, filled symbols) and second-order correlation rates (bottom,
open) versus n̄ for two effective reservoir sizes (violet circles and green
triangles). The agreement of GPJ with B̂ M12 0 (solid line) supports the
assumption that phase jumps emerge when the condensate population
vanishes. First-order coherence is enhanced as the photon statistics
merges from being Bose–Einstein-like to Poissonian, which occurs at
the t( )1 c

2 minimum at =n̄ Meff , where p( )( )g 0 22 (top) in
good agreement with the analytical prediction (dashed line). ( =B̂12

= D = - -- { }M k T1 000 s , 10 , 2.8; 7.71 9
B .)

14

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 173001 PhD Tutorial



Similarly, the heuristic phase jump rate becomes

G =
a-

( ) ¯ ¯ ( )K T
M

N N

1
, 58PJ

0
3 2 2

where ( )K T3 denotes a temperature-dependent parameter,
which does not change with the system size. We expect phase
jumps to be fully suppressed in the thermodynamic limit only
for Poissonian states with a > 2.

Physically, the phase jumps originate from the persis-
tence of fluctuations to zero-photon-states also in the ther-
modynamic limit caused by Bose–Einstein-like statistics.
Provided the particle reservoir is sufficiently large, the time
scales for number and phase fluctuations remain coupled even
upon extrapolation of GPJ

0 to the thermodynamic limit. On the
one hand, the zero-photon-probability decays as  µ -n̄0

1

with increasing photon numbers (a = 1). On the other hand,
this is counteracted by a quadratical increase of the molecule
number required to conserve the photon statistics. Ultimately,
this results in a larger phase jump rate.

6. Thermalisation dynamics

In this section, we discuss experimental results of time-
resolved measurements of the spectral photon kinetics, which
shed light on the thermalisation dynamics to the molecular
heat bath. Our measurements are performed for photon
numbers near the critical particle number N 90 000c

(q= 8). Moreover, the experiment enables a spatially and
spectrally-resolved observation of the transition dynamics
from out-of-equilibrium, laser-like states to thermal equili-
brium BECs for N̄ Nc.

6.1. Experimental scheme

Figure 13(a) shows a schematic of the experimental setup,
which is comprised of the optical microcavity, the pump
source and an analysis section [41]. For this time-resolved
study, the dye-cavity is pumped under an angle of approxi-
mately 42° with respect to the optical axis using a picosecond
pulsed laser. The cavity emission is detected by a streak
camera in a spatially- and spectrally-resolved way. The
microcavity is composed of highly-reflecting dielectric mir-
rors (CRD Optics, 901-0010-0550, radius of curvature

=R 1 m) with a maximum reflectivity =˜ ( )R 99.9988 2 %
around 550 nm, while the bandwidth of a reflectivity beyond
99.98% extends over a broad range –500 595 nm, see
figure 13(b)5. At the maximum, the cavity finesse amounts to
 » 260 000. To realise mirror separations in the micrometer
range, the curved surface of one of the cavity mirrors is
downsized in an in-house grinding process to ~1 mm dia-
meter and equipped with prisms, see figure 13(b). The latter
enables optical pumping of the dye reservoir under the above
mentioned angle, which together with the appropriate polar-
isation maximises mirror transmission to approximately 80%.
By adjusting the lens L1 shown in figure 13 we control both

pump spot position and diameter d in the cavity plane, in
order to initially excite the dye medium in a spatially
homogeneous ( m~d 500 m) or localised ( m~20 m) way. For
comparison, the spatial extent of the ground mode is

m»d 15 m0 , whereas the thermal cloud covers a region of a
few hundredμm [55]. For a variation of the condensate
wavelength, the cavity length can be piezo-tuned over a total
length of m25 m. This allows us to actively stabilise the
condensate wavelength with an accuracy dl  0.2 nm at
10 Hz bandwidth, which compensates for long-term thermal
or mechanical drifts. As dye materials we use Rhodamine 6G
and Perylene red solutions of concentrations between 0.1 and

-5 mmol l 1, see the spectra in figure 14 and table 3 for an
overview of relevant properties. We expect the thermalisation
time to be close to the reabsorption time and use dye con-
centrations of -0.1 mmol l 1 to perform our time-resolved
studies of the thermalisation dynamics.

Figure 13. (a) Experimental scheme for the time-resolved measure-
ments of the spatial and spectral thermalisation dynamics. The
microcavity is pumped with a pulsed laser beam and the emission
imaged spatially and spectrally onto a streak-camera system. (b)
Picture of the prepared cavity mirrors (left) and spectral mirror
reflectivity R̃ [117].

Figure 14. Normalised absorption and emission spectra of Rhodamine
6G and Perylene red with structure formulae.

5 Obtained from cavity-ring-down measurements using a dye laser tuned to
–560 605 nm [117].
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To initialise the dye medium in a time-resolved way a
mode-locked Nd:YAG pulse laser (EKSPLA PL2201) near
532 nm with m47 J pulse energy and 15 ps pulse length at
100 Hz repetition rate is at our disposal. Both its spatial and
temporal intensity profile of the pump beam pulse are
Gaussian. The laser system acts as the clock source for the
experimental setup with electronic trigger noise around
100 ps. To obtain picosecond temporal resolution, we must
therefore simultaneously detect the pump pulse and correct
for its temporal jitter, which is achieved by directing part of
the laser emission through a variable delay path onto the
streak camera entrance slit. Subsequent to a pump pulse, the
divergent microcavity emission is collimated by a ´10 long-
working-distance objective (Mitutoyo M-Plan Apo ´10 ) and
split into two beams. One part of the light is directed onto a
diffraction grating (600 rules mm−1), and the spectrally dis-
persed light is focussed on the streak camera entrance slit with
a width of 1.5 cm and m30 m height. In the second optical
path, a telescope images the photon gas onto a dove prism
(Thorlabs PS992M-A), which rotates the spatial (x, y)
coordinates around the optical axis to align the emission with
the entrance slit. The streak camera (Hamamatsu C10910)
offers the time-resolved investigation in windows of
{ }50; 20; 10; 5; 2; 1; 0.5; 0.2; 0.1 ns with a temporal reso-
lution of 1% of the time range at 1% detection efficiency. The
data acquisition for all measurements is performed in a pho-
ton counting mode.

6.2. Spectral thermalisation dynamics

First, we focus on the spectral thermalisation dynamics of the
photon gas. For this, we realise different coupling strengths to
the molecular heat bath and different loss rates due to mirror
transmission by variation of the cutoff wavelength l =c

{ }601; 585; 577; 571 nm. Additionally, we control the
reabsorption by using different dye concentrations
r = -{ }0.1; 1 mmol l 1 (Rhodamine 6G). Figure 15 gives the
measured spectral profiles of absorption, emission and loss
rates. In the shown wavelength range, the fluorescence is
approximately constant, whereas the absorption rate exhibits
an exponential decay with increasing wavelength; their rela-
tive scaling confirms the validity of the Kennard–Stepanov

ratio for the used dye, see(2). In contrast, the photon loss by
mirror transmission increases with λ, suggesting incomplete
thermalisation for l 580 nmc . For l 580 nmc , however, we
expect the photon gas to acquire a thermal state within its
cavity lifetime.

The starting point for the measurement is a spatially
homogeneous excitation of the dye medium using a broad
pump beam ( m=w2 500 m0 ), which minimises any gradients
in the excitation level of the medium at t=0, realising well-
defined initial conditions in chemical equilibrium. Figure 16(a)
gives line-normalised, false-colour streak camera traces show-
ing the evolution of the spectral mode occupation. Here, we
define t=0 as the time when the first fluorescence photons are
detected, see ( )N N tc in figure 16(d). From left to right, we
successively increment lc to gradually decouple the photon gas
from the heat bath. All spectral distributions are weighted with
the spectral mirror transmission coefficient. Individual excited
modes, which are spaced by 42 pm ( pW =2 37 GHz), are not
resolved due to limited spectral resolution of the diffraction
grating of6 1 nm. The recorded data span a total spectral range
lD = 25 nm (D =E k T3.5 B ), which is expected to contain

the following fraction of photons:


ò=

W +
-

»
m-

¯ ( ) ¯ ( )( )N
u

e
du N

2 1

1
0.93 . 59

k T

u k Texp.
0

3.5 B

B

Our experimental data thus provides reliable information about
the degree of thermalisation of the photon gas. In all measure-
ments, we choose the laser power to be such that a macroscopic
ground state occupation emerges at the end of the detection

Table 3. Properties of the used dye media Rhodamine 6G (Rh6G)
(Radiant Dyes) solved in ethylene glycol and Perylene (PDI) red
(Kremer Pigmente) solved in inviscid paraffin oil. The absorption cross
section follows from s e= ´ -3.82 10 21 (in units of cm2) [83] and the
reabsorption time from t rs r= =- -( )c , 1 mmol l532nm 532nm

1 1.

Rh6G PDI red References

m 479.02 1079.24 g mol−1 [118, 119]
Φ 95 96 % [120–122]
lzpl 545 585 nm [123]
w p2zpl 550 513 THz

e532nm 114000 18000 [118]
s532nm 43 6.9 -10 cm17 2

ñ0 1.43 1.48
t532nm 0.13 0.8 ps

Figure 15. Rates for absorption B̂ M12 , fluorescence and photon loss
Γ versus wavelength for Rhodamine 6G dye, -1 mmol l 1, and CRD
mirrors. The fluorescence (dashed line, normalised to absorption
maximum) is approximately constant over the shown spectral range.
For l < 590 nm, the photon dynamics is dominated by the
exponential scaling of the reabsorption rate (open circles) that has
been fitted with l lµ -[ ( ) ]hc k Texp zpl B yielding = ( )T 308 14 K
(solid line). Here, a thermal equilibrium state is expected to emerge
(blue region). Increased losses from mirror transmission (filled
circles, dashed–dotted line) lead to dissipative dynamics for larger
wavelengths (orange region).

6 A high-resolution spectrum is shown in figure 22.
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window, which allows us to calibrate the photon number at
arbitrary times N(t) with respect to its asymptotic value, i.e. the
critical photon number  ¥ º »( )N t N 90 000c . Therefore,
we compare our spectral data with thermal equilibrium Bose–
Einstein distributions at 300 K (solid lines) with a chemical
potential that satisfies the total photon number.

For weak dye reabsorption and large cavity losses,
l = 601 nmc (figure 16, left), the spectral wing (hatched)
deviates from its equivalent in equilibrium for all observed
times. The photon gas fails to thermalise during its micro-
cavity lifetime. However, as the absorptive coupling rate to
the molecule bath is enhanced, l 585 nmc , (figure 16,
columns 2 to 5), we observe a thermalisation process that
redistributes the photon energies, transforming the out-of-
equilibrium distribution to a room temperature spectrum. The
characteristic thermalisation time tth can be quantified by the
spectral slope l l¶ ¶( )n t, , as illustrated in figure 16((c),
circles), which in the presence of thermalisation converges to
the equilibrium spectral slope (solid line). We observe
t = { }415; 140; 65; 40 psth defined as the time when
the relative deviation between measured and equilibrium
spectral slope is less then 1%. Figure 16(d) shows the tem-
poral increase of the total cavity emission, revealing the
gradual establishment of chemical equilibrium between pho-
tons and dye molecules. Notably, the time scales for either
thermal or chemical equilibration differ (section 3). Even if
the total photon is non-stationary, the spectral profile of the
photon gas present in the microcavity can already be ther-
mally distributed. In figure 17 we plot the measured

thermalisation times as a function of the free absorption time
in the medium rs l -( ( ) )c 1, which follows a linear scaling
t rs l= -( ) · ( ( ) )c0.37 5th

1. Indeed, the photon gas equili-
brates due to an energy exchange with a heat bath at a
rate that can be tuned via the reabsorption. If the thermali-
sation time exceeds the photon lifetime in the cavity,
t t> » 500 psth res , the photons constitute an out-of-equili-
brium ensemble.

6.3. Bose–Einstein condensation dynamics

We turn our attention to the temporal photon dynamics sub-
ject to (i) spatially inhomogeneous and (ii) strongly inverting
pump excitation of the dye medium. As before, we investigate
the dynamics for different coupling rates to the molecular heat
bath rs l( )c and resonator losses lG( ), realised by varying
the cutoff wavelength. In the out-of-equilibrium regime,
l rs lG >( ) ( )c, the nonequilibrium state of the dye medium

manifests itself in transient multimode laser operation. When
coupling the photons to a heat bath, l rs lG <( ) ( )c paves
the way for the photon gas to thermal equilibrium and give
rise to the emergence of BEC.

Figure 18(a) indicates the experimental sequence to
realise initial conditions far from equilibrium. We focus the
pump beam to a diameter m=w2 80 m0 and position it at

m= =( )x y150 m, 0 transversally displaced from the optical
axis in the microcavity plane. As a result, the spatially
inhomogeneous density r( )x decays by emission of (initi-
ally) spontaneous photons into excited transverse cavity

Figure 16. Thermalisation dynamics of the photon gas for increased heat bath coupling. (a) Streak camera traces (line normalised) and (b)
extracted spectra at different times along with 300 K-Bose–Einstein distributions (solid lines). (c) By comparing the measured spectral slope
(hatched area in (b)) with its equilibrium counterpart (line) the thermalisation time can be quantified. It reduces as the coupling to the heat
bath is enhanced (from left to right). (d) The temporal evolution of the total power of the cavity emission (normalised to Nc) indicates the time
scale for chemical equilibration between photons and dye molecules. (l =- { }① ⑤ 601; 585; 577; 571; 585 nmc, , Rhodamine 6G
r r= =-

- -
① ④ ⑤0.1 mmol l , 1.0 mmol l1 1). Reprinted figure with permission from [41]. Copyright (2015) by the American Physical Society.
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modes that overlap most with the pumped region. These
eigenstates of the harmonic oscillator potential are at higher
energies (lower wavelengths) than the transverse ground state
wc (lc). Due to the sub-nanosecond time scales of the
radiative processes, the comparatively slow effect of spatial
diffusion of molecules can be safely neglected [124]. Fol-
lowing the initial photon emission, the photon gas kinetics
depends critically on both the dye reabsorption and the cavity
loss rates.

The first data set in figure 18(b) shows the spectral photon
evolution in the weakly reabsorbing regime nearl = 603 nmc .
The streak camera time traces have been line-normalised to
clarify the spectral redistribution of the photons. Here, the
reabsorption time rs l =-( ( ) )c 5.8 nsc

1 (corresponding to
t = 2.3 nsth ) exceeds by far the average photon storage time in
the cavity t l =( ) 18 psres c , such that no equilibrium dis-
tribution emerges. Instead, the optical feedback onto the
inverted active medium causes stimulated amplification of the
light field in the excited modes around l = 595.7 nmmax after
approximately 100 ps and the maximum of the emission is
maintained throughout the entire detection window. At

m=r 150 m the resonant wavelength deviates from the cutoff
wavelength by l l lD = - = =( ) ( )r r nr qR2 8 nmc

2 ,
which agrees with the observed value of 7.3 nm. In further
measurements, see figure 18(b), we successively enhance the
coupling to the heat bath by reducing lc. Accordingly, we
observe a more and more accelerated spectral redistribution of
the light towards an equilibrium distribution. This is a con-
sequence of fast reabsorption processes, which chemically
equilibrate any gradients in the density of the ground and
excited state molecules. Due to the harmonic trapping potential,
this light-induced diffusion is directed towards transverse
modes with lower energies than the modes overlapping with the
pump beam region. Strikingly, the ground state becomes mac-
roscopically occupied for data with shorter cutoff wavelength,
and for l = 574c and 567 nm a BEC with thermally occupied
excited states forms In the case of l = 567 nmc , the rapid
thermalisation prevents the detection of any nonequilibrium
emission at the given temporal resolution.

Using a spatially-selective photon injection technique to
prepare a photon gas far from equilibrium, our measurements
have demonstrated that a high-density (critical) photon gas
thermalises to a Bose–Einstein condensate provided that the

coupling to the heat bath is sufficiently strong. In the opposite
limit, the high-density photon gas resembles an out-of-equi-
librium state similar to a multimode laser. In contrast to the
homogeneously pumped protocol (section 6.2), the photon
thermalisation dynamics is not universal but depends cru-
cially on the initial conditions of the pumped dye medium, in
excellent agreement with our numerical simulations, see
section 6.5.

6.4. Spatial photon kinetics

We focus on the spatial condensation dynamics subsequent to
an inhomogeneous inversion of the dye medium. For this, a
tightly focussed pump beam ( mw2 27 m0 ) irradiates the
dye microcavity spatially displaced by m50 m from the
position of the trap minimum. To analyse the spatial intensity

Figure 17. Observed thermalisation time tth (circles) versus
reabsorption time in the dye solution. For t t<th res the photon gas
acquires a thermal state (blue); otherwise it remains an out-of-
equilbrium system. Reprinted figure with permission from [41].
Copyright (2015) by the American Physical Society.

Figure 18. Spectral condensation dynamics following an off-centre
pump pulse for increasing thermal contact to the heat bath. (a) The pump
pulse initialises an inhomogeneous excited molecule density r, which
decays by stimulated emission into spatially overlapping modes. (b)
Streak camera images (top) with spectral cuts (bottom) shortly after the
photon injection (green squares) and at the end of the detection window
(red circles). While for weak thermal contact (top, left) no thermalisation
is observed, the enhanced reabsorption leads to a partial relaxation (top,
middle and right) of the photon emission towards larger wavelengths.
Finally, the photon gas fully thermalises to a Bose–Einstein distribution
(bottom row). The grey-shaded data set highlights the thermalisation
dynamics with cuts in the dynamical transition region. (Rhodamine 6G

l =- { }0.25 mmol l , 603; 590; 582; 574; 567 nm1
c , t = {2 300;th

}388; 124; 38; 13 ps, cavity lifetime t = {18; 83; 165; 303;res

}500 ps). Reprinted figure with permission from [41]. Copyright (2015)
by the American Physical Society.
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distribution, a real image of the cavity plane is projected onto
the streak camera.

Figure 19(b) shows a typical CCD camera image of the
average cavity emission. Besides the emission from the trap
centre = =( )x y0, 0 , two bright spots are visible: the first
one near the pumping region at m-( )50 m, 0 , the second one
at m( )50 m, 0 , i.e. mirrored respectively to the trap centre. A
time-resolved measurement (figure 19, line-normalised) of the
intensity distribution along the x-axis yields an explanation
for the centro-symmetric emission: following the inhomoge-
neous dye excitation an optical wave packet forms, which
oscillates in the harmonic potential with reversal points that
determine the observed emission spots. The observed oscil-
lation period =T 27 ps shows excellent agreement with the
expected inverse trap frequency p W - ( )2 37.1 GHz 1 (see
table 1). Moreover, the wave packet emerges within only a
few picoseconds. As this is considerably faster than the
spontaneous decay time of the Rhodamine molecules (4 ns),
the dynamics are driven by stimulated processes. The wave
packet dynamics can be understood as a coherent super-
position of adjacent transverse eigenstates spaced by  W, i.e.
with a fixed relative phase, in close analogy to a mode-locked
laser with an extremely high repetition rate. Oscillator modes
that exhibit their maximum probability in proximity to the
pumped region, experience maximum gain. Classically
speaking, the velocity of the wave packet is minimised at the
reversal points of the oscillation, maximising here the photon
leakage rate out of the resonator. Quantum mechanically, this
can be interpreted as constructive interference between mul-
tiple harmonic oscillator wave functions.

In the limit of weak reabsorption and large cavity losses,
see figure 19((a), left) forl = 596 nmc , the photon kinetics is
determined by the highly excited oscillating out-of-equili-
brium state throughout the measurement time of 250 ps. The
visible residual initial population at small times is attributed to
overlap of the pump beam with the ground mode at x=0,
which however quickly decays. The situation drastically
changes, as the thermal contact to the heat bath is established
by lowering l = 581c and 571 nm (figure 19(a), middle and
right). During its oscillation, the wave packet traverses the
enclosed dye volume, effectively equilibrating the initially
inhomogeneous excitation level r r ( )x by multiple photon
reabsorption events. Figure 20 shows corresponding numer-
ical simulations. With advancing times, this effects a dyna-
mical redistribution from the laser-like wave packet to a BEC.
The damping of the coherent oscillations and the emergence
of the macroscopic ground state in the presence of a thermal
bath is shown in figure 19(c). Qualitatively, the measured
photon kinetics is in good agreement with results from
numerical simulations.

To conclude, our experimental study demonstrates that a
thermal state of the photon gas in the dye-filled microcavity is
imprinted by a molecular heat bath. In particular, we find that
the efficiency of the thermal contact, i.e. the thermalisation
rate, can be tuned systematically by the optical density of the
dye solution. With regard to the canonical and grand-cano-
nical statistical ensemble, the temperature of the dye solution

actually becomes an external parameter for the photon gas.
Thermalisation induced by absorption and emission is a
necessary prerequisite for the emergence of a photon BEC.

6.5. Numerical simulations

To gain deeper insight into the crossover from transient laser
operation (critical out-of-equilibrium gas) to BEC (critical
equilibrium gas), we perform numerical simulations of the
photon dynamics in the microcavity [41]. Our phenomen-
ological model relies on semiclassical one-dimensional rate
equations and incorporates both the coupling of the photons
to the optically active dye medium as well as their oscillatory
movement in the harmonic trap. Independently, the results
have been confirmed using a master equation model including
coherences between photon modes [71].

Our approach is based on the equation of motion for the
photon density:

r e r= + - + G -
¶
¶ ˙ ˆ ¯ ( ¯ ) ( ˆ ¯ ) ¯ ¯ ( )n B n B n v

x
n . 60i

i
i i

i
i i i i21 12

Here, =¯ ¯ ( )n n x t,i i is the photon number density in the ith
mode at position x and time t (averaged over many

Figure 19.Mode-locked laser operation and BEC of photons. (a) Line-
normalised spatial evolution of the cavity emission for different cutoff
wavelengths. The pump beam excites an oscillating wave packet in the
harmonic potential (top). For weak reabsorption (left), a stable mode-
locked laser oscillation occurs (dashed line), where most light leaves
the cavity at the reversal points. For stronger reabsorption (middle and
right) the photons thermalise and a condensate emerges in the trap
centre. (b) CCD camera image of the (average) emission. (c) Temporal
variation of the detected relative intensity from (a, right) at the reversal
points (left) and in the condensate mode (right). (Rhodamine 6G,
r l= =- { }0.1 mmol l , 596; 581; 571 nm1

c ). Reprinted figure with
permission from [41]. Copyright (2015) by the American Physical
Society.
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realisations), the densities of molecules in ground and elec-
tronically excited state r r=   ¯ ¯ ( )x t,, , , and the rate coeffi-

cients for absorption and emission w=ˆ ˆ ( )B B
i

i12,21 12,21 at the
photon angular frequency wi. Furthermore, e e= ( )xi i denotes
the density of a single photon in the ithe mode, wG = G( )i i the
cavity loss rate and = ( )v v xi i the photon velocity field, which
will be discussed in the following. Assuming a conserved
excitation number = + X n M , one finds

å-
¶
¶

=
¶
¶

= -
¶
¶

 ¯ ¯ ¯ ( )
t
M

t
M P

t
n , 61

i
i

where = ( )P P x t, denotes the pump beam excitation.
Heuristically, we consider a non-orthogonal set of optical
modes consisting of coherent states a ñ∣ i with amplitudes

 a = W = W∣ ∣ ·u u i,i i i and the trap frequency Ω. The
mode energy spectrum corresponds to the eigenenergies of
the harmonic oscillator potential. In contrast to stationary
eigenstates, coherent states allow us to model the oscillation
of particles or wave packets in the trap. The normalised
photon density e ( )xi results from a temporal average

òe a= á ñ( ) ∣ ∣ ( ) ∣ ( )x
T

x t dt
1

62i

T

i
0

2

over an oscillation period p= WT 2 . By comparing the
probability to find a particle within e ( )dx x dx, i , with the
temporal portion of a half-period that the particle is present in
this interval, ( )dt T 2 , we define the photon velocity field

pe= = W( ) ( ) ( )v x dx dt x , 63i i

where the sign changes after each half-period. Neglecting
losses, G = 0i , the numerical results demonstrate that the

model reproduces asymptotically the analytic Bose–Einstein
distributions and the critical particle number, see figure 20(b).

In analogy to the experiments described above, we simulate
the photon thermalisation kinetics for initial out-of-equilibrium
conditions realised by pumping the molecular medium with
a Gaussian laser pulse sµ - - -( ) [ ( )P x t x x, exp 2 x0

2 2

s-( ) ]t t 2 t0
2 2 with duration s = 1.5 pst and waist s =x

m7.5 m. The pump pulse is positioned at m= -x 30 m0 , where
it locally excites molecules within a few picoseconds, as indi-
cated in figure 20(a). At this point, the chemical potentials of the
photons and ground and excited state dye molecules exhibit
strong gradients as visible in the spatially inhomogeneous dye
excitation level. The cutoff wavelength l = 570 nmc is chosen
such that the photon gas couples efficiently to the molecules7.

Subsequent to the initialisation pulse, the simulations
reveal the emergence of a high photon density in the pumped
region, which reaches its maximum after only a few picose-
conds. Owing to the trapping potential these photons are
accelerated as a wave packet towards the trap minimum
(x= 0), see figure 20(b). During their oscillation the photons
are quickly reabsorbed by the enclosed dye medium, which
results in a homogeneous density of excited molecules within
the region traversed by the wave packet after nearly half an
oscillation period ( =T 2 5.4 ps) as visible in figure 20(a).
The homogeneity of  ( )( )M M x is a prerequisite for chemical
equilibrium among photons and molecules and the existence
of a global chemical potential for the photon gas. Indeed, we
find that the medium acquires a homogeneous state soon after
the pump excitation, whereas the photon gas is still char-
acterised by a non-thermal spectral distribution, see
figure 20(c). It takes additional 250 ps until the laser-like
wave packet has vanished and the photon energies are Bose–
Einstein distributed with a macroscopic occupation of the
ground mode.

7. Number statistics of condensed light

We describe measurements of the photon number statistics
and second-order correlations of a photon BEC coupled to
different-sized particle reservoirs. Our experiment gives
access to canonical and grand-canonical statistical
ensemble conditions, which are hallmarked by their par-
ticle number fluctuations: for small reservoirs (canonical),
the photon statistics is Poissonian with small fluctuations,
d = »¯ ¯n n n1 0 (for n̄ 1), whereas large reservoirs
(grand-canonical) support unusually large fluctuations of
the condensate population, d =¯n n 1.

7.1. Experimental scheme

Figure 21 outlines the used experimental scheme. In contrast to
the measurements of the thermalisation dynamics, a continuous
pump and detection system is utilised. For all measurements, the
microcavity is operated at q=8 and filled with either

Figure 20. Simulation of the thermalisation dynamics for off-centre
pulsed excitation. (a) Density of excited molecules r( )x for given times

after the pump pulse. The locally excited medium near m= -x 30 m0

induces the formation of a photon wave packet (see (b)), which
homogenises r( )x in the course of its oscillation. (b) The temporal
evolution of the spatial photon density (left) shows the oscillation of a
mode-locked photon wave packet, which is damped out with time. After
250 ps, the photons have been redistributed to the cavity ground state at
x=0. Photon evolution versus photon energy  w w= - W( )E h c

(right), showing the emergence of a BEC with ¯ ¯n N 95%0 .
( p lW = =2 93 GHz, 570 nmc , D - k T4 B at =T 300 K,

=B̂ 1.3 kHz12 , r r m+ = ´ G = 
-( ) ( )x x 1.5 10 m , 0i

8 1 .)

7 The simulation parameters differ from experimental values for computa-
tional reasons. Cavity losses have been neglected.
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Rhodamine 6G (ethylene glycol) or Perylene red (inviscid par-
affin oil) solutions at varying concentrations. The dye medium is
pumped by a frequency-doubled Nd:YAG laser (Coherent Verdi
V8) near 532 nm, whose output power of up to 8 W is acousto-
optically modulated (AOM) into 200 ns pulses at 200 Hz repe-
tition rate, in order to reduce excitation of long-lived dye triplet
states and to maintain condensate number constant throughout
the pulse (figure 21(b), top). For the latter, the rf-signal driving
the AOM is mixed with a temporally increasing voltage from a
function generator (Tektronix AFG3252). Additionally, a volt-
age-controlled attenuator actively stabilises the condensate power
(10 Hz bandwidth), which is separately detected by a photo-
multipler. A =f 400 mmL1 focal length lens focuses the pump
beam to a diameter of mw2 150 m0 into the microcavity plane
to generate a photon gas. Here, the pump power controls the
excitation level of the dye, as well as the chemical potential and
the total number (and condensate fraction) of the photon gas.
Any loss from the dye-microcavity-system is compensated by
maintaining the pumping throughout the pulse.

To determine the condensate fraction ¯ ¯n N0 , we measure
average photon spectra, see figure 22(a), in a f4 -spectrometer
equipped with two diffraction gratings ( -2400 rules mm 1) and
two lenses with =f 100 mm. A motion-controlled slit placed in
the f2 -Fourier-plane performs a wavelength selection of the
multimode light, which is detected using a photomultiplier
(Hamamatsu H10721-210). Although its spectral resolution
lD = 0.5 nm precludes the measurement of individual trans-

verse cavity modes spaced by lD  41 pm, we confirm the
solitary macroscopic occupation of the ground state with a
double monochromator (LTB Demon) with 6 pm resolution, see
figures 22(a) and (c).

The photon correlations of the BEC are detected in a Han-
bury Brown–Twiss interferometer, while for the direct observa-
tion of the time-resolved fluctuations and photon statistics a
photomultiplier is at our disposal, see figure 21. To measure the
second-order correlations only of the condensate mode, the
divergent cavity emission is first Fourier-filtered with a 5 mm iris
in the far field approximately 850 mm behind the cavity8. The
aperture acts as a transverse momentum filter to suppress
contributions from excited modes: from the zero-point
energy in the harmonic trapping  W, we can estimate
the momentum uncertainty of the ground mode

D = W ´ -k m2 1.86 10 mr ph
5 1, which is much

smaller than the longitudinal wave vector component
p= ´ -( )k q D0 1.6 10 mz 0

7 1. Taking into account the
quartz–air cavity interface ( ñ 1.460,Quartz ), the corresp-
onding divergence angle Q = 0.95 leads to a condensate
diameter~1.4 cm at the momentum filter. Most of light in the
first excited eigenstate (  W2 , diameter ~2.0 cm) is expected
to be blocked. After lifting the two-fold polarisation degen-
eracy of the photons, the transmitted light is equally split and
directed onto two single-photon detectors (MPD PD5CTC,
temporal resolution D t 50 ps, dead time t  79 nsPD ),

which are connected to an electronic correlation system
(PicoQuant PicoHarp 300) that records and correlates photon
detection events at times t1,2 with a resolution 60 ps. To avoid
errors during the coincidence measurement caused by the
dead time of the system ( t  90 nsPicoHarp ), the condensate
light is sufficiently attenuated to provide photon count rates
around ~ /0.5 photons pulse ( ´ -2.5 10 photons s6 1) at each
detector. Evaluation of the time histograms yields the second-
order correlation function for the BEC

=
á ñ
á ñá ñ

( ) ( ) ( )
( ) ( )

( )( )g t t
n t n t

n t n t
, , 642

1 2
0 1 0 2

0 1 0 2

where á ñ... denotes a temporal average, see figure 21(b) for a
typical data set. At =t t1 2, we find significant photon
bunching, »( )( )g t t, 1.72

1 1 (yellow diagonal), while for large
time delays the photons are uncorrelated, »( )( )g t t, 1.02

1 2 .
Due to the nearly constant average photon number during the
operation time (figure 21(b), top), the second-order correla-
tions depend only on the relative time delay t = -t t2 1, and
we hereafter only refer to the time-averaged correlation
function t = á ñ t- =( ) ( )( ) ( )g g t t, t t

2 2
1 2 2 1

.
Moreover, we monitor the time evolution of the con-

densate intensity in the same optical path, see figure 21 (top),
relying on a photomultiplier (Hamamatsu H9305-01,

Figure 21. (a) Time-resolved measurements of correlations, number
statistics and fluctuations of the photon BEC. The microcavity is
pumped (quasi-)continuously and part of the cavity emission is
spectrally analysed. In the far field, the condensate emission passes
several filtering stages and its correlations are detected in a Hanbury
Brown–Twiss interferometer. (b) Typical average condensate
emission (top) and second-order correlation function ( )( )g t t,2

1 2 .
(c) Time evolution of the (normalised) condensate population
measured with a single photomultiplier (PMT) for different
condensate fractions ¯ ¯n N0 . Inset: corresponding autocorrelation
functions with t = -t t2 1. Reprinted figure with permission from
[40]. Copyright (2014) by the American Physical Society.

8 The free propagation of the photon gas is equivalent to a free expansion of
a harmonically trapped gas, a technique commonly used in ultra-cold atoms
to infer the initial momentum distribution from the density distribution after a
long time-of-flight [99].
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D t 1.4 ns, quantum efficiency »10%) and a fast oscillo-
scope (Lecroy DDA 5005A, 5 GHz bandwidth). This allows
us to resolve the number fluctuations, which occur on time
scales around 2 ns; examples are given in figure 21(c). From
the intensity traces ( )I t0 we can equally reconstruct the sec-
ond-order correlation function

t
t

t
=

á + ñ
á ñ á + ñ

( ) ( ) ( )
( ) ( )

( )( )g
I t I t

I t I t
, 65t

t t

2 0 0

0 0

where òtá ñ = -
t- -

( ) ( )T dt... ...t
T1

0
denotes the temporal

average of the pulse of duration T. We note, that despite
consistent results for ( )( )g 02 , the Hanbury Brown–Twiss
interferometer is considered as the more reliable detection
scheme for our purposes due to its high temporal resolution.

7.2. Time-resolved photon correlations

In a first step, we study the number correlations of different-
sized photon BECs coupled to a particle reservoir of constant
size by fixing the dye concentration r = -1 mmol l 1 (Rhoda-
mine 6G) and the dye-cavity detuning l lD = - =- -( )hc c

1
zpl

1

- k T6.7 B (l = 590 nmc ).
Figure 22(a) shows spectral distributions in the Bose–

Einstein condensed phase hallmarked by the macroscopically
occupied ground mode and thermally populated excited states.

All condensate fractions =¯ ¯ { }n N 4%; 16%; 28%; 58%0

and reduced temperatures = { }T T 0.98; 0.92; 0.85; 0.65c ,
respectively, are obtained from fitting the data with =T
300 K Bose–Einstein distributions. This corresponds to
absolute photon numbers ´¯ { }n 4; 19; 37; 120 100

3 and
´¯ { }N 100; 119; 132; 207 103. To confirm the single-

mode property of the condensate, we show corresponding
spectra (figure 22(a), inset) with a 9 pm-resolution which is
below the transverse mode spacing lD = 41 pm. By mea-
suring the entire cavity emission the full periodic mode structure
is revealed, see figure 22(c).

The second-order correlation functions t( )( )g 2 shown
in figure 22(b) exhibit zero-delay autocorrelations

=( ) { ( ) ( ) ( ) ( )}( )
①–④g 0 1.64 2 ; 1.30 2 ; 1.15 2 ; 1.01 12 followed

by an exponential decay to t ( )( )g 12 at larger time
delays (dashed lines). According to(50), we fit

t t t= + - -( ) [ ( ) ] ( )( ) ( ) ( )g g1 0 1 exp2 2
c,exp
2 to the data sets

①–③ and obtain t  { ( ) ( ) ( )}( ) 1.75 5 ; 1.56 8 ; 1.18 3 nsc,exp
2 .

For the largest condensate fraction ④ the photon bunching
vanishes, ( )( )g 0 12 , such that we cannot determine the
correlation time. Our observations reveal strikingly: above
Nc, the number correlations do not rapidly drop to

=( )( )g 0 12 as one would anticipate for a system with
strictly conserved particle number [7, 38]. Indeed, the
observed behaviour provides a first evidence for grand-
canonical particle exchange with an effective reservoir.
The bunching amplitude >( )( )g 0 12 , however, persists
only up to a specific condensate fraction, where
grand-canonical conditions cease to be applicable: the
finite-size reservoir saturates and canonical ensemble
conditions start to prevail in the system. According to
d = -¯ ( )( )n n g 0 10 0

2 , the zero-delay autocorrelation
( )( )g 02 is directly associated to the relative condensate

fluctuations. For the data shown in figure 22(b), this
gives d =¯ { ( ) ( ) ( ) ( )}n n 80 1 ; 55 2 ; 39 3 ; 10 5 %0 0 .

7.3. Grand-canonical condensate correlations

We systematically demonstrate the genuine grand-canonical
nature of the dye-photon-system in the Bose–Einstein con-
densed phase by engineering different-sized reservoirs.
According to(53), the effective reservoir size is increased for
high dye concentration and reduced dye-cavity-detunings.

Figure 23 shows zero-delay autocorrelations ( )( )g 02 and the
fluctuation level, respectively, as a function of ¯ ¯n N0 for five
different combinations of dye concentration and detuning
(R1-R3: Rhodamine 6G; R4-R5: PDI red). The main advantage
of PDI red is the ability to implement small (absolute) dye-cavity-
detunings D > - k T2.5 B with high reabsorption rates in a
spectral region ( –585 605 nm), where the mirrors transmit a
sufficient amount of light to be measured. In order to quantify the
effective reservoir size (relative to R1), we introduce




e

r

r
= = ´

+ D
+ D

( )
( )

( )
M

M

k T

k T

1 cosh

1 cosh
, 66R

R

R

R

R

R

eff,

eff, 1 1

1 B

B

i i

i

see the table in figure 23. For the case of the smallest reservoir
(R1) the number fluctuations are quickly damped as the photons
undergo BEC. Upon increasing the effective reservoir size (R1

Figure 22. (a) The measured spectra for increasing condensate
fractions (circles) are well described by 300 K Bose–Einstein
distributions (solid lines). Inset: (Linear) high-resolution spectrum
demonstrating the macroscopic occupation of the ground state only.
All spectra have been vertically shifted for clarity. (b) Second-order
correlation functions t( )( )g 2 (①–③) exhibit photon bunching at short
time delays τ. ( l r= D = - = -k T590 nm, 6.7 , 1 mmol lc B

1,
Rhodamine 6G) (c) mode-resolved spectrum of a Bose–Einstein
condensed photon gas measured using a double monochromator.
Reprinted figure with permission from [40]. Copyright (2014) by the
American Physical Society.
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 R5), we observe that the region with statistical fluctuations
can be systematically extended to larger condensate fractions. For
the largest implemented reservoir (R5), we find ( )( )g 0 1.22 at

¯ ¯n N 60%0 . At this point, the photon condensate performs
number fluctuations d = - ¯ ( ( ) )( )n n g 0 1 45%0 0

2 1 2 ,
although its occupation »n̄ 144 0000 is similar to the total
number »N̄ 240 000. Our findings provide strong evidence for
the photon statistics to be controlled by grand-canonical particle
exchange [9, 33, 38].

The experimental results are recovered by our theoretical
model (solid lines in figure 23), except for condensate fractions
below 5%. This is attributed to imperfect mode filtering that leads
to an effective averaging of uncorrelated photons from a few
equally populated transverse modes (at N̄ Nc) and suppresses
the bunching amplitude. If the ground state contribution dom-
inates ( ¯ ¯n N 5%0 ), the effect becomes negligible. Further-
more, the largest detectable autocorrelation value is clamped at

( ) –( )g 0 1.6 1.72 . Both issues can be resolved when the cor-
relations are measured with a streak camera system [125]. To fit
our data with the theory curves, the molecule numberM is treated
as a free parameter and good agreement is obtained when we
choose –10 109 10 molecules, see the caption of figure 23. The
large M-values suggest that not only molecules located in the
ground mode volume (»108 for r = -1 mmol l 1) contribute to
the effective reservoir. A possible explanation is the residual
overlap between the excited TEMmn modes and the TEM00

ground mode that couples molecules in both volumes by
absorption and emission of ‘secondary’ photons, effectively
increasing the reservoir size for the BEC. Alternatively, a mod-
ification of the autocorrelations could also be caused by photon–
photon interactions [126]. To this date, the role of interactions
and the origin of photon nonlinearities in the optical condensate
have not been fully resolved. Previous work has identified ther-
mal lensing to cause effective (non-local) photon–photon-inter-
actions associated with a dimensionless interaction parameter

- -˜ –g 10 105 2 [26, 61, 66, 67, 127, 128].Promising candidates
for the implementation of genuine quantum nonlinearities include
e.g. polaritons of strongly interacting atomic Rydberg states
[129, 130] or coupled cavity arrays [131]. In combination with
these concepts photon BEC holds prospects for the realisation of
strongly correlated many-body states of light.

7.4. Intensity fluctuations and photon statistics

We have seen that the second-order correlation time
(t ( ) 2 nsc

2 ) of the Bose–Einstein condensed ground state is
sufficiently slow to directly monitor the temporal number
evolution with a fast photomultiplier.

Figure 24(a) shows the time evolution of the (normalised)
photon number ( ) ¯ ( )n t n t0 0 for a fixed reservoir size with
parameters as in figure 23. Close to the condensation threshold,
the BEC exhibits large number fluctuations, which are gradually
damped out as the condensate fraction is increased. By evaluating
histograms of roughly 50 traces per condensate fraction, we
reconstruct the underlying photon statistics n, i.e. the probability
to find n photons in the condensate, see figure 24(b). As the
fluctuations are reduced, the distributions reveal a crossover from
exponentially decaying Bose–Einstein towards Poissonian

statistics, with a width dn0 that measures the relative degree of
fluctuations d ¯n n0 0. Our results are in excellent agreement with
theory curves (solid lines) from(30), confirming the predicted
crossover from grand-canonical to canonical statistical conditions
(section 4).

8. Phase coherence of the condensate

In the presence of large reservoirs, even strongly occupied
BECs that contain thousands of photons on average display a
finite probability  > 00 to produce states without a single
photon. Naturally, the question arises: how do such statistical
(amplitude) fluctuations affect the temporal phase stability of
the BEC? In comparison, the Poissonian statistics in the limit
of small reservoirs causes the zero-photon probability to
vanish  = 00 , such that—despite residual phase diffusion
[74, 115, 116, 132]—a well-defined phase is expected.
Similar observations with (micro)canonical atomic BECs
prompt the emergence of phase coherence for the condensate
wave function [14, 16, 17, 20]. In the last section of this
Tutorial, we describe an experimental measurement of the
temporal phase coherence for a BEC of light.

8.1. Experimental scheme

To study the phase evolution, we rely on time-resolved hetero-
dyne interference signals between the condensate emission
superimposed with a dye laser acting as a phase reference, see
figure 25 [74]. From a separate detection of the intensity of the

Figure 23. Second-order autocorrelations ( )( )g 02 and relative
condensate fluctuations d ¯n n0 0 as a function of the condensate
fraction ¯ ¯n N0 (reduced temperature T Tc), for different reservoir
sizes R1–R5. The increasing effective reservoir size is quantified by
ε. For large concentrations ρ and reduced dye-cavity-detunings Δ
(R5), the fluctuations of the ground mode populations persist deep
into the condensate phase. The solid lines indicate the prediction
from the theoretical model discussed in section 4. Error bars give
statistical uncertainties. (l = { }598; 595; 580; 598; 602 nmc fr R1–
R5; r = -{ }0.1; 1.0; 1.0 mmol l 1 fr R1–R3 (Rhodamine 6G) and
r = -{ }0.1; 1.0 mmol l 1 fr R4,R5 (PDI). For the theory curves, we
use = ´{ ( ) ( ) ( ) ( ) ( )}M 5.5 22 ; 20.5 71 ; 16.0 57 ; 2.1 4 ; 10.8 37 109 for
R1–R5). Reprinted figure with permission from [40]. Copyright
(2014) by the American Physical Society.
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condensate in the interferometer (blocked dye laser), we obtain
the degree of second-order coherence ( )( )g 02 and the correlation
time t( )

c
2 . The experiments are performed for longitudinal wave

number q=7 in the microcavity, which is filled with a Rho-
damine 6G solution (r = -3 mmol l 1). The microcavity is
pumped with continuous laser light, which is here chopped into
600 ns pulses at 40 Hz repetition rate by an AOM.

As a local oscillator for the heterodyne interferometry we
use a cw dye laser (Sirah Matisse), which offers a tuneable
emission between l = –560 605 nmL . Analogue to the con-
densate operation cycle, the dye laser is acousto-optically
chopped into 800 ns pulses at the same repetition rate, while
the zeroth diffraction order allows to measure lL with a
resolution of approximately 10 pm, see figure 25(c). The
relatively long pulse duration is required in order to observe
sufficiently long beatings between the condensate and dye
laser emission, as will be elaborated in more detail later in this
section. To obtain high-contrast interference signals, we use
half-wave plates to project the polarisation axes of the
momentum-filtered photon condensate and dye laser on top of
each other, and combine both beams after passing a non-
polarising beamsplitter (90% transmission) in a single mode
fibre (Thorlabs P1-488PM)9 . The temporal interference traces
are detected by a fast photomultiplier tube (Hamamatsu
H10721-20, D t 0.57 ns) and recorded with a digital
oscilloscope (Tektronix DPO7000, nD  3.5 GHz). A typi-
cal time-resolved interference signal, where condensate and
dye laser wavelength have been matched, is shown in
figure 25(b). The superposition of Bose–Einstein condensed
light field, y w j= +( ) ( ) { [ ( ) ( )]}t n t i t t texpc c c , and dye

laser field, y w=( ) ( ) ( )t n t i texpL L L , gives a beat signal

y y
w w j

+ = + +
´ - +

∣ ( ) ( )∣ ( ) ( ) ( ) ( )
{[ ( ) ] ( )} ( )

t t n t n t n t n t

t t t

2

cos , 67
c L

2
c L c L

c L

where j ( )t denotes the time-dependent condensate phase.
Notably, we here have explicitly maintained the time
dependence of the condensate frequency w ( )tc , for reasons
that will be discussed in the following.

The thermodynamic state of the photon gas is obtained
from a spectroscopic measurement of the energy distribu-
tions with a f4 -spectrometer (section 7). The spectra cover
a wavelength (energy) range of 30 nm ( k T4 B ) and provide
the ground state population n̄0 and total photon number N̄ ,
being calibrated with reference spectra at N 79 000c .
Moreover, a part of the transmitted cavity emission is
injected into the high-resolution double monochromator
together with the aforementioned dye laser to monitor the
relative spectral position of condensate and dye laser
wavelength, see figure 25(c). At the smallest achievable
cavity lengths m»D 1.4 m0 , the curved mirrors are firmly
pressed together, effectively reducing residual mechanical
resonator drifts and vibrations. Under these conditions,
minute piezo-tuning of the cavity length allows us to
actively match the condensate with the dye laser wave-
length with a spectral precision lD » 10 pm. At
l = 580 nm, the mirror separation can thus be tuned with
an accuracy of l lD = D »D D 24.5 pm0 0 .

8.2. Modulation of the condensate frequency

Despite the mechanical stability of the microcavity, we have
already seen in figure 25 that the measured intensity traces
reveal a frequency modulation of the beating signal.
Figure 26(a) shows the observed temporal variation of the
beat signal for different initial cavity lengths, the latter
modifying lc. For an average condensate wavelength blue-
detuned with respect to the dye laser (l l<c L, insets of
figure 26(a)), no beating signal is observed. For red-detuned
light (l l>c L) however, the occurring beating signal shows
two resonances that exhibit an increased temporal separation
as the condensate is further detuned, with the beating fre-
quency in between exceeding the detector bandwidth. The
interference data allows us to reconstruct the frequency drift
n ( )tc of the condensate emission, which is shown in
figure 26(b) for various cavity lengths.

The frequency drift in figure 26(b) has been recorded for
temporally equidistant pump pulse excitation (pulse length

mD =t 1.5 s every =T 25 msp ), leading to beating signals
that occur in every subsequent condensate pulse with nearly
the same shape (due to mechanical shot-to-shot stability).
However, when irradiating the dye-microcavity with a quick
sequence of 4 pump pulses (D = =t T 600 nsp , followed by
100 ms dark time), see figure 26(c), only one of the four
produced condensate pulses exhibits a beating with the laser,
yet with the same characteristic, nearly parabolic ‘fast’ fre-
quency drift observed previously. We attribute the ‘slow’
global frequency drift to modulation of the index of refraction
of the dye medium that is caused by effectively heating the

Figure 24. (a) Temporal evolution of the normalised condensate
population ( ) ¯n t n0 0 (1.4 ns temporal resolution). For increasing
condensate fractions (①⑤) a damping of the fluctuations is
observed. (b) The photon number distributions (vertically shifted)
exhibit a crossover from Bose–Einstein-like to Poissonian statistics
in agreement with theory (solid lines), see also figure 8. (Parameters
as in figure 22.) Reprinted figure with permission from [40].
Copyright (2014) by the American Physical Society.

9 The optical phase is commonly retrieved in a balanced heterodyne
detection scheme [133], by subtracting the interference signals at both output
ports of a symmetric (50:50) beamsplitter exploiting their π-phase difference.
For low condensate powers, however, the usage of an asymmetric (90:10)
beamsplitter turned out to enhance the signal-to-noise ratio of the observed
beating signals.
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solution with the pump laser. The relaxation timescale is
approximately 20 ms, similar to timescales of thermal lensing
effects in our system [26, 58, 67]. The fast sloshing of the
condensate eigenfrequency during a single pulse may be
caused by the steep rising slope of the pump pulse itself, as it
occurs in each pulse of the fast sequence scheme shown in
figure 26(c). Furthermore, the behaviour is observed only for
longitudinal wave numbers q 10 when the dye film in
between the cavity mirrors becomes kinematically 2D. Both
observations give reason to conclude that the parabolic
contribution to the frequency modulation n ( )tc is based on a
refractive index change, which originates from an over-
damped density oscillation in the dye film. Due to the cavity
length stability within a single pulse,

l
n

= = =
( )

˜ ( ) ˜ ( ) ( )
( )!

D q
t

n t
q

c

n t t2 2
const. 680

c

0 0 c

Therefore, the density of the dye solution in the ground mode
volume reads

r
n t n

µ = =( ) ˜ ( )
( ) ( )

( )t n t q
c

D t
q

t2

1
, 690

0 c rt c

where the (vacuum) resonator round trip time t = D c2rt 0

has been inserted. According to(69), the density scales
inversely with the frequency drift from figure 26(b),
corresponding to a compression of the solvent in the area of
the pump beam. Presumably, this could be caused by an
initial localised heating and dilution of the medium due to the
pump pulse, see the illustrated sequence in figure 26(d). The
resulting density hole leads to a reflow and densification of
ethylene glycol molecules until the medium is finally

homogenised. The observed time scale of the overdamped
density modulation is consistent with an estimate based on the
propagation time of a sound wave through the ground mode area
of diameter m» = » -d t d v15 m, 10 s0 s 0 s

8 , where =vs
-1688 m s 1 is the speed of sound in ethylene glycol at 300 K

[134], and it occurs on a considerably shorter time scale than
thermal lensing (10−3 s). Moreover, our interpretation is
affirmed by the notion that the pump beam geometry affects the
condensate frequency modulation: for a larger pump beam waist,
the dynamics becomes slower and the maximum of the com-
pression is postponed to later times, see figure 26(d)10. For all
subsequently discussed measurements, we use a fixed
pumping geometry with a beam diameter l=w f2 201 L1
p mw 140 m0 (beam waist =w 1 mm0 and =f 40 cmL1 ,
see figure 25).

8.3. Phase jump detection algorithm

The microcavity frequency drift prohibits a temporally stable
resonance condition to be fulfilled between photon con-
densate and dye laser, making a direct observation of the BEC
phase evolution difficult. However, discrete phase jumps of
the condensate can be easily unveiled if the recorded chirped
interference signals are examined for irregularities in their
oscillatory behaviour. For an automated analysis, we develop
a phase jump detection algorithm that we benchmark with
Monte Carlo-simulated data (section 5).

Figure 27 shows the simulated (a) intensity and (b) phase
evolution of a BEC under grand-canonical statistics, and (c)
depicts the corresponding simulated beating signal between
the photon BEC and a dye laser. In the first step of the ana-
lysis, the analogue interference signal is digitalised (red).
Subsequently, the procedure evaluates the digital square-sig-
nal for irregularities in the (i) width and (ii) central position of
adjacent high- or low-valued segments. If the irregularities
exceed predefined limits, the algorithm flags these points in
time (grey shaded). The low-frequency region near the reso-
nance (hatched) is excluded from the detection. The simulated
data confirms the operability of the algorithm, as demon-
strated by coincidences of grey regions with zero- or one-
photon-states in the ground state (figure 27(a), top, dots). It
enables the detection of discrete phase rotations between

p p[ ]0.2 , 1.8 . As the analysis is based on the detection of
relative irregularities, the temporal resolution is limited by the
beating oscillation period.

8.4. Phase evolution of the photon condensate

Figure 28 shows the time evolution of the interference
between photon BEC and dye laser for three different
cases of photon statistics at a fixed reservoir size, starting
from a strongly occupied second-order coherent con-
densate in figure 28(a) towards a strongly fluctuating
population in (c). The left column gives the time of the

Figure 25.Heterodyne interferometry to study the phase evolution of
the photon condensate. The momentum-filtered ground mode
emission (left cavity mirror) is superimposed with a dye laser in a
single mode fibre. (b) A typical resulting interference signal recorded
with a fast photomultiplier. (c) The emission transmitted through the
right cavity mirror is used to monitor the wavelengths of BEC and
dye laser, lc and lL, in a double monochromator and measure the
condensate fraction ¯ ¯n N0 .

10 In principle, defocusing allows one to observe temporally extended
beating signals. However, this is limited by the required increased length of
the pump pulses, which inevitably leads to a breakdown of the condensate
operation due to photodegradation and triplet-state pumping of the dye.
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(normalised) condensate number ( ) ¯n t n, which is recorded
after each interference measurement by blocking the dye
laser. From this, the autocorrelation function t( )( )g 2 is
computed (middle), implicitly providing a measure of the
fluctuation level d = -¯ ( )( )n n g 0 12 and the second-order
correlation time t( )

c
2 . In all measurements with a significant

bunching amplitude ( >( )( )g 0 12 ), an exponential fit to the
autocorrelation data yields t »( ) 2 nsc

2 .
For canonical ensemble conditions with Poissonian

number statistics, see figure 28(a) with =( ) ( )( )g 0 1.01 22 , the
beating oscillates regularly, which demonstrates the temporal
coherence of the BEC throughout120 ns11. As the condensate
fraction is reduced, the reservoir size becomes sufficiently
large to realise grand-canonical statistical conditions, which is
hallmarked by the occurrence of intensity fluctuations in
figures 28(b) with =( ) ( )( )g 0 1.33 42 and (c) with

=( ) ( )( )g 0 1.93 132 , respectively. This is accompanied by a
discontinuous phase behaviour manifested in the beating
signals, which for increased fluctuations shows a reduction of
the time separation between adjacent phase jumps
G »- 21.3 nsPJ

1 in (b) and G »- 5.3 nsPJ
1 in (c). In the vicinity

of the detected phase jumps (grey shaded) a fit yields the
magnitude of the imparted phase shift, see the inset of
figure 28(b). To good approximation, the phase rotation
angles are evenly distributed within the detection range

p p[ ]0.2 , 1.8 , as indicated by the histogram in figure 28(d).
The random distribution gives evidence for the U(1) sym-
metry of the infinitely phase-degenerate ground state. Physi-
cally, this equipartition is attributed to the intrinsic
randomness of a spontaneous emission event, which is
expected to trigger the emergence of a condensate after a
previous fluctuation to low photon numbers.

8.5. First- and second-order coherence times

As previously discussed, figure 28 indicates a separation of
the dynamics for number and phase fluctuations: while t( )

c
2

remains nearly constant, the measured values for G-
PJ

1 change
by 2 orders of magnitude and seem to depend on the choice of
the statistical ensemble and its associated zero-photon-prob-
ability 0.

For a quantitative analysis of the time scale separation,
figure 29 summarises experimental results of the phase jump
rates GPJ and inverse second-order correlation times t( )1 c

2 as
a function of the average photon number in the condensate for
three different-sized particle reservoirs. The phase jump rates
(filled symbols) increase strongly for both growing reservoir
size as well as decreasing condensate photon number (‘system
size’) based on the here enhanced probability to have a low
photon number given the increased fluctuation level (inset),
which reduces the phase stability. The rates deduced from the
zero-photon-probabilities G = B̂ MPJ

0
12 0 (solid lines) show

an excellent agreement with the experimental data. This
suggests that a drop of the condensate population to zero
followed by a spontaneous emission process is physically
responsible for the observed phase jumps. Similarly, the
inverse second-order correlation times t( )1 c

2 (open symbols)
present a good agreement with theory curves (dashed lines)
based on(51).

For all three configurations, a separation of the time
scales for first- and second-order coherence is visible in the
statistics crossover region, i.e. near =n̄ Meff . What is its
physical origin? On the one hand, spontaneous emission
events can cause arbitrary phase fluctuations. However, these
matter only when a few photons occupy the ground state with
a likelihood given by the photon statistics, which therefore
dominates the first-order phase jump dynamics, see(56). On
the other hand, the dynamics of particle number fluctuations
is subject to absorption and emission rates of photons by the
dye medium, according to(48). Although for increased con-
densate populations (at a fixed reservoir) the relative fluc-
tuations d ¯n n are reduced, the fluctuation time scale is still
controlled by the Einstein coefficients. In fact, even larger
condensate populations lead to a reduction of the second-
order correlation time, in stark contrast to the increased first-
order correlation time. Although our analysis does not
account for diffusive contributions to the temporal phase

Figure 26. (a) Interference signals upon tuning lc at fixed dye laser wavelength lL by increasing the cavity length. Both a frequency
modulation and a relative temporal separation of two resonance crossings (①,②) are observed. (b)Non-resonant intensity trace (top) and
relative drift of the condensate frequency nD ( )tc , as reconstructed from (a) (bottom). Vertically shifted curves correspond to increased cavity
lengths (from top to bottom), and the hatched area indicates the PMT detection bandwidth 1.75 GHz. (c) Combined intensity (top) and
nD ( )tc (bottom) upon excitationwith a sequence of four pulses showing a beating within the last pulse. We deduce a global slow linear

frequency drift over several pulses and a parabolic frequency modulation is reproduced within each individual pulse, possibly caused by a
(d) temporal density modulation of the dye medium following the pump excitation (hatched). A tight pump beam focus (solid line) leads to an
enhanced amplitude and speed of the modulation during the BEC emission (yellow), compared to a weak focusing scenario (dashed line).

11 For large waists of the pump beam, the longest recorded time span
without phase jumps was m1 s (300 m coherence length).
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coherence [74], it conveys the unusual properties of Bose–
Einstein condensed light: a light source comprised of a single
macroscopically occupied emitter that exhibits statistical
intensity fluctuations as large as in a thermal source. The
relation between first and second-order coherence for thermal
emitters, t t= +( ) ∣ ( )∣( ) ( )g g12 1 2, is however expected to
hold only in the extreme grand-canonical regime with
n̄ Meff [87, 135].

8.6. Extrapolation to the thermodynamic limit

Finally, we discuss the physical significance of statistical
number fluctuations and phase coherence for a photon BEC in
the thermodynamic limit. For this, we study the phase jump
rate for enlarged system sizes. Importantly, we ensure to
increase the sizes of both condensate n̄ and effective particle
reservoir Meff in a way that conserves the statistical ensemble
conditions.

Figure 30(a) shows the reservoir-system-ratio ¯M neff as
a function of n̄ for different values of ( )( )g 02 obtained from
numerical calculations. For a given photon number n̄, the
reservoir size Meff is adjusted iteratively until the corresp-
onding photon number distribution n reproduces one of the
target values =( ) { }( )g 0 1.10; ...; 1.902 . Subsequently, the
procedure is repeated for larger condensate populations to
yield further data points at the same fluctuation level. Our
numerical results indicate that conserving the the statistical
ensemble conditions, i.e. ¯M neff , is equivalent to a constant
zero-delay autocorrelation. This suggests that the phase
coherence may be extrapolated towards the thermodynamic
limit (  ¥ =¯ ¯ ¯n N M M n, , , const.eff ), provided that one

does maintain the fluctuation level ( )( )g 02 . Strictly speaking,
an extrapolation also requires the critical temperature

µ( ¯ ) ¯T N N Rc to be constant. This could be achieved by
increasing the radius of curvature of the cavity mirrors

 ¥R proportional to N̄ . Experimentally, this compensa-
tion is unfeasible with the described setup, such that we only
comply with the requirements for a fixed statistical
ensemble12.

Figure 30(b) gives the phase jump rate versus auto-
correlation for three reservoirs. For all values of ( )( )g 02 , we
observe that photon condensates coupled to the smallest
reservoir (D = - k T7.7 B ) exhibit shorter coherence times
than condensates coupled to the medium-sized (- k T5.6 B ) and
largest (- k T2.3 B ) reservoir. This meets our expectations: for
the same level of fluctuations, i.e. the same statistical
ensemble, an increased condensate population should reduce
the zero-photon-probability 0, see (58).

From our data, we extract three sets of phase jump
rates for selected zero-delay autocorrelations =( )( )g 02

( ) ( )1.59 18 , 1.18 9 and ( )1.02 1 , which are shown in

Figure 27. Phase jump detection benchmark with simulated
interference signals. (a) Number evolution of a fluctuating BEC and
points in time with zero or one photon in the ground mode (dots,
top). (b) Corresponding phase evolution (units of 2π) with a phase
jump detection resolution j pD > 0.2 (red boxes indicate missed
events). (c) Beating between photon condensate and reference laser
and digitalised signal (red). Irregularities in the periodicity of
subsequent square signals selected by our algorithm (grey shaded,
see also zoomed time trace) coincide with actual phase jumps in (b).
The resonance is excluded from the detection (hatched).
( = =¯M n10 , 2806

c with = D =( )( )g k T0 1.67, 0c
2

B , wave-
length drift l l= - -( ) [ ( ) ]t t T1 0.5 20c L with m=T 1 s.
Reference laser: =n̄ 1000L with =( )( )g 0 1.0L

2 )

Figure 28. Interference between photon BEC and dye laser (right) for
average photon numbers (a) =n̄ 114 000 ( =¯ ¯n N 57%) (b) 8300
(10%) and (c) 3700 (5%), which realises different levels of statistical
number fluctuations, as visible in the normalised photon number
evolution (left) and the autocorrelation (middle). Regions that have
been identified by our detection algorithm (grey shaded) indicate
phase jumps at increasing rates from (a) to (c). The magnitude of the
phase rotations is obtained from a fit as shown in the inset in (b).
(d) Histogram of the phase rotation angles jD for 108 fitted phase
jumps in signals as in (b). Within the detection window p p[ ]0.2 , 1.8
(red line), the random distribution reflects the U(1) symmetry of the
ground state, which is broken upon condensation. (Rhodamine 6G,
r l= =-3 mmol l , 582 nm1

c ). Reprinted figure with permission
from [43]. Copyright (2016) by the American Physical Society.

12 Recently realised photon gases in variable micropotentials might however
render a conservation of Tc tractable [67, 68].
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figure 30(c) versus the inverse condensate population n̄1 . All
data sets lie in the range n̄ Meff , for which a separation of
GPJ and t( )1 c

2 has been observed. A linear extrapolation of the
data towards an infinitely large condensate ( n̄1 0) is
consistent with a full suppression of discrete phase jumps in
the thermodynamic limit, in spite of the absence of second-
order coherence. Numerical calculations (black symbols) for

=( )( )g 0 1.50, 1.182 and 1.05 support this conclusion. The
largest realised fluctuation level comes close to the photon
statistics crossover, p=( )( )g 0 22 , with a zero-photon-prob-
ability  - n̄0.640

1, see(45). Under the assumption that
phase jumps occur due to vanishing photon numbers, a fit to
the data in figure 30(c) yields G = -ˆ ( ) ¯B M n0.51 14PJ 12

1

reproducing the expected slope within the quoted uncertainty.
For lower fluctuation levels, the exact scaling of 0 with n̄
remains elusive and we therefore compare our data only with
numerical results, which similarly demonstrate a linear scal-
ing of Γ with the inverse photon number ( = -( ) n̄0.13 50

1.18 1

and  = -( ) n̄0.06 20
1.02 1). Although the presence of amplitude

fluctuations of the condensate wave function f( ) ( ( ))n t i texp
reduces the degree of first-order coherence, we expect that in
the investigated parameter regime discrete phase jumps will
be fully suppressed in the thermodynamic limit.

9. Conclusions and outlook

This Tutorial has presented a study of the thermalisation
dynamics and temporal coherence properties of a Bose–Ein-
stein condensed photon gas in the grand-canonical statistical

ensemble. Key evidences are provided by measurements of (i)
the spectral photon dynamics, which demonstrates the ther-
malisation of the photons due to reabsorptive coupling to a
dye heat bath, (ii) the large (grand-canonical) statistical
number fluctuations at significant condensate fractions, and
(iii) the observed variation of the temporal phase coherence of
the condensate wave function. An extrapolation to the ther-
modynamic limit gives BECs with super-Poissonian number
statistics despite suppressed phase jumps.

The realisation of BEC in the grand-canonical ensemble
has for the first time shed light on the long-discussed grand-
canonical fluctuation catastrophe [9, 30–36]. The observation
of extremely large, statistically fluctuating condensate popu-
lations demonstrates the physical significance of the grand-
canonical ensemble for the Bose–Einstein condensed phase.
Moreover, the results provide the fundamental insight that
BEC does not strictly imply first- or second-order coherence.

For the future, it will be exciting to study phase diffusive
contributions to the condensate linewidth, as has been theo-
retically predicted but remains elusive in any Bose-condensed
system to date [74, 115, 116, 132]. A major experimental
challenge here depicts the required frequency stability of the
photon BEC to observe minute phase drifts over long mea-
surement durations. Moreover, it is expected that in-depth
studies of the thermal character of the grand-canonical sta-
tistical fluctuations may reveal unusual fluctuation–dissipa-
tion-relations in the ideal Bose gas, associated with
macroscopic thermodynamic quantities as e.g. a generalised
statistical compressibility imposed by the particle reservoir.
From a technical point of view, macroscopically occupied,
but incoherent photon condensates under grand-canonical

Figure 29. Inverse second-order correlation time t( )1 c
2 (open

symbols) and phase jump rates GPJ (filled symbols) versus condensate
number for three different-sized reservoirs, realised by
D = -{ }k T7.7; 5.6; 2.8 B and quantified by ε, see(66). Solid lines
give theory curves for GPJ

0 with = ´ ={ } ˆM B2.0; 4.5; 5.0 10 ,9
12

-{ }140; 250; 1 300 s 1. In the region accessed by our experiments, the
phase jump rates are significantly smaller that the inverse second-order
correlation times. The inset gives the corresponding zero-delay
autocorrelation ( )( )g 02 along with numerical calculations (solid lines).
(l r= = -{ }597; 582; 563 nm, 3 mmol lc

1, = n̄ Meff

´{ }1.0; 4.1; 16.5 103, error bars are statistical uncertainties).
Reprinted figure with permission from [43]. Copyright (2016) by the
American Physical Society.

Figure 30. (a) Numerical scaling of effective reservoir and
condensate size versus n̄ for various fluctuation levels ( )( )g 02 ,
demonstrating the conservation of ¯M neff as the autocorrelation
remains fixed. (D = = ´–M0, 0.5 2.0 1010). (b) Measured GPJ

versus autocorrelation for three effective reservoirs. For each
fluctuation level, the larger system exhibits an enhanced phase
stability. (c) Extrapolation of phase coherence for large photon-
reservoir-systems at three fixed degrees of fluctuations ( )( )g 02 (filled
symbols). By extrapolating  ¥n̄ (dashed), all curves indicate a
full suppression of phase jumps in the thermodynamic limit. Black
symbols are numerical results for G = B̂ MPJ

0
12 0 at corresponding

( )( )g 02 and = ´ = -ˆM B4 10 , 1000 s9
12

1. (Parameters as in
figure 29.) Reprinted figure with permission from [43]. Copyright
(2016) by the American Physical Society.
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conditions could pose interesting novel light sources for
speckle-free imaging applications due to their high directional
brilliance and (tuneable) low degree of coherence.

Further exciting research directions for grand-canonical
BECs might be pursued in conjunction with variable poten-
tials for thermalised light and coupled condensates, as has
been demonstrated in microstructured optical cavities
[67, 68]. Phase-stable, macroscopically occupied condensates
arranged in a lattice are expected to constitute a realisation of
the XY model of 2D interacting spins, that could provide a
fruitful platform to address complex optimisation problems
[136, 137]. In this regard, the phase jumps associated with
grand-canonical statistical fluctuations could mimic spin
fluctuations at an effective temperature: at sufficiently low
‘temperatures’ one expects the emergence of the BKT phase
associated with algebraic long-range spin order [138–141].
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