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Abstract

This thesis presents novel Bragg scattering-based techniques to extract
spatially-resolved velocity fields in quasi-2D Bose-Einstein condensates,
enriching the study of quantum turbulence. An experimental Bragg
scattering setup is implemented and characterised on stationary condensates.
Two newfound methods; spectroscopic and broadband velocimetry, are
introduced and used to extract spatially-resolved 1D velocity field projections
for vortex–antivortex configurations, with experimental measurements in
good agreement with computational results. Initial experimental results for
the 2D velocity field extraction of a turbulent BEC are reported, offering a
powerful new diagnostic tool for probing quantum turbulence.



Zusammenfassung

In der vorliegenden Arbeit werden neuartige, auf Bragg-Streuung basierende
Verfahren zur Extraktion ortsaufgelöster Geschwindigkeitsfelder in quasi-
2D Bose-Einstein-Kondensaten vorgestellt, wodurch die Untersuchung von
Quantenturbulenz bereichert wird. Ein experimenteller Bragg-Streuaufbau
wird implementiert und an stationären Kondensaten charakterisiert. Zwei
neue Methoden – die spektroskopische und die breitbandige Velocimetrie –
werden eingeführt und zur Bestimmung ortsaufgelöster 1D Projektionen des
Geschwindigkeitsfelds von Vortex–Antivortex-Konfigurationen eingesetzt.
Die experimentellen Messungen stimmen dabei gut mit numerischen
Berechnungen überein. Erste experimentelle Ergebnisse zur Bestimmung
des zweidimensionalen Geschwindigkeitsfelds eines turbulenten BECs
werden vorgestellt, was ein leistungsstarkes neues Diagnosewerkzeug zur
Untersuchung von Quantenturbulenz darstellt.
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1. Introduction

When a system of Bosons is cooled below a critical temperature, a Bose-Einstein condensate
(BEC) is formed, where particles occupy the lowest energy state, resulting in a macroscopic
effective wavefunction with a well-defined continuous phase at every point in space, ϕ(r).
Since their experimental realisation in 1990 [1], atomic BECs have made for powerful analog
quantum simulators due to their high level of controllability, and low level of noise. Just as a
water tank can be used to investigate fluid dynamics, an atomic BEC provides a platform to
probe the quantum dynamics that govern the universe at the smallest scale.

Far-from-equilibrium, turbulent quantum systems are of significant interest in analog quantum
simulation [2–5]. In the description of classical turbulence, kinetic energy is distributed
amongst circulating flow structures of continuous sizes [6]. In many-body quantum systems,
flows are superfluid [7], and the velocity field depends on the particle mass m and the phase
gradient:

v(r) =
ℏ
m
∇ϕ(r) . (1.1)

The continuity of the phase profile results in the quantisation of angular momentum, where
the phase accumulated around a vortex core must be an integer multiple of 2π. Therefore,
the physics of quantum turbulence diverges from its classical counterpart. Quantised vortices
and quantum turbulence govern a broad range of quantum phenomena, such as the resistive
behaviour of superconductors [8], and pulsar glitches in neutron stars [9]. Recent theoretical
work also maps quantised vortices in 2D BECs to 2D Maxwellian electrodynamics [10].

Historically, BECs are probed by destructively measuring the spatial distribution of atoms.
This can be done immediately after an experiment to extract the instantaneous BEC density
distribution, or after some phase space rotation [11], granting information of the atomic
velocities at the sacrifice of spatial resolution. However, this is not sufficient for the investigation
of quantum turbulence, where vortex vorticity cannot be inferred from spatial or velocity data
alone. This requires the development of new techniques to extract spatially-resolved velocity
field information.

In previous work, velocity-selective Bragg scattering along a single axis is used to spatially
resolve atoms of a single class of 1D velocity projections along the axis [12–15]. This allows
for the diagnosis of vorticity, and has resulted in key experimental breakthroughs, such as the
observation of Onsager cluster formation [16], and the investigation of vortex collisions [17].
In this thesis, we introduce two novel methods for extracting the full 1D projected velocity
field. Spectroscopic velocimetry can be used to extract the velocity field of a reproducible
BEC configuration over multiple realisations. Broadband velocimetry enables velocity field
extraction in a single shot, essential for studying irreproducible turbulent configurations.
Finally, we present initial results for 2D velocity field extraction for the first time in quasi-2D
atomic BEC experiments. Through this work, we provide new tools for the exploration of
quantum turbulence in atomic BECs.
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1. Introduction

The thesis is structured as follows: Section 1.1 provides a brief overview of the BEC experiment,
and methods used to generate out-of-equilibrium BEC configurations. Chapter 2 presents
background theory of Bragg scattering as a velocity-selective, inelastic 2-photon transition
between momentum states and outlines the 2 velocimetric methods. Chapter 3 describes the
implemented experimental setup to produce two ’Bragg beams’ capable of Bragg scattering
along two axes. In Chapter 4, we characterise the interactions of a Bragg beam with a
stationary condensate, establishing experimental parameters for velocity field extraction. In
Chapter 5, we probe dynamic BECs. First, we establish velocity-dependence on a deterministic
uniform velocity field. Then, we apply the newfound velocimetric methods to extract 1D
velocity fields from vortex-antivortex configurations, and find that both methods extract
velocity fields in good agreement with numerically simulated expectations. Finally, we present
initial results for the 2D velocity field measurement of a turbulent vortex gas configuration.
Chapter 6 provides future outlook and concluding remarks.

1.1 BECK Experiment Condensed

In the BECK lab, we perform quantum simulation on a potassium-39 BEC that is tightly
confined in the gravity axis (z). All quantum dynamics of interest are observed in the
perpendicular (x − y) plane. 39K is a particularly interesting atomic species because s-
wave scattering lengths can be tuned via an external magnetic field, effectively changing how
strongly atoms repel each other [18]. The setup has been used to simulate wave propagation
in curved spacetime [19] and particle production in the early universe [20]. Previous efforts
to investigate quantum turbulence revealed supersolid-like sound modes in a driven BEC
[21, 22].

1.1.1 Dipole Potentials

In a vacuum chamber, 39K atoms are cooled, trapped, and condensed via a number of
experimental protocols [23]. The condensed atoms are then manipulated using far-detuned
laser light of frequency ωl. This produces a spatially-varying dipole potential proportional to
the light intensity:

U(r) = − 3πc2Γ

2ω2
0∆

2
I(r) , (1.2)

where c is the speed of light, Γ is the linewidth of the electronic transition of frequency ω0,
from which the laser light is detuned by ∆ = ω0 − ωl. This equation is derived rigorously in
[24]. For blue-detuned light, this potential is positive, resulting in a repulsive dipole force
that pushes atoms towards regions of low intensity. Dipole traps are used in BECK for tight
axial confinement of the BEC in z, and for radial confinement in x− y.

Radially, the trapping potential can be engineered using a digital micromirror device (DMD),
most commonly used in video projectors. It consists of micrometer scale mirrors that can be
switched on or off to shape the intensity profile of the dipole laser. Furthermore, the DMD
mirror states can be rapidly updated, allowing for a dynamic arbitrarily shaped trapping
dipole potential [25], which is a key parameter for analog quantum simulation.
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1. Introduction

1.1.2 Phase Imprinting

The DMD enables spatial phase imprinting on the quasi-2D BEC. In the mean field description,
the BEC can be described by an effective wavefunction [26]

ψ(x, y, t) =
√
n(x, y, t)eiϕ(x,y,t) , (1.3)

where n(x, y, t) is the BEC density distribution. In thermal equilibrium,

ϕ(x, y, t) = −µt , (1.4)

where the chemical potential µ is given in the Thomas-Fermi approximation by

µ = n(x, y)g2D + V (x, y) , (1.5)

where g2D is the effective 2D interaction strength. For a constant potential V within the
trapping region, a thermally equilibrated BEC is stationary, with a flat density and phase
profile. By locally varying the potential by U(x, y) for a sufficiently small duration ∆t such
that the density profile remains constant, the BEC is perturbed from equilibrium, accumulating
a phase shift given by

∆ϕ(x, y) = −U(x, y)∆t . (1.6)

This technique is used throughout Chapter 5 to generate velocity fields to be probed with
Bragg scattering.
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2. Bragg Scattering in Quantum Gases

Bragg scattering was initially observed in 1913 as a phenomenon in X-ray crystallography.
X-rays would only scatter coherently from a crystal at specific incident angles θ, providing the
first evidence of a periodic lattice structure. Building on this, Brillouin and Bloch interpreted
the phenomenon as a reflection process [27, 28]. When the X-ray momentum along the
lattice axis lies on a Brillouin zone boundary, a discrete momentum is transferred and the
X-ray reflects. Varying θ changes this momentum component, allowing for the determination
of the lattice spacing Λ by identifying Brillouin zone boundaries.

In the 1980s, this concept was applied to quantum gases. Here, the role of light and matter
swap places: It was demonstrated that moving beams of atoms coherently scattered from
static optical lattices with the same θ dependence [29–31]. Soon after, a configuration for
Bragg scattering static ultracold atomic clouds was implemented. A moving optical lattice,
formed by counterpropagating laser beams, is swept through a cloud of cold atoms. The
speed of the moving lattice depends on the relative detuning of the counterpropagating
beams δ. Varying δ changes the atomic momentum relative to the lattice. When an atom’s
momentum qA corresponds to a relative momentum along the optical lattice axis coinciding
with the Brillouin zone boundary, the atom absorbs momentum and scatter coherently from
the cloud. Bragg scattering in crystallography is therefore related to this configuration of
Bragg scattering in quantum gases by:

Crystals → Quantum Gases
x-rays → atoms
crystal → light

scan θ to probe Λ → scan δ to probe qA

Bragg scattering with moving optical lattices was first demonstrated with laser-cooled atoms
in 1994 [32], and was used 5 years later on quantum gases to coherently split a Bose-Einstein
condensate [33]. In the present, Bragg scattering has since been used to spectroscopically
probe low-energy phononic regimes in quantum gases, providing experimental benchmarks
for theoretical models [34]. It has also found applications in atom interferometry as a
coherent atomic beam splitter [35].

In this thesis, we develop the use of Bragg scattering to probe atomic velocities in quasi-2D
BECs with spatial resolution. To gain a deeper understanding of the parameters and dynamics
involved in Bragg scattering of quantum gases, we to analyse this system in a quantised
photon picture, describing Bragg scattering as an inelastic, 2-photon atomic transition between
momentum states. In this chapter we derive the velocity-dependent resonance of this transition,
and describe the dependence of the transition linewidth on the duration and temporal shape
of the Bragg pulse. Finally, we present 2 distinct velocimetric methods for spatially-resolved
velocity field extraction.
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2. Bragg Scattering in Quantum Gases

2.1 2-photon Bragg Transitions

When two counterpropagating laser beams of frequencies ω and ω + δ are incident on an
atom, a 2-photon process can take place [36]. The higher energy photon is absorbed, exciting
the atom to an intermediate ’virtual’ state, and the lower energy photon simultaneously
stimulates an emission, visualised in Fig. 2.1 (upper left). For a single photon detuning
∆ = ω−ω0 much larger than Γ, the natural linewidth of |g⟩ → |e⟩, electronic excitation to |e⟩
suppressed, and this 2-photon process dominates.

For δ ≪ ω, the photon wavelengths are approximately the same: λL(ω) ≈ λL(ω+δ). Through
this process, the atom gains energy ℏδ and momentum +2ℏkL, kL = 2π/λLx̂

′, where we
define x̂′ as the Bragg beam axis [Fig. 2.1 upper left]. This inelastic process couples an initial
atomic momentum state |qA⟩ to a final state |q′

A⟩ with no modification of the electronic state,
and is called a (first-order) Bragg transition [37].

Bragg
transition

Figure 2.1: The Bragg transition. A diagram of the inelastic 2-photon Bragg transition from
an initial atomic momentum state |g, qA⟩ to a final state |g, qA + 2ℏkL⟩. The atom remains in
the same electronic state |g⟩ and gains energy ℏδ and momentum corresponding to 2 photon
recoil momenta due to the absorption and stimulated emission depicted in the upper left. The
initial and final state are coupled by a ’virtual’ intermediate state, which is detuned from the
excited electronic state |e⟩ by ∆. The resonance condition of this transition is found by enforcing
conservation of energy and momentum such that the transition couples to an allowed energy
given by the dispersion relation E(qA).

The resonance condition for a Bragg transition is met when both energy and momentum are
conserved:

ℏδres = E(q′
A)− E(qA) , (2.1) q′

A = qA + 2ℏkL . (2.2)
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2. Bragg Scattering in Quantum Gases

For a free atom of mass m with momentum qA, the dispersion relation E(qA) is simply given
by the kinetic energy |qA|2

2m
, and is plotted in Fig. 2.1. The Bragg resonance for this system is

found at

ℏδres =
|qA + 2ℏkL|2

2m
− |qA|2

2m
. (2.3)

Expanding this, we find that the resonance depends linearly on the atomic velocity v = q/m

δres =
2ℏ|kL|2

m
+ 2kL · v . (2.4)

The first term is the resonance for a stationary atom:

δ0 :=
2ℏ|kL|2

m
. (2.5)

For a 2-photon detuning δ = δ0, we couple stationary atoms to a momentum of 2ℏkL. The
second term introduces a dependence on the velocity of the interrogated atom. For an atom
moving along the beam axis, the two photon frequencies appear blue- and red-detuned by
±kL · v respectively. This results in the relative photon detuning in the frame of the atom
decreasing by 2kL · v. We therefore define a Doppler detuning term in Eq. 2.4,

δd(v∥) := 2kL · v , (2.6)

which brings the system in the atom frame into resonance. We can therefore probe the
velocity component along the beam axis v∥ by scanning δd(v∥) and measuring the atoms
coupled into the final momentum state |qA + 2ℏkL⟩.

2.2 Effective 2-level System

The resonance condition described above captures coupling between two quantum mechanical
states through an external oscillating field. Provided ∆ ≪ Γ, such that the spontaneous
scattering rate Γsc ∝ Γ

∆2 is suppressed, the time dynamics of the state occupations are
captured by the standard treatment of a 2-level system characterised by the interaction

Ĥ =
ΩR(t)

2
eiδt |qA⟩ ⟨q′

A|+ h.c. , (2.7)

where the coupling strength depends on 2-photon Rabi frequency

ΩR(t) =
Ω(t)2

2∆
=
I(t)

ϵ0ℏc
⟨g| ϵ̂ · d̂ |e⟩

∆
, (2.8)

where time dependence is introduced by the time-varying incident laser intensity I(t), which
modifies Ω(t), the electronic Rabi frequency coupling |g⟩ and |e⟩. To couple the 2 momentum
states, the electronic transition’s electric dipole matrix element ⟨g| ϵ̂ · d̂ |e⟩ must be non-0.
Therefore |g⟩ → |e⟩ must be an allowed atomic dipole transition, for which the laser light
should have the correct polarisation ϵ, an important consideration for the technical setup
discussed in Chapter 3.
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2. Bragg Scattering in Quantum Gases

2.2.1 Rabi Oscillations and Spectral Response

To investigate the spectral and temporal behaviour of the Bragg transition, we analyse the
system using the interaction Hamiltonian Ĥ [Eq. (2.7)]. Treating Ĥ as a weak perturbation,
we apply first-order time-dependent perturbation theory, where the first-order final momentum
state coefficient is given by [38]

c
(1)

q′
A
= c

(1)

q′
A
(0)− i

ℏ

t∫
0

⟨q′
A| Ĥ |qA⟩ eiδrest′dt′ . (2.9)

In this framework, we find that the transition probability for an initial |q′
A⟩ population of 0 is

given by

PqA→q′
A
∝

∣∣∣∣∣∣
t∫

0

ΩR(t
′)ei(δ−δres)t′dt′

∣∣∣∣∣∣
2

. (2.10)

This result reveals that the transition probability as a function of detuning from resonance,
or the spectral lineshape, is proportional to the absolute square of the Fourier transform of
the driving field ΩR(t) as a function of time [39]. Therefore, the Bragg transition lineshape
can be tailored through temporal shaping of the Bragg pulse, within experimental constraints.

In the case of a square pulse, the incident intensity and thus ΩR is constant for some finite
duration tB. From Eq. 2.10 we can recover the familiar result discovered by Rabi in 1937
[40]:

PqA→q′
A
=

Ω2
R

Ω2
R + (δ − δres)2

sin2

(√
Ω2

R + (δ − δres)2

2
tB

)
. (2.11)

As tB is scanned, the atomic state population oscillates coherently between the initial and
final momentum states. On resonance, δ − δres = 0, this Rabi oscillation has a frequency ΩR

and amplitude 1. Here we define characteristic π pulse of duration ΩeffTπ = π, where atoms
on resonance are coupled to the final momentum state with 100% probability.

As a function of δ, the spectral lineshape of the transition probability takes the form of a
sinc2 function centred around δres, equivalent to the absolute squared Fourier transform of
the incident square pulse. This can be interpreted in two ways: first, the atoms interact not
only with their resonant δd(v∥) but also couple more weakly to other detunings. Alternatively,
atoms exclusively interact with δd(v∥), but the spectral peaks of the square pulse at ω and
ω + δ broaden due to the finite pulse duration Fourier limit. Therefore, a distribution of
Doppler detunings are probed at the same time. In both pictures, this corresponds to a
spectral broadening ∼ 1/TB, an important result when considering Bragg spectroscopy as a
velocimetric tool.

7



2. Bragg Scattering in Quantum Gases

2.3 Spatially-resolved velocimetry

Given its momentum-based coupling and velocity sensitive resonance, Bragg transitions are
an excellent choice for atomic velocity imaging in BECs. Atoms of momentum state |qA⟩ that
are on resonance with a Bragg pulse gain momentum 2ℏkL and scatter from the BEC. After
a sufficiently large time of flight TTOF, such that the scattered cloud separates spatially from
the central BEC, the spatial distribution of both quasi-2D scattered and unscattered clouds
can be recorded. For atomic momenta qA ≪ 2ℏkL, atoms do not move relative to each other
during the time of flight, granting spatial resolution.

To perform spatial velocity field extraction, we discretise the velocity field into spatial bins
v(xi, yj). For each bin, the curvature of the phase field should be sufficiently small such
that the bin has a well-defined velocity. With increased pulse durations, atoms experience
prolonged interaction with external surroundings, introducing relative TOF dynamics.
Additionally, if larger atomic momenta are probed, relative TOF dynamics become dependent
on the specific dynamics and interactions of the BEC. However, because the initial atomic
momenta (along the beam axis) can be selected by via δd(v∥) [Eq 2.4], this regime can be
anticipated. Generally, the spatial resolution of the imaging system also sets a lower limit on
the spatial resolution attainable.

When the BEC is probed with a Bragg pulse of 2-photon detuning δ and duration tB, the
spatially binned scattered distribution nscatt(xi, yj) and unscattered central distribution nc(xi, yj)
can be compared to determine the spatial velocity field. Atoms in spatial bins with velocity
components along the Bragg axis corresponding to δd = δ−δ0 scatter with maximum coupling
efficiency. Due to spectral broadening, atoms from spatial bins of nearby velocities also scatter
with lower transition probabilities, given by Eq.2.10. In the following, we define two distinct
methods of spatially-resolved velocimetry. Their differences are illustrated in Fig. 2.2.

2.3.1 Spectroscopic Velocimetry

In this method, a reproducible quasi-2D BEC configuration is destructively probed by Bragg
pulses of different δ in a spectroscopic fashion. For each spatial bin, the resonant δres(xi, yj) is
found when atoms are maximally coupled to the scattered cloud. The spatial distribution of
resonant Doppler detunings δd(xi, yj; v∥) is then found using Eq. 2.4, from which the spatially-
resolved 1D projected velocity field v∥(xi, yj) is found using Eq. 2.6. This is illustrated in
Fig. 2.2 (upper right).

For spectroscopic velocimetry, the velocity range and resolution depend on the range and
spacing of 2-photon detunings δ used to interrogate the BEC. The spectral broadening of the
Bragg transition also impacts velocity resolution. A longer Bragg pulse duration, tB results in
a narrower spectral broadening, and thus spatial bins of velocities v∥ and v∥ + ∆v∥ become
easier to resolve for increasingly smaller ∆v∥.

Besides relative TOF dynamics, the spatial resolution of spectroscopic velocimetry is strongly
influenced by the reproducibility of the BEC configuration. The less deterministic the BEC
configuration, the larger the spatial bin of the extracted velocity field must be such that each
bin still has a well-defined velocity.

8



2. Bragg Scattering in Quantum Gases

Figure 2.2: Illustration of the spectroscopic and broadband velocimetric methods. An
example theoretical velocity field of a single vortex projected along the y axis is plotted (left).
The spectral lineshapes of Bragg pulses centred around δ used in spectroscopic and broadband
velocimetry are shown in the upper and lower right respectively. For the spectroscopic method, δ
is scanned, and a spatial bin is maximally scattered δ = δres(v∥). For the broadband method, the
normalised scattered fraction is compared to lineshape centred around δ to determine δres(v∥).

2.3.2 Broadband Velocimetry

In broadband velocimetry, the BEC is probed with a Bragg pulse of shorter duration tB such
that the spectral broadening of the transition spans a range of δd(v∥) resonant to atoms
in the system. The normalised scattered fraction at each spatial bin, nscatt(xi, yj)/nc(xi, yj)
gives a spatially-resolved transition probability PqA→q′

A
(xi, yj), illustrated in Fig. 2.2 (lower

right). The dependence of the transition probability on δres is given by Eq. 2.10, or can
be experimentally characterised [Section 4.3]. Since this response is symmetric about δ, the
inverse of this function can be used to determine 2 possible values of δd(xi, yj) for each spatial
bin, however the experimental implementation allows for one to be discarded [Section 5.2.2].
The spatially-resolved 1D projected velocity field v∥(xi, yj) is then found using Eq. 2.6.

Velocity resolution of broadband velocimetry depends on the range of velocities being probed.
For a larger range, a broader spectral lineshape is required. This decreases the difference
in normalised scattered fraction for velocities v∥ and v∥ + ∆v∥, thus decreasing sensitivity.
Ultimately, this is limited by how well the imaging system can resolve the atom number at a
given position, which is technically challenging.

The key advantage of broadband velocimetry is the ability to extract spatially-resolved velocity
fields in a single shot, enabling velocity field measurement for irreproducible turbulent systems.
For deterministic, reproducible BEC configurations, spectroscopic velocimetry offers a higher
velocity resolution. In Chapter 5, both methods are used to extract spatially-resolved velocity
fields for vortex-antivortex systems using the experimental setup detailed in the next chapter.
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3. Experimental Implementation

In this chapter, we first put numbers to the Bragg pulse parameters defined in Chapter 2,
and outline the realisation of the counterpropagating, relatively-detuned laser light. We then
describe the optical and electronic setup for Bragg scattering along 2 axes for 2D velocity
field extraction and analyse the stability of generated Bragg pulses. Finally laying out the
chronological protocol used to perform Bragg scattering experiments.

3.1 Realising the Bragg Beam

To excite a Bragg transition, atoms are illuminated with laser light with counterpropagating
frequency components ω and ω+ δ, where ω is detuned from the nearest electronic transition
by ω0 − ω = ∆. The BEC is prepared with atoms in the 2P1/2 state, and we choose to be red-
detuned from the D1 transition (2P1/2 −2 S1/2) with natural frequency ω0 = 2π× 389.286THz
at zero magnetic field [41]. The D1 line is the lowest energy electronic transition from
the 2P1/2 state. Therefore, ∆ can be large without the 2-photon transition coupling to a
closer intermediate virtual state. To reduce heating via spontaneous emission ∆ should be
maximised [Section 2.1]. However, this reduces the 2-photon Rabi frequency ΩR, given by
Eq. 2.8. To compensate for this, the incident beam intensity can be increased accordingly.
The maximum beam power in our setup is limited to 300mW. These two parameters should
be set such that ΩR ∼ 1 kHz. This value is selected to give a Tπ duration ranging from
100µs − 1ms, which is restricted based on spectral broadening and velocity field extraction
spatial resolution, as discussed in Chapter 2. Under these constraints, ∆ ∼ 500GHz is found
to be optimal, which corresponds to a laser wavelength of λL ≈ 771nm.

To generate a mixed-frequency counterpropagating beam across the BEC in the lab, we first
generate a co-propagating mixed frequency beam via amplitude modulation. Since

A sin(ωt) sin(δt) ≡ A

2
[cos(ω − δ) + cos(ω + δ)] , (3.1)

modulating the amplitude by a beat frequency δ resulting in co-propagating spectral components
relatively detuned by δ. Experimentally, this is achieved using a single pass acousto-optic
modulator (AOM) setup. From Eq. 2.5, δ0 = 2π × 34.2 kHz. From theoretical models of
quantised vortices in quasi-2D BECs, we expect maximum velocities in regions of non-0
atomic density ∼ 1µm/ms−1, corresponding to a maximum Doppler detuning δd ∼ 3 kHz.
Therefore, we design the setup to generate detunings varying from 30− 40 kHz.

To achieve counterpropagating photons illustrated in Fig. 2.1 (upper left), the laser beam
is retroreflected [Fig. 3.1b], producing 2 sets of relatively detuned lasers capable of Bragg
scattering. For a given detuning δ, atoms travelling in one direction along the beam axis
with velocity corresponding to δd(v∥) = δ − δ0 are resonantly coupled and recoil with +2ℏkL

from the BEC. Simultaneously, atoms travelling with the opposite velocity corresponding to
−δd are also in resonance with the retroreflected Bragg pulse, gaining −2ℏkL and recoiling in
the opposite direction. This not only realises counterpropagating relatively-detuned photons
needed for Bragg transitions, but also probes two velocity classes at once, a useful result
for broadband velocimetry, discussed further in Section 5.2.2. For a stationary BEC, the
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3. Experimental Implementation

two directions are degenerate, and atoms couple to each final momentum state with equal
probability, analogous to an atomic beam splitter.

3.2 Technical Setup

The setup for generating two co-propagating mixed-frequency laser pulses is shown in Fig. 3.1a.
Laser light from a Coherent MBR-110 Ti:Sa laser seeded by a Coherent Verdi V10 532nm laser
operating at 27A is amplitude-modulated in two AOM paths. Beams from the two paths are
then coupled individually to the experimental table to interrogate the BEC along 2 axes as
illustrated in Fig. 3.1b.

a) Optical Table b) Experimental Table

~ 50cm

AOM

iris
shutter

Ti:Sa laser

λ/2 plate mirror

polarizing
beamsplitter

photodiode
beam sampler

beam dump

fibre coupler

Galilean
telescope

control software

wave
meter

ext.
trigger

USB in

amplifier

science chamber

BEC

Galilean
telescope

AWG

Figure 3.1: Experimental Bragg scattering setup. a) On the optical table, the majority of light
is distributed amongst two AOM paths to produce individual co-propagating mixed-frequency
pulses. A small amount of light is coupled into a wavemeter. The galilean telescope has 1.5x
demagnification and is used for beam waist adjustment to suite the AOM numerical aperture.
Irises are used to block the zero-order diffraction from the AOM. Shutters are implemented to
prevent any unwanted light being coupled to the experimental table [42]. The AOM signals are
generated in the control software and applied to the AOMs with an arbitrary waveform generator
(AWG) via 34dB 24V amplifiers. b) Bragg pulses are coupled to the experimental table. A beam
sampler is used to measure beam powers for power stabilisation. The beams are retroreflected
across the BEC in a vacuum chamber, forming retroreflected Bragg pulses which probe velocities
along two axes at a relative angle of 47◦.

The Ti:Sa’s tuneable frequency range allows for the single photon detuning ∆ to be tuned and
optimised. At λL ∼ 771nm, the Ti:Sa outputs approximately 700mW of vertically polarised
light. Throughout the setup, λ/2 plates and polarising beam splitters are used to select the
beam power distributed amongst two AOM paths and a small amount (< 1%) is coupled into
a fibre-based High Finesse WS6 Wavemeter to monitor the laser frequency. Note that each
AOM path is used to generate an independent amplitude-modulated Bragg beam. These can
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3. Experimental Implementation

be used to probe the atomic velocities along two directions, allowing for the extraction of
information on the full vector velocity field, demonstrated in Section 5.3.

Amplitude Modulation

The AOM couples the incident beam into multiple diffraction orders. The nth order beam is
detuned from the incident beam by nΩAOM, where ΩAOM is the radio frequency of the AOM
driving signal. For each AOM path, the angle of incidence is adjusted to maximise the first-
order diffraction efficiency, defined as the ratio of first-order power with respect to the input
beam power. Since ∆ ≫ ΩAOM , the additional detuning introduced to the first-order beam
has a negligible effect on the Rabi frequency [Eq 2.8]. We employ AOMs of different ΩAOM

(110MHz and 80MHz) in each beam path to avoid interference effects between the two Bragg
axes.

So far, the Bragg beams are monochromatic. Co-propagating mixed-frequency components
are generated via amplitude modulation by a beat frequency δ. The AOM signal contains
ΩAOM, δ, and an arbitrary time-varying envelope A(t) to define the pulse shape:

V (t) = A(t) sin2

(
δ

2
t

)
sin (ΩAOMt) . (3.2)

The signal is generated as a 1D array in the control software with a sampling rate of 1MHz,
corresponding to the maximum sample rate of the Keysight 33600A arbitrary waveform
generator (AWG). The array is uploaded to the AWG, which is set to trigger on a 5V TTL
signal. Upon triggering, the AWG outputs the signals to the AOMs via 34dB amplifiers, and
the 2 independent mixed-frequency Bragg beams are pulsed on with the desired pulseshape.

Cold Coupling and Hitting the Atoms

Each Bragg beam is coupled to the experimental table via a 10m single-mode polarisation-
maintaining optical fibre using a cold-couple method. The AOM is pulsed on for 50µs at
2 kHz whilst optimising the coupling efficiency to ∼ 60%. This avoids coupling the fibre to
a deviated mode due to laser-induced heating. On the experimental table [Fig. 3.1b], the
beams are out-coupled with horizontal polarisation such that they address the D1 transition.
After collimation by the fibre out-coupler, they reflected off a mirror towards the science
chamber. This arrangement allows for sufficient degrees of freedom to finely adjust both the
beam position and Poynting.

To align a Bragg beam with the atomic cloud, we begin with visual alignment with the
coplanar 3D MOT beams, which are positioned nearby and responsible for preliminary stages
of cooling and trapping the atoms. Next, we tune the laser frequency to resonance with the
D1 transition. We pulse the beam while the BEC is present in the dipole trap and reduce the
beam power until the atoms are no longer scattered away due to heating from spontaneous
emission. Then we tune the beam by adjusting the fibre and mirror mount to re-maximise
atom loss. Once optimised in an iterative manner, the Bragg beam and BEC intersect along
the beam axis. A retroreflecting mirror on the other side of the science chamber is first aligned
visually such that the ingoing and reflected beams pass through a small iris, after which fine
adjustment is carried out by maximising the amount of light that couples back into the fibre.
This ensures proper alignment of the retroreflected beam relative to the ingoing beam, and
realising the counterpropagating beam setup required for Bragg transitions.
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3. Experimental Implementation

3.2.1 Bragg Pulse Stability

Bragg scattering for spatially-resolved velocimetry requires stable, reproducible Bragg pulse
parameters. Any error or fluctuation impacts the Rabi oscillation via Eq. 2.11, increasing the
uncertainty in the fraction of atoms scattered for a given parameter set. The Bragg pulse
parameters fall into two groups: single photon detuning ∆ and beam intensity I governed by
Ti:Sa stability, and 2-photon detuning δ, envelope shape A(t), and pulse duration TB which
depend on the AOM and AWG.

AOM

[V]

in
AOM Signal Measured 

Ti:Sa

A(t)

a) b)

c)

Figure 3.2: Measuring stability and reproducibility of Bragg pulses. a) Ti:Sa output frequency
ω and power (after a beam sampler) stability taken using a HighFinesse WS6 wavemeter over
several hours. Frequency fluctuations (lower) about the mean value, ⟨ω⟩ = 389.083THz have a
standard deviation σω = 106MHz. The output Ti:Sa power fluctuates periodically with amplitude
±10% and a period of about 15 minutes. b) AOM response curve recorded by scanning the input
AOM driving signal amplitude 0 − 10V while measuring the first-order beam intensity I1 with a
fast photodiode, plotted relative to the input beam intensity Iin. This response is approximately
linear until a threshold voltage, VT = 5.6V. The second AOM has a similar response shape, with
VT = 1.1V and a max. I1/Iin = 0.9. c) An example of the Bragg pulse AOM signal and square
envelope A(t) (orange) and first-order beam intensity (green) measured with a fast photodiode.

During Bragg scattering experiments, we occasionally observed the scattered fraction suddenly
fall to 0 for all δ due to mode hopping of 200GHz in the Ti:Sa laser. After realignment
and calibration of the internal etalon and cavity locks, the frequency is stabilised and drifts
negligibly compared to ∆, demonstrated in Fig. 3.2 (lower). Ti:Sa output power measurements,
plotted in Fig. 3.2 (upper), show fluctuations of approximately ±10% with a period of around
15 minutes, likely due to periodic temperature fluctuation in the Ti:Sa cooling water with a
period of around 30 minutes. The power fluctuation is the largest source of uncertainty
in the Bragg scattering setup, and can be reduced by implementing sample and hold PID
power stabilisation, which was not implemented in this work. For 2-photon Rabi frequency
ΩR = 2π × 1 kHz, this results in a maximum atom number fluctuation of 7.8% at tB = Tπ/2.

For amplitude modulation, we assume the response of the AOM to be linear with input
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voltage. The measured response, plotted in Fig. 3.2b, is found to be approximately linear until
some threshold voltage VT . The deviation from a linear response at low V has a negligible
effect on the Bragg beam spectrum. Fig. 3.2c shows the normalised input AOM signal
and the corresponding measured first-order beam intensity I1. To evaluate reproducibility,
we measure I1 for 20 consecutive pulses over 5 minutes and extract the phase, frequency,
amplitude, and duration by fitting Eq. 3.2. All parameters are found to vary negligibly
(< 0.1%) shot to shot.

3.3 Experimental Sequence

With a technical setup capable of generating stable and reproducible Bragg pulses, we layout
the experimental sequence for Bragg scattering experiments. Digital control is achieved
through the remote control of the AWG. On every measurement there are fluctuations that
arise both in the density and velocity profiles due to both quantum noise and fluctuations
in the experimental setup. Therefore, it is useful to repeat measurements for the same
parameter set to build up a mean picture.

 16s

DMD light off

Bragg trigger

Image trigger

DMD Atoms

t

70

140

DMD triggers

.  .  .

Figure 3.3: Chronological sequence of events for Bragg scattering experiments. The duration
of a shot is approximately 16 s, where the majority of that duration tBEC is spent producing the
condensate. Afterwards, a series of TTL signals can be sent to the DMD, triggering it to move to the
next image in an uploaded folder. Like a flipbook, the DMD goes through the images producing a
time-varying trapping potential. After duration thold on the order of milliseconds, the DMD light
is shut off, and the Bragg pulse is triggered immediately after. After a time of flight tTOF, a final
signal triggers an image to be recorded. Above the timeline, example DMD images show the radial
trap, and chopstick method [Section 5.2.1]. White pixels correspond to mirrors turned on. The
resulting atom image shown is averaged over 12 realisations. Note that the initial DMD loading
sequence and final chopstick ramp down are not shown.

The Bragg scattering experimental sequence is as follows: A script defines the parameter set
for each shot and number of repetitions per parameter set. For each shot, an interpreter
compiles a time sequence of analog signals and digital triggers from the given parameter
set. At the start of the sequence, the script uploads the AOM signal defining the Bragg pulse
parameters to the AWG. During the first ∼ 16 s, atoms are trapped, cooled, and condensed,
producing a quasi-2D condensate with a density profile determined by the radial dipole
trapping potential, which is painted with the Digital Micromirror Device (DMD). From this

14
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stage, the trapping potential can be varied in time to achieve certain dynamics in the BEC,
as used in Chapter 5 to generate out-of-equilibrium configurations. After a variable hold
time, a 5V TTL signal triggers the AWG, and the BEC is probed with a Bragg pulse. After a
time of flight, where the DMD trap is turned off, and the scattering length is kept the same,
the spatial distribution of atoms is measured with absorption imaging [43]. This timeline is
visualised in Fig. 3.3. With the technical setup and experimental sequence in place, we can
start to investigate Bragg scattering experimentally by probing stationary BECs in the next
chapter, and more dynamical, out-of-equilibrium configurations in Chapter 5.
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4. Characterising Bragg Scattering in
Stationary Bose-Einstein Condensates

Before employing Bragg scattering for velocity field extraction, we characterise the response
of a stationary BEC to a Bragg pulse along a single axis. The stationary BEC has a flat phase
gradient, and therefore negligible velocity broadening compared to the Bragg transition
spectral broadening [Section 2.2.1]. The retroflected Bragg pulse setup described in Chapter
3 is expected to evenly scatter the condensate in ±2ℏkL, with a resonant 2-photon detuning
δ = δ0. These measurements serve to characterise the system and establish parameters that
optimise resolution and accuracy in subsequent velocity field measurements. First, we discuss
the data extraction method. Then, we explore how the BEC reacts to interrogation from Bragg
pulses of varying duration TB and 2-photon detuning δ.

4.1 Experimental Protocol and Data Extraction

f)d)

0

-1

1

a)

b)

c) e)
50

50

50

50

Figure 4.1: Extraction of scattered and unscattered cloud spatial atom distributions. a)
Reference density distribution with no Bragg scattering to locate the central unscattered cloud.
The cloud diameter is extracted from the density lineout in both axes, plotted in purple. The
colorbar shows atoms per pixel. b) Scattered image after a Bragg pulse with the central cloud
region found from a). In this example, TTOF = 5ms. c) Binary mask where the atom per pixel
signal exceeds a set threshold and the central cloud is masked out. Before applying the threshold,
a Gaussian blur is applied to improve signal to noise. d) Resulting extracted regions. e) Extracted
density distributions. f) The extracted distributions are summed and the reference distribution is
subtracted to verify no offset between extracted distributions. Colorbars indicate atoms per pixel.

Following a manual calibration to find Tπ, the BEC is interrogated by a single Bragg pulse,
coupling atoms in opposite directions along the Bragg axis [Fig. 4.1b]. Each shot yields
a spatial density distribution of atoms per pixel, which is processed to extract the spatial
atom distributions of the unscattered (central) cloud, nc(x, y), and the two scattered clouds
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4. Characterising Bragg Scattering in Stationary Bose-Einstein Condensates

n+(x, y) and n−(x, y), which should be symmetric for a stationary condensate. For velocity
field reconstruction, it is critical to accurately locate the three clouds, such that corresponding
spatial bins can be overlapped. This process is visualised in Fig. 4.1.

First, a reference image [Fig. 4.1a] without Bragg scattering is used to define the central
cloud diameter and centre via a Gaussian fit in both axes. Then, the central cloud is occluded
from the shot image [Fig. 4.1b], and the scattered cloud positions are found by applying
a binary mask to isolate regions of high density, and calculating the centre of mass in the
upper and lower halves of the image [Fig. 4.1c]. Assuming that scattered atoms do not
move relative to each other during the TOF, the scattered clouds should have a maximal
radius equal to the central cloud. Therefore, square masks of a fixed size slightly larger than
the central cloud diameter and centred around the upper and lower centre of masses are
used to extract n+ and n−. Examples of the extracted distributions are shown in Fig. 4.1d.
Alignment is verified by finding the residual between the summed extracted distributions and
the reference image. Shown in Fig. 4.1e, the residual within the cloud fluctuates with typical
shot-to-shot fluctuations, while a positive signal outside of the cloud indicates spontaneous
heating induced by the Bragg pulse.

The total number of atoms in each cloud is computed as the pixel-wise sum:

N =
∑
i

∑
j

n(xi, yj) , (4.1)

and the total scattered fraction is defined as

nscatt =
N+ +N−

NT

, (4.2)

where NT is the total number of atoms given by

NT = N+ +N− +Nc (4.3)

This method is applied either to extract n±(x, y) for individual shots, or for images averaged
over multiple repetitions to average out shot-to-shot noise. When averaging over shots, the
shot-to-shot standard deviation in atom number can also be calculated to provide a measure
of stability.

4.2 Rabi Oscillations Between Momentum States

To investigate the coherence of population transfer between momentum states, we vary the
Bragg pulse duration tB at the fixed 2-photon detuning δ0 to couple to stationary atoms.
Note that δ0 is found experimentally and differs slightly from the theoretical prediction from
Eq. 2.5, discussed further in the next section.

The scan of tB is repeated for two different Bragg beam intensities, corresponding to different
2-photon Rabi frequencies ΩR. The scattered atom fraction is plotted against tB with the
corresponding atom images in Fig. 4.2, revealing Rabi oscillation expected from theory outlined
in Chapter 2.
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34
0

theo

theo

Figure 4.2: Rabi oscillations between momentum states. Experimental results for Bragg
scattering with a square pulse of increasing duration, tB. The orange and green points show
the scattered fraction of atoms corresponding to the upper and lower rows of images, respectively.
The colorbar indicates atoms per pixel. For each row, the incident Bragg pulse power is different,
resulting in different Rabi frequencies. The solid lines show theoretical Rabi oscillations, with
amplitudes scaled to twice the average value after damping. The relative number of atoms at the
centre of the unscattered clouds is also plotted in purple for Ωtheo

R = 2π × 933Hz. The images are
averaged over 12 shots. Error bars represent the shot-to-shot standard deviation.

For both intensities, the corresponding theoretical Ωtheo
R is calculated using Eq. 2.8 and plotted

with solid lines in Fig. 4.2. For Ωtheo
R = 2π × 933Hz at pulse durations tB < 500µs, measured

data agrees well with the expected oscillatory behaviour [Section 2.2.1]. However, the
maximum observed scattered fractions are less than 1. For longer pulse durations the system
exhibits damping, and decays to half the oscillation amplitude. Both effects originate from a
broadening in the BEC momentum distribution due to the finite temperature of the condensate,
and because the atoms are Bragg scattered after being released from the trap and expand
ballistically. Atoms on the edge have the highest potential energy, and thus expand outwards
the fastest. This leads to a spread in resonant detunings, δres(v∥) which are a function of the
component of atomic velocity along the beam axis. Consequently, atoms oscillate between
the momentum states with a range of effective Rabi frequencies [Eq. 2.11]

Ωeff =
√
Ω2

R + (δ − δres(v∥))2 . (4.4)

This broadening causes dephasing of the coherent dynamics, and is the same effect that
underpins velocity field imaging. Dephasing is largest for the faster atoms at the edge, where
for tB = 700µs they are in antiphase with the atoms closer to the centre. We also plot the
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number of atoms inside a smaller area at the centre of the cloud, shown by the purple box
in Fig. 4.2. The resulting oscillation is longer sustained since the spread of atomic momenta
in this region is lower; however, dephasing still occurs. The dephasing happens on a shorter
timescale for Ωtheo

R = 2π × 343Hz, where Ωeff is smaller and thus more sensitive to changes
in δres(v∥). Here, the system is heavily damped, and does not perform any oscillation, as seen
in Fig. 4.2. Additionally, for both ΩR, the centre of mass of the scattered clouds decreases for
longer tB due to interactions with the background magnetic potential harmonic trap. This
potential induces a force on the atoms during the Bragg interaction, smearing their final
positions and reducing spatial resolution.

4.3 Spectral Response

The spectral response of the BEC can be measured by scanning the 2-photon detuning δ
of incident Bragg pulses. As discussed in Section 2.2, the Bragg transition lineshape is
directly proportional to the absolute square of the Fourier transform of ΩR(t), which inherits
time dependence due to a time-varying laser intensity defined by a pulseshape A(t), varying
between 0 and 1. With the setup described in Chapter 3, we can generate arbitrary positive-
valued pulse shapes through which we engineer the shape of the spectral response. More
complex pulseshapes with negative A(t) have been demonstrated in modified setups using a
π phase shift [39]. The transition lineshape for a given atom of arbitrary velocity v is centred
around δres(v∥), where v∥ is the component of velocity along the Bragg beam axis. Therefore,
the total spectral response of the BEC is a convolution of the transition lineshape with the
atomic velocity distribution. For stationary condensate, velocities are narrowly broadened
about 0. Thus, by scanning δ we expect to recover the transition lineshape centred around δ0.

This response critically influences the velocity field extraction techniques employed in Chapter
5. The narrow spectral broadening optimal for spectroscopic velocimetry is achieved through a
square pulse. The corresponding sinc2 response function is not ideal for broadband velocimetry,
where side lobes decrease the ability to map the number of scattered atoms to a corresponding
velocity. In this case, a Hann pulseshape is more suitable [44].

4.3.1 The Hann Window

The Hann pulse, more commonly referred to in audio processing as the Hann window, is a
raised cosine defined as:

A(t) = cos2
(
πt

TH

)
. (4.5)

From Eq.2.10, a π pulse occurs when the integral of the absolute squared Fourier transform is
1/2. For a Hann pulse, this requires a duration TH = 2tB, where tB is defined as the duration
of the square Bragg pulse. For this scaling, both pulseshapes achieve a π pulse at tB = Tπ.
The Hann and square lineshapes are plotted in Fig. 4.3a.
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Figure 4.3: Hann and square pulseshapes and frequency spectra. The temporal Hann (purple)
and square (green) pulseshapes (left). For a given square pulse duration tB, the total Hann pulse
duration is TH = 2tB for the same spectral power. Bode plot spectra are centred around the
2-photon Bragg pulse detuning δ (right). Both mainlobes have width 4π/tB, and the sidelobes of
the Hann pulseshape are strongly suppressed.

Unlike the square pulse, the Hann pulse has a continuous first derivative, which strongly
suppresses spectral sidebands. For a square pulse, the first sidelobe drops to −13dB, whereas
for the Hann pulse it is suppressed to −31.5dB. This suppression comes at the cost of a
broader central lobe for a given tB [45]. The absolute squared Fourier transforms of the
pulseshapes are analytical and compared in Fig. 4.3b. The square pulse spectral response is
given by Eq. 2.11, and the Fourier transform of the Hann lineshape A(δ) is given by

A(δ) =
π2 sin(tBδ/2)

Lδ (π2 − t2Bδ
2)

. (4.6)

Therefore, the Hann pulse is an ideal candidate for broadband velocimetry, for which sideband
suppression is a priority, and a very narrow response is not required.

4.3.2 Experimental Results

We investigate the spectral response of a BEC at equilibrium to both square and Hann pulses
by scanning δ from 30 − 40 kHz, around the expected Bragg resonance for stationary atoms
δ0 = 34.2 kHz [Eq. 2.5]. At each detuning, nscatt is extracted using the image analysis method
discussed in Section 4.1. Results are shown in Fig. 4.4 for tB = 300µs and 500µs.

Each spectral response profile is compared to theoretical predictions for the transition lineshapes
from Eqs. 2.11 and 4.6. To fit the solid lines, amplitude and central detuning δ0 are free
parameters, while the spectral broadening is fixed by tB. As expected, square pulses reveal
clear sidelobes consistent with theory, while Hann pulses exhibit suppression of these features.
The Hann pulse also exhibits a lower peak transition probability and broader central lobe than
the square pulse for the same tB, as expected from Fig. 4.3b.
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Square

Hann

Figure 4.4: Spectral response of a stationary BEC. A stationary BEC is interrogated with Bragg
pulses of square (green) and Hann (purple) pulseshape. Results are shown for tB = 300µs (left)
and tB = 500µs. Solid lines show the expected spectral response from Eqs. 4.6 and 2.11. with
fixed tB and fitted amplitude and peaks. Sidelobes visible in the square pulseshape response are
suppressed for the Hann pulseshape.

For both pulseshapes, the mean fitted δ0 deviatesfrom the theoretical expectation by around
300×2πHz. This is because we define δ0 in Eq. 2.5 as the resonant detuning for stationary free
atoms with a quadratic dispersion relation. In a BEC, however, atoms are not free particles,
and the dispersion relation is given by Bogoliubov theory [46]. This results in the mean-field
shift, δ0 → δ0 + δMF, which depends on the chemical potential µ (δMF = 4

7
µ) and is explored

in more detail in [47].

This study demonstrates that we can indeed sculpt the spectral response to optimise spatial
velocity field extraction. By probing with a Hann pulse of shorter duration we can achieve a
spectral response with suppressed sidebands ideal for broadband velocimetry. We can utilise
a square pulse of longer duration to generate a narrow spectral response for spectroscopic
velocimetry, where sideband coupling is less critical.
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Building on the Bragg scattering experiments in Chapter 4, we turn to the crux of this thesis:
extracting spatially-resolved velocity fields. We first characterise the velocity dependence of
the Bragg resonance in a BEC with uniform velocity distribution. We then extract vortex-
antivortex velocity fields using the spectroscopic and broadband introduced in Chapter 2.
Finally, we apply the broadband method along two axes to reconstruct the full 2D velocity
field of a far-from-equilibrium vortex gas.

5.1 Probing Uniform Velocity Fields

Before extracting spatially-resolved velocity fields, we first probe the velocity-dependence
of the Bragg resonance by extracting the speed of condensates with uniform velocity fields.
These configurations are deterministically produced using the phase imprinting method described
in Section 1.1.2.

By pulsing far-detuned dipole laser light of linearly decreasing intensity, we impart a constant
phase gradient [Eq. 1.6] and thus uniform velocity field [Eq. 1.1], illustrated in Fig. 5.1.

v

BEC70

Figure 5.1: Producing uniform velocity fields with phase imprinting. The linearly decreasing
beam intensity is generated using the DMD. The number of mirrors turned on are spatially
decreased in the Bragg axis direction x̂′. The intensity gradient is set with the incident dipole
laser power, Pmax. The intensity profile, illustrated on the left, is incident for 50µs. This imprints a
phase gradient on the BEC, which recoils with a uniform velocity v along the Bragg axis, illustrated
on the right.

By selecting the incident DMD light power Pmax, we vary the phase gradient imprinted. After
the imprint, DMD light is shut off, and the BEC is simultaneously probed with a Bragg pulse.
After a 5ms TOF, the atom distribution is measured, and we extract scattered fractionsN+/NT

and N−/NT using the method outlined in Fig. 4.1. This is repeated over a range of 2-photon
detunings δ to find the velocity-dependent resonant Doppler detuning δd(v∥). Results are
shown in Fig. 5.2b.
For zero phase imprint (Pmax = 0), the fractions of upper and lower Bragg-scattered atoms are
expected to be centred around δ = δ0, the resonant 2-photon detuning for stationary atoms.
However, resonances deviate from expectation δd = ±50Hz respectively, revealing a small
residual velocity component along the Bragg axis on the order ∼ 0.01µm/ms−1 [Eq.2.6]. As
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Figure 5.2: Uniform velocity field measurement. a) Atom distributions at Pmax = 200mW. For
δ/2π = 35.2 kHz ≈ δ0, scattering is symmetric with no velocity selection. For δd/2π = ±600Hz,
scattering is velocity dependent, populating the upper and lower clouds asymmetrically about
δ0. Colorbars indicate atom number per pixel. b) Blue and red points show scattered fractions
N±/NT vs.δ. N− is systematically offset from N+ due to locally increased background noise.
Vertical error bars are plotted, but smaller than the marker size. Solid lines are Gaussian fits used
to extract resonant δ across Pmax, indicated by vertical lines. c) Velocities calculated from upper
and lower cloud Doppler detunings agree, and scale linearly with Pmax. A linear fit (yellow) and
prior calibration (green) are shown for comparison.

Pmax is increased linearly, δd(v∥) increases proportionally. The retroreflected Bragg pulse that
couples atoms to the lower cloud probes velocity components in the opposite direction to the
upper cloud-coupling Bragg pulse. Therefore, the resonance for velocity v∥ is at −δd(v∥). This
is demonstrated by atom images in Fig. 5.2a.

Fig. 5.2c shows velocities extracted from δd(v∥) for the upper and lower Bragg-scattered
atoms. As expected, measured velocities increase linearly with Pmax, demonstrated by the
yellow line of best fit, and are consistent with prior calibration [21], shown by the green
line. This validates the use of Bragg scattering for velocity extraction, forming the basis for
spatially-resolved measurements in the following sections.
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5. Probing Velocity Fields

5.2 1D Spatial Velocity Fields: Vortex-Antivortex Pair

Section 2.3 introduced two distinct velocimetry methods. Spectroscopic velocimetry scans δ
across multiple shots, extracting the spatially varying Doppler detuning δd(x, y; v∥) by analysing
each spatial bin independently. Broadband velocimetry infers δd(x, y; v∥) in a single shot by
comparing the local scattered fraction to a measured spectral response [Section 4.3]. We
apply both methods to reconstruct the spatial velocity field of a vortex-antivortex pair (2
counterrotating vortices). Similar configurations have been investigated with Bragg scattering
to identify vorticity [13, 17], however, the projected 1D velocity field v∥(x, y) has not been
measured before.

5.2.1 Deterministic Vortex Production

Spectroscopic velocimetry can only be performed on reproducible velocity fields. To produce
vortices deterministically, we employ the chopstick method [48], illustrated in Fig. 5.3.

70

Figure 5.3: The chopstick method. A column of dipole laser light (green) pierces the quasi-2D
BEC (red disc). The light is split, and two columns are translated linearly across the BEC at a
speed of 3µm/ms−1. On the left, the initial and final positions of the columns are illustrated.
Black arrows show the direction of each column, diverging at an angle α ∼ 30◦. In the final
position, the intensities of the light columns are ramped to 0. This deposits two counterrotating
vortices, illustrated on the right. Vortex positions are reproducible to the nearest ±5µm.

Axial far-detuned laser light pierces the trapped condensate and acts as a repulsive object
[Eq. 1.2]. The light is split into two columns, which are simultaneously translated across
the BEC, diverging with angle α. As the ’chopsticks’ move, they create circular flows around
them. For the right chopstick trajectory parameters, this results in 2 vortices of opposite
phase windings ±2π that are pinned at the position of the chopsticks. The chopsticks are
then ramped to 0, depositing a vortex-antivortex pair of vorticities ±1.

5.2.2 1D Velocity Field Extraction

We implement spectroscopic velocimetry by scanning δ of a Bragg pulse upward from δ0. A
long pulse duration of tB = 700µs and square pulseshape is selected to generate a narrow
spectral broadening of 1.5 kHz. tB is not increased further in order to maintain spatial
resolution [Fig. 4.2]. For each spatial bin, a spectral response profile is fitted, from which
we can build the spatial distribution δres(xi, yj). We find δ0 from spectroscopy of a condensate
where no vortices are produced, and extract v∥(xi, yj) using Eq. 2.3.

For broadband velocimetry, a single realisation of the vortex-antivortex configuration is Bragg-
scattered using a fixed detuning δ = 36 × 2π kHz and a shorter pulse duration tB = 400µs.
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This yields a spectral width of 2.5 kHz that spans the expected range of Doppler detunings
δd(v∥). At each spatial bin, the local scattered fraction in the upper and lower clouds is
mapped to a reference spectral response. Inverting this response function gives two possible
values for δres(xi, yj). The physical one is consistent across both scattered distributions. A
Hann pulseshape is used to suppress sidelobes of the spectral response [Fig. 4.3].

The reference spectral response shape is obtained via Bragg spectroscopy of a flat condensate,
as described in Section 4.3, and is measured separately for the upper and lower clouds. At
the fixed detuning δ = 36×2π kHz, atoms with velocities corresponding to δd(v∥) = δ− δ0 are
maximally scattered to n+(xi, yj). Conversely, atoms satisfying δd(−v∥) = δ0−δ are maximally
scattered to n−(xi, yj). Atoms with Doppler detunings that are off-resonance are scattered
with lower probabilities. Therefore, the measured lineshapes for the two clouds are shifted
to be centred about δ0 ± (δ − δ0) respectively to form the reference spectral responses. For
the stationary condensate, the resonance condition for each scattering direction is the same,
and the scattered fraction is halved between the clouds. At δ = 36 × 2π kHz, the resonance
is velocity dependent, and scattering in each direction is not equal. To account for this, the
reference responses for the upper and lower clouds are scaled such that their combined total
scattered fraction at resonance matches that of the stationary condensate.

We extract spatially-resolved 1D velocity fields for 2 different vortex-antivortex configurations
via both spectroscopic and broadband velocimetry. Each measurement is compared to theoretical
expectations obtained from a 2D numerical Gross-Pitaevskii equation (GPE) solver, where
vortices are initialised with phase windings and Gaussian density dips. After imaginary time
evolution, the solver converges on a stable vortex configuration. Results are shown in Fig. 5.4.

For both velocimetric methods, the density fields are constructed by summing the distributions
of the scattered and unscattered clouds, which are extracted using the method discussed in
Section 4.1. These are shown in Figs. 5.4a and e. Figs. 5.4b-d and f-h correspond to the
respective theoretical and extracted 1D velocity fields.

Qualitatively, the measured velocity fields agree with theoretical expectation. This is shown
quantitatively in lineouts plotted in Figs. 5.4i and j. One clear difference between the extracted
fields is the absence of the diverging velocities near the vortex core. This is due to low atom
densities at the cores that cannot be resolved. By convoluting the theoretical prediction
with the experimental spatial binning, the measured velocities at these positions could be
compared with theory more suitably.

The lineouts of the velocity fields extracted from the spectroscopic and broadband methods
are in good agreement with each other. Fluctuation in the broadband lineouts arise from
uncertainty in the atom number, and should be investigated further by comparing multiple
extracted velocity fields for the same configuration. The larger positive velocities measured
by the broadband method in Fig. 5.4j is likely due to vortices in the single realisation being
slightly closer together, thus increasing velocity between the vortices.
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Figure 5.4: 1D velocity fields for vortex-antivortex configurations. a) Single realisation
of atom density, reconstructed by summing scattered and unscattered clouds from broadband
velocimetry. The colorbar indicates atoms per pixel. 2 large density dips can be identified
as vortices, but no information on vorticity is available. b) Theoretical expectation calculated
computationally with a numerical 2D GPE solver, where vortices are added synthetically. c)
v∥(xi, yj) extracted via broadband velocimetry from a single realisation. A 2x2 (pixels) spatial
bin size is determined as the minimum bin size for which the method converges on a velocity
field. d) v∥(xi, yj) extracted via spectroscopic velocimetry, where δ/2π is scanned in steps of
200Hz from 34.2 kHz to 38 kHz and averaged over 12 times for each δ. Shots where vortices
are not formed as expected are manually discarded. e-h) Atom density, theoretical expectation,
broadband v∥(xi, yj), and spectroscopic v∥(xi, yj) for a different vortex-antivortex configuration.
i-j) Lineouts of b-d) and f-h), respectively, along the vortex cores. Lineout paths are shown in
the upper 3 plots. Spectroscopic (green) and broadband (purple) methods are in agreement with
theoretical expectation (orange). High velocities near vortex cores are not resolved due to low
atom densities.
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Key differences in the methods are captured in the extracted velocity fields. For the broadband
method, larger spatial bins are used for velocity field reconstruction. This is due to the
method’s direct dependence on measuring the atom density, which is more stable when
averaged over a larger area. The spectroscopic method extracts large velocities at the edges
of the condensate that are independent of the vortex condfguration. This is due to the
ballistic expansion of the atoms, discussed previously in Section 4.2. This is not seen in
the broadband method because these large velocities correspond to Doppler detunings with
couple minimally to the Bragg pulse. A smaller pulse duration increases the range of velocities
visible, but decreases velocity resolution.

5.3 2D Spatial Velocity Fields: Vortex Gas

In the experimental setup outlined in Chapter 2, we implement another independent beam
axis at an angle θ = 47◦ from the axis used in previous sections. With this, we simultaneously
extract the spatially-resolved velocity components along the 2 axes to construct the full 2D
vector velocity field map of a turbulent, far-from-equilibrium vortex gas configuration. In
this section, we present initial results, and outline key limitations that must be investigated
in more detail.

The turbulent vortex gas is produced by translating a paddle with a 20µm slit through a
square condensate. This is analogous to quickly swiping such a paddle through water, and is
illustrated in Fig. 5.5.
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Figure 5.5: Producing turbulent, far-from-equilibrium configurations. The DMD is used to
produce a paddle of dipole laser light with a 20µm slit which is translated across a square BEC at
a speed of v = 3µm/ms−1. This is illustrated on the left with a spatial atom distribution of a single
equilibrated realisation. A single realisation of the resulting turbulent, irreproducible vortex gas
configuration shown on the right. Colorbars indicate number of atoms per pixel.

The configuration is interrogated with retroreflected Bragg pulses along the two beam axes,
resulting in 4 scattered clouds, shown in Fig. 5.6a. The spatial atom distributions of the
scattered and unscattered clouds are extracted using a modified version of the method described
in Section 4.1. The two components of the velocity field are extracted in a single shot via
broadband velocimetry, using reference spectral responses calibrated for each cloud with
the protocol described in the previous section. For turbulent, irreproducible configurations,
velocity field extraction with spectroscopic velocimetry is not possible.

The resulting extracted 1D velocity fields are shown in Fig. 5.6b. The density profile is
reconstructed by summing the scattered and unscattered atom distributions and is shown
in Fig. 5.6d.
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a) b)

c) d)

Figure 5.6: 2D velocity field for a turbulent vortex gas configuration. a) The spatial atom
distribution of a quasi-2D vortex gas configuration probed with Bragg pulses of δ = 2π × 36 kHz
and tB = 400µs, imaged after tTOF = 5ms. The colorbar shows atoms per pixel. Bragg pulses
along the two axes are triggered simultaneously, and result in scattered clouds along 2 axes at
an angle of 47◦. b) The velocity fields v∥(xi, yj) along the two axes are plotted, where the colour
of the arrow above corresponds to the scattered clouds analysed, and the direction corresponds
to the Bragg axis direction. c) Streamline velocity plot made by combining the two velocity
projections into a 2D vector field. Produced in MATLAB. d) Reconstructed density distribution by
summing scattered and unscattered spatial atom distributions. Spatial resolution is set by pixel
size, whereas a) and b) are 2x2 binned.

By decomposing the velocity components into a perpendicular basis, we build a spatially-
resolved 2D velocity field. In Fig. 5.6c, we interpolate between extracted velocity vectors to
produce a streamline plot. Here, the velocity field has curl at certain positions, while having
straight bulk flow at others. Some regions of curl overlap with density dips in Fig. 5.6d.
Whilst this is characteristic of a vortex gas, more analysis should be done to confirm the
method’s efficacy.

It is unclear how well the assumption of independence of the beam axes holds. This could
be investigated further by a calibration measurement where uniform velocities with different
directions are probed in 2 axes. Vortices identified from regions of high curl in the interpolated
streamline velocity field could be used to compute a theoretical expectation of the velocity
field. Additionally, we can search for signs of previously established quantum vortex dynamics
such as Onsager cluster formation [49]. The direct comparison with expected results based on
theory and previous experiment would provide a good test for the physicality of 2D velocity
field extraction using broadband velocimetry.
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6. Conclusion and Outlook

In this thesis, we implement an experimental setup capable of Bragg scattering, where all
beam parameters can be controlled by the main experimental control software. The setup
allows for the production of Bragg pulses with arbitrary positive-valued pulseshapes, enabling
the spectral response to be engineered for the first time in Bragg-based velocimetry. The
Bragg scattering setup is charaterised with an equilibrated BEC with an approximately flat
phase profile, with which Rabi oscillations and the spectral response are measured. Bragg
scattering velocity-dependence is demonstrated by probing BECs with constant phase gradients.

We present two novel methods that can be used to extract spatially-resolved velocity fields
from quasi-2D BECs: spectroscopic velocimetry, where different velocities are probed over
a range of destructive measurements; and broadband velocimetry, where the velocity field
is measured in a single shot, enabling the velocity field extraction of irreproducible BEC
configurations. These methods are succesfully demonstrated to measure the velocity field
of a vortex-antivortex system, with results in good agreement with theory. The spatial
resolution of spectroscopic velocimetry depends primarily on the reproducibility of the BEC
configuration. Velocity resolution increases with the Bragg pulse duration, however, this
comes at the sacrifice of spatial resolution. Both the spatial and velocity resolution of broadband
velocimetry depend on the accuracy of the atom density measurement. For the vortex-
antivortex system, we find the broadband velocimetry spatial resolution is larger than the
spectroscopic method by a factor 4. The range of velocities sensitive to broadband velocimetry
depends on the minimum atom density that can be differentiated from noise and the velocity
resolution depends on the ability to resolve atom number densities. Both can be optimised
by increasing the number of atoms in the system.

By performing Bragg scattering along 2 axes, we apply the newfound method of broadband
velocimetry to extract a 2D vector velocity field of a more turbulent vortex gas system. We
present initial results, however further investigation is required to verify the physicality of
the extraction. It would be insightful to compare results with computational expectation
and perform additional calibratory experiments to confirm the accuracy of measured velocity
directions.

Before the velocimetry methods can be added to the toolkit for probing far-from-equilibrium
BEC, the precision of velocity field extraction should be quantified. This can be achieved
by comparing extracted velocity fields from a reproducible system. However, a challenge
arises in differentiating fluctuations due to shot-to-shot configurational differences from the
uncertainty of the velocimetry. The spatial resolution can be quantified by extracting the
velocity field of a system with distinct spatial structure, such as a phase gradient in a finite
region. For both methods, we expect a relatively large source of error to come from power
fluctuations in laser light used for Bragg scattering, resulting in a maximum scattered atom
number fluctuation of 7.8%. This can be reduced by implementing PI-based power stabilisation.

The Bragg scattering setup also has applications outside of velocity field extraction. Its use
as an atomic beam splitter is applicable for measurements of quantum entanglement [50].
Additionally, the Bragg pulse could be implemented as a velocity filter, removing atoms of

29



6. Conclusion and Outlook

a particular velocity from the system. One final, especially interesting question for analog
quantum simulation performed at BECK is how Bragg scattering can be used as a method of
interacting with phonons.
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