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Novel readout sequences and local control for spinor Bose-Einstein conden-
sates:

Recently, ferromagnetic spinor Bose-Einstein condensates were proposed by Siovitz et al.
[37] as a platform for studying the sine-Gordon equation as a relativistic field theory,
where the relevant degree of freedom is the spinor phase. In the first part, this thesis
describes two new readout sequences for simultaneous measurement of non-commuting
spin observables, expanding on the work of Kunkel et al. [22]. The sequences are further
applied to characterize sine-Gordon solitons in a single shot, thereby reducing the neces-
sary measurement time. This reduces the effect of experimental drifts. Also a breathing
solution could be measured, which covers the entire spin-nematic sphere. In the second
part, a setup for localized hyperfine transitions was tested on the condensate, which
had previously been constructed as part of a bachelor’s thesis from Suelberg [42]. In the
pseudospin-1/2 system between |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩, dark-bright soli-
tons could be generated, whose time evolution could be studied up to 500 ms including
reflection at the potential wall.

Neue Auslesesequenzen und lokale Kontrolle für Spinor Bose-Einstein Kon-
densate:

Kürzlich wurden von Siovitz et al. [37] ferromagnetische Spinor Bose-Einstein Konden-
sate als Plattform für die Untersuchung der Sine-Gordon Gleichung als relativistische
Feldtheorie vorgestellt, wobei die Spinorphase der relevante Freiheitsgrad ist. Im ersten
Teil werden zwei neue Auslesesequenzen für die gleichzeitige Messung nichtkommutieren-
der Spinobservablen beschrieben, die auf der Arbeit von Kunkel et al. [22] aufbauen.
Die Sequenzen werden weiter angewendet, um sine-Gordon Solitonen in Einzelschuss
zu charakterisieren, wodurch die nötige Messdauer verkürzt wird. Dies reduziert den
Effekt von experimentellen Drifts. Außerdem konnte ein Breather gemessen werden,
der den gesamten Spinnematischen Raum einnimmt. Im zweiten Teil wurde ein Aufbau
für lokalisierte Hyperfeinübergänge am Kondensat getestet, der zuvor im Rahmen einer
Bachelorarbeit von Suelberg [42] gebaut worden war. Im Pseudospin-1/2 System zwis-
chen |F = 1,mF = 0⟩ und |F = 2,mF = 0⟩ konnten dunkle und helle Solitonen erzeugt
werden, deren Zeitentwicklung bis zu 500 ms einschließlich der Reflektion am Wandpo-
tential untersucht wurde.
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1 Introduction

Atomic gases provide a unique opportunity to probe quantum dynamics far from equilib-
rium, as well as scrutinize magnetic domains in situ. Rubidium has, as an example for
spinor Bose-Einstein condensates, non-zero internal angular momentum, which enables
superfluidity and magnetism simultaneously. In magnetism, the boundaries between mag-
netic domains are of great interest, especially one specific domain wall, which is creating
a solitary wave [44, 43]. A soliton is a non-dispersive, shape maintaining wave packet
through the counterplay between dispersion and nonlinear interaction, arising in multiple
nonlinear systems, such as in water, molecular biology, astrophysics, optical systems, and
in weather phenomena [1, 36]. A specific soliton has recently become of particular interest
to the group’s research, which is a solution of the sine-Gordon (sG) equation, a nonlinear
variant of the Klein-Gordon (KG) equation. The sG model is of high importance in the
field of nonlinear wave dynamics [17], as it is a prototypical integrable model with propa-
gating solitonic solutions. This can not only capture the dynamical behavior of a variety
of physical systems such as Josephson-junctions and spin waves in magnetic materials [5],
but is furthermore also of mathematical relevance, for example on surfaces with constant
negative curvature [26]. The sG soliton was found as a solution to the sG equation, which
- since the model is integrable - can be solved analytically and was studied numerically
to great detail [5, 3, 20].

It was recently shown by Siovitz et al. [37], that a rubidium-87 Bose-Einstein condensate
(BEC) can be described in the low energy limit as a double sine-Gordon (DSG) model.
It can therefore serve as a platform to study the dynamics of solitonic excitations in this
scalar relativistic field theory. During these studies, the characteristics of the sG solitons
such as the propagation velocity and collision behavior could be extracted well in the
relevant degrees of freedom, which are the spinor phase and the Larmor phase. But the
readout was only possible in separate measurements. This is due to the composition of the
non-commuting observables in the spin-1 system, which are based on the work of Kunkel
et al. [22]. Expanding the previous readout sequences by fully utilizing the F = 2 manifold
in rubidium-87 enables, firstly, to investigate the temporal connection between the events
and, secondly, to capture the dynamics in a single run. This is beneficial in reducing the
impact of experimental drifts by shortening the duration of the experiment.

In the first part, the aim of this thesis is the development and verification of two new
readout sequences to support the project [7]. Additionally, a second project proposed a
direct imprint technique using a microwave-modulated light beam. For this application,
a setup was created as part of a bachelor’s thesis [42], which is implemented and tested
on the condensate.
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This thesis is structured as follows: Chapter 2 covers the theory of the spin-1 system.
This includes the theoretical foundations of the new readout sequences and the interaction
between the atoms. Also the sine-Gordon model is introduced. Chapter 3 is about the
experimental setup, from the Bose-Einstein condensate to the preparation of the initial
states and the imaging. Chapter 4 reports on the measurement results. The stability
of the magnetic field as well as the characterization of the local imprint are discussed
before the results are presented using the new readout tools. Chapter 5 summarizes the
outcomes and provides an outlook on the individual parts.
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2 Theory

The rubidium-87 spinor Bose-Einstein condensate (BEC) offers an exceptional platform
to study non-equilibrium many-body physics. In order to understand the spin-1 system,
first the operators are introduced on a single-particle level, which builds the theoretical
foundation for the development of the new readout sequences. Then, the condensate is
described on a mean-field level through the Gross-Pitaevskii equation (GPE), before the
interaction can be reduced to a low-energy effective field theory (LEEFT). Therefore,
the sine-Gordon (sG) model is introduced to provide the necessary understanding for the
dynamics of the system in this regime.

2.1 Spin-1 rubidium-87

The hydrogenlike 87Rb has 37 electrons, thus the electronic configuration is [Kr]1s, with
the ground state being 52S1/2. The nucleus has nuclear spin I = 3/2, adding up with the
electron spin in total to two hyperfine states F = 1 and F = 2 [40]. In the experiment,
dynamics are usually studied in the F = 1 spin-1 manifold with the Zeeman levels mF ∈
{−1, 0, 1}, but the F = 2 levels are used for complex readout schemes, described further
in Section 2.5. On the single particle level, an arbitrary pure state |Ψ⟩ can be expressed
as a superposition of the three substates |mF⟩ and their respective probability amplitudes
pi, where

∑
i p

2
i = 1 holds:

|Ψ⟩ =
∑

i∈{−1,0,+1}

pie
φi |mi⟩ (2.1)

= eiφg

(
p+1e

iφL |m+1⟩+ p0e
iφS |m0⟩+ p−1e

−iφL |m−1⟩
)
. (2.2)

The Larmor phase is defined as φL = φ1 − φ−1 and the spinor phase as φS = φ0 − (φ1 +
φ−1)/2. With three available states, the spin system builds an su(3) algebra spanned by
eight generators, e.g., the Gell-Mann matrices [10]. For the experimental system, however,
it is more suitable to use different matrices. These operators are now subsequently intro-
duced: Three of them can be organized in different su(2) subspaces on spheres similar to
the Bloch sphere in a spin-1/2 system. There is the spin-1 sphere or magnetization with
the operators {F̂x, F̂y, F̂z}, which fulfill the commutation relation [F̂i, F̂j ] = iϵijkF̂k with
i, j ∈ {x, y, z} [12]:

F̂x =
1√
2

0 1 0
1 0 1
0 1 0

 , F̂y =
1√
2

0 −i 0
i 0 −i
0 i 0

 , F̂z =

1 0 0
0 0 0
0 0 −1

 . (2.3)

In addition to that, one can define the quadrupole operators as

Q̂ij = {F̂i, F̂j} −
4

3
δijN̂ , (2.4)
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where {Q̂xz, Q̂xy, Q̂zz, V̂x = 1/2(Q̂xx − Q̂yy), V̂y = Q̂xy} are the additional generators for
the entire spin-1 algebra. N̂ denotes the identity matrix. For their matrix and second
quantization representation, see Appendix A.1. A general density operator for the spin-1
system can now be expressed as

ρ̂ =
1

3
N̂ +

∑
i

fiF̂i +
∑
j

qjQ̂jz +
∑
k

vkV̂k . (2.5)

Equivalent to the magnetization sphere are the subsets {Q̂yz, Q̂xz, F̂z} and {V̂x, V̂y, F̂z}.
The first two operators are connected through a rotation generated by F̂z with the Larmor
phase as the parameter. The transversal operators can be defined as

F̂⊥ ≡ cosφLF̂x + sinφLF̂y

Q̂⊥ ≡ cosφLQ̂yz − sinφLQ̂xz

V̂⊥ ≡ cos 2φLV̂x + sin 2φLV̂y . (2.6)

In the ongoing project, magnetic domain walls in the easy-plane phase (see Section 2.6.2)
are of interest, where the ground state is a spin in the F̂x-F̂y plane, so F̂⊥ is the rele-
vant operator. Nonetheless, the three subspaces are connected through the spinor phase,
which is further described in Section 2.2. This is of particular interest for describing a
specific property of the Bose-Einstein condensate (BEC), because φS represents the right
parameter for a special domain wall [37], the so-called sine-Gordon (sG) soliton discussed
in Section 2.7.

2.2 Spin-nematic sphere

As mentioned above, F̂⊥ and Q̂⊥ are connected by a rotation around Q̂zz, parametrized
through the spinor phase φS. Since this connection is relevant for the experiment, one
can define a more practical operator

Q̂0 ≡ −1

3
N̂ − Q̂zz . (2.7)

The unitary rotation is the same except for the orientation, but the spectrum is cen-
tered around zero. The subspace {F̂⊥(φL), Q̂⊥(φL), Q̂0(φL)} is called the spin-nematic
sphere for each phase φL [13]. While the commutators obey the relation [Q̂0, Q̂⊥(φL)] =
2iF̂⊥(φL) and [F̂⊥(φL), Q̂0] = 2iQ̂⊥(φL), it is important to notice that the commutator
of Q̂⊥ and F̂⊥ is dependent on φL

[Q̂⊥(φL), F̂⊥(φL)] = 2iQ̂0 + i(N̂+ − V̂⊥(φL)) ; N̂+ ≡ (13 − Q̂0)/2 . (2.8)

So in general, the subset {F̂⊥(φL), Q̂⊥(φL), Q̂0(φL)} does not fulfill the su(2) commutation
relation, but one can find a value of φL for states with equal population in |mF = ±1⟩
(this is the measure of the operator N̂+), where ⟨N̂+ − V̂⊥(φL)⟩ vanishes. Because none
of the three operators generate a change in the Larmor phase, the SU(2) permutation
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Figure 2.1: Main initial states on the spin sphere and spin-nematic sphere: The polar
state (I) with all atoms in the zero component is located on the north pole of
the spin-nematic sphere but is not on the surface of the spin sphere, as it has
no magnetization. In contrast, the easy plane state (II) with φL&φS = 0=̂ |Fx⟩
is visible on both spheres. The rotation generated by F̂z is parametrized by
the Larmor phase φL, while the rotation around Q̂0 is the spinor phase φS.

relation for the expectation value is fulfilled and remains valid during the evolution [21]

⟨[Q̂⊥(φL), F̂⊥(φL)]⟩ = 2i⟨Q̂0⟩ . (2.9)

Two specific initial states are relevant in this thesis: The polar state |Ψp⟩ and the ground
state of the easy plane phase with maximal transversal spin length |ΨEP ⟩. The easy-plane
(EP) is a specific phase of the many-particle BEC description and will be further discussed
in Section 2.6.

These two states are defined as

|Ψp⟩ =

0
1
0

 , |ΨEP ⟩ =

 1
2e

iφL

1√
2
eiφS

1
2e

−iφL

 . (2.10)

The expectation value of ⟨Ψp| Q̂0 |Ψp⟩ is one, which is represented on the north pole
of the spin-nematic sphere, as can be seen in Fig. 2.1, but the expectation value of the
magnetization is zero. This state is not on the surface of the spin sphere but in the center.
In contrast, ⟨ΨEP | Q̂0 |ΨEP ⟩ = 0 and for φL = φS = 0, ⟨F̂x⟩ = 1, which corresponds to
a maximal transversal spin length ⟨F̂⊥⟩ = 1. This state is represented on both spheres
along the F̂x axis and the initial condition for the experiment shown in Section 4.5. On
the one hand, if the state is rotated around F̂z via the Larmor phase of φL = π/2, the
state has still maximal transversal spin length, but lies not any more on the spin-nematic
sphere. On the other hand, if the state is rotated around Q̂0 via a change of the spinor
phase φS = π/2, the transversal spin length is reduced to zero but the quadrupole moment
is maximized with ⟨Q̂yz⟩ = 1.
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2.3 Multiple atoms in a Bose-Einstein condensate

In an experiment with N ≈ 105 particles, the Hilbert space is not any more three di-
mensional as the one of a single spin-1 atom but d = 3N . The operators are now acting
on a specific atom of the cloud, so they have to be extended to collective operators
Ôi,coll =

∑N
n=1 Ôi,n, where Ôi corresponds to the spin-1 operators previously presented.

Since 87Rb is bosonic, the dimension reduces to d = (N+2)(N+1)/2. A state is now described
in the Fock basis with |Ψ⟩ = |N+1, N0, N−1⟩ with the atom number in the respective
substate NmF and one can express now the operators in second quantization using the
Jordan-Schwinger map [16, 35]

Ôi =
(
â†+1, â

†
0, â

†
−1

)
Ôi

â+1

â0
â−1

 , (2.11)

where â†m (âm) is the creation (annihilation) operator of the respective substate m with
the commutation relation [âm, â

†
n] = δmn. A definition of all operators in single particle

description and second quantization is given in Appendix A.1. Since the commutation rela-
tions remain unchanged, the generalized spin sphere and spin-nematic sphere are spanned
by the collective operators equivalent to the single-atom spheres, {F̂x, F̂y, F̂z} for the spin
sphere and {F̂⊥(φL), Q̂⊥(φL), Q̂0(φL)} for the spin-nematic sphere. For convenience, the
axis are normalized by the the total atom number N to keep a radius of one.

2.4 Projective measurement

In quantum mechanics, a measurement of the observable M projects a state ρ̂ to the
respective eigenspace via the projectors P̂m [29]

M̂ =
∑
m

mP̂m . (2.12)

m are the eigenvalues and p(m) = ⟨ψ| P̂m |ψ⟩ is the probability of the result m. The
operators have to satisfy

∑
m M̂

†
mM̂m = 1 and have to be orthogonal, M̂mM̂n = δmnM̂m.

In the spin-1 case, the magnetic substates can in practice be separated and the respective
particle density gained by first applying a magnetic field gradient in Z-direction using
the Zeeman effect, then illuminate with resonant light. For the experimental details
see Section 3.1.3. One measurement gives in second quantization the operators of the
respective sublevels

N̂+1 = â†+1â+1 =
1

3
N̂ +

1

2
F̂z +

1

4
Q̂zz

N̂0 = â†0â0 =
1

3
N̂ − 1

2
Q̂zz

N̂−1 = â†−1â−1 =
1

3
N̂ − 1

2
F̂z +

1

4
Q̂zz . (2.13)

These can be decomposed and expressed by the previously introduced spin-1 operators.
The Fock state can now be reconstructed by the atom number of the respective substates,
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which are the experimental expectation values of the operators NmF = ⟨N̂mF⟩. One can
further reconstruct the values for the observables Fz and Qzz with a linear combination
of the sublevel counts, e.g. Fz = N− = N+1 −N−1.

For a d-dimensional Hilbert space, the expectation value of up to d − 1 operators can
be measured. The total atom number takes one dimension, and all other measurement
operators must commute. To measure in a different basis, a unitary transformation Û
has to be applied before the measurement, which is changing the measured atom number
distribution in the sublevels to N ′

mF
= ⟨Û †N̂mFÛ⟩. To measure for example the Fx

observable, a π/2 rotation around F̂y can be applied: Û = e−iπ/2F̂y . As mentioned, all
operators have to commute, so to extract a phase difference between two non-commuting
observables like Fx&Fy, i.e., the Larmor phase, another method has to be used, which is
described in the following Section 2.5.

2.5 Positive Operator-Valued Measure

As mentioned above, in the three dimensional spin-1 system only two observables can be
measured in a single realization. To extract also non-commuting operators, the Positive
Operator-Valued Measure (POVM) formalism can be used [9, 29, 38]. The difference to
a projective measurement is the definition of the POVM elements Êm of a measurement
operator M̂m with the outcome m

Êm ≡ M̂ †
mM̂m (2.14)

The probability of outcome m is p(m) = ⟨ψ| M̂ †
mM̂m |ψ⟩ = ⟨ψ| Êm |ψ⟩, so Êm is a positive

operator while still satisfying
∑

m Êm = 1. If the operators are orthogonal, a POVM and
projective measurement are identical, but POVM elements Êm do not necessarily have to
be orthogonal. It follows, that more measurable elements can be defined than a projective
measurement would allow, here an example taken from Kunkel [21]

Ê0 =
1

6
N̂ +

1

4
F̂x +

1

8
V̂x −

1

16
Q̂zz , Ê1 =

1

6
N̂ − 1

4
V̂x +

1

8
Q̂zz ,

Ê2 =
1

6
N̂ − 1

4
F̂x +

1

8
V̂x −

1

16
Q̂zz ,

Ê3 =
1

6
N̂ +

1

4
F̂z +

1

8
Q̂zz , Ê4 =

1

6
N̂ − 1

4
Q̂zz ,

Ê5 =
1

6
N̂ − 1

4
F̂z +

1

8
Q̂zz . (2.15)

It is easy to prove that
∑

m Êm = N̂ , which is equal to the identity taking the normal-
ization into account. While the first three elements refer to a measurement of the Fx

observable, the second three elements originate from a Fz measurement. As a conclusion,
it is possible to extract two non-commuting observables in one single measurement with
this formalism.

But there is another problem: in the spin-1 system, there are only three possible elements
to measure. This can also be overcome via using the F = 2 manifold, which is unoccupied
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during all measurements using this readout formalism presented in this thesis. The hy-
perfine states in F = 2 are individually addressable in the microwave range, which gives
eight states in total to use. A projective measurement in the enlarged Hilbert space is
then performed to read out the desired observables, which is known as Naimark’s exten-
sion [15]. For this, the populations in the magnetic sub-levels |F = 1,m1⟩ can be coupled
via microwave (MW) pulses to the sublevels of |F = 2,m2⟩, referred as coupling pulses

Cm1m2
x =

1

2
a†1,m1

a2,m2 + h.c. (2.16)

Cm1m2
y =

i

2
a†1,m1

a2,m2 + h.c. . (2.17)

Afterwards, a selective radiofrequency (RF) pulse in the F = 1 manifold can rotate the
system as discussed in Section 2.4. An observable is "stored" in the second level before
rotating the first level into another frame. So far, readout schemes for the transverse spin
length {Fx, Fy} ( F⊥ readout), for the full spin sphere {Fx, Fy, Fz} and for the spinor phase
{Fx, Qyz} have been developed and used [21]. In the following Sections 2.5.1 and 2.5.2,
this thesis expands the spinor phase readout to the full spin-nematic sphere {Fx, Qyz, Q0},
as well as establishes a dual-phase readout (DuPR) with the observables {Fx, Fy, Qyz, Q0}.

2.5.1 Full spin-nematic readout

To reconstruct a state on the spin-nematic sphere, the observables {Fx, Qyz, Q0} need
to be measured. Q0 is connected to Qzz via Eq. (2.7), which can be measured without
any rotation, as shown previously in Eq. (2.13). The first steps in the sequence are
consequently two coupling pulses between |F = 1,mF = ±1⟩ and |F = 2,mF = ±1⟩. This
is similar to the storage of Fz in the F⊥ readout [22], followed by the sequence of the
spinor phase readout presented in [21]. The whole unitary rotation is given as

Û =e−iπ/2F̂y · e−iπC00
x · e−iπC00

y · e−iπ/2F̂y · e−iπF̂y

· e−iπ/2C00
y · e−iπ/2C12

y · e−iπ/2C−1−2
y · e−iπ/2F̂y · e−iφC11

y · e−iφC−1−1
y (2.18)

Not considered here is the time evolution between the pulse steps, which includes spin
echo to reduce the noise. The angle φ in the first coupling pulses is chosen to be variable
in the calculation, later on φ = arctan(1/

√
2) is used to store 1/3 of the population for

each observable. The calculation for the new POVM elements N̂ ′
F,mF

= Û †N̂F,mF
Û are

carried out by hand in second quantization, a summary of the individual rotation steps
is listed in Appendix A.2. Terms including creation or annihilation operators of the
F = 2 manifold in linear or second order, namely â2,m2&â

†
2,m2

, are summarized in the f̂i
operators. These do not contribute to the POVM elements because the F = 2 manifold
is initially unoccupied.
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N̂ ′
1,1 =

1

4
N̂0 +

cos2(φ/2)

8

(
V̂x + N̂+

)
+

cos(φ/2)

4
Q̂yz + f̂1

N̂ ′
1,0 = cos2(φ/2)

(
1

6
N̂ +

1

8
Q̂zz −

1

4
V̂x

)
+ f̂2

N̂ ′
1,−1 =

1

4
N̂0 +

cos2(φ/2)

8

(
V̂x + N̂+

)
− cos(φ/2)

4
Q̂yz + f̂3

N̂ ′
2,2 =

1

4
N̂0 +

cos2(φ/2)

8

(
V̂x + N̂+

)
− cos(φ/2)

4
F̂x + f̂4

N̂ ′
2,1 = sin2(φ/2)

(
1

3
N̂ +

1

4
Q̂zz +

1

2
F̂z

)
+ f̂5

N̂ ′
2,0 = cos2(φ/2)

(
1

3
N̂ +

1

4
Q̂zz −

1

2
V̂x

)
+ f̂6

N̂ ′
2,−1 = sin2(φ/2)

(
1

3
N̂ +

1

4
Q̂zz −

1

2
F̂z

)
+ f̂7

N̂ ′
2,−2 =

1

4
N̂0 +

cos2(φ/2)

8

(
V̂x + N̂+

)
+

cos(φ/2)

4
F̂x + f̂8 . (2.19)

Taking linear combinations, one gets the desired observable set including Fz, as it is
included in the non-rotated measurement. The final observables can be calculated now in
an experiment through Eq. (2.20) and further be normalized by the total atom number
N . In Section 4.3 will be shown a measurement for the verification of this readout. The
theoretical detail of this experiment is discussed in Section 2.6.1.

Fx =
2

cos(φ/2)

(
N ′

2,−2 −N ′
2,2

)
Qyz =

2

cos(φ/2)

(
N ′

1,1 −N ′
1,−1

)
Q0 = N − 2

sin2(φ/2)

(
N ′

2,1 +N ′
2,−1

)
Fz =

1

sin2(φ/2)

(
N ′

2,1 −N ′
2,−1

)
. (2.20)

2.5.2 Dual-phase readout

To this point, it was possible to extract the transverse spin length F⊥ and the spinor phase
φS in two separate measurements. But it was necessary in the recent project to measure
both observables simultaneously. Following the POVM formalism, a readout sequence is
developed and calculated that allows to extract up to four non-commuting observables in
a single measurement. The dual-phase readout (DuPR) includes {Fx, Fy, Qyz, Q0} and
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Figure 2.2: Dual-phase readout sequence: Following the POVM formalism [22], the system
is first rotated around the F̂y axis, to further store 1/3 of the population from
|F = 1,mF = ±1⟩ in the F=2 manifold |F = 2,mF = ±2⟩. This will store the
Fx observable for the imaging. Then, after a rotation around F̂x in the F = 1
components, the Fy observable is stored the same way in |F = 2,mF = ±1⟩.
In addition to that, Q0 can later be extracted via the difference in population
of |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩. Two RF pulses rotate the system to
the starting orientation, before two π coupling pulses map Qyz to Fx. This
can now be extracted in the F=1 manifold after another F̂y rotation.

the unitary rotation U is in this case:

U =e−iπ/2F̂y · e−iπC00
x · e−iπC00

y · e−i3π/2F̂y · e−i3π/2F̂x

·e−iπ/2C00
y e−iπ/2C11

y · e−iπ/2C−1−1
y

·e−iπ/2F̂x · e−iφC12
y · e−iφC−1−2

y · e−iπ/2F̂y . (2.21)

The complete time sequence is visualized in Fig. 2.2. The system is first rotated around
the F̂y axis and φ chosen so that 1/3 of the population is stored from |F = 1,mF = ±1⟩
in the F = 2 manifold, |F = 2,mF = ±2⟩. Then, after a rotation around F̂x, one half
of the remaining population in |F = 1,mF = ±1⟩ is stored together with |F = 1,mF = 0⟩
in |F = 2,mF = 0,±1⟩. The coupling between |F = 1 ↔ 2, 0⟩ is not necessary for the
purpose of reading out both phases, but it does offer the possibility of including Q0 in
the observation variables. Two 3π/2 RF pulses rotate the system back to the starting
orientation, before two π coupling pulses advance the phase between φ0 and φ±1, namely
advance the spinor phase and map Q̂yz to F̂x. After another rotation around F̂y, Qyz is
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now measurable in the F = 1 manifold. The new populations read:

N ′
11 = cos2

ϕ

2

(
1

6
N − 1

16
Qzz +

1

8
Vx +

1

4
Qyz

)
N ′

10 =
1

6
N +

1

8
Qzz −

1

4
Vx

N ′
1−1 = cos2

ϕ

2

(
1

6
N − 1

16
Qzz +

1

8
Vx −

1

4
Qyz

)
N ′

22 = sin2
ϕ

2

(
1

3
N − 1

8
Qzz +

1

4
Vx −

1

2
Fx

)
N ′

21 =
1

4
cos2

ϕ

2
N10 +

1

12
N +

1

16
Qzz −

1

8
Vx +

1

4
cos

ϕ

2
Fy

N ′
20 = cos2

ϕ

2

(
1

6
N +

1

8
Qzz +

1

4
Vx

)
N ′

2−1 =
1

4
cos2

ϕ

2
N10 +

1

12
N +

1

16
Qzz −

1

8
Vx −

1

4
cos

ϕ

2
Fy

N ′
2−2 = sin2

ϕ

2

(
1

3
N − 1

8
Qzz +

1

4
Vx +

1

2
Fx

)
. (2.22)

With this, the desired operators can be calculated as before via linear combination of the
POVM elements in Eq. (2.26). The outcome of this readout is compared with the existing
readouts in the experiments on the sG solitons, which will be described in Section 2.7.

Fx =
1

sin2 ϕ/2

(
N ′

2−2 −N ′
22

)
(2.23)

Fy =
2

cos ϕ/2

(
N ′

21 −N ′
2−1

)
(2.24)

Qyz =
2

cos2 ϕ/2

(
N ′

11 −N ′
1−1

)
(2.25)

Q0 = N − 4

(
N ′

20

cos2 ϕ/2
+N ′

10

)
. (2.26)
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Figure 2.3: First and second order Zeeman shifts in the rubidium system: (a) The first-
order Zeeman shift has the energy difference pB ≈ 700 kHz/G, but is not
the relevant energy scale in the description of spin-changing collisions (SCC).
(b) The effective second-order Zeeman shift q = qB − qMW is controlled by
far-detuned MW dressing with detuning δ, which reduces qB ≈ 72 Hz/G2 for
precise control of the interaction strength. Adapted from [31]

2.6 Energy landscape

The Hamiltonian of the system can be split into three parts, the single particle Hamil-
tonian Ĥsp, the magnetic Hamiltonian ĤB and the interaction potential V̂int. The single
particle Hamiltonian is hereby given as Ĥsp = − ℏ

2M∇2+Vtrap and the bosonic many-body
Hamiltonian with pairwise interactions Ĥint reads [34]

Ĥ =
∑
ij

Ĥsp
ij â

†
i âj +

1

2

∑
ijkm

⟨ij|V̂int|km⟩â†i â
†
j âkâm (2.27)

Ĥsp
ij =

∫
d3x Φ̃∗

i (x)ĤspΦ̃j(x) .

â†i (âi) are the bosonic creation (annihilation) operators and Φ̃i(x) the basis state wave-
functions. While Φ̃0(x) describes the BEC, the remaining ones are for the completeness.
One can further write this in bosonic field operators Ψ̂(x) =

∑
i âiΦ̃i(x) with the same

commutation relations. The many-body Hamiltonian therefore reads

Ĥ =

∫
d3x Ψ̂†(x)HspΨ̂(x) +

1

2

∫
d3x Ψ̂†(x)Ψ̂†(x′)Vint(x− x′)Ψ̂(x′)Ψ̂(x) (2.28)

While dealing with ∼ 105 atoms, it is not practical to describe each atom individually.
One property of a BEC is, that all atoms are occupying the same ground state. It is thus
convenient and sufficient to describe the dynamics on a mean-field level, where quantum
fluctuations and entanglement are neglected. The field operators can thus be replaced by
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complex-valued functions ψ(x, t) [18]

ψ(x, t) = ⟨Ψ̂(x, t)⟩ =


√
n+1(x, t)e

+iφL(x,t)√
n+0(x, t)e

iφS(x,t)√
n−1(x, t)e

−iφL(x,t)

 (2.29)

The calculation of the time evolution using Eq. (2.28) leads then to the equation of motion,
also called Gross-Pitaevskii equation (GPE) [6]

iℏ∂tψ(x, t) =
[
− ℏ2

2M
∇2 + Vtrap(x) + g|ψ(x, t)|2

]
ψ(x, t) , (2.30)

where ℏ is the reduced Planck constant and g =
∫
V eff
int (x)d3x. Considering for ultracold

atoms only two-particle collisions and s-wave scattering, the interaction potential reduces
to g = 4πℏ2a/M with the scattering length a.

All experiments described here are additionally performed in an homogeneous magnetic
bias field in Z-direction, the same as the quantization axis. This changes the energies of
all magnetic sublevels in the F = 1 & F = 2 manifold due to the Zeeman effect via

EB/h = g1,FmFBZ + g2,F (4−mF)B
2
Z . (2.31)

pB = g1,1BZ is hereby the linear and qB = −g2,1B2
Z the second order Zeeman shift, also

depicted in Fig. 2.3. The first and second order g-factors g1/2,F are in our system given
as [41]

g1,F ≈

{
−702 kHz/G for F=1
700 kHz/G for F=2

g2,F ≈

{
−72 Hz/G2 for F=1
72 Hz/G2 for F=2

(2.32)

The energy shift can also be expressed in second quantization, where the additional mag-
netic Hamiltonian reads [21]

ĤB/h = pBF̂z −
qB
2
Q̂0 . (2.33)

Since the difference in the mF = ±1 gives the magnetization in Z-direction, the first order
Zeeman shift translates to an expectation value for Fz, while the difference in the popula-
tion of mF = ±1 ↔ mF = 0 is the origin of an expectation value in Q0. This value would
be fixed for one magnetic field, but as depicted in Fig. 2.3, the second-order Zeeman shift
is tuneable via off-resonant MW dressing qMW of the zero level to the F = 2 manifold. A
large detuning δ prevents the condensate to populate the upper states, but allows precise
control of the effective shift q = qB − qMW between the sublevels.

A closer look at the interaction potential shows that it consists of two parts: the density-
density interaction V̂d and the spin-spin interaction V̂spin. These are defined via [39]

V̂int = V̂d + V̂spin =

∫
d3x

(c0
2

: n̂2 : +
c1
2

: F̂2 :
)
, (2.34)
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Figure 2.4: Two interaction parts contribute to the spin-mixing process in Eq. (2.36).
The first one is a rotation around Q0, the second one is a shearing around Fx,
resulting in combined trajectories. The red ones are trapped rotations around
the black dotted fixpoints, the blue curves are a disturbed rotation around the
sphere. In between lays the "separatrix", which separates the trapped from
the running phase modes. Starting initially in the polar state, the state follows
the separatrix during the time evolution. Adapted from [22].

with :: normal ordering, c0 = 4πℏ2(a0+2a2)/(3M) and c1 = 4πℏ2(a2−a0)/(3M). a0,2 are
the scattering lengths between two F = 1 atoms for a total angular momentum F = {0, 2}.
Since c1 < 0 in 87Rb, the interaction is ferromagnetic where all spins align to minimize the
energy. In this system is also |c0| ≈ 200|c1| [18], therefore is the dynamic of the density
on a smaller scale ξd then the dynamic of the spin-spin interaction ξs. The spin healing
length is defined as ξs = ℏ/kxis = ℏ/

√
2Mnc1 and provides the main length scale for the

experiments reported here.

2.6.1 Spin-mixing

Ĥspin can be rewritten in second quantization in terms of the ladder operators [21]

Ĥspin/h =
c1
2

:
(
F̂xF̂x + F̂yF̂y + F̂zF̂z

)
:

= c1N̂ + c1

(
N̂0 −

1

2

)(
N̂+1 + N̂−1

)
+
c1
2

:
(
N̂+1 − N̂−1

)2
:

c1

(
â†0â

†
0â+1â−1 + â†+1â

†
−1â0â0

)
. (2.35)

Here, the first three parts are a total energy shift and two relative shifts between the side
modes. Because the magnetization is conserved in the experiment, these are not relevant
for the description, but the last line represents the spin-mixing process. Together with
the second-order Zeeman shift, which is tuneable, the interaction of the spin-mixing is
described in

Ĥmix/h = −q
2
Q̂0 +

c1
2
F̂ 2
x . (2.36)
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Figure 2.5: (a) Phase diagram of the mean-field ground states in dependence of c1 and
q. c1 is negative for the ferromagnetic Rubidium-87, but via changing q are
three different phases accessible: the in Z-direction magnetized Easy-Axis,
the zero magnetized Polar state and the EP phase. (b) Potential landscape of
the EP phase: the spin favors maximal length perpendicular to the external
magnetic field and can rotate freely around varying the Larmor phase φL, but
has to climb through a maximum, if the spinor phase φS is changed on the
spin-nematic sphere.

This process is depicted in Fig. 2.3 with the arrows, where it is also visualized that the
first-order Zeeman shift conserves the total energy, but the interaction in the second-order
Zeeman shift can be tuned via the dressing q. The dynamic conserves therefore the mag-
netization as well as the Larmor phase, so the state is represented on the surface of the
spin-nematic sphere.

If the state on the north pole of the spin-nematic sphere is prepared (the polar state in
Eq. (2.10)), the spin-mixing process causes the system to follow the so-called separatrix,
shown in Fig. 2.4. The interaction is quenched from the polar phase to the easy-plane
phase described in Section 2.6.2, so this experiment is named "polar quench" and used for
the verification of the full-nematic readout in Section 2.5.1, since it only drives dynamic
in the spinor phase and Q0.

2.6.2 Mean-field ground state

The physics can now be described in the GPE as

iℏ∂tΨ(x, t) =

[
− ℏ
2M

∇2 + Vtrap(x) + qF 2
z +

c0
2
n(x, t) +

c1
2
|F(x, t)|2

]
Ψ(x, t) (2.37)

On can further apply considerations as already mentioned: since the Hamiltonian con-
serves Fz, the first-order or linear Zeeman splitting can be neglected (p = 0). Also the
density is in the experiments reported here stationary, so Vtrap and c0n only contribute
with a constant offset. Using the remaining parts, the system can be categorized in mul-
tiple ground state phases depending on c1 and q, as shown in Fig. 2.5 (a). Because c1
being negative, 87Rb is ferromagnetic, so the antiferromagnetic phase is not accessible.
But one can reach three phases via changing q: in the easy-axis with negative dressing is
the magnetization in the Z-direction favored, as the energy is minimized by occupation of
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Figure 2.6: Analytical form of (a) a breather from Eq. (2.41) and (b) of a collision between
a kink K (σ = +1) and an anti-kink K̄ (σ = −1) in Eq. (2.40). They restore
their shape after passing through each other, resulting in a phase flip compared
to the background.

either mF = +1 or mF = −1. Tuning q to maximal positive values, mF = 0 is the ground
state with zero magnetization, which is called the Polar state introduced in Section 2.2.
The phase in between is the easy-plane (EP), where the ground state has the maximal
spin length transversal to the magnetic field for q ↘ 0. The potential in the EP takes the
form of a "Mexican hat", as shown in Fig. 2.5 (b) for q = −nc1 = 1 [23]:

VEP =
nc1
2

(
F 2
x + F 2

y

)
+
q

2

(
1−

√
1−

(
F 2
x + F 2

y

))
. (2.38)

There, the spin can rotate freely in the Larmor phase φL. Via changing the spinor phase φS

on the spin-nematic sphere, only the Fx component reduces the length while Fy remains
zero. In Fig. 2.5 (b) is this equivalent to following the potential along the cut on the
x-axis.

2.7 Sine-Gordon model

The sine-Gordon (sG) equation is similar to the Klein-Gordon (KG) equation a one-
dimensional mathematical model of a real scalar wave field. In contrast to the linear KG
model, the sG equation is a non-linear extend and can be approximated around zero to
the KG equation. In one spatial dimension, the sG equation reads [5]:

∂2t φ− ∂2xφ+ sinφ = 0 . (2.39)
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This equation has two main solutions, which are relativistically invariant:

Soliton: φ(x, t) = 4 arctan

(
exp

(
σ
x− βt− x0√

1− β2

))
(2.40)

Breather: φ(x, t) = 4 arctan

(
(tanµ)

sin(χ cosµ)

cosh(Z sinµ)

)
(2.41)

χ ≡ t− β/x√
1− β2

+ χ0 , Z ≡ x− βt− x0√
1− β2

σ = ±1 is the topological charge for a kink (anti-kink) soliton, −1 < β < 1 the velocity
normed to the speed of light β = v/c of the solution and x0&χ0 are arbitrary shifts.
0 < µ < π/2 is the amplitude of the breather [5]. A breather is visualized in Fig. 2.6 (a).
The interesting is, that - in the low-energy limit of the transversal ground state - the GPE
of the spin-1 system can be approximated by a sG theory in the spinorphase [37]. This
simplifies the system to a one-dimensional scalar field theory. However, the low-energy
effective field theory (LEEFT) for a pure sG connection is only strictly valid for q = 0,
otherwise Eq. (2.39) is extended to a double sine-Gordon (DSG) model [37]

0 = ∂2t φ− c2s∂
2
xφ−m2 sin(φ)− q̄

4
sin(2φ) . (2.42)

cs =
√

2(1− q̄2) is the free speed of sound and m =
√

4(1− 2q̄2) is the mass of the sG
model. Nevertheless, the unit-less q̄ ≡ q/2nc1 ≪ 1 is small, so the DSG addition is only
small compared to the dominant sG part for the soliton experiments reported here.

Figure 2.7: The rotation of the spinor phase
φS around the spin-nematic
plane spanned by Fx and Qyz

follows the sG soliton profile,
depicted in red. This leads to a
domain wall in the transversal
spin, here exemplary the Fx

projection.

The sG soliton is in our spin-1 sys-
tem embedded in the spinor phase φS

as mentioned before. In Fig. 2.7 is
the soliton visualized within the spin-
1 observables. The soliton profile in
red translates in a rotation around the
spin-nematic plane, spanned by Fx and
Qyz. With an initial system prepara-
tion fully in Fx, the soliton builds a do-
main wall in the transverse spin length
|F⊥|. In the sG model is the periodic-
ity 4π, but in the experiment it is half.
For the translation of the sG model to
the phase in the experiment, one can
introduce a factor g, also referred to
the interaction strength, with g = 2 in
the experimental system [20]:

0 = ∂2t φ− c2s∂
2
xφ+

m2

g
sin gφ (2.43)

This affects also the amplitude and the mass of the sG kink [20], where m = 2 and cs =
√
2
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for q = 0:

φK(x, t) =
4

g
arctan

(
exp

(
mcs

x− vt− x0√
1− (v/cs)2

))
. (2.44)

The breather transforms accordingly. An interesting phenomenon is the collision of a kink
K and anti-kink K̄. In the pure sG theory, they are elastic with the incoming velocity
equal to their outgoing velocity. But they interact attractively in the collision region,
resulting in a positional shift ahead in their respective propagation direction [5, 20]

δx = cs

√
1− (v/cs)2

m
ln

(
1

(v/cs)2

)
. (2.45)

Afterwards, the solitons restore their shape, as depicted in Fig. 2.6 (b). Compared to the
background, this results in a phase flip.
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3 Rubidium BEC

In this chapter, the experimental platform for the Bose-Einstein condensate (BEC) is
presented. It starts with the initial properties of the BEC and continues with the ex-
perimental preparation of the initial states. Also the details on the imaging and the
measurement of the magnetic field stability are covered. Finally, the setup for the local
microwave control is introduced.

3.1 Experimental system

Approximately 105 Rubidium-87 atoms are prepared in a quasi-one-dimensional Bose-
Einstein condensate (BEC) in a box-like homogeneous trapping potential. This is realized
by using a red-detuned elongated laser beam with a wavelength of 1030 nm as a waveg-
uide (WG), resulting in a quasi-one-dimensional harmonic trap with trap frequencies of
(wr = 2π · 170 Hz and wl = 2π · 1.6 Hz [24]). Additional, two blue-detuned laser beams
with the wavelength of 760nm are focused perpendicular to the WG through the imaging
objective in reverse direction, see [24] for details. This results in a box-like potential,
where the atoms are expanded from the crossed dipole trap (XDT) after condensation.
Reducing the intensity of the WG allows control of the final atom number.

All experiments are performed in an external homogeneous magnetic offset field of B ≈
0.894 G, which gives rise to the second-order Zeeman shift of qB ∼ 58 Hz discussed in
Section 2.6. By applying a far off-resonant microwave (MW) dressing, the |F = 1,mF = 0⟩
and |F = 2,mF = 0⟩ levels are coupled in leading order. This allows to effectively tune q
into a regime on the order of the spin interaction.

3.1.1 Preparation of the initial states

The initial condition for all experiments reported here is the (normalized) polar state
ψp =

(
0, 1, 0

)T . To get there, all atoms in the beginning are in the state |F = 1,mF = −1⟩
after the magnetic trap and condensation. Two consecutive π MW coupling pulses are
used between |1,−1⟩ ↔ |2, 0⟩ and |2, 0⟩ ↔ |1, 0⟩ to transfer all atoms to the polar state.
Remaining atoms in the |1,±1⟩ states are removed via a Stern-Gerlach pulse, i.e., a
strong magnetic field gradient pulse. After a settling time of 100 µs for the magnetic
field stabilization, the experiment can be continued. Here it is worth to mention that
the Larmor phase is initially undefined, since there is no population in |1,±1⟩. The first
radiofrequency (RF) rotation sets then the reference. Further, the preparation of the easy
plane ground state of q = 0 mentioned in Eq. (2.10) is achieved by a π/2 RF rotation,

where the populations occupy ψ =
(
1
2 ,

1√
2
, 12

)T
. To fully elongate the spin along the

Fx-axis, the spinor phase also has to be adjusted to φS = (0 mod 2π). This is done by
the phase difference of two MW π pulses between |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩.
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Figure 3.1: Schematic of the experimental setup at the condensate. The BEC is loaded
and located at the center of the red-detuned (1030 nm) XDT and WG. Two
blue-detuned (760 nm) beams provide repulsive box walls, resulting in a ho-
mogeneous 1D condensate. The RF coils and MW antenna are used for the
manipulation between the hyperfine states. Adapted from [23]

3.1.2 Experimental generation of sine-Gordon solitons

The ongoing project focuses on the dynamics of sG solitons. The start is a homogeneously
elongated transverse spin in the Fx direction, before the phase difference between the
mF = 0 and mF = ±1 components is locally manipulated to prepare the soliton in the
spinor phase. A scheme of the whole procedure is shown in Fig. 3.2. This is done via
sequential illumination of the BEC with a steerable laser beam at the tune-out wavelength
of 790.032 nm, which induces an additional local magnetic field ∆B(x) via the vector Stark
shift but does not cause density excitations [32]. Illumination in the prepared ground
state would now advance the Larmor phase φL as a phase difference between the mF =
±1 components, but rubidium-87 has the property that the g factors for the electronic
ground states are related via gF=1 ≈ −gF=2, see Section 2.6 (the difference is below the
percent level). As shown in Fig. 3.2 (a), all atoms in the |F = 1,mF = −1⟩ component
are transferred globally to |F = 2,mF = −1⟩ by a MW pulse and hold there for a fixed
duration. Consequently, the condensate phases φ±1 now undergo Larmor precession with
the same orientation, but the phase difference to φ0 is changed in a magnetic bias field
BZ(x). During the hold time τ , the spinor phase φS is locally advanced by ∆φS ∼
∆B(x)τ . The spatial profile of the spinor phase is therefore directly proportional to the
sequentially applied intensity profile (Fig. 3.2 (b)), and the global offset value of the spinor
phase is adjusted by the hold time. After the local phase imprint, all atoms are transferred
back from |F = 2,mF = −1⟩ to |F = 1,mF = −1⟩. This method allows to imprint any
form in the spinor phase. While illuminating one half of the condensate sequentially, this
results in a sine-Gordon soliton in the spinor phase φS and a dip in the transverse spin
length |F⊥|, shown in Fig. 3.2 (c). As the imprinting of the phase happens on the time
scale of the linear Zeeman shift, which is roughly 700 kHz at the applied bias field, the
hold duration is shorter than one millisecond for all experiments reported in this thesis,
which renders it stable against slow magnetic field fluctuations.
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Figure 3.2: Scheme for the experimental preparation of a sine-Gordon soliton: (a) To ad-
vance the spinor phase as the phase difference between |F = 1,mF = 0⟩ and
|F = 1,mF = ±1⟩, the opposite sign of the g-factor in F = 1 and F = 2 is
used. Therefore, the complete population in |F = 1,mF = −1⟩ is transferred
to |F = 2,mF = −1⟩ with a microwave pulse. Holding the atoms in this con-
figuration allows to add locally an additional B-field by using the vector Stark
shift, which advances the spinor phase proportional to the intensity of the
laser beam. This is done sequentially over one half of the 87Rb cloud, as
shown in (b). Then, the population in |F = 2,mF = −1⟩ is transferred back
to |F = 1,mF = −1⟩. (b) Since the vector Stark shift is proportional to the
intensity of the laser beam, the single beams can be added up close to a sine-
Gordon soliton profile, (c) resulting in a π kink in the spinor phase and a dip
in the transversal spin length |F⊥|.
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Figure 3.3: Ramsey Sequence to measure the fluctuation of the magnetic field stabiliza-
tion: First, a π/2 RF pulse transfers half of the population from |1,−1⟩ to |2, 0⟩.
After a fixed duration of τR = 625 µs, a second pulse rotates the system again.
Ideally, the spin axis should now align with the rotation axis, but magnetic
field fluctuations causes noise, which can be measured in the imbalance of the
populations N2,0 −N1,−1.

3.1.3 Imaging

Far-above saturation absorption imaging is used to capture the density distribution of the
atoms after the readout pulse sequence. First, a magnetic field gradient pulse is applied
with the coils of the magnetic trap, then, after a short time-of-flight of 2 ms, a resonant
light pulse to F = 2 is imaging these states on one picture of a CCD camera. The atoms
in F = 2 are also removed from the focal plane via this light pulse. Subsequently, a light
pulse from the repumping laser transfers atoms from F = 1 to F = 2, which are then
resonant to the F = 2 imaging light, captured on a second picture. Two more pictures
are taken with the imaging light on, but ideally without any atoms, and a fifth picture is
used as a dark noise reference. For further details see [41, 23].

3.1.4 Magnetic field stability

The stability of the magnetic field is crucial for precise state preparation, dressing and
readout. To control the stabilization and set a precision level for the magnetic error of
the quadratic Zeeman shift qB, a Ramsey interferometry sequence is used between the
states |F = 1,mF = −1⟩& |F = 2,mF = 0⟩, shown in Fig. 3.3. Therefore, the imbalance
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between |1,−1⟩& |2, 0⟩ is measured:

N−
1,2/N = (N2,0 −N1,−1) /N = cos δR · τR . (3.1)

τR is the Ramsey time and δR the detuning from resonance. The sequence is performed
with a π/2 MW pulse between |1,−1⟩ ↔ |2, 0⟩ with a small detuning δR = 2π·400 Hz. Since
the detuning is small compared to the Rabi frequency, the difference in the imbalance is
negligible. But during the free time evolution, a phase shift is evolving between the state
and the MW pulse. The Ramsey time τR = 625 µs is chosen such that the spin is aligned
with the rotation axis at the time of the second MW pulse, which should therefore not
affect the imbalance. A difference in the population evolves by a difference in the detuning
caused by magnetic field fluctuations. The detuning depends on the energy difference
between the two levels, which is given in Eq. (2.31). The main contribution is the linear
Zeeman shift of the |1,−1⟩ level, therefore σδR = −g1,1σB and the error of the magnetic
field σB is calculated by

δR =
arccos

(
N−

1,2/N
)

2πτR
⇒ σB =

σ(N−
1,2/N)√

1− (N−
1,2/N)2 2πτR · g1,1

. (3.2)

The error in the quadratic Zeeman shift is then given as σqB = 2g2,1BZσB, while the
magnetic field strength B ≈ 0.894 G is kept equal to the other measurements.

3.2 Local microwave transition

During the ongoing measurements regarding the sG wave packets, a tool could be estab-
lished, which allows local manipulation in the MW regime. The work of the bachelor’s
thesis by Suelberg [42] follows hereby previous work of Doering et al. [8]. MW transitions
are to this point only possible for the total BEC and used to transfer atoms between the
hyperfine levels, for example during the spinor phase imprint described in Section 3.1.2.
This is done via radiating the condensate with microwaves from an antenna located next
to the experimental chamber, also seen in Fig. 3.1. A more direct approach to the prepa-
ration of the spinor phase and opening up further possibilities for future experiments
could be done via Raman transitions, where laser light is modulated in the MW range.
An electro-optical modulator (EOM) from EOspace is used to modulate the same local
laser beam used for the local imprint described in Section 3.1.2. Since the EOM uses
phase modulation, which cannot be used directly to drive Raman transitions, it must be
converted into amplitude modulation. For this an interferometer setup is used: a sta-
ble solution is the Sagnac interferometer because of the traveling light passing the setup
in both directions on a round trip. Since the traveling-wave EOM modulates only in
one direction, the interference at the output cancels the unmodulated carrier frequency
with the zeroth component of the modulated beam and leaves the modulated frequencies
unchanged. These modulated light beams with ω± = ω0 ± ωMW , where ω0 is the un-
modulated light frequency and ωMW = ω(1,mF)↔(2,mF)/2 is half the transition frequency
between two hyperfine levels of the F = 1 and F = 2 manifold, can drive a localized Ra-
man transition with the precision of the local laser beam. For more details on the setup
itself see [42]. The final test of the setup was done in the BEC apparatus, where it was

23



installed temporarily in the beam path of the local imprint. The transition frequency was
set to ωMW = ω(1,0)↔(2,0)/2 = 2π · 3.417 GHz, also taking energy shifts like the second
order Zeeman shift into account.
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4 Experimental results

In this chapter, the experimental results are presented. First, the characteristics of the
magnetic field stabilization and the local imprint are tested. Then, the validity of the new
readout sequences is discussed, before the measured details of the sine-Gordon soliton
dynamics are shown. In the end, a measurement with the local MW control is shown and
analyzed.

4.1 Magnetic field fluctuations

Stability of the magnetic offset field is crucial for both the quench experiments and the
readout sequences. State manipulation from the MW pulses is dependent on the Zeeman
shift as well as the dressing q, which is only in the order of Hz. Therefore, one of the first
steps is to measure the fluctuations in the magnetic field stabilization using a Ramsey
sequence between |F = 1,mF = −1⟩ and |F = 2,mF = 0⟩, as introduced in Section 3.1.4.
The time between the two Ramsey pulses is kept constant such that the population is half
in each level, which means that the imbalance N−

1,2 from Eq. (3.1) between these two states
should be zero. Indeed, the fluctuation is around zero, as Fig. 4.1 shows. Plugging in the
standard deviation of the measurement into Eq. (3.2), one finds a fluctuation of σB =
17 µG at a magnetic field of B = 0.894 G. This results in a precision of σqB = 2.2 mHz
with the magnetic quadratic Zeeman shift of qB = 57.5 Hz. This is in the per mille order
of magnitude of the the actual tuned quadratic Zeeman shift q = qB − qMW ∼ 1 Hz,
described in Section 3.1. Since the fluctuations on the effective shift q are in the order of
magnitude of σq ∼ 0.2 Hz [21], the magnetic field control provides a stable basis for the
precision needed for preparing the sG solitons.

4.2 Calibration of the readout phases

The phases of the RF and MW pulses drift during the experiments in the time scale of
days to weeks. In order to measure the right observable, the phases have to be calibrated
regularly. For both new readout sequences, three phases have to be determined: the
spinor phase during the preparation, the phase imprint between Fx and Qyz in the end of
the sequence and the orientation that is given by the phase of the RF pulses in order to
rotate the system around the right axis. As described in Section 3.1.1, the spinor phase
during the preparation must be calibrated to reach maximal transversal spin. In the usual
readout for F⊥ and also for the other sequences, this is done via a scan of the MW pulse
phases in the arbitrary waveform generator (AWG). Fig. 4.2 (a) shows a fit of the absolute
of a sine function (a · | sin(bx+ c)|+ d), where the phase value of the maximum of |F⊥| is
used. Then a scan of the RF orientation is done, which is a total offset on the RF phase
for Fx as well as on Fy. Fig. 4.2 (c) shows a measurement with a total elongated spin,
which should point in Fx direction. This is not only important for the rotation around the
right axis, but also to fulfill the operator commutation relation discussed in Section 2.2.
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Figure 4.2: Phase calibration for the readout sequences: (a), the measurement is shown
for the initial spin length calibration by scanning the relative MW phase.
(b) shows the variation of the MW pulse imprint phase at the end of the
sequence, where the spin should be aligned along Fx and Qyz = 0. (c) For the
RF rotations is a total offset phase added to the Fx and Fy rotation pulses to
align the rotational axes with the desired ones, as depicted in Fig. 2.2.
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(a) This measurement shows polar quench dynamics with the re-implemented spinor phase readout
established by Kunkel et al. [22]. Here, the data is limited to the spin-nematic equator.

(b) This measurement shows again polar quench data, but with the full spin-nematic readout.
This allows to track the quench dynamics on the entire spin-nematic sphere.

Figure 4.3: The Polar quench measurements are done in the XDT, where the single mode
dynamics are used as a benchmark to verify the new readout sequence [21]. (a)
shows a re-implementation of the Fx-Qyz readout in the spin-nematic equator
only and (b) shows the expansion in the entire spin-nematic sphere. The initial
polar state is on top of the sphere with Q0 = 1, then follows the separatrix,
which is seen after an evolution time of tevo = 400 ms. During the last two
times, the state re-focuses at Q0.

Therefore, the value is taken where Fy = 0. Finally, a measurement varying the phase of
the second MW imprint pulse is done to align Qyz to zero as well. Fig. 4.2 (b) shows this
calibration measurement, where Qyz varies as the imprint pulse phase is changing, but Fx

and Fy are constant.

4.3 Verification of the spin-nematic readout sequence

The first step was the re-implementation of the spinor phase readout established by Kunkel
et al. [22]. One good physical process to verify the readout is the spin mixing process
described in Section 2.6.1. The experiment is done in the XDT to ensure single mode
dynamics, where it is known how a state evolves [21]. Since the spin mixing is independent
of the Larmor phase rotation and conserves the total magnetization (and therefore Fz), the
dynamics is constrained to the spin-nematic sphere. The polar state is initially prepared
at the center of the separatrix. Then, the system is quenched from the polar phase into
the EP phase by applying the off-resonant MW dressing1. During the time evolution,
the state will be dragged along this line, which can be seen after tevo = 400 ms in

1That is why the experiment is called "polar quench".
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Figure 4.4: (a) To calibrate the necessary illumination time in order to rotate the spinor
phase to φS = π, a horizontal Gaussian profile was imprinted on the con-
densate with three vertical beams with variable beam time τI , as described
in Section 3.1.2. A beam width of σ = (7.6 ± 0.6) µm could be determined.
(b) The amplitudes are plotted against the imprint time τI . A π rotation time
could then be determined via a linear fit to τI(φS = π) = (17.6± 0.1) µs.

Fig. 4.3 (a). The dynamic will evolve fast along the separatrix, so for tevo = 650 ms the
state already re-focuses in the center. In the single-mode mean-field picture, the entire
condensate undergoes this coherent evolution where one point in the figures corresponds to
one measurement of the entire BEC. Since this process is statistical in character, multiple
measurements had to be taken in order to get an estimate of the full Fx-Qyz distribution.
For the next step of expanding the spinor phase readout to a full spin-nematic readout
introduced in Section 2.5.1, the polar quench also is handy due to the fact that the
interaction stays on the spin-nematic sphere. Fig. 4.3 (b) shows the initial condition at
the shortest evolution time measurable with the apparatus. This lays right at the north
pole with maximal Q0 expectation value. After the quench, the state undergoes the same
time evolution on the sphere and re-focuses at the north pole. One effect not visible in
Fig. 4.3 (b) is the intrusion of some measurements into the sphere. This can be explained
by a drift in the Larmor phase due to imperfect offset magnetic field compensation. This
can rotate the state on the spin sphere, causing a reduction of the state length on the spin-
nematic sphere. Nonetheless, the polar quench experiment showcases the functionality of
the new readout sequence and can be used further in the ongoing measurements regarding
the sG soliton and breather.

4.4 Local imprint characterization

It is crucial for any experiments to prepare the system in the correct initial condition.
For the experiments described hereafter, a local spinor phase imprint is employed. While
the depth and form was measured previously indirectly in the observable |F⊥| by Klein
[18], it was now possible to measure the spinor phase rotation directly. As mentioned in
Section 3.1.2, the rotation is dependent on the light intensity and illumination time. To
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Figure 4.5: K-K̄ collision captured simultaneously in the observables F⊥ (a) and φS (b).
From the two dips in F⊥ was the velocity and distance before and after the
collision extracted, from which the phase-shift δx = (7.51 ± 0.47) µm could
be calculated (c). A flip in the spinor phase was also captured in (b) and
compared to the theory in Fig. 4.6.

calibrate the necessary imprint time τI , three vertical beams and one in the horizontal
direction illuminate the condensate. This is done because it is the same configuration as
used in the soliton experiments reported later in Sections 4.5 and 4.6. The initial condition
was measured right after the preparation with 5 µs evolution time, which is the shortest
experimentally accessible time. Fig. 4.4 (a) shows the resulting rotations for imprint times
between 8 and 30 µs with fixed intensity. The width of the Gaussian profile could then be
fitted to a mean value of σ = (7.6±0.6) µm, which is in accordance with the measured waist
from Lannig [23] after installation (σ = (7.0±0.3) µm). Fig. 4.4 (b) shows the amplitudes
of the fits against the imprint time, where τI(φS = π) = (17.6 ± 0.1) µs for a π-rotation
could be determined. This is then used as a reference to create a continuous and flat spinor
phase profile as an overlap of multiple horizontal beams, as in Section 3.1.2 described, or
to form the initial function of a breather. While the system is stable in the preparation of
a soliton regarding the rotation of φS ≈ π and adjusts itself, the preparation of a breathing
solution is strongly dependent on the initial condition, discussed in Section 4.6.

4.5 Sine-Gordon soliton

As discussed in Section 2.7, the spinor BEC can in some approximation be well described
by a LEEFT, taking the form of a sG equation in the spinor phase φS for q = 0 [37].
This makes it particularly interesting to study their dynamics. One interesting excitation
of the system out of the equilibrium is the sG soliton, which is a prominent solution of
the sG model [5]. It interpolates between two minima in the EP potential, as depicted in
Fig. 2.5 (b). To test whether the soliton originates from the sG theory, it must not only
take the same functional form [7], but also exhibit elastic interaction, since the model
is integrable. To show these theoretically predicted phenomena, a kink and anti-kink
collision is prepared. The sG soliton kink in the spinor phase results in a dip in the
transversal spin length |F⊥|. Since the Larmor phase is random in each measurement,
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Figure 4.6: The collision of a kink and anti-kink shown in the spinorphase from theory (a)
and the event captured in the experiment (b). The units for conversion are
extracted as described in Section 4.5 and q = 0.7 with a starting distance of
d = 36.5 µm.

the signal in the F⊥ readout from Kunkel et al. [22] is clear in every realization, but
the spinor phase measurement discussed in Section 4.3 has to be post selected in this
measurement for a clear signal. Both observables has been measured separately with the
previous readouts, but to extract the soliton behavior simultaneously in both observables,
the dual-phase readout (DuPR) was developed and implemented. This comes at the cost of
increased noise, therefore it was first shown that the signal can reproduce previous results
from separate F⊥ and spinor phase readout measurements as a verification. With this
tool, it was possible to resolve a controlled K-K̄ collision, Fig. 4.5 shows the complete
DuPR measurement. One exemplary time slice of the |F⊥| profile and simultaneously
captured spinor phase can be seen in Fig. A.1. The velocity can be controlled via the
MW dressing q, where v(q = 0) = 0. q = 0.7 Hz was chosen such that the elasticity is
close to unity, which is one condition for a pure sG theory. The analysis in Fig. 4.5 (c) is
done with a fit on the |F⊥| profile for each time slice in Fig. 4.5 (a)

|F⊥|(x) =
∣∣∣∣a1 tanh(x− x1

ℓ

)∣∣∣∣+ ∣∣∣∣a2 tanh(x− x2
ℓ

)∣∣∣∣ , (4.1)

where ai, xi are the amplitudes and positional shifts, respectively. The mass and the
speed of sound was absorbed into the parameter ℓ, which is introduced here as the length
scale of the solitons. The mean width of the solitons is determined to ℓ = (5.98 ±
0.37) µm. Experiments as well as numerical simulations showed a constant width of
the soliton regardless of their velocity for the spin-1 system with a connection of l =
ξs/

√
2 [7]. At the moment, the density was not measured in the experiment, but with

the connection to the soliton length scale, the spin healing length could be determined
to ξs ≈ 8 µm. From Siovitz et al. [37], also the time scale can be deduced to T =
2Mξ2s/ℏ = 4Mℓ2/ℏ = (197± 24) ms. This provides a good approximation for the length
and time scale between the experimental and theoretical values. The analysis of the
velocities reveals an elasticity of vout/vin = (0.99 ± 0.02), which fulfills one necessary
condition. It must be mentioned here that the data in Fig. 4.5 is composed of four
individual runs, which is necessary to pick a clear signal in the spinor phase. Although

30



Figure 4.7: Comparison of the theoretical breathing solution (a) with a measurement (b).
The parameters for conversion between units were found by a fit described in
Section 4.6, with ℓ = (4.89± 1.43) µm and T = (132± 77) ms

one must be careful with the velocity extraction of this measurement, the width of the
solitons and overall qualitative characteristic in the phase is reliable. The phase jump in
φS of 2π can be seen in Fig. 4.5 (b), which is theoretically predicted and illustrated in
Fig. 4.6. The last predicted value is the positional shift δx of each soliton ahead in the
propagation direction. Fig. 4.5 (c) shows the distance between the kink and anti-kink.
The shift ahead of each soliton corresponds to double the phase shift in the distance,
which could be calculated to δxexp = (7.51 ± 0.47) µm. The theoretical positional shift
is, following Eq. (2.45) with the extracted velocity and applied q, δxtheo = 13.41 µm.
But the theoretical value is not expected to fit quantitatively, since effective theory is
not applicable during the collision. The collision exhibits the full spin-nematic sphere
and thus violates the underlying assumptions from Siovitz et al. [37]. This is similar to
the other sG solution, the breather, which can be seen as a bound state of a kink and
anti-kink, discussed in the following Section 4.6. These results are consistent with the
other measurements taken during the project [7].

4.6 Sine-Gordon breather

After establishing and characterizing the experimentally generated sG solitons, there is
another excitation unique to the sG model: the breather, which is a solution localized
in space and periodic in time. In the analytical solution of Eq. (2.41), the width and
breathing frequency are determined only by the amplitude µ. But the experimental system
features its own length scale, the spin healing length ξs. This makes it particularly difficult
to match the initial solution to a stable oscillation. The initial imprint is done similar to
the soliton solution mentioned in Section 3.1.2 and calibrated described in Section 4.4.
It was possible to capture a breathing solution similar to the analytical model. Fig. 4.7
shows the comparison. For a system prepared at q = 0, Q0 is expected to be globally
stable. However, by using the full spin-nematic readout, the measurement revealed also an
oscillation in the third dimension of the spin-nematic sphere, as shown in Fig. 4.8 (a). This
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Figure 4.8: (a) Breathing solution in φS and Q0. The background oscillation is emerging
as the initial condition was not set perfectly, which could be confirmed via
numerical GPE simulations. (b) Time slices of the breathing solution: the
analytical form of a breather could be fitted to this measurement in the spinor
phase as well as in Q0.

oscillation has the same frequency, but has a phase shift of π/2. This can be understood
as a rotation around the spin-nematic sphere, which could be confirmed by numerical
GPE simulations. Another interesting phenomenon of the Q0 oscillation is the oscillation
in the background. Again, the expectation would be a flat signal on each side of the
breather, but there is also an oscillation emerging due to imperfect initial conditions.
This behavior could also be confirmed by numerical simulations. The analytical form for
a single time slice could be fitted in Fig. 4.8 (b), with the amplitude µ, the interaction
strength parameter g = 2 and an added length scale ℓ as fit parameter in Eq. (2.41):

φ(x, t) =
4

gπ
arctan

(
(tanµ)

sin(χ cosµ)

cosh(Z sinµ)

)
, χ ≡ t

T
+ χ0 , Z ≡ x− vt− x0

ℓ
. (4.2)

T = 2Mξ2s/ℏ is the time scale determined in Section 4.5 and χ0 the initial phase shift.
An imprint depth of µ = (0.32 ± 0.14) π could be determined for all times shown in
Fig. 4.8 (b), the mean width is ℓ = (4.89±1.43) µm. What could be captured in the third
slice in Fig. 4.8 (b) is the complete rotation of the spinor phase into Q0.

4.7 Local microwave manipulation

The local microwave setup described in Section 3.2 was tested to drive transitions be-
tween a pseudospin-1/2 system of |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩ sublevels. The
system was therefore prepared in the polar ground state inside the box walls as for the
soliton experiments. In the first test, one beam was illuminating the middle of the BEC
with gradually increasing duration to drive locally confined Rabi oscillations, as shown
in Fig. 4.9 (a). The population transfer to F = 2 follows the theoretical Rabi oscillation
P1,0 = A cos2(Ωt/2+φ0)+d with amplitude A, phase shift φ0 and offset d. In Fig. 4.9 (b)
is a slice from the middle of the BEC shown, where the oscillation could be fitted to.
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Since the laser beam has a Gaussian intensity distribution and the oscillation frequency
in the Jaynes-Cummings model being dependent on the intensity [14], the transfer back to
F = 1 starts in the center at ∼ 2 ms, but the atoms are caught by the surrounding ones,
where the intensity is less. For this transition a Rabi frequency of ωR = 2π · (252±12) Hz
was found, which corresponds to a full transition time of τπ/2 = (1.98± 0.10) ms. This is
unfortunately too long to use it for the spinor phase imprint to be stable against magnetic
field drifts. The current preparation time is ∼ 650 µs for multiple beams, which is shorter
than the linear Zeeman timescale, as described in Section 3.1.2. It is interesting though
to test the dynamics of the mixture after preparing a F = 2 wave packet in a background
of surrounding F = 1 atoms. This is shown in Fig. 4.10. One modulated laser beam illu-
minated the middle of the BEC for a fixed imprint duration of τI ∈ {1.5, 1.8, 2.0, 2.2} ms,
afterwards the time evolution of the created wave packet was measured deep in the polar
phase. This means that the zero component is favored in both hyperfine states, resulting
in conserved absence of magnetization. For τI < τπ/2, the initial wave packet disperses
and creates phononic excitations on the BEC. Close to an initial preparation of the wave
packet fully to F = 2, two dark-bright solitons are created with a dip in the F = 1
density and a bump in F = 2. They split apart and travel in opposite directions while
keeping their shape for τI > τπ/2. Fig. 4.10 shows the bright wave packet in F = 2. For
τI = 2.2 ms, the form could be fitted to the shape of two solitons following [2, 30]

n(x) =
∑
i=1,2

1

γ2i
sech2

(
x− xi
γiℓi

)
, γi =

(
1−

(
v

ci

)2
)− 1

2

, (4.3)

with γi, li, xi, ci being the relativistic factor, the width, the positional shift and the sound
velocity of the two peaks. One exemplary time slice of the fit can be seen in Fig. A.2.
First, the positional shift was extracted to determine the velocity to v = (210± 7) µm/s.
Then this value was inserted in Eq. (4.3) to fit the width and the sound velocity. The
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width corresponds to the one-dimensional healing length and could be determined to
ξ = ℓ = (2.34± 0.27) µm and the sound velocity is c = (346± 69) µm/s. These values are
consistent with ξ = ℏ

mc within the error bars [2]. Here it can also be mentioned that the
generated solitons do not have a magnetic character, but are polar, which means that they
differ significantly from solitons that have been investigated in other scenarios [11, 27, 28,
33, 4]. However, the interaction can be driven through the scattering between atoms: the
intraspecies scattering lengths in 87Rb are of the same magnitude with a11 = 100.4 aB,
a22 = 95 aB, and the interspecies scattering length is close to the miscibility-immisciblity
threshold a212 = a11a22 with a12 = 97.7 aB [19, 27, 28]. The proximity to this threshold
can explain the emergence of solitons at an imprint depth around the Rabi time, at which
a large number of particles occupy F = 2. The behavior of stable soliton generation under
these conditions has already been reported in [2], if the extent of the soliton is greater
than the healing length. This is satisfied, since the extend of the soliton is enlarged
through the relativistic γ factor. In the last panel in Fig. 4.10 are the sound velocity in
red lines extracted from the fit and, in white, the velocity of the solitons added. Also
visible is the reflection of the wave packets at the box walls. The interaction is not fully
elastic but the solitons accelerate afterwards, still with a velocity less than the sound
velocity c. The left soliton gathers more energy from the interaction with a velocity of
vl,out = (293 ± 38) µm/s, corresponding to a reflectivity of vl,out/vl,in = 1.43. The right
soliton has a reflectivity of vr,out/vr,in = 1.27. The mean velocity after the reflection is
vout = (283± 32) µm/s.
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5 Conclusion

The aim of this thesis was first to provide the current project with tools for measuring the
necessary non-commuting observables in order to gather information about the dynamics
of the condensate [7]. Two new readout sequences could be established and shown to
capture the right observables. With these tools, first the initial local spinor phase imprint
could be calibrated by direct measurement of the spinor phase. That a 87Rb Bose-Einstein
condensate exhibits a sine-Gordon model was already predicted and reported from Siovitz
et al. [37], but the observation of the in-situ structure and dynamics of their solutions,
like a breather (Section 4.6) and a sG soliton (Section 4.5) is now also possible with the
help of the new readout tools. To show that the solitons arise from the sG model, it is
essential that the collision behavior follows the predictions. The characteristics like a 2π
jump and the spatial phase shift could be observed in a kink and anti-kink collision. In
beyond, the expectation for the dual-phase readout was to measure the spinor phase with-
out post selection by rotating the observables according to the simultaneously detected
Larmor phase. Unfortunately, this expectation could not be fulfilled. The spin-nematic
sphere is only defined for a fixed Larmor phase, based on Section 2.2, as was later realized.
Nonetheless, these tools are not only beneficial during the current project, but can also
become handy for future experiments.

Second, a setup for localized transitions between the hyperfine states has been successfully
tested. It can reliably change the populations in the MW range with a spatial resolution
compared to the local spinor phase imprint measured in Section 4.4. The drawback is
the low Rabi frequency, where the transition happens on too large a timescale for the
desired application, so maybe the setup reported by Levine et al. [25] would be more
suitable. However, the outcome of the final test is in accordance with the literature,
where velocities of the generated solitons could be extracted. It was not further examined
how to control the velocity, which can be up to future work, or testing the lifetime, since
they are supposed to have long coherence times [19]. Further measurements could also
explore the regime with MW dressing to enable spin-changing collisions on top.
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A Appendix

A.1 Spin-1 Operators

N̂ = 13 =

1 0 0
0 1 0
0 0 1

 N̂ = â†0â0 + â†+1â+1 + â†−1â−1

F̂x =
1√
2

0 1 0
1 0 1
0 1 0

 F̂x =
1√
2
â†0

(
â+1 + â−1

)
+

1√
2

(
â†+1 + â†−1

)
â0

F̂y =
i√
2

0 −1 0
1 0 −1
0 1 0

 F̂y =
i√
2
â†0

(
â+1 − â−1

)
− i√

2

(
â†+1 − â†−1

)
â0

F̂z =

1 0 0
0 0 0
0 0 −1

 F̂z = â†+1â+1 − â†−1â−1

Q̂yz =
i√
2

0 −1 0
1 0 1
0 −1 0

 Q̂yz =
i√
2
â†0

(
â+1 + â−1

)
− i√

2

(
â†+1 + â†−1

)
â0

Q̂xz =
1√
2

0 1 0
1 0 −1
0 −1 0

 Q̂xz =
1√
2
â†0

(
â+1 − â−1

)
+

1√
2

(
â†+1 − â†−1

)
â0

Q̂zz =
2

3

1 0 0
0 −2 0
0 0 1

 Q̂zz =
2

3

(
â†+1â+1 + â†−1â−1

)
− 4

3
â†0â0

Q̂0 = −Q̂zz −
1

3
N̂ =

−1 0 0
0 1 0
0 0 −1

 Q̂0 = â†0â0 −
(
â†+1â+1 + â†−1â−1

)

V̂x =
1

2

(
Q̂xx − Q̂yy

)
=

0 0 1
0 0 0
1 0 0

 V̂x = â†+1â−1 + â†−1â+1

V̂y = Q̂xy = i

0 0 −1
0 0 0
1 0 0

 V̂y = iâ†+1â−1 − iâ†−1â+1

N̂+ =

1 0 0
0 0 0
0 0 1

 N̂+ = â†+1â+1 + â†−1â−1
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A.2 Calculation for POVM Measurement

Each rotation in F=1 is generated by the Spin-1 operators. The coupling / storage pulses
are given by the Pauli σx and σy matrices in a Spin-12 Hilbert subspace of the respective
levels:

Cij
x =

1

2

(
0 1
1 0

)
=

1

2

(
a†1,ia2,j + a†2,ja1,i

)
(A.1)

Cij
y =

1

2

(
0 i
i 0

)
=
i

2

(
a†1,ia2,j + a†2,ja1,i

)
(A.2)

If one wants to calculate the whole rotation at once, it would be an 3⊕ 5 Hilbert space,
so I chose to compute it one after the other by hand. Here is my "cheat-sheet" in second
quantization:

S2
x =

1

2

(
a†0a1 + a†0a−1 + a†1a0 + a†−1a0

)2
=

1

2

(
2a†0a0 + a†1a1 + a†−1a−1 + a†1a−1 + a†−1a1

)
(A.3)

S2
y =

−1

2

(
a†0a1 − a†0a−1 − a†1a0 + a†−1a0

)2
=

1

2

(
2a†0a0 + a†1a1 + a†−1a−1 − a†1a−1 − a†−1a1

)
(A.4)

e−iφSx = I3 − S2
x + cos(φ)S2

x − i sin(φ)Sx (A.5)

e−iφSy = I3 − S2
y + cos(φ)S2

y − i sin(φ)Sy (A.6)

e−iφCij
x = cos(φ/2)Iij2 − i sin(φ/2)

[
a†1,ia2,j + a†2,ja1,i

]
(A.7)

e−iφCij
y = cos(φ/2)Iij2 + sin(φ/2)

[
a†1,ia2,j − a†2,ja1,i

]
(A.8)

e−iπ/2Sx =
1

2

(
a†1a1 + a†−1a−1 − a†1a−1 − a†−1a1

)
− i√

2

(
a†0a1 + a†0a−1 + a†1a0 + a†−1a0

)
(A.9)

e−iπ/2Sy =
1

2

(
a†1a1 + a†−1a−1 + a†1a−1 + a†−1a1

)
+

1√
2

(
a†0a1 − a†0a−1 − a†1a0 + a†−1a0

)
(A.10)

e−i3π/2Sx =
1

2

(
a†1a1 + a†−1a−1 − a†1a−1 − a†−1a1

)
+

i√
2

(
a†0a1 + a†0a−1 + a†1a0 + a†−1a0

)
(A.11)

e−i3π/2Sy =
1

2

(
a†1a1 + a†−1a−1 + a†1a−1 + a†−1a1

)
− 1√

2

(
a†0a1 − a†0a−1 − a†1a0 + a†−1a0

)
(A.12)

e−iπSx = −a†0a0 − a†1a−1 − a†−1a1 (A.13)

e−iπSy = −a†0a0 + a†1a−1 + a†−1a1 (A.14)
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A.3 Additional figures
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Figure A.1: K-K̄ solition collision from the measurement with the DuPR. On the left is
the |F⊥| profile shown with a fit from Eq. (4.1) in red, as an example for the
complete velocity and phase shift extraction. On the right is the spinor phase
profile of the same time slice drawn, with an equivalent fit from Eq. (2.44).
The increase in noise is visible on the background, but the form of the solitons
can clearly be extracted.
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Figure A.2: Here, a time slice of the pseudospin-1/2 system is shown. In black is the
population of |F = 1,mF = 0⟩ with a fit of two dark solitions, in gray is
the population of |F = 2,mF = 0⟩ with a fit of two bright solitons drawn,
following Eq. (4.3).
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