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Abstract

In a recent submission [1], sine-Gordon solitons have been experimentally ob-
served in the relative phase between the +1- and 0-modes of a spin-1 Bose-Einstein
condensate, which was motivated by the derivation of an effective sine-Gordon the-
ory for this system [2]. In this thesis, based on the spin-1 Gross-Pitaevskii equation,
numerical studies on these solitons are made. First, single solitons are investigated
regarding their velocity dependence on the quadratic Zeeman shift ¢ and their be-
haviour with regard to experimental imperfections in their preparation. A stable
breather solution, albeit with a different relation between amplitude and frequency
as for the sine-Gordon breather, is found. Furthermore, the breather also exhibits
non-trivial oscillatory dynamics in the other spin-1 observables. In order to effi-
ciently capture the breathers full spin-1 behaviour, a tilting angle is introduced,
parametrising the breather’s dynamics on the so-called spin-nematic sphere. When
preparing the solitons for different tilt angles, they show an additional velocity de-
pendence. For both the initial velocity being controlled by ¢, and the tilt angle,
kink-antikink collisions are then investigated. By utilising the analytical result of
the sine-Gordon model for the phase shift, which is the positional shift of a soliton
due to the collision, the parameters of an underlying effective sine-Gordon model

are extracted, deviating from those derived in [2].

Zusammenfassung

In einem kiirzlich eingereichten Artikel [1] wurden Sine-Gordon Solitonen in der
relativen Phase zwischen +1- und 0-Moden in einem Spin-1 Bose-Einstein Konden-
sat beobachtet. Die Motivation hierfiir war ein zuvor erschienener Artikel [2], in
dem eine effektive Sine-Gordon Theorie fiir dieses System hergeleitet wird. In die-
ser Thesis werden diese Solitonen numerisch auf Basis der Spin-1 Gross-Pitaevskii
Gleichung untersucht. Zunédchst werden hierbei einzelne Solitonen beziiglich ihrer
Geschwindigkeitsabhéngigkeit von der quadratischen Zeeman Verschiebung ¢ und
Auswirkungen von experimentellen Abweichungen vom korrekten Anfangszustand
betrachtet. Wir finden zusétzlich eine stabile ,Breather“-Losung, die allerdings von
der Sine-Gordon Vorhersage fiir die Beziehung zwischen Frequenz und Amplitude
abweicht. Aufferdem zeigt der Breather nicht-triviale Oszillationsdynamik in ande-
ren Spin-1 Observablen. Um diese effizienter zu beschreiben, wird ein , Kippwinkel*
eingefiihrt, der die Dynamik des Breathers auf der sogenannten Spin-nematischen
Kugel parametrisiert. Wenn die Solitonen mit verschiedenen Kippwinkeln prapariert
werden, dndert sich ihre Geschwindigkeit. Fiir die Anfangsgeschwindigkeiten, einge-
stellt iiber verschiedene ¢, sowie verschiedene Kippwinkel, werden aufterdem Kolli-
sionen untersucht. Unter Verwendung der analytischen Ergebnisse des Sine-Gordon
Modells fiir die raumliche Verschiebung der Solitonen durch die Kollision werden die
Parameter des zugrunde liegenden effektiven Sine-Gordon Modells extrahiert. Die

gefundenen Werte weichen von den in [2| hergeleiteten ab.
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1 INTRODUCTION

1 Introduction

In a wide range of physical systems that contain wave-like phenomena, like, e.g., water [3],
clouds [4], signals in neurons [5]| or also Bose-Einstein condensates (BECs) [6-9], special
wave-packets that have a stable shape over time, even when interacting with other waves,
can be observed. These shape-preserving wave-packets are called solitons. They can be
obtained as solutions of a wide variety of non-linear models, with a paradigmatic example
being the sine-Gordon model. This model of a scalar relativistic field features a periodic
potential and inhabits kink-solitons as analytical solutions.

In a recent submission [1], the experimental observation of sine-Gordon solitons ex-
isting in the so-called spinorphase ¢g of a quasi-one-dimensional 8'Rb spin-1 spinor BEC
is reported. This work expands a variety of different solitons found in Bose-Einstein
condensates (BECs) over the last 25 years [6-11] and also on more recent experimental
observations of new types of solitons, specifically in multi-component BECs, like vector
solitons [12]|, and magnetic solitons [13, 14]. As the sine-Gordon solitons in the spin-1
spinor BEC feature a magnetic domain wall, specifically in the transverse spin, a connec-
tion to recent theoretical studies on solitons in a spinor BEC can be made [15-19].

The realisation of sine-Gordon solitons in a spin-1 spinor BEC was motivated by a re-
cently developed low energy effective field theory (LEEFT) [2], which introduced a double
sine-Gordon model in the easy-plane phase of a spin-1 spinor BEC in the spinorphase ¢g,
which is the phase between the £1- and 0-modes of a spin-1 system. The double sine-
Gordon model expands the sine-Gordon model by an additional periodic potential with
double the frequency of the sine-Gordon potential, thereby breaking the integrability of
the sine-Gordon model. In particular, the specific effective sine-Gordon model has its
sine-Gordon limit, so the double frequency potential being significantly smaller than the
sine-Gordon potential, at a quadratic Zeeman shift, which defines the energy balance of
spin-changing collisions, of ¢ — 0. This limit will be the main subject of this thesis,
mainly regarding the questions in which range of ¢ this limit is valid, which phenomena of
the sine-Gordon model can be observed in the spinor BEC and at which points additional
spin-1 effects must be considered. Furthermore, controlling the quadratic Zeeman shift,
potentially allows probing the transition from the integrable sine-Gordon model to the
non-integrable double sine-Gordon model.

In order to characterise the experimentally generated solitons, a 1D spin-1 simulation
of the Gross-Pitaevskii equation (GPE) is used, especially to better understand their
interactions and compare them to results from the sine-Gordon model. For this, collisions
between solitons are an interesting topic, as there exist analytical predictions capturing
the interaction effects during collision in the sine-Gordon model. Building upon soliton

simulations, it is also tested whether breather solutions, which are a key feature of the
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sine-Gordon model, also exist in the spin-1 system.

This thesis is structured as follows: First, the theoretical and experimental background
will be introduced in Sec. 2. After this, in Sec. 3 the initial conditions used for realising the
solitons in the simulation are presented and the behaviour of single solitons at different
q is discussed. In this discussion, different initial conditions that mimic experimental
imperfections are also simulated to gain a better understanding of the dependence of the
dynamics of the soliton on these. After this a sine-Gordon breather initial condition in
the spinorphase is simulated at ¢ = 0 in Sec. 4. In this section the so-called spin-nematic
sphere, which incorporates an additional spin-1 observable, proves to be a useful space
for observing the breather dynamics. Expanding on this insight "tilted solitons", which
explore this additional degree of freedom are simulated and described in Sec.5. The effects
of this tilting and a first experimental realisation are further discussed in this section. In
Sec. 6 kink-antikink collisions for different incoming velocities are then simulated to
characterise their interaction and compare it with results from sine-Gordon theory. The
results are then discussed in Sec. 7 and an outlook on possible future investigations arising

from this is provided.
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2 Theoretical and experimental background

In the following, first, the spin-1 system and then specifically the spin-1 BEC in the mean-
field limit are introduced. After this a short overview of the general experimental system
of the ¥Rb BEC is given. To define the framework of the effective theory, the sine-Gordon
model and the solutions from it that are later used are introduced and then the LEEFT
for the spinorphase, introduced in [2], is summarised. Finally, a short overview of the

basis of the spin-1 GPE simulation is also given.

2.1 Spin-1 System

In this part the spin-1 system at the single particle level is introduced based on [20, 21]. Tts
general state J can be written as three modes v, corresponding to the states in the three
possible magnetic quantum numbers in spin-1, m = 0,£1. Each mode can be defined
by a real probability amplitude r,,, such that > 72 =1, and its real-valued phase ¢,,,

leading to the state as a three component vector:

Vi rypePt
1; = | ¢ | = | roel® (1)
V4 r_qele-1

By pulling out a global phase and introducing the spinorphase ¢g, as the phase between
the m = 0- and m = +1-modes, and the Larmorphase ¢r,, as the phase difference between
the two outside-modes,
1
Ys = Yo — §(SO+1 +p-1), (2)

oL = P41 — P-1, (3)

the state can be rewritten to only depend on these two phases and the probability amp-

litudes:
/r+1 eKPL/2

V= rees (4)
T_1 e_iSOL /2

As the spin-1 system used in the following is based on the hyperfine structure of 'Rb,
the spin and the basic spin-observables will be denoted by F' and F; in the following. The

spin-observables F;, with ¢ = x,y, 2z, make up the first three observables of the spin-1
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system used here. The operators F; used to measure them in matrix form are:

U (0o 10 0
bo=—=|101|, F=—2 0 —i|, EE=]00 0 (5)
2 2
f01o V2 i 0 00 —1

To visualise the expectation values of a state in these observables the so-called spin-sphere
can be used. On this sphere the angle between the state’s orientation in the F,-F}-plane
and the F-axis is the Larmorphase ¢r,. In the spin-1 system, five additional operators
are needed to fully describe the system for which the quadrupole operators Qij are chosen
here. These operators are defined via the anticommutator of the spin operators F; and

the identity operator 13 as:
Ao 4
Qi =1{Fi, Iy} — §5ij]13 (6)
2.1.1 Spin-Nematic sphere

With the observables @,. and @), from this definition, F, and F},, and the additional
observable ()¢ defined by the operator

) -1 0 O
Qo = —513 —-Q..=|0 1 0 ; (7)
0 -1

the so-called spin-nematic subspace [21, 22| can be defined. For this, the transversal spin

F| and Q 1 are defined as operators with the Larmorphase as:

F, = cos oL F, + sing F, (8)
Q1 = cospLQy. — singrQus (9)

The observables F'|, (), and )y then can be visualised on the spin-nematic sphere. On
this sphere the angle between F'| and @), is the spinorphase ¢g. In the following a
homogenous ¢y, will be considered when talking about a one-dimensional spin-1 system.
Due to the underlying symmetry, only F, and Qyz will be considered, as by rotating the

observables around F,, the axis along which the spin is oriented can be aligned with F.

2.1.2 Mean-field description of the BEC

To describe the dynamics in a spinor-BEC at high densities a mean-field approach can be
used [20, 21]. In this approach the space- and time-dependent field operators of each mode
U, (Z,t) can be replaced by their expectation values ¥, (7, ) = \/nm (7, t)e*m (@) making

the expectation value becoming continuous and also allowing the resulting function to be
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written using the spinor- and Larmorphase, like Eq. 4. For the purpose of this thesis, this
state is sufficient, as both the simulations and the experiment work close to mean-field
level. By transforming the mean-field Hamiltonian [20] into a rotating frame, the linear

Zeeman shift can be eliminated, leaving:

~ 1 h2§2 2 Co o C1, 22
Hyr = | — + Virap + qm m+ —=n"+ —|F 10
Here M is the mass of a single atom, ¢ the quadratic Zeeman shift, ¢y the contact-
interaction strength, c¢; the spin-spin interaction strength, n the total density and F the

spin density vector which is given by:

F= . with F, = 0T Fyp (11)

SRS

In this one can also define the characteristic spatial and temporal scales as

h
fo=——n and t,=

V2Mnley |

where & is the spin healing length and t; the spin interaction time. Often t; is defined

o (12>

with an additional factor 27, but as the dimensionless unit of time of the LEEFT matches

ts as defined above, compare Sec. 2.4, for consistency, this definition is used in this thesis.

2.1.3 Single-mode-approximation

As ®"Rb features |cy| > |c1], the total density will be assumed to be in good approximation
flat. The relevant dynamics are then mainly captured in the spin degree of freedom. If
then going into the single mode approximation (SMA), i.e. the system size is smaller than

the spin healing length &, meaning the spatial wave function () is valid for all modes,
Hswia = ShE? = ZhQo (13)

can be used as the Hamiltonian of the system [22]. In the ground state of the easy-plane
phase (see Sec. 2.1.4) F, becomes zero, with which the Hamiltonian can be reduced to
F,, F, and Qy. The dynamics for states close to this ground state with (F?) = 0 are then
located in the spin-nematic-subspace, meaning that the dynamics of the system can be
understood on the spin-nematic sphere.

Considering iso-energy lines shown in Fig. 1, one finds, for ¢ in the easy-plane, the so-

called separatrix, corresponding to the black eight-like shape in the figure. In the middle
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A

—q Qo 1 Fﬁ H
Q

i -

Figure 1: The dynamics on the spin-nematic sphere in the SMA for ¢ = n|c;| first for the
two contributing parts, then added together. The separatrix can be seen in black and the
bound trajectories around the fix point in red. The figure is adapted from [21].

of the red circles in the eight, the fix points for the set ¢ are located and when changing
q also the size of the separatrix changes as the fix points move, as, like also shown in the

figure, the contribution of the Qo-part of the Hamiltonian changes.

2.1.4 Phase-diagram

easy-axis ferromagnet easy-plane polar

2n|cq|

o

q

Figure 2: The phase diagram of the spin-1 spinor BEC at a constant ¢; < 0.

For the spin-spin-interaction strength ¢; < 0 (ferromagnetic interactions) a spinor BEC
features three different phases depending on the quadratic Zeeman shift ¢ [23]. Each of
these phases show a characteristic ground state. For ¢ < 0 the BEC is in the so-called
Easy-Axis Ferromagnet phase, where the single-mode ground state is a fully elongated
F.-Spin, so the entire population in either mp = +1 or mrp = —1. On the spin sphere
this corresponds to the state being located at one of the poles, while at the spin-nematic
sphere it is on the south pole (see Fig. Al).

For ¢ > 2n|c;| the system is in the polar phase. In the ground state of this phase all
atoms are in the mp = 0 mode, leading to )y = 1 and the state being located at the
north pole of the spin-nematic sphere, as shown in Fig. A2.

The phase in which most of the simulations discussed in this thesis are done is the
so-called Easy-Plane Ferromagnet phase at 0 < ¢ < 2n|c;|. In this phase, the ground
state depends on the value of ¢ and corresponds to a spin in the plane spanned by F, and

F,, the length of which decreases with ¢ leading to a finite positive expectation value of
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(Qo. Both the state in the plane and the finite value of @) is shown for three different ¢
in Fig. 3. This ground state is given by:

1 /1 _a Lipn/2 .
2 1 2'(L|C1|e %el‘PL/Q

1 q—0
¢EP = \/ﬁ V2 L+ Qn(\]cl| — \/ﬁ \% (14>
' 1.
%\/ 1 - 2n(|101\e_wL/2 3¢ oL/

If the value of ()y or F'| is not exactly matched to the ground state for the set ¢, these

values oscillate around the correct value, which will be explained in the following.

In the experiment the control of the phase via the quadratic Zeeman shift q is realised
by a microwave (MW) dressing [24, 25]. Over time the actual value of ¢ set by this changes
slightly, which becomes inherently obvious in the easy-plane phase of the spinor BEC, as
in this phase the background has a preferred transversal spin length |F |, as can be seen
in the potential, shown in Fig. 4 for three different ¢. If this value is not matched, |F |
oscillates around it [25] and @ oscillates shifted in phase by 7 around its stable value.
This can also be seen from the single mode dynamics in the previous section, shown in
Fig. 1. When always preparing an elongated spin |F| | & 1, one can use this to find ¢ = 0.
While this is a valid method to achieve this, in the experiment it will also always have
some inaccuracy, as it is impossible to imprint a truly fully elongated spin due to noise
and the amplitude of the oscillation reaching the level of the background noise already

for finite q.

e (g=0.0n|cq|
e g=1.5n|c]|
g =1.9n|cq|

Figure 3: The ground state of the easy-plane phase for three different ¢ on the spin- (left)
and spin-nematic sphere (right). The orientation on the circle for the length given by ¢
depends on the Larmorphase. For a Larmorphase of 0 and 7 the ground states are shown
on the nematic sphere. For each ¢r, a nematic sphere with the corresponding F'; and @ |
exists, where the state looks the same. Here the ground state moves from the equator
upwards on the surface of the sphere along the line with ),, = 0 for a larger q.

10
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0.2
= g =0.5n]|c1]|
= 071 q=1.0n|c|
; —_— g =1.5n|cq|
-0.2 A
1 0 1
FX

Figure 4: The potential in the transversal spin (here y, is chosen again such that this is
F,) for three different values of q. The local maximum at F, = 0 is shifted to 0. This
potential corresponds to a cut through the spin-nematic sphere shown in Fig. 1 along the
line with @, = 0 on the hemisphere with positive Q.

2.2 Experimental system

The experimental system [21, 24, 26] consists of multiple cooling and trapping stages for
the ®'Rb-atoms. Starting with two magneto-optical traps the atoms are transferred in a
magnetic trap trap before loading the dipole trap. Here they are condensed and prepared
in the desired initial state for the time evolution. In the electronic ground state of 3'Rb
the FF = 1 and F = 2 levels of the hyperfine structure are accessible, leading to eight
different states. To shift the atoms between these states, Rabi oscillations can be driven
by MW or radiofrequency (RF) pulses. The coils used for this and the level structure
are shown in Fig. 5. A MW-dressing can also be applied during the time evolution to
control the quadratic Zeeman shift ¢q. For this first a magnetic offset field is applied and
then the MW shifts the level back to a controllable value of ¢q. To change the spin-basis
in which the measurement is taken the RF-pulses can be applied using two coils. This is
for example used for the readout of observables different to F,. For measuring multiple
non-commuting observables in one readout a POVM readout utilising the additional five
levels in F' = 2 can be performed [27],[21]. For this readout some statistical accuracy
is exchanged for measuring up to three different non-commuting observables by splitting
the BEC into up to three different observable bases and then performing the readout.
To perform the measurement, a magnetic field gradient is applied, leading to the atoms
separating into the different levels, i.e. a Stern-Gerlach measurement is done, before an

absorption image is taken, for which an example is shown in Fig. 5 (c).

11
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a) b) -~ 9
E
— I'f L e (2~ _2)
mw-coil — 20 pm (2,0)
s e (2,+1)
-_— e mb———— (2,+2)
- ~ 6.8 GHz y
o <¢
mw
—\ SE— (1,+1)
rf-coil (1) Fo1 -~ Swenmonm———a | (1,0)
Nt = (1.-1)

z
&:ﬂ mg -2 -1 0 1 2

xT

Figure 5: (a) The setup of the dipole trap and the RF- and MW-coils, along with the
magnetic offset field in z-direction. (b) The level structure of ®'Rb accessible in the
experiment. (c) An example for the images taken in F' = 2 and F' = 1 using the Stern-
Gerlach imaging. The figure is adapted from [21].

2.3 The sine-Gordon model

A popular theoretical model for systems featuring a periodic potential, as shown in Fig.
6, is the so-called sine-Gordon model |28, 29]. This model is based on a specific equation

of motion for a phase ¢, the sine-Gordon equation:
m2

B

In the shape given above space x and time t are both dimensionless, m is the dimensionless

7o — 2o+ —sin(Bp) =0 (15)

sine-Gordon mass and 3 is the parameter of nonlinearity [29]. Effectively m changes the
amplitude of the potential V(p) = —(m/B)?cos (B¢) (shown in Fig. 6), so its strength
compared to the dimensionless kinetic energy and 3 changes its periodicity. For a dimen-
sionless x and t the speed of light ¢ equals one. One of the main characteristics of the
sine-Gordon model is that it inhabits analytical soliton solutions. The two main soliton
solutions are a kink K and an antikink K which for a soliton velocity v and an initial

position z(t = 0) = z( are given by:

4 xr — vt — xg
w(z,t) = £—arctan | exp | mM—————— 16
et = 2 atan (e (" 2t ) 1o
For two combinations of m and /3 the kink with v = 0 is shown in Fig. 6
If a sine-Gordon kink and an antikink collide, the phase performs a flip and in the
outgoing positions of both are shifted relative to their incoming trajectories, as can be
seen in Fig. 7. This shift in position is called phase shift dx and is given by the spatial

difference at a time ¢ = t’ of the in- and outgoing trajectories of the solitons. For a system

12
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1.0 A
0.5 H
> 0.0
—0.5
_1l0_ T T T T
=21 - 0 m
) X

Figure 6: On the left the potential of the sine-Gordon model for two different combinations
of m and § is shown. For the same combinations on the right the spatial profile of the
kink with v = 0 is plotted.

exactly following the sine-Gordon model, the time ', at which the phase shift is measured,
does not matter as the kink-antikink collision is fully elastic, vy, = vou. If the velocities
of kink vg and antikink vz have equal absolute values vix = —vg the phase shift of both

the kink and antikink is also the same in absolute value and is given by |29, 30]:

JI = 2
dx = sgn (v) iz In ! (17)
m v

Note that for the sine-Gordon model the collision point of the incoming trajectories occurs
at a later time than for the outgoing trajectories, as the kink-antikink interaction is
attractive.

Another interesting solution special to the sine-Gordon model is the so-called breather.

It oscillates with a frequency w and for a starting phase ¢, is given by:

T2 sin (725 (t—v2) — o)

4
ope(x,t) = — arctan - (18)
g W cosh (% (x — vt — x0)>

The observed frequency of the oscillation wqys is also directly coupled to the maximum
amplitude A of the breather [28|, which is also visible in Fig. 8. The relation between the
two can be read from Eq. 18 using the frequency to amplitude relation given in [28] and

that for m = 1, we,s = w and is given by:

A= %arccos <W$s> (19)

13
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20 T
10 A
“  0-
-10 -
-20 - -2n . . . .
-8 -4 0 4 8 0.00 0.25 0.50 0.75 1.00
X v

Figure 7: (left) Collision of a kink and antikink in the sine-Gordon model. The phase
shift dx between in- and outgoing trajectories is clearly visible and also the jump in the
phase from —27 to 27 between the kink and antikink is visible. (right) The phase shift
dx against the incoming velocity of kink and antikink as expressed by eq. 17 for three
different values of the mass term m in the sine-Gordon equation (eq. 15).

w=0.75 w=0.5 w=0.25
25 2 2n
20 A . . . .
151 & 1 . 1
t o9 rnoe

10 A . - . -

| W . _

0 T T T =2mn T T — 0

-10 0 10 —-10 0 10 —-10 0 10 -10 0 10

X X X X

Figure 8: (On the left three breathers for m = § = 1 with different frequencies w are
shown. On the right the change in amplitude and width related to the change in frequency
can be seen by comparing slices at the maximum of each breather.

14



2 THEORETICAL AND EXPERIMENTAL BACKGROUND

2.3.1 Double Sine-Gordon model

The sine-Gordon model can be extended by another periodic term with double the fre-
quency of the general periodicity, leading to a potential that can for example be paramet-
rised as [31]:

4 4
V(p) = T (— cos 3 +ncosg0> (20)

This leads to an equation of motion of the following shape:

2

O} — 2o +

(— Sing + 2nsin 4,0) =0 (21)

The resulting model is called double sine-Gordon model, as it features a double frequency
term. To tune the strength of the double frequency term compared to the sine-Gordon
term, n € R is changed. In the double sine-Gordon model also soliton solutions exist,
which depending on 7, change their spatial profile [31]. For n < —1 two (anti-)kink
solutions exist, interpolating between the different minima. In this thesis the focus will
be on the limit of the effective theory (see Sec. 2.4 where |n| < 1. In this range the
potential still only possesses a minimum and a maximum at the positions where it would
be for the underlying pure sine-Gordon, as shown in Fig. 9. Due to this, the soliton
solutions in it still look similar to sine-Gordon solitons for this region of 7, changing their
steepness in the spatial profile and for n > 1/4 seemingly splitting up in two, which is

expressed as [31]:

1 . 1+4n
- = +4 arctan —— sinh - 22
PKK [\/1+477 (\/1+\4m )] (22)

This expression leads to an (anti-)kink for all n > —1 and for two || < § is compared to
the sine-Gordon kink (n = 0) in Fig. 10.

In contrast to the sine-Gordon model, collisions in the double sine-Gordon model are

not necessarily elastic, as it is a non-integrable model. But, due to this, at low collision
velocities so-called n-bounce collisions can occur. In these collisions the solitons collide
again for n times after a first collision. An interesting feature of these collisions is the

fractal nature of their resonance spectrum [31, 32.
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Figure 9: The potential of the double sine-Gordon model for different values of 7. The case
n = 0 corresponds to the sine-Gordon potential. Asone can see, the potential topologically
is similar to the sine-Gordon model up to |n| = 1/4. For |n| > 1/4, depending on the
sign, the minima or the maxima split up into two separate extrema.

21T

n=0
— n=0.2

-8.0 -4.0 0.0 4.0 8.0

Figure 10: The kink solution for n > —1/4 (Eq. 22) in the double sine-Gordon model
for three different values of 1. The case 7 = 0 corresponds to the sine-Gordon case, from
which the case n = 0.2 only weakly deviates. For the negative n = —0.2 the deviation is
stronger and the kink is visibly more stretched.
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2.4 Low Energy Effective Field Theory for Easy-Plane

In a recent publication [2] a low energy effective field theory (LEEFT) for a spin-1 BEC
in the easy-plane phase was developed. In this LEEFT the Spinor BEC can be reduced
to only the spinorphase ¢g being needed for describing the dynamics of the system. For
s the theory corresponds to a double sine-Gordon model, in which the strength of the
double frequency term depends polynomial on the quadratic Zeeman shift ¢. Depending
on the dominant wavenumber regime, two different dependencies are found. For k ~ 0

the Lagrangian density in one dimension reads as:

h .o hny(n—2n)

L= o2 T T (9,06)?
1 q2 q2 (23)
— % (201n1(n —2ny) — Fﬁ) cos (2ps) + 32 sin®(2¢ps)

Here n is the total density of the BEC and n; is the density of one of the side-modes
(m = +1) of the BEC in the Easy-Plane ground state, see Eq. 14, for the specific ¢ used.

This can be transformed to dimensionless variables T, ¢ and " using ke, = ~ 2]\?'01':

I _ _

r=—T =47 (24)
ke,
2M _ h -

t=—1t= t =1t 25
hki  nlel (25)
ﬁnk2 —eff

L= a7 26

i (26)

When additionally using the relations

ny = % , and (27)
- L. (28)

one obtains:
T = 2L e — (=) (O + (1~ 27 cos (25) — Lsn?(2p0)| (29)

For the dominant wave numbers being on the scale of the spin-interaction k ~ k¢, the

dimensionless Lagrangian reads:

et 17 _ . .

L. = 4q [(Deps)” — (Orps)’] + Acos (2ps) — Bsin®(2ps),  with  (30)
— 1-7a
A= 4q (1-2¢ +43°(1 - @) + 83 (1 - )?) | (31)
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— 1—3°%
B:q2_q

I (1+41-7°) +4(1-7°)%) (32)

The equations of motion then become by using Euler-Lagrange:

0=d7ps —2(1 = 7°)0%ps + 2(1 — 23°) sin (2ip5) + G sin (4ps) , fork~0  (33)

4A 4B
0= 0Fps — O3ps + T sin (2p5) + T sin(dps) ,  fork & kg, (34)

To make the equation of motion for the case k ~ 0 (Eq. 33) completely dimensionless,
one has to transform x again to:

1 k
T = I (35)

2(1-7°) 2(1-7°)

IS
|

Assuming g =~ 0, the system can, in good approximation, be described by a sine-Gordon
model. The easiest parameter to measure in the experiment is the width of the soliton £.
From Eq. 16 one can see that this depends not only on the transformation to dimensionless
space Z (or % respectively) but also on the sine-Gordon mass m, like ¢ = mmif (or
(=+1-1v2 - respectively). The mass in the for small ¢ can be directly taken from the

equations of motion using § = 2 and following Eq. 15:

m=2/1-2¢2"2"2, fork~0 (36)

| 24 3
2 7 =2, for k ~ ke, (37)

7
1
fork ~
=1 192 2 \/_kg , for 0 (38)

m

This leads to:

1-¢% 1
by, = V1 —v? ——— fork=k 39
kfs v 2A 2]{;55 ? or ﬁs ( )
Assuming v &~ 0 and ¢ &~ 0 both equations give:
1 h
(= = (40)

\/ikgs \/4MTL|01|

When rearranging this relation, one can get a good approximation for the effective 1D-
density in the experiment from the measured soliton width at a small ¢ and v =~ 0. If the
atom number and trap size stay approximately the same, this effective 1D-density should

then also be valid for a larger ¢ at which the soliton width might not be given by this
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2 THEORETICAL AND EXPERIMENTAL BACKGROUND

relation any more. By this, one can also calculate the transformation in space and time

for small ¢:
x = V20T (41)
2
- 4]‘25 7 (42)

These transformations are especially needed to obtain dimensionless velocities v from
measured velocities Upeas:

Tt 2M g—0 2v/2M

= “=ZUmeas — 77 Umeas — meas 43
YT ke, | ho (43)

When comparing the potential for the £ ~ 0 case, see Fig. 11, with the potential of the
double sine-Gordon definition before, see Fig. 9, one can see that up to g 2 0.5, s0 ¢ 2 |c1],
the potential is in the regime of the double sine-Gordon potential with 0 < n < }1. In this
range of 1 the profile of the soliton still is relatively close to the profile of a sine-Gordon
kink, compare Fig. 10. As in this thesis the focus will be on ¢ < n|c¢;]|, the shape of the
solitons is expected to be very close to a sine-Gordon soliton. And as additionally the
sine-Gordon part of the potential scales with 1 —g? and the double sine-Gordon part with

G, especially for small ¢ good agreement with the sine-Gordon predictions is expected.

1.0 -
0.5 — g=0
. g=0.5
0.0 G=0.65
-0.5 1 q=0.3
_1.0 L T T T T T
- -1/2 0 /2 m
@

Figure 11: The dimensionless potential due to the Lagrangian of the LEEFT for k£ ~ 0
(see Eq. 29) for different values of . When comparing with Fig. 9 the potential leaves the
range 0 < n < 1/4 only for g 2 0.5. For larger values the corresponding case is n > 1/4
and, as can be seen in the Lagrangian, at ¢ = v/2 the sign of the sine-Gordon part of the
potential flips.
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2.5 Numerical methods

To numerically solve the spin-1 mean-field GPE a split-step-Fourier method is used [33].
The simulations are performed on one spatial dimension consisting of N, grid points, as
the experiment also works in a quasi-1D regime. To work on the numerical grid in space
and time the system first has to be discretised. When choosing the discretisation, it is
important that the discrete steps are smaller than the healing length and the healing time
of the condensate with the set parameters, respectively.

In the split-step Fourier approach, the time-evolution operator U (t) = exp{ (—ilﬁ[ t) }
is the base of the time evolution. To efficiently compute this for the small time discrete
time steps At, the Hamiltonian His decomposed into a kinetic part Aand a part including
the non-linear terms B , as H = A+B. Then using the Baker-Campbell-Hausdorff formula
and neglecting terms of order O(At?), a timestep of the size At of the wavefunction 1)
looks like

(x,t+ At) = e HAATIBAL (0 1) 4 O(AF2) (44)

so effectively the operator is split into two which are applied after each other. As in
Fourier space the spatial derivative in the kinetic part Ais proportional to k, for the
step along exp{ (—iflAt) }, first a fast fourier transform (FFT) is used to transform the
state to momentum space, then the operator can be applied as a k-dependent factor and
afterwards an inverse FFT is used to transform back to real space. For the propagation
along exp{ <—iB At) }, here the step is further broken down into two separate steps. The
first step are the diagonal parts of the underlying 3 x 3-matrix and the second step the
off-diagonal parts, i.e. the spin-changing collisions, which is also explained more in-depth
in [33]. In the actual propagation these steps are split up as a half-step of At/2 along the
diagonal part, then a full step along the off-diagonal part, and finally another half-step
along the diagonal part.
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3 SINGLE SOLITONS

3 Single solitons

To further investigate the sine-Gordon solitons in the BEC, in this section, their general
realisation and behaviour will first be described. For this first, the method used for
preparing them in the experiment and the initial conditions used in the simulation are
presented. Then their profile in different spin-1 observables is looked into and their
behaviour under perturbations in the initial shape and background and under a change

of the quadratic Zeeman shift is investigated.

3.1 Experimental phase imprinting scheme

When I started my master thesis in the team of the ¥Rb Spin-1 BEC experiment in the
group of Markus Oberthaler, there already was ongoing experimental work regarding the
realisation of solitons with a spinorphase profile similar to a sine-Gordon soliton profile.
For this, a new phase imprinting scheme was developed, relying on the effective magnetic
field induced by a locally applied laser beam, due to the vector Stark shift [1, 25, 34].

(a) Transfer |1,-1) to |2,-1)
9 _
1 P
F=2:0 —
1 P
2 — T MW
7
1 - -
F-1 0> - (b) |
’ -1 D) @ 5 1
Q) €
§ )( \“,(/ \\\ )”/ \\\),’/ \\\,Il, \\\'11’ “\‘/’ )
2 ! \ N ! \ 1"‘\ II‘\\ ’l‘\‘ /l\\ /‘\
] A
Sequential AB(z) advances ¢g(z) = / \‘XI ‘)\,' ‘\/ (RVERVARY, ‘)
. @ - ) 0 4NN
5 &= -45 0 45
& P _ x /um
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® ot as gann O
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@ »
Sequential illumination across half of the *’Rb cloud with
tree vertical and a variable number of horizontal beams
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Figure 12: (a) The imprint scheme used to realise the sine-Gordon solitons in the exper-
iment. First the atoms from |1, —1) are transferred to |2, —1), then the local magnetic
field is applied and at last the atoms are transferred back to F' = 1. (b) Desired imprint
shapes can be realised by overlapping the Gaussian intensities in different ways. Figure
taken and modified from [1].
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After the atoms have been prepared in the easy-plane phase ground state for ¢ = 0,
i.e. with an elongated spin along F, (see Eq. 14), a mw-pulse from F' = 1, mp = —1 to
F =2 mp = —1 is applied (see Fig. 12). As gr—1 = —gr—2 (the difference is below the
percent level), the phase of the atoms in mpr_; = +1 evolves in the same direction as the
phase of the atoms in mp_o = —1, when an external magnetic field is applied. The atoms
in the mp = 0 state experience no phase evolution due to the external field, leading to
a change in spinorphase Ayg (compare Eq. 2). This change depends on the additional
local magnetic field AB(z) and the time 7 it is applied as Apg o< AB(z)7 [1, 34]. To
vary the magnetic field locally, a steerable laser beam (via two acousto-optical-deflectors)
on the tuneout wavelength of ®'Rb is used [35, 36]. Its intensity is proportional to the
local effective magnetic field, as the linear Stark shift cancels out leaving only the effective
magnetic field, due to the vector Stark shift. So, by changing the time, for which it is
applied at each position, and the positions themselves any imprint consisting of different
amplitude Gaussian profiles can be realised, as the intensity profile of the beam is always
a Gaussian (see Fig. 12). After approximately 650ps in the F' = 2, mp = —1 state, the
atoms are then sent back to F' =1, mrp = —1 by another MW 7-pulse. The densities of
the modes of the BEC now remain unchanged, but their relative phases have changed,

leading to an imprint in the spinorphase.

|F ol 0
1.0 m
m

1.8 A 1.8 A
N 1.2 A I N 1.2 A

= I I 0.5 =~ 0
0.6 0.6 A

T 1 0.0 T -
-30 0 30 -30 0 30
X/ um X/ pm

Figure 13: The sine-Gordon soliton observed in the ¥Rb-BEC in |F| | and g at ¢ = 0.
This data was also used in [1].

Using this scheme, a profile similar to a sine-Gordon soliton in the spinorphase can be
realised. It then turns out that the resulting phase profile actually behaves as a soliton,
as it is stable in time (up to 15 s), as is shown in Fig. 13 and 14, and under collisions.
During the time evolution in the experiment there is also no observable change in density
due to the soliton. In the transversal spin F; the spinorphase imprint leads to a magnetic
domain wall structure (so F, and F}, both have a sign flip at the soliton position). In |F |

this is observed as a sharp dip at the soliton position (see Fig. 13 and 14). As half of
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the BEC has to be illuminated for a single soliton imprint the experimental results were

obtained in a small box trap.

t=150 ms t=1500 ms

-30 0 30 -30 0 30
X/ um X/ um

Figure 14: Slices of the soliton observed in the experiment at ¢ =~ 0, as shown in Fig. 13.
Additional to the data in red, fits of the expected functions in |F'| | (see Eq. 48) and ¢g
(see Eq. 51) are shown in blue.

3.2 Numeric starting conditions and width of soliton

In order to gain numerical insight into the behaviour of this type of soliton, we studied
them using a 1D Spin-1 GPE simulation. In the following, the initial state preparation
and the results of the real-time dynamical simulations are discussed. As the simulations
were carried out in a system with periodic boundary conditions, the initial state always
consisted of a kink and an antikink, so there is no phase jump at the border (other solutions
satisfying the periodic boundary conditions, like e.g. two kinks, would also be possible).
To make sure there is no interaction between the solitons, they are placed far from each
other but such that their distance is not half the system size, so there is also no interaction
cancelling out. As the general initial state of the BEC, the densities are prepared in the
easy-plane ground state, either for ¢ on the value also set for the propagation, to minimize
the effect of background oscillations or, to get a better comparison to the experiment, for
qg = 0. In the following, these two different initial density preparations will be named
matched background (if gt = Gpropagation and unmatched background (for gy = 0).
In this section ¢ = 0.001n|c;| (so ¢ ~ 0) was chosen, where matched and unmatched
background are up to very small deviations identical. This slight deviation from ¢ = 0
was chosen, so the system is not at the critical point of the phase transition between
easy-plane and easy-axis ferromagnet. To now realise a local spinorphase profile, a space-
dependent phase is defined and then half of it is multiplied as a phase with a positive
sign to the =1-modes and the other half of it with a negative sign to the 0-mode, like it
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is done for solving the continuity equation in the supplementary material of [1].

The behaviour of the local phase imprint was interrogated for two different initial
conditions: The first one aimed at replicating the experimental imprint scheme, by having
the spinorphase (anti-)kink shaped like half of a Gaussian distribution, similar to what a
Gaussian beam as the edge of the experimental imprint does. The rest of the spinorphase
is then just flat. If this imprint is used, the soliton adapts to a sine-Gordon like shape in
the spinorphase and oscillates around a certain width, as shown in Fig. 15.

The second is the theoretical shape of a sine-Gordon soliton in the spinorphase g,
which in the sine-Gordon equation as introduced above (Eq. 15) has f =2, and at t =0

can be written as:

vs, k(7 t = 0) = F2arctan (exp (w _ mo)) (45)

init

This is used to find a solution with less additional perturbations present, i.e. no internal
width oscillation. The only parameter to set in this solution is the width /;,;; = —”1m_”2 of
the soliton, compare Eq. 16. In [16] the width of the Ferrodark solitons (FDS) is found

to be
1 h

- 55~ A
which is the first width that was tested in the simulations of the solitons. As a sine-Gordon
(anti-)kink has no preferred width, a fixed width like ¢ would be a spin-1 effect.

As can be seen in Fig. 15, the solitons are stable for the width ¢ also used in [16].

i (46)

Setting a different initial width leads to oscillations of the width approximately around
the width ¢. For small initial deviations from ¢ the mean of the oscillation (¢) matches
it quite well, see Fig. 16, while for larger initial deviations (¢) becomes slightly larger
than ¢, as shown in Fig. 15. This is likely due to the width having a lower limit of 0,
but no upper limit and therefore "compressing" the soliton is more energy intensive than
extending it. The first peak of the width oscillation for the initial width of 0.5¢ in Fig.
15 being higher than 1.5¢ further supports this. Additionally, one can observe that the
oscillation is damped, so the energy is likely dissipated via the radiation visible in Fig. 15.
These internal modes of the soliton are a research topic in their own right and especially
systematic studies of their structure for different ¢ and with this on the transition from
the sine-Gordon effective theory towards a double sine-Gordon effective theory would be
very interesting. An implication this has for the dynamics of the solitons is that different
to the full sine-Gordon model the width of the soliton is not freely adjustable to change
the velocity of the soliton, but is given as a fixed value by the system. As it turns out this
fixed width also has an advantage in the experiment, as it allows the effective comparison
between experimental, numerical, and analytical data, due to its direct relation to the

effective 1D spin healing-length &, which is also related to the spin healing time t5 and
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®s, Linit =0.51 ®s, Linit = 1.012

m

It

X/Es X/€S
®s, Linit =1.5L

soliton width / ¢

0 10 20
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Figure 15: Simulations of the initial condition as defined in Eq. 45 with different values
of linis. As can be seen in the bottom right the solution with ¢,;; = ¢ (black) is stable,
while £, = 0.5¢ (blue) and f,; = 1.5¢ (red) oscillate around a mean value that is a bit
larger than ¢ (dashed lines). This is due to the size of the deviations from ¢. For small
deviations, their mean matches ¢ more closely (compare Fig. 16).
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Figure 16: The width of the antikink for smaller initial deviations from ¢, fi,;; = 0.9
(blue) and fi, = 1.1¢ (red), oscillates around a mean value (dashed lines) closer to ¢,
compared to Fig. 15. Here also the small changes in ¢ due to numerical inaccuracies, as
well as small density fluctuations due to the imprint (see Fig. 21) are visible.
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the 1D density of the BEC via physical constants. This means that by extracting the
width of the solitons from the experiment one can obtain these values, which allows direct
calculation of them from each measured soliton time-series, as opposed to more involved
separate measurements only for obtaining these values, which especially for extracting the

effective 1D-density is challenging.

3.3 Soliton evolution in different observables

As was shown above, in the spinorphase the soliton takes the shape of a sine-Gordon
soliton. In spin-1 observables the spinorphase can be defined as the angle between F, and
Qy- or I, and @),., where the distribution to each spin-nematic subspace depends on the
Larmorphase, as defined in Eq. 8 and 9. While in the experiment small magnetic field
fluctuations lead to a random de-phasing of the Larmorphase over time, in the simulation
the solitons are prepared in such a way that the non-zero expectation values are in F
and @y, which also remains like this in time due to the stable Larmorphase, shown in
Fig. 19, 17 and 18. The sign change in F,, meaning that in F} the soliton corresponds to
a magnetic domain wall, directly hints towards a sharp kink visible in the Larmorphase.
The change in F} is realised through a rotation (the kink or antikink in spinorphase) on
the equator of the spin-nematic sphere, meaning there is a bump or dip in @, (see Fig.
17 and 18).

F Q
X yz 1
0
T . -1
-10 -5 0 5 10 -10 -5 0 5 10
X / Es X/SS

Figure 17: The magnetic domain wall in F, at the soliton position and the corresponding
dip in @y to get an antikink going from ¢g = 0 to pg = —.

To observe soliton dynamics in the experiment, a measurement different to the spinor-
phase is needed, when one wants to obtain data not requiring post-selection. For the
spinorphase data (from an F,-Q),,-readout) this post-selection is needed, as the Lar-
morphase is random and can be at a value where the signal mostly is in F, and @),. and

all four observables cannot be read out at the same time. As an observable independent
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of this the transversal spin |F| | = |F, +1F)| is used and measured with an F,-F, readout
[27]. In this observable, the soliton is equivalent to a dip, which is shown in Fig. 20 and
similar to the spin profile of the recently introduced FDS [16] its shape follows:

tanh (x - %) ‘ (47)

Ful(w) = .

In addition to the spin observables the BEC can also feature local density excitations.
In the simulation a small density dip at the position of the soliton emerges after a short
evolution time, both for moving and non-moving solitons. This is also present in [16] for
the FDS, but due to our significantly lower spin-spin interaction strength ¢; compared to
the density-density interaction strength cgy, the density dip observed in the simulations is

negligible, as seen in Fig. 21. As these simulations are done without added noise, the

t=>5.0t; t=>5.0ts
1 \ 0 T
8
SEE g n/2
-1 1 k m
-10 -5 0 5 10 -10 -5 0 5 10

X/ &s X/ &s

Figure 18: On the left F, (blue) and @),. (orange) are shown in a single time slice and
on the right the antikink in the spinorphase emerging from this (blue) with the analytical
expectation for an antikink with i, = ¢ (see Eq. 45) (dashed red line) are plotted.
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Figure 19: The sharp kink in the Larmorphase ¢y, due to the sign change in F,.
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density packets radiating from the soliton when the dip forms are also visible, although
smaller than 1% as well. In addition to the total density, there is also only negligible
dynamics in the densities of the single modes. This can be seen from F, remaining flat in
the time evolution and @)y only showing fluctuations below the one percent level (see Fig.
A3). To eliminate the radiation effects, I also tried different shapes of density dips as an
initial condition, which remained unsuccessful. The formation of the soliton is again a

topic in its own right with these results as first numerical indications.
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0 T T 0 0 T T T
-10 -5 0 5 10 -10 -5 0 5 10
x [ &s x [ é&s

Figure 20: The dip on the soliton position in the transversal spin |F| |, in the slice addi-
tional to the simulated data (blue) also the theoretical expectation, see Eq. 47, is shown
as a dashed red line.
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Figure 21: Total density over time for the soliton at ¢ ~ 0, zoomed in to the percent level.
The dip at the soliton position is clearly visible (especially in the slice). Additionally, the
radiation of the forming of both dips (the antikink shown and the additional kink in the
system) is visible, as fast-moving peaks.
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3.4 Velocity dependence on the quadratic Zeeman shift

While the fixed width of the soliton in the spin-1 system ensures that the soliton imprinted
is always the same object, it also leads to the soliton always having a fixed velocity in
the (double) sine-Gordon model (see Eq. 15). This means that other ways to change the
velocity of the soliton are needed.

It was observed that one way to control the velocity is changing the quadratic Zeeman
shift ¢. In the experiment it was found that when comparing the velocities with the
oscillations of the background value of |F||, v = 0 is the case for ¢ &~ 0 and for larger ¢
the velocity increases. Numerical simulations allow to check the velocity dependence of

the solitons on q.

3.4.1 Unmatched background

This subsection focuses on simulations with an unmatched background and the initial
condition close to an experimental imprint to get an estimate close to the experimental
behaviour. The extraction of the soliton velocity from the data only requires a short time
evolution, as the free trajectory of a single soliton is linear (see Fig. 22). Additionally,
kink and antikink move with identical velocities in opposite directions, see Fig. A4. Due
to this, in the following the data of the antikink will be presented, as for the kink only
the sign in the velocity changes. To extract the velocity of the soliton from the data, |F, |
is used as an observable. This not only allows for a reliable fit to the position via the dip,
but in the experiment does not require post selection based on the random Larmorphase

for later times. For this the fit function

P e (o) = ‘A - tanh (%) ’ +B (48)
t

is used. Here in the |F'| |-profile for ¢ ~ 0 (Eq. 47) an amplitude A was added to account

for different | F'| |-background lengths due to the different ¢ and the resulting background

oscillations and a possible offset B is allowed. The additional fit parameters are the

position of the soliton zy and the width of the soliton f5;. By performing this fit in each

time step, the trajectory zgiton(t) of the soliton can be extracted, to which a linear fit is

then made, where the initial position xg and the velocity v are the fit parameters:
xsoliton(t) =v-t— Zo (49)

When repeating this for multiple ¢, the resulting relation between v and ¢ is approx-
imately linear for small ¢ and even seems to hold for ¢ < 0, where the solitons remarkably
also remain stable with linear velocity over ¢ for small ¢, although the system is not in

the easy-plane phase, as seen in Fig. 24. In order to extract the velocity dependence on ¢
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a linear fit is performed in the linear range of the data seen in Fig. 24, i.e. |¢| < 0.4n|cy],

and the parameters extracted from the fit with v(q) = ag + a1q are:

ap = (—0.0009 £ 0.0011)%

o (50
ar = (1.093 £ 0.004) >

ts nlc|

They confirm that for ¢ = 0 the solitons have zero velocity.

From this data it is not directly obvious whether the deviations from the linearity,

[F1|, g=0.40 n|c;| s, g =0.40 n|cy|
20 1.0 20 n
15 15 A
Z 101 0.5 £ 10 0
+~ +~
5 A 5 A
0 T 0.0 0 - -1
-10 0 10 20 -10 0 10 20
X / ‘Es X / fs

Figure 22: The moving soliton with an initial condition close to the experimental real-
isation and an unmatched background for ¢ = 0.30n|c¢;|. The background oscillation and
the radiation from the adaption to the correct shape as well as the oscillation in width
are clearly visible.
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Figure 23: The soliton and strong background dynamics for a high ¢ prepared with an
unmatched background and an experiment-like initial condition. The additional antikink
at the left is due to the radiation of both the imprinted kink- and antikink meeting at the
boundary.
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especially for ¢ > 0.8n|c;|, are actually expected behaviour from the solitons or due to
strong background oscillations. These background oscillations lead to the emergence of
defects in |F| | that look similar to the solitons and also seem to influence their dynamics,
see Fig. 23. This also makes fits to the solitons significantly more difficult as the profile
might jump to a neighbouring dip and the assumption of a linear trajectory is not fulfilled
anymore, when a neighbouring dip is close. Furthermore, the width extracted from the
different fits gets influenced by this, as even when confining the area over which the fit

is made, the fit function might get influenced by additional local minima leading to the
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Figure 24: The velocity over g for an unmatched background and an experiment-like
imprint, with a linear fit made to |¢| < 0.4n|c;|. The optimal fit parameters are given in
Eq. 50 and noticeably the soliton is also stable for ¢ < 0, with negative velocity.
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Figure 25: The mean width of the soliton over ¢ extracted from the fits to the spinorphase
profile. The dashed black line is the theoretically expected value of the width ¢. The
deviations for small ¢ from this can be explained when comparing with Fig. 15, where for
deviations of the initial width from ¢ the oscillation does not exactly have ¢ as its mean.
For later deviations likely, the background deviations play a part, which for ¢ = 1.0n|c|
(red point) even leads to the fit not being able to correctly extract the width anymore.
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optimal background value of the fit changing from the actual background, which also can
influence the extracted width. To get the width more precisely, a fit to the spinorphase
turned out to be reliable, when already taking the knowledge of the position in each time
step from the |F' |-fit as the initial guess for the position parameter in the fit, as for this
parameter |F'| | is more reliable. This is due to the oscillations in ¢g just slightly changing
the height of the soliton, while in |F'| the background height changes constantly due to
the oscillation (see Fig. 23). The function used for the fit to the spinorphase is

¢s.x(x) = A-arctan (exp (W)) + B, (51)
fit

with amplitude A, offset B, initial position xq and width f5; as fit parameters. The
extracted mean widths (/g;) are shown in Fig. 25. As one can see, for small absolute ¢
the deviations are on the size of one grid point compared to the expected width £. This is
likely due to the same effect shown in Fig. 15, where an initial deviation from ¢ leads to a
slightly different mean of the resulting width oscillation than ¢. The strong deviation for
g = 1.0n|¢q] is due to the spinorphase fit not being able to extract the positions correctly

anymore, also leading to incorrectly extracted widths.

3.4.2 Matched background

To asses the source of these deviations and see if the background and shape of the soliton
also have an effect on the velocity for smaller ¢, the simulation is repeated with a matched
background and the initial condition in the spinorphase as the stable profile for ¢ = 0.
As can be seen in Fig. 26, here the complete easy-plane range of ¢ leads to stable soliton
results, which follow a linear trajectory and are not influenced by background oscillations.
This also results in a wider approximately linear range of the velocity over ¢, see Fig. 28.
Remarkably stable solitons also exist far outside of the easy-plane, when preparing the
state following the equation of the easy-plane ground state (Eq. 14) for the ¢ outside of
the easy-plane. The resulting velocities seem to behave like v(—q) = —v(q) also outside
of the linear region. Additionally, the extracted widths of the soliton, see Fig. 27, now
lie much closer to the expected value of . For small ¢ they match the expected value
well and only starting from ¢ > 1.0n|c;| the deviations become larger than one grid point.
This could either be due to spin-1 effects or the effective model describing the system
leaving the sine-Gordon limit of the double sine-Gordon model.

When assuming that the width stays constant, one can develop fit functions for v(q)
from the effective theory. In units of 7, as introduced in Eq. 24, the width obtained from
the fit corresponds to ¢ = \% Assuming the shape of the soliton follows Eq. 16 for ¢
in the sine-Gordon limit, the mass of the sine-Gordon model m, the Lorentz-boost ﬁ

and for the case k ~ 0 also the additional transformation of the space coordinate z /T, see
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3 SINGLE SOLITONS

Eq. 35, have to give the inverse of this constant width:

%:\/5:—’” . (52)

V19—

This can now be rearranged to obtain a relation for the dimensionless velocity dependence

SIHRSH

on ¢ in the sine-Gordon limit:

o) (53
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Figure 26: The moving soliton with a matched background at a higher q. When comparing
with Fig. 23, the strong difference in stability is obvious. With a matched background for
all set ¢ (¢ < 1.9n|cy|) the single solitons follow stable trajectories and there is no strong
radiation in the spinorphase or |F |.
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Figure 27: Mean width (/s;) of the soliton in numeric grid points as obtained from fits
to the simulation for different ¢. Up until |¢| = 1.0n|c;| the width of the soliton does not
deviate more than one grid point from the theoretical expected width ¢, shown as the
dashed black line.
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In the physical coordinates one now gets:

Trt  hke [(T\? m2
obs = = =7V = ; = T Ty 4
Yobs = Z Tt T oM (x) (54)

For k = k¢, no additional space transform is needed, so % = 1, leading to the two different

velocity relations:

k k
Vobs = h % \/2 — 2 1-— 2_2) \;éj\}q = %q , fork~0 (55)
hkgs 4 —
Vobs =577 1 - 1_6214, for k ~ ke, (56)

The same result as for £ =~ 0 is obtained by a derivation of the soliton velocity from the
spin-1 continuity equation [1]. In the sine-Gordon limit this now motivates two different
fit functions. The case £ ~ 0 motivates to fit a linear function and the case of k ~ ki,

motivates a fit function of the shape

Vo = s80(@)\/ a0 + @17 + axz (1 — ) + asq(1 — )2

(57)
= sgn(q)V/bo + b1 + bag* + bsg® |

when plugging in A and instead of constant prefactors using flexible fit parameters a;.
This is then rewritten as a polynom with the same orders of ¢ in the square-root, as this
performs significantly better for fitting and the parameters a; can also be obtained from
b;. The optimal parameters obtained from the fit are shown in Table 1 together with the
a; calculated from these.
b; a;(b;) a;
0.0019 £ 0.0022 bo 0.0019 4+ 0.0022
4.80 + 0.04 by + bs + b3 2.79+0.23

0.023 £ 0.167 —by — 2b3 4.04£0.34
—2.03 £0.15 bs —2.03 £0.15

W N~ O .

Table 1: The optimal parameters b; found when fitting the function shown in Eq. 57 to
the data shown in Fig. 28. From these the parameters used in the effective theory a; are
calculated by the given formulas.

As before, there is now constant offset found by the fit and the g* term below the
square-root dominates for small g. For larger g the fourth order of 7 is also approximately

not contributing and only the sixth order contributes again. This calculated values for

a; do not match the prefactors given in 1 — 5 4§2A 2¢° — 4¢%(1 — @) — 8¢*(1 — ¢*)?
even within 3 standard deviations. But while giving a good fit function to the velocities

this would also not be expected, as for larger ¢, where the higher orders only get relevant
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3 SINGLE SOLITONS

in the fit, the assumption of a constant width is broken, and the system is not in the
sine-Gordon limit of the effective theory anymore.
In the case k ~ 0, flexible parameters in front of each order of g in the square-root
. _2 . . 52
give vops = \/ag + a1q°, which, when fitted, gives ag = (0.037j:0.022)§ ~ 0 and therefore
is nearly equivalent to a linear fit. When using a linear fit for small ¢ < 0.8n|c;|, similar
to the unmatched background and also using ¢ and not g (as above), one gets:

ag = (0.0006 £ 0.0007)%
° (58)

& 1

a; = (1.0980 + 0.0015)t—ﬁ
s NCy

These fit values match those found for the unmatched background with the experiment-like
initial starting condition within one standard deviation, see Eq. 50. So, for small absolute
lg| < 0.40n|cy|, it can be stated that the oscillating background and small deviations of
the initial condition from the perfect shape of the soliton do not have an effect on the
dynamics of a single soliton, but for larger values of ¢ the background oscillations start
to have an effect.

The linear behaviour for small ¢ can now also be compared to data taken in the
experiment, shown in Fig. 29. For the experimental data v(¢ = 0) = 0 was taken as given
to find ¢ = 0 from the linear fit to the velocities. Similar to the data above, also in the
experiment for ¢ < 0 the soliton is stable and moves in the opposite direction. To compare
the two different unit systems the mean width in the experiment of (¢g) = 5.02pm can

be used to obtain &, t5 and n|c;| in Sl-units. This can then be used to express the fit

q/nlci

Figure 28: The extracted velocities for different ¢, with a matched background and the
correct imprint shape in pg. The linear fit (red) was made to the data points with
lg| < 0.8n|cy| while the fit with parameters b;, as shown in Eq. 57, (orange) was made to
the complete dataset. The optimal parameters found by this fit are shown in Table 1.
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parameter a; found for the unmatched background data in Sl-units, leading to:
1 gim = (48.79 £ 0.18)pms ™' Hz ™" (59)

This matches the experimental fit value ¢; ¢y, = (41.45+3.15)pms™* Hz ! within 3 stand-
ard deviations. Some deviation to a larger value in the simulation is also expected here as
the mean width (/g;), similar to Fig. 15, very likely overestimates the width ¢ leading to
a larger & in Sl-units. Additionally, values of ¢, which were not used for the linear fit in
the unmatched background data anymore, were used here. When excluding values with

lg| > 0.4n|cq]|, one obtains
Ot exp = (45.47 + 3.92)pms ™ Hz ™ | (60)

which is much closer to the value found in the simulation.

20 A

v(q) / pm/s
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Figure 29: Soliton velocities in the experiment over ¢, as also shown in [1]. The red line
is a fit to the experimental |F |-data. Its offset is used to determine ¢ = 0 and the found
slope is i eyp = (41.45 4 3.15)pm s~  Hz~'. The dashed orange line is the function found
from a fit to the simulated data with the unmatched background. To get to SI-units
from the fit parameters found in the simulation, the mean width in the experiment of
(lge) = 5.02pm was used.

3.5 Lifetime

It was also found that the solitons described here decay for 10 to 15-27t; in the simulations.
This is expected, as the solitons live in a spin-1 BEC and are also simulated for a spin-1
system, both with ¢; ~ —g& which is fully described by non-integrable models. For
the dark-antidark-dark- (DAAD) and antidark-dark-antidark-solitons (ADDAD), which,

as will be shown in Sec. 5, are closely related to the solitons described here, thorough
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3 SINGLE SOLITONS

studies regarding their decay mode have already been made in [15]. The solitons described

here decay due to small local differences of ny; and n_; emerging directly next to the

soliton position. These differences then lead to a runaway effect as the +1- and —1-modes

are immiscible, leading to a local F, expectation value, as shown in Fig. 30. As already
mentioned, this is very similar to the decay of the DAAD- and ADDAD-solitons in [15]

and somewhat expected, which is why no further studies regarding the decay were made

here.
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Figure 30: The decay of a soliton simulated with the correct initial width at ¢ = 0.001n|c,|.
While in the beginning there are no obvious signs of the decay in |F'| | and g, the emerging

expectation values in F), at the soliton position are already visible.
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4 Breather

For ¢ = 0 the effective theory reduces to a pure sine-Gordon model. The previous results
hint towards the spin-1 system coming close to this integrable theory in this case, which
will be tested with other unique solutions of the sine-Gordon model, i.e. the breather,
in the following. These simulations were again performed at ¢ = 0.001n|c;| so that the
system is not at the critical point of exactly ¢ = 0, but the effective model describing it
should still be very close to a sine-Gordon model. As a starting condition for this, first
a starting condition based on Eq. 18 was used. The width of this imprint was adapted

such that it is the same as the soliton width ¢, leading to the following shape:

sin (o cos (j1)) ) (61)

cosh (222 sin (u))

Psbr = 2arctan (tan (1)
¢

This is a similar parametrisation as in Eq. 18 only now using the amplitude p instead
of a frequency, which is the more natural parameter for an initial condition, where the
resulting frequency is unknown. It is important to note that u is half the amplitude at
the maximum of the breather in the spinorphase. For different p this was simulated, to
check whether all imprints are stable and behave like sine-Gordon breathers.

The first result is that these imprints are indeed stable and show breathing, although
with deviations from sine-Gordon breathers, in the spinor phase g, shown in Fig. 31.
For amplitudes of ;1 > 7 they oscillate, in contrast to the sine-Gordon breathers, around
the potential minimum at ¢g = £ instead of the background value ¢g = 0. This can
be understood when looking not only at ¢g, but also at the observables F,, Q,. and @)y,
which make up the nematic sphere, see Fig. 32 and 33. In F), the breather keeps a constant
shape consisting of a dip, the depth of which depends on the breather amplitude p. This
means in |F| | there are either one or two dips present, depending on the initial amplitude,
which is shown in Fig. A7. In Q,. and @)y an oscillation is visible shifted by a phase of
5 between the two observables. On the nematic sphere this observation corresponds to a
rotation of a line on the sphere’s surface around the F,-axis, as shown in Fig. 34. The
initial amplitude of the breather changes the length of the line on the surface of the sphere
and the slower frequency of the rotation for a higher amplitude can also directly be seen.
As for amplitudes p > 7 F, changes sign in the middle of the breather, this leads to a
different minimum around which the oscillation in the spinorphase is performed at this
point, as the angle pg between a negative F, and any (@), is always in [7/2, 37/2]. As
(), has the same sign for the whole breather at a single point in time, the sign change in
F, leads to a jump in spinorphase for @),. = 0.

From this data the frequency of the oscillation can also be extracted to compare it

with the sine-Gordon relation for the imprint made (Eq. 19). A particular easy way to
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do this is to calculate the angle § between @),. and )y at the middle of the breather as
the angle at which the breather is tilted on the sphere. When the resulting values are
unwrapped numerically, one gets a linear behaviour in time, as shown in Fig. 35. To this
a linear fit can then be performed, the slope of which is the frequency w of the rotation
of the breather on the sphere, corresponding to its frequency in the spinorphase. As seen
in Fig. 36, this gives rise to a frequency amplitude relation different from the prediction
Eq. 19 for sine-Gordon breathers, but still in a cosine shape. This cosine shape can then
also be fitted as w(p) = Acos (aop + o) + B leading to:

1
A= (10008 % 0.0004) -

S

ap = 2.0049 £ 0.0013
a; = 0.0024 £ 0.0013

(62)

1
B = (1.0004 £ 0.0003) -

Compared to the expectation of w = mcosp (from Eq. 19 with ¢ = A/2) for the sine-
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Figure 31: Result of the spin-1 simulation of the sine-Gordon breather profile as the
initial condition, as defined in Eq. 61, in the spinorphase over time for different initial
amplitudes . While for small p the breather looks similar to the sine-Gordon breather
(left), for large p the middle of the breather oscillates not around the background but
around the next minimum, which will be discussed later in detail. As is easily seen, the
breather frequency gets smaller with higher amplitude.
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Figure 32: The breather in the observables making up the nematic sphere for a small
initial amplitude of ;1 = 0.157. In F, there is a stable dip (completely in the positive, so
also one dip in |F' |), and @Q,. and Q) oscillate with a /2 phase.
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Figure 33: For a large initial amplitude of © = 0.357, the dip in F, extends to negative
values (leading to two dips in |F'|). @,. and Q) both still oscillate with a phase of 7/2,
but they now also are made up by two dips/peaks.
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Figure 34: All spatial points of the breather plotted on the nematic sphere for different
times (dark corresponds to early, light to later) and different imprint depths. As one can
see the breather in space corresponds to a line on the surface of the sphere that rotates
around the F,-axis with the frequency of the breather oscillation, so for a imprint with
higher amplitude (here longer line) the rotation gets slower, which can also be seen here
as the time interval plotted is the same for all three cases.
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Figure 35: The linear evolution of the tilt angle over time for p = 0.157 (blue) and
p = 0.357 (red). The black dashed lines are the linear fits made to these which prove an
easy and efficient way of extracting the frequency of the breather compared to fits to the
oscillation in @g. This fit leads to the same results (see Fig. A6), but is very sensitive to
initial fit parameters, which is also the case for the oscillation in @)y and @),.. Additionally,
this allows to fit oscillations even if a complete period is not captured.
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Gordon model, this is approximately w = 2 cos? j, so a different, although related relation.
Although the factor 2 would actually match the prediction of the sine-Gordon mass m
for k =~ 0, this cannot be compared because of the difference in the observed shape of
the relation. As the effective theory was developed for small perturbations around the
potential minima, a difference to the sine-Gordon model of the breather is expected, as its

dynamics are mostly located between the minima, maximally violating this assumption.
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Figure 36: Measured frequency for the breather in spin-1 for different amplitude paramet-
ers p with a fit made to the data points (red), with the fit parameters of the cosine, Eq.
62, this is approximately w = 2cos? u. Additionally, the sine-Gordon breather relation,
chosen as w = 2 cos 1, such that the maxima are the same, is plotted as the dashed line.

As the frequency depends on the amplitude of the breather, for the realisation in the
experiment the question arises which impact the wrong initial amplitude for a chosen
imprint shape has. For this, an initial condition as before, see Eq. 61, with a constant p
and a changing factor A in front of it, was simulated. These different factors correspond
to always setting the same imprint shape with a different global amplitude, so in the
experiment with different local magnetic field durations. When defining the width from
a value of pg relative to its global maximum (like e.g. full width at half maximum), this
only changes the amplitude but keeps the width constant. As the initial correct function
to which the factor was applied the breather with y = & was chosen, as the high frequency
(low amplitude) breathers behave closer to a sine-Gordon breather and we are interested
in changes occurring other than the oscillation around the other minimum (see Fig. 37).

From this data two different radiation patterns of the imprint adopting to a stable
shape can be seen. They are especially visible in )y and @Q),,. As shown in Fig. 38, for an
amplitude smaller than the correct one for the set shape, the oscillations radiate outward
approximately in the middle of each peak or dip. For an initial condition that has too
large of an amplitude for the given width, the radiation pattern has double the frequency

of the oscillation and due to this can also have the opposing sign compared to the current
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state of the breather in the given observable.

What is also directly visible in this data and even better so in Fig. 37, is the change
in frequency due to different amplitudes, although the general shape and therefore width
stayed the same. Unlike before, the frequency when only changing the depth is not
perfectly constant anymore, as the breather changes its shape over time. This can also
be seen especially when looking at the sign changes of the spinorphase for A = 1.30 in
Fig. 37. But using again a linear fit to the tilt angle of the breather over time, it is
possible to extract a mean frequency over time, which is a good approximation when
excluding early times where the change in the shape is strongest and late times where
the radiation reaches the breather again due to the periodic boundary conditions. When
looking at the resulting mean frequency over amplitude relation, see Fig. 39, with the
constant relative width, it can be seen that already small changes in imprint depth lead to
significant changes in frequency of the breather. For too small amplitudes the frequency
becomes nearly constant approaching the maximum value of w = 2 found before, while
for too large amplitudes it becomes approximately linear. Finding the observable )y as
a useful observable for the breather with these simulations and the radiation patterns in
(o for a mismatch in amplitude already helped in the currently ongoing realisation and
investigation of the breather in the experiment. In this direction, future simulations of

the soliton at g # 0 would also be very interesting from an experimental point of view.
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Figure 37: The breather for different amplitudes at a constant width in the spinorphase
at ¢ = 0.001n|c;|. For an imprint with a lower amplitude the width gets noticeably larger
over time, while for a larger amplitude the radiation is better visible in Fig. 38.
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Figure 38: The radiation patterns in @, and ()y. The most notable difference is the
number of radiation oscillations during one breather oscillation. For a lower amplitude it
is one and in phase while for the greater amplitude it is two.

-1
N
1

S

1.5 F——=———— TS ——————————

0.5 A

fitted mean frequency (w) / t
=

o e e ——————————

0.5
set factor A on the breather with u=n/6

1.5

Figure 39: The mean frequency of the breather against the amplitude factor on the initial
condition. The dashed lines mark the breather with correct shape and the red line is the
fitted function for correct initial conditions as a comparison.
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5 Tilting solitons on the spin-nematic sphere

It was insightful to track all observables on the spin-nematic sphere for the breather.
Therefore and as dynamics on the nematic sphere were also observed during collisions,
which will be discussed more detailed in Sec. 6, we now look at a single soliton on this
sphere. From their F,, @),. and @)y expectation values (see Fig. 17 and A3), one can
directly see that for ¢ = 0 the solitons discussed in Sec. 3 correspond to a half circle on
the equator of the spin-nematic sphere interpolating between the two fix points in space.
For both a kink and an antikink this is shown in Fig. 40. As one can see from the figure,
for a kink-antikink solution these half circles overlap, but go in different directions on the
sphere, while a complete circle on the equator corresponds to a kink-kink or antikink-
antikink solution, depending on the direction of the circle.

As ¢ =~ 0 is only an edge case of the solitons and they only start to move for ¢ # 0, we
now want to discuss how a soliton for ¢ > 0 looks on the sphere when preparing it with
a matched background or with a fully elongated background. In the easy-plane phase,
the fix points on the spin-nematic sphere move upwards on the spheres surface along the

curve with @),, = 0. This means that |F,| gets smaller (as can be seen in |F'| | in Fig. 26)
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Figure 40: Kink (left) and antikink (right) in space displayed on the sphere. As one
can see they run on the same side, just in opposite directions. The kink is also shown
for ¢ = n|c;| and a matched background. It looks like the unshifted kink, just moved
upwards on the sphere’s surface.
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and Qg gets larger. When looking at )y of the soliton for ¢ > 0, one notices that it stays
constant at the background value for the given ¢, which we will call Qf, see Fig. 40.
The rotation of the breather around the sphere now leads to the question of whether
other dynamically stable soliton solutions are also possible by rotating the solitons around
the F,-axis by an angle #. Unlike in the case of the breather, the background value of
() is not necessarily zero now, either due to preparing a matched background or the
oscillations of an unmatched background for ¢ # 0. This is incorporated in the definition

of the tilting angle 6 on the sphere as:

Qo — Qo
Qy-

0 = arctan (63)
For the case of @, = 0, this is shown in Fig. 41. As can be seen in the figure, a tilt angle
leads to a steeper profile of the kink in ¢g as the spinorphase is defined by a projection
onto the plane, in which the background is located (so the plane with Qy = Q).

To realise a tilt angle for an unmatched background one can simply rotate the starting
condition used before around the F-axis by the given angle. This method is chosen for

the simulations, as such an F-rotation can also be realised in the experiment, which is

1
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Figure 41: The definition of the tilt for ¢ = 0 (Qp = 0). The projection of the tilted
soliton onto the plane (dashed line) leads to a steeper spinorphase profile.
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discussed in Sec. 5.1. On the spin-sphere this does not lead to any change as the state
there is located on the Fj-axis, while a matched background would be modified by this
rotation around the F-axis. A simulation of this shows that a rotated soliton indeed is
stable and, as predicted, shows a steeper spinorphase profile. In the other observables
this presents itself as the ),. dip or peak becoming smaller and with this at the soliton
position a )y dip or peak emerging, the size of which depends on the tilt angle 6. As
F, is not changed by the rotation, the profile of the soliton in F,, and therefore also F'|,
is similar to the solitons discussed before. This is comparable to the breather where the
F,-, and with it the F'| -profile, also do not change in time.

Through a rotation by 6 = 7 the tilt now also connects the kink and antikink with
a negative @),. expectation value to those with a positive (),, expectation value. This
transforms a kink to an antikink in the spinorphase and the other way around, and
therefore also switches the sign of the soliton velocity. Following this logic, there has to be
a change in velocity of the soliton when changing the tilt angle. To obtain this relation,
we simulated solitons tilted by different angles # at ¢ = 0.30n|cq| for an unmatched
background. The initial tilt angle 6;,; was achieved by taking the theoretical initial
condition (see Eq. 45), so there is no radiation from adapting to the correct shape in
the spinorphase, and then applying a rotation around the F,-axis with the angle 6;,;
of the global state. To extract the velocity, the same procedure as in Sec. 3.4 is used.
Additionally, the mean tilt angle at the soliton position (f) has to be extracted, as due
to the oscillating background the tilt angle also slightly oscillates. For this, the tilt angle
is calculated using Eq. 63 at the positions extracted from the fit needed to obtain the

velocities and then the mean is taken in time. The resulting data (Fig. 44) shows a

t=5.0ts
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Figure 42: The mean widths of the soliton in the spinorphase over the mean tilt angle
(f). On the right the spinorphase profiles for a kink for the last five tilt angles, marked
by the shadowed region, are shown. As one can see, for § — 37” the kink approaches a
sharp step.
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5 TILTING SOLITONS ON THE SPIN-NEMATIC SPHERE

cosine-like dependence of the velocity on the tilt angle, motivating a fit function of the
shape v((6)) = Umaxfit €0s (g (0) + 1) + Voftset- With the optimal parameters found by
the fit,

Umaxfit = (—0.3337 £ 0.0009)%
v = (-0.0012+0 0012)é
offset . . ts (64)
ap = (1.000 £ 0.003)
a; = (0.001 £ 0.011) ,
the relation between velocity and tilt angle can approximately be written as
v(0) = —Vmax(q) cost . (65)

The "untilted" solitons discussed in Sec. 3 correspond to the case of highest velocity
Umax(q), as they have a tilt angle of nr, with n € Z.

This zero velocity case also makes the connection between the solitons described here

q =0.30n|cy|, (6) =0.34n

Q Qo
20 ad
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X/ &s x/&s

Figure 43: @),, and @)y for a kink with a mean tilt of (#) = 0.347. For this tilt angle the
peak in @), already is smaller as the peak in ()g. The oscillations can be understood from
the single mode dynamics (see Fig. 1). Qp on both sides oscillates around the positive
fix point and during this staying positive, and as both sides of the soliton correspond to
different sides of the sphere, they oscillate out of phase. On the right, the kink is shown
for one point in time (dashed line in the other plots) on the sphere with dark points
corresponding to small z-values and bright points to large ones, similar to Fig. 40. To
better see that the background is at a Qy > 0, the fix point for ¢ = 0.30n|c;| is marked in
red and the equator of the sphere is highlighted.
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Figure 44: Soliton velocity for different mean tilt angles at the soliton position with a
cosine fitted to this (red). The optimal fit parameters are given in Eq. 64. For the non-
tilted sine-Gordon case discussed in Sec. 3, 6 = nm with n € Z, the absolute velocity is
maximal, while for the DAAD and ADDAD [15], § = (n + %) m, it is zero.

and the DADD- and ADDAD-solitons from [15], as the DAADs and ADDADs are just

the special case of § = 47, so the soliton going over one of the poles of the sphere and

having zero velocity. Additionally, this now also connects to the Ferro-Dark solitons in

[16, 17], only the density dip is significantly smaller for our case of ¢; = —3%, compared
to the ¢; = —% used there. In a recent publication by the same author [19], a parameter

O, corresponding to the tilt angle used here multiplied by a factor one half, is introduced.
From the solutions for the FDS given in Table I in [17] one can now also get an initial
condition for preparing the tilted solitons with a matched background by taking the
solutions given there and then normalizing everything to a flat density. The solitons with
a tilt angle in (0, 7) correspond to the type-I and solitons with a tilt angle in (7, 27) to the
type-II FDS respectively. This connection has also further been investigated by Florian
Schmitt, a PhD student from the theory group of Thomas Gasenzer, who used Newton
relaxation to see how the FDS behave for a changing ¢; and found that the FDS with

Qy- = 0 for ¢; ~ 53 correspond to the DADD- and ADDAD.

5.1 Realisation in the experiment

To realise the tilting of the solitons on the nematic sphere in the experiment, first the
soliton imprint is performed as before. After the imprint, an RF-pulse is applied rotating
around the axis in the F,-F-plane along which the spin is oriented in the starting condi-
tion. So, when calling this axis F},, a rotation around F, is performed. To find this axis,
a scan of the phase setting of the pulse for a fixed pulse duration is made. This phase
determines around which axis in spin-space a rotation is performed. If the F,-axis is not

hit, a signal will be visible in the F,-readout as the part of the spin not parallel to the
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5 TILTING SOLITONS ON THE SPIN-NEMATIC SPHERE

readout axis will be rotated in F.,, which can be seen in Fig. 45. Afterwards, the pulse
length can be calibrated using again the F,-readout as the local non-zero expectation
value of . at the soliton position now gets rotated to ()y. This is shown in Fig. 45. By
measuring the expectation value in (g for different pulse durations, one can obtain the
duration needed to obtain a certain depth in (Qy. As can also be seen, at the right of the
dip, some additional structure appears. The reason for this structure, likely is that this

is where the imprint is performed, which could for example not be uniform enough.

F,, Phase calibration Qo, Pulse duration calibration

1
30 A H

20 A

1.101m -

-0

1.05m 10 A

RF phase
duration of the RF-Pulse / ps

T T T T T T _1
-40 0 40 -40 0 40

X/ um X/ um

Figure 45: Calibration of the RF-pulse phase to match an F)-rotation. For this the F}-
readout is used, as a rotation around the wrong axis leads to a non-zero F,-expectation
value in the background. The pulse duration for this calibration was set to 0.4 - 7, /2 =
13ps. From this an optimal phase of 1.037 was obtained, which was then used to compare
the pulse duration to the tilt angle. This was measured in the F,-readout again, as the
interesting value is )y, where the depth of the resulting dip at the soliton position relates
directly to the tilt angle. As one can see, the dip gets deeper for longer pulse durations.

The first results obtained by using this imprint are shown in Fig. 46. They are
measured using the F,-readout and show a time evolution of differently tilted solitons in
(o. The strength of the tilt was set by different durations of the rotation pulse leading to
visibly different depths of the emerging dip in ()y. While there are still visible deviations
from the intended initial state, like the negative () value in the left half of the image, the
soliton can still be identified. To highlight its position the minimum of )y in each time
step is marked by the additional line. Here, it is also visible that the velocity of the dip
gets lower for longer pulse durations, and the dip is stable for longer than a second, even
when bouncing on the wall. So, while there is still work needed regarding the calibration,
and for an F',- and pg-readout with this preparation, to verify if these are indeed the

tilted solitons, these results look very promising.
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Qo
g = 3.2 Hz, qg=3.2 Hz, q=3.2 Hz,
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Figure 46: At a constant ¢ = 3.20Hz and phase of the F,-pulse of 1.037, the time evolution
of the soliton was taken for different rotation pulse durations, so different initial tilt angles.
While there is still some work needed to get a more stable background, the minimum in
(o in the right half in space (marked by the line) is clearly visible over time. When tracing
it one can also see the velocity getting smaller for a larger dip in ) as one would expect
from the numerics. An interesting feature visible in all three measurements is the region
of negative (Jy on the left that starts directly next to the dip, goes towards the wall and
there seems to be reflected as a single dip.
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6 COLLISIONS

6 Collisions

As shown in Sec. 3 and 4, the untilted solitons share characteristics of sine-Gordon
solitons, and for small amplitudes also the realised breathers behave similarly to sine-
Gordon breathers. To further probe how close the underlying model is to a sine-Gordon
model and as collisions were also the first observed proof of these solitons in the exper-
iment, soliton collisions are investigated in the following. Especially the phase shift oz,
which is the coordinate shift between in- and outgoing trajectory of elastically colliding
solitons, as shown in Fig. 7, is of interest for this, as for sine-Gordon kink-antikink colli-
sions there is a clear prediction of the phase shift for different incoming velocities, given
in Eq. 17.

6.1 Collisions for different quadratic Zeeman shifts

As the effective model was derived for the regime of the untilted solitons, we first simulate
collisions of these and use ¢ to control their initial velocity. To obtain a first result with
minimal additional influence on the phase shifts, this is done with the theoretical initial
condition in the spinorphase and a matched background, in contrast to the experiment
where the background was not matched for ¢ > 0. As only ¢ is changed, kink and antikink
have the same absolute incoming velocity |vi,| only with opposing signs. When putting
them close to each other, this directly leads to a kink-antikink collision, although the
distance between them has to be chosen large enough to get a linear incoming trajectory,
needed for extracting phase shifts.

The results confirm that, like in the sine-Gordon model (see Fig. 7), the spinorphase
flips at the collision point. The spin-1 system realises this phase flip by a rotation around
the spin-nematic sphere, which can be seen in the observables spanning the sphere in Fig.
48 and always goes over the south pole of the sphere, so negative )g. To now investigate
the collision and this flip on the sphere more in depth, first the soliton positions are
extracted again for every time step. This is done similar to the approach used in Sec. 3.4,
only now there is a profile of two dips fitted to |F' |. With the positions of the solitons
the rotation of a soliton on the sphere can now be quantified by calculating the tilt angle
at the found position of the soliton for every time step. For this Eq. 63 is used and, as
kink and antikink have the same tilt angle not only in the starting condition (see Fig. 40)
but also during the rotation (follows from Fig. 48), it is enough to further look into this
for one of them. When plotting the tilt angle at the soliton position over time, Fig. 49,
it was empirically found that it follows a tanh. With this, the tilt angle over time during
the collision 0(t) is then fitted as

0<t> = 6)amp tanh ((t - tcol)/Tcol) + eoﬂset ) (66)
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Figure 47: The collision between an antikink and a kink in the simulation at ¢ = 0.30n|c,|.
In |F'| | one can nicely follow the trajectory of the solitons, which is extracted through a
fit to the two dips. In the spinorphase the flip of the occupied potential minimum between
the kink and the antikink from —7 to 7, and with this the switch from antikink-kink to
kink-antikink, at the collision point is clearly visible, leading up to the question of how
the solitons traverse the nematic sphere during the collision.

where especially the collision time t., and the width of the collision in time 7., are
interesting for further analysis. Additionally, the amplitude of this function 8,,,, and its
offset 0,gst are obtained in the fit. To extract the phase shift we need a linear incoming
and a linear outgoing trajectory. If the velocity of a soliton depends on the tilt angle like
in Eq. 65 also during the interaction with another soliton, the asymptotic behaviour of
the tanh can be used to define regions of constant velocity. To test this, the initial velocity
Vingt Of one soliton is obtained by a linear fit to the first few time steps and then using the
initial position zo and Eq. 65 with 0(¢) the trajectory predicted by the tilt angle for the
left antikink with 6(t = 0) = 7 is:

¢
xo(t) = xo — Z At avedVinit cos 0(t') (67)

tl:tstart

Here Atg,yeq is the spacing between two time slices saved in the simulation and for the right
kink the sign in front of the sum changes. The trajectory arising from this is then compared
with the actual soliton trajectory in Fig. 49. Between the two trajectories mostly a small
offset in the beginning is noticeable. This is very likely due to the density dip forming at
the soliton position and the soliton itself not being accelerated instantaneously.

Through the extracted trajectory the tilt angle now helps in quantitatively evaluating
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Figure 48: The collision in the observables making up the spin-nematic sphere. While
F, stays approximately constant, @), flips its sign and in ()y a dip emerges during the
collision. On the sphere this corresponds to a rotation from the initial 6;,;; = 7 over the
south pole to the opposite site § = 2w. As can also be seen here, the solitons develop a
small peak in @y on the order of @ + 0.01 compared to the background value ). This
is comparable to the size of the radiation from the formation of the soliton (compare Fig.
A3).
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Figure 49: The tilt angle of the right soliton for the collision shown in Fig. 47 and 48. To
this a tanh is fitted (red line) from which the position t., and width 7., of the collision is
extracted. This is then used to define the collision region [tcol — 37col, teol + 37col] indicated
by the two grey lines. On the right the trajectory obtained by the tilt angle using the
incoming velocity of the soliton and the starting position through Eq. 65 (red line) is
compared to the actual trajectory of the soliton.
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6 COLLISIONS

the collisions, as it allows defining a region of constant velocity, and thereby a linear
trajectory, before and after the collision. For this, the collision position t., and width
Teol €xtracted from the fit to the tilt angle are used to define the collision region as
[teol — 3Teol, teol + 3Tcol], shown in Fig. 49 as the grey lines. The times before the collision
region are then used to obtain the incoming trajectory, and the times after the collision
region to obtain the outgoing trajectory. Both trajectories are then defined by taking the
distance between the solitons at each time step in the specific region and making a linear
fit to them. This is shown in Fig. 50. Here, the distance between the solitons is taken, so
only relative shifts between the solitons are taken into account, which is relevant in the
experiment, where the same evaluation method is used. As can be seen in Fig. 50 the
phase shift x can then be extracted by "reflecting" the incoming trajectory at the point
where it goes to zero and then taking the distance between this linear function and the
linear function fitted to the outgoing trajectory. This difference is then twice the phase
shift as it is the shift in the distance between the solitons, but we are interested in the
shift of the trajectory of one soliton. When using this method, one assumes that the
velocity of the kink is the same as that of the antikink also after the collision. This is
confirmed by performing two separate linear fits yielding that the absolute value of the
ratio between the velocity of the left and right soliton differs less than 2 - 10~* from one,
which is shown in Fig. AS.

Vin

In the sine-Gordon model collisions are fully elastic, so

= 1, with the incoming

velocity vy, and the outgoing velocity vou;. As one can see in Fig. 51 on the left, here the

elasticity is approximately one for small ¢, but starting at ¢ ~ 0.4|nc;| gets noticeably

q =0.30 n|c1], 6x=0.85 &,

=
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=
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Figure 50: The linear fits to the distance between the solitons before (blue) and after
the collision (red). The coordinate shift between in- and outgoing trajectories is clearly
visible, when comparing the fit to the soliton distance without phase shift (blue dashed).
The distance between the two lines in this plot is two times the phase shift dx, as it is
the change in distance between the solitons and not of one soliton position.
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smaller. This is expected as the double frequency term of the double-sine-Gordon model
should now play a larger role, but also means that the extracted phase shifts get less
exact, as the obtained value depends mostly on the time at which it is measured if the
elasticity differs from one.

The phase shifts obtained for this data are plotted in Fig. 51 on the right over the
incoming velocity vy, of the solitons. To the points, at which the elasticity deviates at
maximum by one percent from one, the sine-Gordon prediction with the inverse of the

speed of sound of the underlying effective sine-Gordon model ¢™1,

doxr = 3\/1 — (¢c7)?In
m

1

cly|’

(68)

see also Eq. 17, is fitted. The result of the fit is shown in Fig. 51 and gives the optimal

parameters:

m = (2.50 £ 0.03)¢;*
c ' =1(0.993 £+ 0.014)2—5 (69)
The inverse of the speed of sound approximately being one means that for this case the
ratio between & and tg is the same as the ratio between dimensionless space and time
of the effective sine-Gordon model, as in [2|, matching the prediction by the LEEFT for
k ~ ke, (see Eq. 24 and 25). However, the sine-Gordon mass m obtained by this fit differs
notably from the sine-Gordon mass predicted by the LEEFT (see Eq. 36 and 37). It has
to be noted that the sine-Gordon mass m here also includes a potential scaling factor of
x, as the phase shifts are given in units of &, which might not be the natural unit of space
of the underlying sine-Gordon model, although the speed of sound being approximately
one hints towards a different origin of the observed sine-Gordon mass. A very likely
source for this is the fact that the LEEFT is derived for the plane with constant Qg = Q)
including the fix points, so the planes in which the solitons lie when not interacting for
an unmatched background. During the collision they now get tilted and therefore leave
this plane, leading to different potential contributions to the phase shift. To get a better
understanding of this an effective theory describing the tilt angle dynamics could be very
helpful.
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Figure 51: (left) The elasticities of the collisions for different ¢. For large ¢ it is close to
one so in- and outgoing velocity are approximately the same, while for larger ¢ it gets
more inelastic. (right) The phase shift 0z of collisions for different incoming velocities
(vin) controlled by setting a different ¢q. The fit is made to values for which the elasticity
deviates at maximum by 0.5% from one, leading to the parameters given in Eq. 69. The
values with an elasticity deviating by more than 0.5% from one are transparent. In red
the value obtained from the experiment [1] is shown.

6.2 Collisions in the experiment

In Fig. 51 an additional red point is included. This point stems from a collision measured
in the experiment, shown in Fig. 52. To obtain the phase shift there, the F-F,-readout
is used. Due to this, the tilt angle cannot be used to extract the collision region, as this
would require too many additional observables. Instead, the distance between the solitons
dsolitons Telative to the mean width of the solitons (¢) is used to fix the collision region as
dsotitons < (). Afterwards, the same analysis as on the numerical data was made, leading
%) = 0.90 £ 0.02 and a phase shift of éx = (5.82 £ 0.73)pm at an
incoming velocity of vy, = (16.76 &+ 0.27)pms™'. To then compare this with the values

to an elasticity of

from the numerical simulation, the SI-units have to be converted to the spin-1 units &
and ts. For this, the mean width of the soliton (¢) = 5.6pm is obtained from the fits in the
experiment and then Eq. 41 and 42 are used to obtain approximate values for & = 7.9um
and t; = 0.17s in the experiment. With this, the incoming velocity v, = O.36§—: and the
phase shift dx = 0.74&, are found, which match the values found in the simulation well,
as shown in Fig. 51.

One can also experimentally obtain a dataset where spinorphase ¢g and transversal
spin |F|| are measured simultaneously. This readout, called the dual-phase-readout
(DuPR), "dual" as it allows the readout of ¢, and g in one shot, was developed by
the other master’s student of the team [37]. With this readout the same behaviour for ¢g

during the collision as numerically is found, see Fig. 53. As the signal in (g is still relying
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on the spin being at least partially aligned with F, this picture is put together by shots
from multiple scans. Due to this, this data was not used for the phase shift extraction,
as on the timescale of multiple scans the quadratic Zeeman shift ¢, as seen by the atoms,
and with it the incoming velocity might drift and due to there being less atoms used
for obtaining F, and F), there is also larger noise on the data in |F)|| compared to the
data measured with the F,-F,-readout. However, especially the also developed full spin-
nematic readout (F,-Q,.-F>) [37| enables the extraction of the tilt angle during collision,

which is subject of future work in the group.

6x=(5.82+0.73) um
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Figure 52: The |F'| | data of the collision used to extract the phase shift from the experi-
ment. With the black lines the collision region defined by the distance of the solitons is
indicated. On the right the processed data for the phase shift extraction is shown. The
data and figures are taken and modified from [1].
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Figure 53: ¢g and |F| for a kink-antikink collision in the experiment measured in a
simultaneous readout. The readout allowing this was developed in [37] and the plot is
taken and modified from [1].
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6 COLLISIONS

6.3 Collisions with an unmatched background

Compared to the numerically obtained values for the elasticity, the experimentally ob-
tained value is significantly lower. To look into potential reasons for this, the collisions are
also simulated for an unmatched background, as the matching of the background already
had an impact on the velocities starting from ¢ ~ 0.4n|c;|. Aside from the different pre-
paration of the background the procedure for the phase shift extraction stays the same.
The resulting elasticities do not follow a clear pattern, but already for small ¢ deviate up
to 6% from one, as shown in Fig. 54. The reason for this seems to be the phase of the
background oscillation at the time of the collision t.,. From a maximum in |F'| | they can

draw kinetic energy making the collision superelastic (| - > 1), while for collisions at

the minimum they get inelastic (‘ﬁ’ < 1). This can be seen in Fig. 55, for which the
collision was simulated at a constant ¢ = 0.50n|c;| and the initial distance of the kink and
antikink was changed leading to different collision times. These different collision times
in return lead to a different background value at the collision time, shown in Fig. 56.
In this figure, one can also see that the different collision times also lead to a different
trajectory of the dips in |F'||. For the superelastic collision the two dips merge into one
dip, while for the nearly perfectly elastic collision they stay clearly separated. The oscil-
lation of the background and the elasticity match not perfectly, which is also expected,
as the background dynamic at the soliton position already differs visibly from the actual
background away from the simulation taken as a value here, which also is visible in Fig.
56. This is currently analysed on experimental data by Alexander Schmutz (another PhD

student from the group).
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Figure 54: Elasticities for different ¢ with an unmatched background, leading to supere-
lastic collisions. As shown in Fig. 55 the elasticity depends on the background value at
the collision time.
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Figure 55: The background value of |F)| (red x) and the elasticity of the collision (blue
points) for constant ¢ = 0.50n|c;| and different collision times ¢., due to different initial
distances between kink and antikink. The background value is taken far away from the
collision as a mean value of 20 grid points.
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Figure 56: The collision in | F'| | for two different initial distances between the solitons with
an unmatched background at ¢ = 0.50n|c;|. The collision times are marked by the dashed
line. On the left the background is approximately at the maximum of the oscillation at
the collision point leading to a superelastic collision and on the right the background is
approximately at its minimum leading to an inelastic collision.
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6.4 Collisions at a constant tilt angle for different quadratic Zee-

man shifts

To check if the origin of the deviation of the extracted sine-Gordon mass from the pre-
diction by the LEEFT is due to leaving the plane of the stable points for the set ¢, the
phase shifts are taken again for different ¢, but this time with the initial condition being
tilted solitons. Similar studies have been made for a special case for strong spin-spin-
interactions [18]. In the following, a tilt angle of § = —3m /4 is used for this. The resulting
phase shifts allow for again fitting the sine-Gordon prediction (see Eq. 17), leading to:

m = (2.515 4 0.007)&; !

¢t =(0.725 £ 0.004)t—s 70
&

The sine-Gordon mass combined with the potentially different scaling in space matches
the one obtained from the untilted collisions within one standard deviation (compare Eq.
69), but the difference in the speed of sound is significantly larger. This means that
either a change in space scaling or time scaling occurs. The fact that the sine-Gordon
mass found here matches the one found for the untilted solitons is not conclusive for
the question whether the actual sine-Gordon mass changes, as the fit parameter m also
includes a scaling of space from the dimensionless sine-Gordon space to units of &, which
might just compensate the change in the actual sine-Gordon mass. Pointing towards a
change in spatial scaling is the fact that the width of the soliton also changes for a tilt, as

shown in Fig. 42. Both a shift in space or time scaling mean that different tilt angles lead
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Figure 57: Elasticities and phase shifts for kink-antikink-collisions with both solitons at
an initial tilt angle of § = —37/4 and different ¢ set. The elasticities only deviate from
one by 0.2% and the parameters found by a fit to the phase shifts (shown as the line) are
given in Eq.70.
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to a different effective sine-Gordon model in the spinorphase. During the collision this
leads to the solitons exploring different sine-Gordon models which sum up to a different
sine-Gordon mass observed from the phase shift than in the sine-Gordon model of only

the plane.

6.5 Collisions for different tilt angles

After collisions with a fixed initial tilt angle at different ¢, kink-antikink collisions for
different initial tilt angles at a constant ¢ = 0.2n|c;| were also simulated. The value of ¢
was chosen this low to have an elasticity of approximately one for untilted solitons even
with an unmatched background. By this, the tilting can be realised by an F,-rotation,
similar to the experimental preparation described in Sec. 5.1. When comparing the
collisions, one finds that even for solitons with a positive )y expectation value at their
position, the rotation during the collision always occurs over the pole ()9 = —1 of the
spin-nematic sphere, which can be seen in Fig. 58. Their final position on the sphere,
in the fully elastic case, is at the same value of )y they initially had, just with the sign
of Q. flipped, which is likely due to energy conservation. For all initial tilt angles the
time evolution during the collision follows a tanh, which also still describes the trajectory
outside of the core of the collision, as shown in Fig. 59 for an initial ()¢ > 0.

When plotting the elasticities and phase shifts for this, see Fig. 60, one notices that
the elasticities of the solitons with a positive )y expectation value tend to have a larger
difference from one. These solitons are also significantly less stable, which agrees with the
findings in [15], and already decay for times smaller than 10 - 27, when colliding. Due to
the oscillating background, the elasticities in general differ by a larger amount from one
than before. To accommodate for this, the fit to the phase shifts is now performed on the
values with an elasticity differing by a maximum of 2% from one. This fit leads to the

optimal parameters:

m = (1.444 4+ 0.023)&;!
ts (71)
&

The value found for the sine-Gordon mass matches the prediction for the mass made by
the LEFFT for k = ke, m = V2, within two standard deviations, but compared to before

the speed of sound now has a value significantly different from one. It is interesting

¢t =(1.8240.03)

that controlling the soliton velocity in a different way, yields such a different outcome
for the parameters of the phase shift relation, while in every case investigated here, still
following a function of the shape expected in a sine-Gordon model. To make more precise
statements on the change of the parameters for both changing # and changing ¢ further

studies on larger datasets are needed.

62



6 COLLISIONS

Fx, g=0.20 n|c1]| Qyz, 9 =0.20 n|c,| Qo, g =0.20 n|cq| 1
N - -
48.46 . i
¥ 3231 1 1 = 0

16.16

T T T T T T _1
-10 0 10 -10 0 10 -10 0 10
X / Es X / ES X / ES

0.0

Figure 58: The kink-antikink collision with a mean initial tilt angle (6;ign) = 0.727. Even
with this positive initial )y expectation value at the soliton position the solitons rotate
over negative )y during the collision and in F}, the domain in the negative vanishes during
the collision and then emerges again, meaning the solitons do not stay a line connecting
both fix points on the sphere during the collision. In all three observables the early decay
of the solitons with positive () is visible.
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Figure 59: The tilt angle at the soliton position for the right soliton in the data shown in
Fig. 58 still follows a tanh during the collision, which can also be fitted (red). Different
to the collisions shown earlier (see Fig. 49), there are now clear deviations between the
trajectory obtained from the tilt angle’s time evolution (red) and the actual trajectory of
the soliton during the collision. As can be seen in Fig 58, the solitons actually seem to
become one small dip for a short time in F.
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Figure 60: Elasticity and phase shift for different initial velocities due to different initial
tilt angles. points with a positive )y are marked red while those with a negative ) are
marked blue. For this data ¢ = 0.2n|c;| was chosen and for the fit to the phase shifts all
points with a elasticity deviating at maximum by 2% from one were used. The optimal
parameters found for the fit (orange line) are shown in Eq. 71.

Additionally, for collisions of solitons with tilt angles § ~ 7 at small ¢ or at larger
q even for a wider range of tilt angles, so called n-bounce collisions were observed. In
such a collision, the solitons separate from each other after colliding to then change their
direction and collide again. Depending on the number of collisions n + 1, the collision
is then called an n-bounce collision (so for two collisions a 1-bounce collision). In two
examples of these collisions, shown in Fig. 61, one can see that in the captured collisions
in the spin-1 system, especially for the one at ¢ = 0.9n|c;|, the internal mode of the width
oscillation of the solitons is excited. Interestingly, the time of the second collision and
the third maximum of the width oscillation coincide with another. These collisions are
an interesting topic for further investigation, as in the double sine-Gordon model, and
similarly in the ¢*-theory, there are predictions for this internal mode and its relation
to the structure of possible occurring bounces and the collisions are observed to have a

fractal structure in their resonance spectra over the incoming velocity of the solitons v

31, 32].
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Figure 61: Two n-bounce collisions observed in the simulation. In both cases a tilt angle
with a positive (Qy expectation value at the soliton position was chosen. This leads to
a decay after ¢ < 10 - 2wts. The data with ¢ = 0.90n|c;| was taken with a matched
background and the tilting from the FDS solution [17] while the data with ¢ = 0.30n|c|
was taken with a matched background and the tilt realised by a rotation around F,.

65



7 DISCUSSION AND OUTLOOK

7 Discussion and outlook

In this thesis the sine-Gordon solitons previously observed in a 8’Rb spinor BEC were fur-
ther investigated using a spin-1 mean-field GPE simulation, with a focus on free dynamics
of a single soliton and their collisions. The goal of this simulations was to provide further
insight regarding the sine-Gordon nature of the solitons, see how they can be controlled
and observed best and if the spin-1 system shares other features with the sine-Gordon
model, such as the existence of a breather solution.

First, the effect of experimental imperfections in the initial condition on the soliton

dynamics was investigated, and it was found that perturbations in the imprint width lead
to an oscillation of the soliton width approximately around the stable width ¢ = f/i The
larger the perturbation, the more this becomes an approximation, as the mean of the
oscillation is slightly larger than ¢. Unlike a soliton in the sine-Gordon model, changing
the width of the soliton does not change its velocity, instead the experimental finding
that the velocity depends linearly on the quadratic Zeeman shift ¢, which can also be
understood in the framework of the effective theory, could be verified. Numerically it was
validated that the zero crossing of the linear function is indeed at ¢ = 0 and as observed in
the experiment the solitons are also stable outside of the easy-plane phase when crossing
the zero and the soliton velocity changes sign for this v(—¢) = —v(g). This linear relation
is valid up to |¢q| =~ 0.8n|c;|, when matching the background to the ground state of the
easy-plane phase for the chosen ¢. An imperfect initial soliton shape and an oscillating
background, due to the initial state being the ground state for ¢ = 0, do not lead to a
measurable difference in the velocity of the soliton for small ¢ up to |g| < 0.4n|c;|. When
applying this constraint on the linear region of ¢ used for the fit on the experimental data,
the slope found by this fit matches the numerical slope well.

For a similar simulation with a matched background, a fit using the general dependence
of the sine-Gordon mass m on ¢ in the case k =~ k¢, can be made, although the found
parameters cannot be compared to the predictions made in [2], as one would expect that
the system is far from the sine-Gordon limit for the values of ¢ needed to fit more than a
linear function.

In addition to the profile of a sine-Gordon kink or antikink in the spinorphase, the
profile of a sine-Gordon breather at ¢ &~ 0 also leads to stable breathing, i.e., localised and
time periodic dynamics, in the spinorphase, although the dynamical behaviour differs from
the analytical sine-Gordon breather. While small amplitude breathers still behave similar
to a sine-Gordon model, for larger amplitudes the frequency starts to differ from the
expectation. The relation between initial imprint depth 2u and resulting frequency of the
breather w was found to be described by w = 2 cos? i instead of w = 2 cos p, which would

be the expectation from the sine-Gordon model. When imprinting the breather with a
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constant width but different amplitudes, one also gets different frequencies for the different
amplitudes. If the amplitude is too small compared to the set width, the frequency is larger
than expected and if the amplitude is too large, the frequency is smaller than expected.
This means when realising breathers in the experiment and comparing frequencies the
correct initialisation is crucial. Additionally, starting at an initial amplitude of u = /4,
all points with an initial value of 7/2 in the spinorphase oscillate around the potential
minimum ¢g = 7 instead of g = 0. This was found to be due to the breather in spin-1
rotating rigidly around the F,-axis of the spin-nematic sphere. To describe this rotation
the tilt angle € on the sphere was introduced.

Expanding on this, solitons tilted on this sphere by a tilt angle § were simulated. These
tilted solitons were found to be stable and now also connect the solitons described before
to the DADD- and ADDAD-solitons described in [15] and the FDS described in [16-19].
For ¢ > 0, it was found that the velocity of the solitons changed depending on the tilt
angle. With a fit to the data for different tilt angles, the relation v(6) = —vmax(q) cosf
was obtained for this change. Tilting the solitons was also tested in the experiment by
applying an additional RF-pulse for a rotation around F), after the initialisation of a
soliton imprint. The first results showed stable dips in @y for up to approximately a
second at the soliton position the depth of which can be controlled by the pulse length
and that move with a lower velocity when the dip in @)y is larger, reaching v ~ 0 for
the longest pulse duration used. This preparation seems to be very sensitive on a good
calibration of the imprint, which has to be taken into account for future measurements
but the data taken already strongly hints that preparing and measuring tilted solitons is
possible in the experiment.

With the two possible ways found for controlling the soliton velocity collisions between
kink and antikink were simulated. The results for the phase shift dx of a soliton due to
the collision support the fact that in the limit of small ¢ the solitons can be described by
an effective sine-Gordon model, both when controlling the velocity by the tilt angle and
by the quadratic Zeeman shift, respectively. However, the parameters found by fits of
the sine-Gordon relation between phase shift and velocity differ between the data and in
each case also at least one value differs from the prediction made by the effective model.
While the sine-Gordon masses from the fit for different ¢ to change the incoming velocity;,
match for a non-tilted (6, = 7) and a tilted (G = gﬂ') soliton collision, for a constant
q = 0.20n|c;| and different tilt angles a different sine-Gordon mass is obtained. In return
this value matches the prediction from the effective theory for k ~ k¢ at ¢ — 0. The
speed of sound obtained by the three fits was found to be different in all three cases. For
the untilted solitons and different ¢, this is approximately one, meaning that for these
solitons it agrees with the effective theory. For the tilted solitons the inverse of the speed

of sound gets smaller than one, qualitatively agreeing with the found decrease in soliton
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width in the spinorphase for a tilted soliton. Contrary to this, by just changing the
tilt angle the optimal value found by the fit for the inverse of the speed of sound gets
significantly larger.

When looking at the dynamics of a single soliton during the collisions, it was also found
that the they can be described by the dynamics of the tilt angle. During the collision,
the solitons explore the full nematic sphere and rotate over the pole with Qg = —1 to
approximately the tilt angle with the same )y expectation value they had before and
the @),. undergoing a sign change as a result of the rotation. The time evolution of
the tilt angle is given by tanh(¢), opening the question for future research, whether this
functional shape can be explained by deriving an equation of motion for the tilt angle
and by this achieving a better understanding of the soliton and breather dynamics and
interactions, especially for initial conditions leaving the equatorial plane of the nematic
sphere. The change of the speed of sound for different initial tilt angles also implies that
the underlying effective sine-Gordon model changes with the tilt angle. Together these
results could explain the different phase shift relations found, as this would mean that
during the collision the soliton explores a large variety of effective sine-Gordon models
which all contribute to the resulting phase shift again summing up to the result expected
by an effective sine-Gordon model. Additionally, n-bounce collisions, which are a hallmark
of non-integrable dynamics, were found for the collisions of the tilted solitons in certain
parameter regimes, especially solitons tilted to a positive )y expectation value at the
soliton position seem promising for achieving this kind of collisions. Further investigation
of these collisions both numerically and in the experiment would especially be interesting
regarding the resulting resonance spectra, as it inhabits a fractal structure in a double

sine-Gordon model.
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A ADDITIONAL PLOTS

A Additional plots

A.1 Theoretical and experimental background

Figure Al: The groundstate of the easy-axis ferromagnet phase on the spin sphere (left)
and the spin-nematic sphere (right). On the spin sphere the state is located either on the
north or the south pole, which means that the spin is fully elongated and aligned along
F,. This directly leads to Qg = —1, which means that it is located on the south pole of
the spin-nematic sphere.

Figure A2: The groundstate of the polar phase on the spin sphere (left) and the spin-
nematic sphere (right). In this state all atoms are in the mpr = 0-mode, leading to all F;
having an expectation value of 0 and Qg = 1.
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A.2 Single solitons
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Figure A3: F, for the soliton at ¢ =~ 0 is flat. In )y there is also radiation below the one
percent level in the formation of the soliton. This radiation presents itself as oscillation
that are shifted by a phase of m on the two sides of the soliton.
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Figure A4: Kink (right) and antikink (left) moving in opposite direction with the same
velocity for a given ¢ # 0. For the initial condition closer to the experiment and an
unmatched |F| | background, oscillations in the spinorphase background are visible.
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Figure A5: The moving soliton at ¢ = 0.40n|c;| in | F' | and ¢g with a matched background
and the correct imprint shape. The dashed line is the linear fit to the trajectory.

73



A ADDITIONAL PLOTS

A.3 Breather
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Figure A6: The frequencies as extracted for the breather, when changing u, for the three
oscillations in g, Qo, and Q. all compared to the frequency extracted from the linear
fit to the tilt angle. The deviations get larger for large u, where less than one period of
the fit is captured, which makes the oscillation fits less exact.
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Figure A7: The breathers shown in Fig. 32 and 33 in |F|. While for an initial p < /4

only one dip is visible, for larger values it looks similar to the F'| profile of two solitons
close to each other (compare Fig. 20).
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A.4 Collisions
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Figure A8: The velocity of the left and right soliton for different ¢ and untilted soliton
with a matched background is in good approximation the same, as the ratio of the two

velocities differs for the outgoing solitons by less than 2 - 10~* from one and for the
incoming solitons on an even lower level.
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